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PREFACE 

Purpose/Goals 

This book describes data structures, methods of organizing large amounts of data, 
and algorithm analysis, the estimation of the running time of algorithms. As 
computers become faster and faster, the need for programs that can handle large 
amounts of input becomes more acute. Paradoxically, this requires more careful 
attention to efficiency, since inefficiencies in programs become most obvious 
when input sizes are large. By analyzing an algorithm before it is actually 
coded, students can decide if a particular solution will be feasible. For 
example, in this text students look at specific problems and see how careful 
implementations can reduce the time constraint for large amounts of data from 16 
years to less than a second. Therefore, no algorithm or data structure is 
presented without an explanation of its running time. In some cases, minute 
details that affect the running time of the implementation are explored.  

Once a solution method is determined, a program must still be written. As 
computers have become more powerful, the problems they solve have become larger 
and more complex, thus requiring development of more intricate programs to solve 
the problems. The goal of this text is to teach students good programming and 
algorithm analysis skills simultaneously so that they can develop such programs 
with the maximum amount of efficiency.  

This book is suitable for either an advanced data structures (CS7) course or a 
first-year graduate course in algorithm analysis. Students should have some 
knowledge of intermediate programming, including such topics as pointers and 
recursion, and some background in discrete math.  

Approach 

I believe it is important for students to learn how to program for themselves, 
not how to copy programs from a book. On the other hand, it is virtually 
impossible to discuss realistic programming issues without including sample code. 
For this reason, the book usually provides about half to three-quarters of an 
implementation, and the student is encouraged to supply the rest.  

The algorithms in this book are presented in ANSI C, which, despite some flaws, 
is arguably the most popular systems programming language. The use of C instead 
of Pascal allows the use of dynamically allocated arrays (see for instance 
rehashing in Ch. 5). It also produces simplified code in several places, usually 
because the and (&&) operation is short-circuited.  

Most criticisms of C center on the fact that it is easy to write code that is 
barely readable. Some of the more standard tricks, such as the simultaneous 
assignment and testing against 0 via  

if (x=y) 

are generally not used in the text, since the loss of clarity is compensated by 
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only a few keystrokes and no increased speed. I believe that this book 
demonstrates that unreadable code can be avoided by exercising reasonable care.  

Overview 

Chapter 1 contains review material on discrete math and recursion. I believe the 
only way to be comfortable with recursion is to see good uses over and over. 
Therefore, recursion is prevalent in this text, with examples in every chapter 
except Chapter 5.  

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic 
analysis and its major weaknesses. Many examples are provided, including an in-
depth explanation of logarithmic running time. Simple recursive programs are 
analyzed by intuitively converting them into iterative programs. More complicated 
divide-and-conquer programs are introduced, but some of the analysis (solving 
recurrence relations) is implicitly delayed until Chapter 7, where it is 
performed in detail.  

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding these 
data structures using ADTS, fast implementation of these data structures, and 
an exposition of some of their uses. There are almost no programs (just 
routines), but the exercises contain plenty of ideas for programming assignments. 

Chapter 4 covers trees, with an emphasis on search trees, including external 
search trees (B-trees). The UNIX file system and expression trees are used as 
examples. AVL trees and splay trees are introduced but not analyzed. Seventy-
five percent of the code is written, leaving similar cases to be completed by the 
student. Additional coverage of trees, such as file compression and game trees, 
is deferred until Chapter 10. Data structures for an external medium are 
considered as the final topic in several chapters.  

Chapter 5 is a relatively short chapter concerning hash tables. Some analysis is 
performed and extendible hashing is covered at the end of the chapter.  

Chapter 6 is about priority queues. Binary heaps are covered, and there is 
additional material on some of the theoretically interesting implementations of 
priority queues.  

Chapter 7 covers sorting. It is very specific with respect to coding details and 
analysis. All the important general-purpose sorting algorithms are covered and 
compared. Three algorithms are analyzed in detail: insertion sort, Shellsort, and 
quicksort. External sorting is covered at the end of the chapter.  

Chapter 8 discusses the disjoint set algorithm with proof of the running time. 
This is a short and specific chapter that can be skipped if Kruskal's algorithm 
is not discussed.  

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting not only 
because they frequently occur in practice but also because their running time is 
so heavily dependent on the proper use of data structures. Virtually all of the 
standard algorithms are presented along with appropriate data structures, 
pseudocode, and analysis of running time. To place these problems in a proper 
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context, a short discussion on complexity theory (including NP-completeness and 
undecidability) is provided.  

Chapter 10 covers algorithm design by examining common problem-solving 
techniques. This chapter is heavily fortified with examples. Pseudocode is used 
in these later chapters so that the student's appreciation of an example 
algorithm is not obscured by implementation details.  

Chapter 11 deals with amortized analysis. Three data structures from Chapters 4 
and 6 and the Fibonacci heap, introduced in this chapter, are analyzed.  

Chapters 1-9 provide enough material for most one-semester data structures 
courses. If time permits, then Chapter 10 can be covered. A graduate course on 
algorithm analysis could cover Chapters 7-11. The advanced data structures 
analyzed in Chapter 11 can easily be referred to in the earlier chapters. The 
discussion of NP-completeness in Chapter 9 is far too brief to be used in such a 
course. Garey and Johnson's book on NP-completeness can be used to augment this 
text.  

Exercises 

Exercises, provided at the end of each chapter, match the order in which material 
is presented. The last exercises may address the chapter as a whole rather than a 
specific section. Difficult exercises are marked with an asterisk, and more 
challenging exercises have two asterisks.  

A solutions manual containing solutions to almost all the exercises is available 
separately from The Benjamin/Cummings Publishing Company.  

References 

References are placed at the end of each chapter. Generally the references either 
are historical, representing the original source of the material, or they 
represent extensions and improvements to the results given in the text. Some 
references represent solutions to exercises.  
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CHAPTER 1: 
INTRODUCTION 

In this chapter, we discuss the aims and goals of this text and briefly review 
programming concepts and discrete mathematics. We will  

 See that how a program performs for reasonably large input is just as 
important as its performance on moderate amounts of input.  

 Review good programming style.  

 Summarize the basic mathematical background needed for the rest of the book. 

 Briefly review recursion.  

1.1. What's the Book About? 

Suppose you have a group of n numbers and would like to determine the kth 
largest. This is known as the selection problem. Most students who have had a 
programming course or two would have no difficulty writing a program to solve 
this problem. There are quite a few "obvious" solutions.  

One way to solve this problem would be to read the n numbers into an array, sort 
the array in decreasing order by some simple algorithm such as bubblesort, and 
then return the element in position k.  

A somewhat better algorithm might be to read the first k elements into an array 
and sort them (in decreasing order). Next, each remaining element is read one by 
one. As a new element arrives, it is ignored if it is smaller than the kth 
element in the array. Otherwise, it is placed in its correct spot in the array, 
bumping one element out of the array. When the algorithm ends, the element in the 
kth position is returned as the answer.  

Both algorithms are simple to code, and you are encouraged to do so. The natural 
questions, then, are which algorithm is better and, more importantly, is either 
algorithm good enough? A simulation using a random file of 1 million elements and 
k = 500,000 will show that neither algorithm finishes in a reasonable amount of 
time--each requires several days of computer processing to terminate (albeit 
eventually with a correct answer). An alternative method, discussed in Chapter 7, 
gives a solution in about a second. Thus, although our proposed algorithms work, 
they cannot be considered good algorithms, because they are entirely impractical 
for input sizes that a third algorithm can handle in a reasonable amount of time. 

A second problem is to solve a popular word puzzle. The input consists of a two-
dimensional array of letters and a list of words. The object is to find the words 
in the puzzle. These words may be horizontal, vertical, or diagonal in any 
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direction. As an example, the puzzle shown in Figure 1.1 contains the words this, 
two, fat, and that. The word this begins at row 1, column 1 (1,1) and extends to 
(1, 4); two goes from (1, 1) to (3, 1); fat goes from (4, 1) to (2, 3); and that 
goes from (4, 4) to (1, 1).  

Again, there are at least two straightforward algorithms that solve the problem. 
For each word in the word list, we check each ordered triple (row, column, 
orientation) for the presence of the word. This amounts to lots of nested for 
loops but is basically straightforward.  

Alternatively, for each ordered quadruple (row, column, orientation, number of 
characters) that doesn't run off an end of the puzzle, we can test whether the 
word indicated is in the word list. Again, this amounts to lots of nested for 
loops. It is possible to save some time if the maximum number of characters in 
any word is known.  

It is relatively easy to code up either solution and solve many of the real-life 
puzzles commonly published in magazines. These typically have 16 rows, 16 
columns, and 40 or so words. Suppose, however, we consider the variation where 
only the puzzle board is given and the word list is essentially an English 
dictionary. Both of the solutions proposed require considerable time to solve 
this problem and therefore are not acceptable. However, it is possible, even with 
a large word list, to solve the problem in a matter of seconds.  

An important concept is that, in many problems, writing a working program is not 
good enough. If the program is to be run on a large data set, then the running 
time becomes an issue. Throughout this book we will see how to estimate the 
running time of a program for large inputs and, more importantly, how to compare 
the running times of two programs without actually coding them. We will see 
techniques for drastically improving the speed of a program and for determining 
program bottlenecks. These techniques will enable us to find the section of the 
code on which to concentrate our optimization efforts.  

   1  2  3  4 

------------- 

1  t  h  i  s 

2  w  a  t  s 

3  o  a  h  g 

4  f  g  d  t 

Figure 1.1 Sample word puzzle 

1.2. Mathematics Review 

This section lists some of the basic formulas you need to memorize or be able to 
derive and reviews basic proof techniques.  
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1.2.1. Exponents 

  xa xb = xa+b

 

    xa

 

    --  = xa-b

 

    xb

 

  (xa)b = xab

 

xn + xn = 2xn  x2n

 

2n + 2n = 2n+1

 

1.2.2. Logarithms
 

In computer science, all logarithms are to base 2 unless specified otherwise. 

 

DEFINITION: xa = b if and only if logx b = a 

 

Several convenient equalities follow from this definition. 

 

THEOREM 1.1. 

 

 

 

PROOF: 

 

Let x = logc b, y = logc a, and z = loga b. Then, by the definition of logarithms, c
x = b, cy = 

a, and az = b. Combining these three equalities yields (cy)z = cx = b. Therefore, x = yz, which 
implies z = x/y, proving the theorem.  

THEOREM 1.2. 

 

log ab = log a + log b 

 

PROOF: 

 

Let x = log a, y = log b, z = log ab. Then, assuming the default base of 2, 2x= a, 2y = b, 2z = 

ab. Combining the last three equalities yields 2x2y = 2z = ab. Therefore, x + y = z, which proves 
the theorem.  

Some other useful formulas, which can all be derived in a similar manner, follow. 

 

log a/b = log a - log b
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log(ab) = b log a 

log x < x for all x > 0

 

log 1 = 0,  log 2 = 1,  log 1,024 = 10,  log 1,048,576 = 20

 

1.2.3. Series
 

The easiest formulas to remember are 

 

 

 

and the companion, 

 

 

 

In the latter formula, if 0 < a < 1, then 

 

 

 

and as n tends to , the sum approaches 1/(1 -a). These are the "geometric series" formulas. 

 

We can derive the last formula for  in the following manner. Let S be the sum. 
Then  

S = 1 + a + a2 + a3 + a4 + a5 + . . .

 

Then 

 

aS = a + a2 + a3 + a4 + a5 + . . .

 

If we subtract these two equations (which is permissible only for a convergent series), virtually 
all the terms on the right side cancel, leaving  

S - aS = 1

 

which implies that 

 

 

 

We can use this same technique to compute , a sum that occurs frequently. We write 
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and multiply by 2, obtaining  

 

 

Subtracting these two equations yields 

 

 

 

Thus, S = 2. 

 

Another type of common series in analysis is the arithmetic series. Any such series can be 

evaluated from the basic formula.  

 

 

For instance, to find the sum 2 + 5 + 8 +. . . + (3k - 1), rewrite it as 3(1 + 2+ 3 +. . . + k) -

(1 + 1 + 1 +. . . + 1), which is clearly 3k(k + 1)/2 - k. Another way to remember this is to add 
the first and last terms (total 3k + 1), the second and next to last terms (total 3k + 1), and so 
on. Since there are k/2 of these pairs, the total sum is k(3k + 1)/2, which is the same answer as 
before.  

The next two formulas pop up now and then but are fairly infrequent. 

 

 

 

When k = -1, the latter formula is not valid. We then need the following formula, which is used 

far more in computer science than in other mathematical disciplines. The numbers, HN, are known 

as the harmonic numbers, and the sum is known as a harmonic sum. The error in the following 

approximation tends to y  0.57721566, which is known as Euler's constant. 

 

 

 

These two formulas are just general algebraic manipulations. 
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1.2.4. Modular Arithmetic
 

We say that a is congruent to b modulo n, written a  b(mod n), if n divides a - b. 

Intuitively, this means that the remainder is the same when either a or b is divided by n. Thus, 

81  61  1(mod 10). As with equality, if a  b (mod n), then a + c  b + c(mod n) 

and a d  b d (mod n). 

 

There are a lot of theorems that apply to modular arithmetic, some of which require extraordinary 
proofs in number theory. We will use modular arithmetic sparingly, and the preceding theorems 
will suffice.  

1.2.5. The P Word
 

The two most common ways of proving statements in data structure analysis are proof by induction 
and proof by contradiction (and occasionally a proof by intimidation, by professors only). The 
best way of proving that a theorem is false is by exhibiting a counterexample.  

Proof by Induction
 

A proof by induction has two standard parts. The first step is proving a base case, that is, 

establishing that a theorem is true for some small (usually degenerate) value(s); this step is 
almost always trivial. Next, an inductive hypothesis is assumed. Generally this means that the 
theorem is assumed to be true for all cases up to some limit k. Using this assumption, the 
theorem is then shown to be true for the next value, which is typically k + 1. This proves the 
theorem (as long as k is finite).  

As an example, we prove that the Fibonacci numbers, F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . 

, Fi = Fi-1 + Fi-2, satisfy Fi < (5/3)
i, for i  1. (Some definitions have F0 = 0, which 

shifts the series.) To do this, we first verify that the theorem is true for the trivial cases. 

It is easy to verify that F1 = 1 < 5/3 and F2 = 2 <25/9; this proves the basis. We assume that 

the theorem is true for i = 1, 2, . . . , k; this is the inductive hypothesis. To prove the 

theorem, we need to show that Fk+1 < (5/3)
k+1. We have  

Fk + 1= Fk + Fk-1

 

by the definition, and we can use the inductive hypothesis on the right-hand side, obtaining 

 

Fk+1 < (5/3)
k + (5/3)k-1

 

< (3/5)(5/3)k+1 + (3/5)2(5/3)k+1
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< (3/5)(5/3)k+1 + (9/25)(5/3)k+1 

which simplifies to 

 

Fk+1 < (3/5 + 9/25)(5/3)
k+1

 

< (24/25)(5/3)k+1

 

< (5/3)k+1

 

proving the theorem. 

 

As a second example, we establish the following theorem. 

 

THEOREM 1.3. 

 

 

 

PROOF: 

 

The proof is by induction. For the basis, it is readily seen that the theorem is true when n = 1. 

For the inductive hypothesis, assume that the theorem is true for 1  k  n. We will 
establish that, under this assumption, the theorem is true for n + 1. We have  

 

 

Applying the inductive hypothesis, we obtain 

 

 

 

Thus, 

 

 

 

proving the theorem. 

 

Proof by Counterexample
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The statement Fk  k2 is false. The easiest way to prove this is to compute F11 = 144 > 11
2. 

 

Proof by Contradiction
 

Proof by contradiction proceeds by assuming that the theorem is false and showing that this 

assumption implies that some known property is false, and hence the original assumption was 
erroneous. A classic example is the proof that there is an infinite number of primes. To prove 
this, we assume that the theorem is false, so that there is some largest prime pk. Let p1, p2, . 

. . , pk be all the primes in order and consider  

N = p1p2p3
. . . pk + 1

 

Clearly, N is larger than pk, so by assumption N is not prime. However, none of p1, p2, . . . , 

pk divide N exactly, because there will always be a remainder of 1. This is a contradiction, 

because every number is either prime or a product of primes. Hence, the original assumption, that 
pk is the largest prime, is false, which implies that the theorem is true.  

int

 

f( int x )

 

{

 

/*1*/       if ( x  = 0 )

 

/*2*/              return 0;

 

else

 

/*3*/              return( 2*f(x-1) + x*x );

 

}

 

Figure 1.2 A recursive function

 

1.3. A Brief Introduction to Recursion
 

Most mathematical functions that we are familiar with are described by a simple formula. For 

instance, we can convert temperatures from Fahrenheit to Celsius by applying the formula  

C = 5(F - 32)/9

 

Given this formula, it is trivial to write a C function; with declarations and braces removed, 
the one-line formula translates to one line of C.  

Mathematical functions are sometimes defined in a less standard form. As an example, we can 
define a function f, valid on nonnegative integers, that satisfies f(0) = 0 and f(x) = 2f(x - 1) 

+ x2. From this definition we see that f(1) = 1, f(2) = 6, f(3) = 21, and f(4) = 58. A function 
that is defined in terms of itself is called recursive. C allows functions to be recursive.* It 
is important to remember that what C provides is merely an attempt to follow the recursive 
spirit. Not all mathematically recursive functions are efficiently (or correctly) implemented by 
C's simulation of recursion. The idea is that the recursive function f ought to be expressible in 
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only a few lines, just like a non-recursive function. Figure 1.2 shows the recursive 
implementation of f.  

*Using recursion for numerical calculations is usually a bad idea. We have done so to illustrate 
the basic points.  

Lines 1 and 2 handle what is known as the base case, that is, the value for which the function is 

directly known without resorting to recursion. Just as declaring f(x) = 2 f(x - 1) + x2 is 
meaningless, mathematically, without including the fact that f (0) = 0, the recursive C function 
doesn't make sense without a base case. Line 3 makes the recursive call.  

There are several important and possibly confusing points about recursion. A common question is: 
Isn't this just circular logic? The answer is that although we are defining a function in terms 
of itself, we are not defining a particular instance of the function in terms of itself. In other 
words, evaluating f(5) by computing f(5) would be circular. Evaluating f(5) by computing f(4) is 
not circular--unless, of course f(4) is evaluated by eventually computing f(5). The two most 
important issues are probably the how and why questions. In Chapter 3, the how and why issues are 
formally resolved. We will give an incomplete description here.  

It turns out that recursive calls are handled no differently from any others. If f is called with 
the value of 4, then line 3 requires the computation of 2 * f(3) + 4 * 4. Thus, a call is made to 

compute f(3). This requires the computation of 2 * f(2) + 3 * 3. Therefore, another call is made 

to compute f(2). This means that 2 * f(1) + 2 * 2 must be evaluated. To do so, f(1) is computed 

as 2 * f(0) + 1 * 1. Now, f(0) must be evaluated. Since this is a base case, we know a priori 

that f(0) = 0. This enables the completion of the calculation for f(1), which is now seen to be 
1. Then f(2), f(3), and finally f(4) can be determined. All the bookkeeping needed to keep track 
of pending function calls (those started but waiting for a recursive call to complete), along 
with their variables, is done by the computer automatically. An important point, however, is that 
recursive calls will keep on being made until a base case is reached. For instance, an attempt to 
evaluate f(-1) will result in calls to f(-2), f(-3), and so on. Since this will never get to a 
base case, the program won't be able to compute the answer (which is undefined anyway). 
Occasionally, a much more subtle error is made, which is exhibited in Figure 1.3. The error in 
the program in Figure 1.3 is that bad(1) is defined, by line 3, to be bad(1). Obviously, this 
doesn't give any clue as to what bad(1) actually is. The computer will thus repeatedly make calls 
to bad(1) in an attempt to resolve its values. Eventually, its bookkeeping system will run out of 
space, and the program will crash. Generally, we would say that this function doesn't work for 
one special case but is correct otherwise. This isn't true here, since bad(2) calls bad(1). Thus, 
bad(2) cannot be evaluated either. Furthermore, bad(3), bad(4), and bad(5) all make calls to bad
(2). Since bad(2) is unevaluable, none of these values are either. In fact, this program doesn't 
work for any value of n, except 0. With recursive programs, there is no such thing as a "special 
case."  

These considerations lead to the first two fundamental rules of recursion: 

 

1. Base cases. You must always have some base cases, which can be solved without recursion. 

 

2. Making progress. For the cases that are to be solved recursively, the recursive call must 
always be to a case that makes progress toward a base case.  

Throughout this book, we will use recursion to solve problems. As an example of a nonmathematical 
use, consider a large dictionary. Words in dictionaries are defined in terms of other words. When 
we look up a word, we might not always understand the definition, so we might have to look up 
words in the definition. Likewise, we might not understand some of those, so we might have to 
continue this search for a while. As the dictionary is finite, eventually either we will come to 
a point where we understand all of the words in some definition (and thus understand that 
definition and retrace our path through the other definitions), or we will find that the 
definitions are circular and we are stuck, or that some word we need to understand a definition 
is not in the dictionary.  
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int 

bad( unsigned int n )

 

{

 

 

/*2*/            return 0;

 

else

 

/*3*/            return( bad (n/3 + 1) + n - 1 );

 

}

 

Figure 1.3 A nonterminating recursive program

 

Our recursive strategy to understand words is as follows: If we know the meaning of a word, then 
we are done; otherwise, we look the word up in the dictionary. If we understand all the words in 
the definition, we are done; otherwise, we figure out what the definition means by recursively 
looking up the words we don't know. This procedure will terminate if the dictionary is well 
defined but can loop indefinitely if a word is either not defined or circularly defined.  

Printing Out Numbers
 

Suppose we have a positive integer, n, that we wish to print out. Our routine will have the 

heading print_out(n). Assume that the only I/O routines available will take a single-digit number 
and output it to the terminal. We will call this routine print_digit; for example, print_digit(4) 
will output a 4 to the terminal.  

Recursion provides a very clean solution to this problem. To print out 76234, we need to first 
print out 7623 and then print out 4. The second step is easily accomplished with the statement 
print_digit(n%10), but the first doesn't seem any simpler than the original problem. Indeed it is 
virtually the same problem, so we can solve it recursively with the statement print_out(n/10).  

This tells us how to solve the general problem, but we still need to make sure that the program 
doesn't loop indefinitely. Since we haven't defined a base case yet, it is clear that we still 

have something to do. Our base case will be print_digit(n) if 0  n < 10. Now print_out(n) is 
defined for every positive number from 0 to 9, and larger numbers are defined in terms of a 
smaller positive number. Thus, there is no cycle. The entire procedure* is shown Figure 1.4.  

*The term procedure refers to a function that returns void. 

 

We have made no effort to do this efficiently. We could have avoided using the mod routine (which 

is very expensive) because n%10 = n - n/10  * 10. 

 

Recursion and Induction
 

Let us prove (somewhat) rigorously that the recursive number-printing program works. To do so, 

we'll use a proof by induction.  

THEOREM 1.4 
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The recursive number-printing algorithm is correct for n  0. 

 

PROOF: 

 

First, if n has one digit, then the program is trivially correct, since it merely makes a call to 
print_digit. Assume then that print_out works for all numbers of k or fewer digits. A number of k
+ 1 digits is expressed by its first k digits followed by its least significant digit. But the 

number formed by the first k digits is exactly n/10 , which, by the indicated hypothesis 
is correctly printed, and the last digit is n mod10, so the program prints out any (k + 1)-digit 
number correctly. Thus, by induction, all numbers are correctly printed.  

void

 

print_out( unsigned int n ) /* print nonnegative n */

 

{

 

if( n<10 )

 

print_digit( n );

 

else

 

{

 

print_out( n/10 );

 

print_digit( n%10 );

 

}

 

}

 

Figure 1.4 Recursive routine to print an integer

 

This proof probably seems a little strange in that it is virtually identical to the algorithm 
description. It illustrates that in designing a recursive program, all smaller instances of the 
same problem (which are on the path to a base case) may be assumed to work correctly. The 
recursive program needs only to combine solutions to smaller problems, which are "magically" 
obtained by recursion, into a solution for the current problem. The mathematical justification 
for this is proof by induction. This gives the third rule of recursion:  

3. Design rule. Assume that all the recursive calls work. 

 

This rule is important because it means that when designing recursive programs, you generally 
don't need to know the details of the bookkeeping arrangements, and you don't have to try to 
trace through the myriad of recursive calls. Frequently, it is extremely difficult to track down 
the actual sequence of recursive calls. Of course, in many cases this is an indication of a good 
use of recursion, since the computer is being allowed to work out the complicated details.  

The main problem with recursion is the hidden bookkeeping costs. Although these costs are almost 
always justifiable, because recursive programs not only simplify the algorithm design but also 
tend to give cleaner code, recursion should never be used as a substitute for a simple for loop. 
We'll discuss the overhead involved in recursion in more detail in Section 3.3.  

When writing recursive routines, it is crucial to keep in mind the four basic rules of recursion: 
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1. Base cases. You must always have some base cases, which can be solved without recursion.  

2. Making progress. For the cases that are to be solved recursively, the recursive call must 
always be to a case that makes progress toward a base case.  

3. Design rule. Assume that all the recursive calls work. 

 

4. Compound interest rule. Never duplicate work by solving the same instance of a problem in 
separate recursive calls.  

The fourth rule, which will be justified (along with its nickname) in later sections, is the 

reason that it is generally a bad idea to use recursion to evaluate simple mathematical 
functions, such as the Fibonacci numbers. As long as you keep these rules in mind, recursive 
programming should be straightforward.  

Summary
 

This chapter sets the stage for the rest of the book. The time taken by an algorithm confronted 
with large amounts of input will be an important criterion for deciding if it is a good 
algorithm. (Of course, correctness is most important.) Speed is relative. What is fast for one 
problem on one machine might be slow for another problem or a different machine. We will begin to 
address these issues in the next chapter and will use the mathematics discussed here to establish 
a formal model.  

Exercises
 

1.1 Write a program to solve the selection problem. Let k = n/2. Draw a table showing the running 

time of your program for various values of n.  

1.2 Write a program to solve the word puzzle problem. 

 

1.3 Write a procedure to output an arbitrary real number (which might be negative) using only 

print_digit for I/O.  

1.4 C allows statements of the form 

 

#include filename

 

which reads filename and inserts its contents in place of the include statement. Include 
statements may be nested; in other words, the file filename may itself contain an include 
statement, but, obviously, a file can't include itself in any chain. Write a program that reads 
in a file and outputs the file as modified by the include statements.  

1.5 Prove the following formulas: 

 

a. log x < x for all x > 0 

 

b. log(ab) = b log a 

 

1.6 Evaluate the following sums: 
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1.7 Estimate 

 

 

 

*1.8 What is 2100 (mod 5)? 

 

1.9 Let Fi be the Fibonacci numbers as defined in Section 1.2. Prove the following: 

 

 

 

**c. Give a precise closed-form expression for Fn. 

 

1.10 Prove the following formulas: 
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CHAPTER 2: 
ALGORITHM ANALYSIS 

An algorithm is a clearly specified set of simple instructions to be followed to 
solve a problem. Once an algorithm is given for a problem and decided (somehow) 
to be correct, an important step is to determine how much in the way of 
resources, such as time or space, the algorithm will require. An algorithm that 
solves a problem but requires a year is hardly of any use. Likewise, an algorithm 
that requires a gigabyte of main memory is not (currently) useful.  

In this chapter, we shall discuss  

 How to estimate the time required for a program.  

 How to reduce the running time of a program from days or years to fractions 
of a second.  

 The results of careless use of recursion.  

 Very efficient algorithms to raise a number to a power and to compute the 
greatest common divisor of two numbers.  

2.1. Mathematical Background 

The analysis required to estimate the resource use of an algorithm is generally a 
theoretical issue, and therefore a formal framework is required. We begin with 
some mathematical definitions.  

Throughout the book we will use the following four definitions:  

DEFINITION: T(n) = O(f(n)) if there are constants c and n0 such that T(n)  cf 

(n) when n  n0. 
 

DEFINITION: T(n) = (g(n)) if there are constants c and n0 such that T(n)  

cg(n) when n  n0. 
 

DEFINITION: T(n) = (h(n)) if and only if T(n) = O(h(n)) and T(n) = (h(n)). 

DEFINITION: T(n) = o(p(n)) if T(n) = O(p(n)) and T(n)  (p(n)).  

Next ChapterReturn to Table of ContentsPrevious Chapter
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The idea of these definitions is to establish a relative order among functions. 
Given two functions, there are usually points where one function is smaller than 
the other function, so it does not make sense to claim, for instance, f(n) < g
(n). Thus, we compare their relative rates of growth. When we apply this to the 
analysis of algorithms, we shall see why this is the important measure.  

Although 1,000n is larger than n2 for small values of n, n2 grows at a faster 

rate, and thus n2 will eventually be the larger function. The turning point is n 
= 1,000 in this case. The first definition says that eventually there is some 

point n0 past which c  f (n) is always at least as large as T(n), so that if 

constant factors are ignored, f(n) is at least as big as T(n). In our case, we 

have T(n) = 1,000n, f(n) = n2, n0 = 1,000, and c = 1. We could also use n0 = 10 

and c = 100. Thus, we can say that 1,000n = O(n2) (order n-squared). This 
notation is known as Big-Oh notation. Frequently, instead of saying "order . . . 
," one says "Big-Oh . . . ."  

If we use the traditional inequality operators to compare growth rates, then the 
first definition says that the growth rate of T(n) is less than or equal to (

) that of f(n). The second definition, T(n) = (g(n)) (pronounced "omega"), 

says that the growth rate of T(n) is greater than or equal to ( ) that of g

(n). The third definition, T(n) = (h(n)) (pronounced "theta"), says that the 
growth rate of T(n) equals ( = ) the growth rate of h(n). The last definition, T
(n) = o(p(n)) (pronounced "little-oh"), says that the growth rate of T(n) is less 
than (<) the growth rate of p(n). This is different from Big-Oh, because Big-Oh 
allows the possibility that the growth rates are the same.  

To prove that some function T(n) = O(f(n)), we usually do not apply these 
definitions formally but instead use a repertoire of known results. In general, 
this means that a proof (or determination that the assumption is incorrect) is a 
very simple calculation and should not involve calculus, except in extraordinary 
circumstances (not likely to occur in an algorithm analysis).  

When we say that T(n) = O(f(n)), we are guaranteeing that the function T(n) grows 
at a rate no faster than f(n); thus f(n) is an upper bound on T(n). Since this 

implies that f(n) = (T(n)), we say that T(n) is a lower bound on f(n).  

As an example, n3 grows faster than n2, so we can say that n2 = O(n3) or n3 = 

(n2). f(n) = n2 and g(n) = 2n2 grow at the same rate, so both f(n) = O(g(n)) and 

f(n) = (g(n)) are true. When two functions grow at the same rate, then the 

decision whether or not to signify this with () can depend on the particular 

context. Intuitively, if g(n) = 2n2, then g(n) = O(n4), g(n) = O(n3), and g(n) = 

O(n2) are all technically correct, but obviously the last option is the best 

answer. Writing g(n) = (n2) says not only that g(n) = O(n2), but also that 
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the result is as good (tight) as possible.  

The important things to know are  

RULE 1:  

If T1(n) = O(f(n)) and T2(n) = O(g(n)), then

 

(a) T1(n) + T2(n) = max (O(f(n)), O(g(n))),

 

(b) T1(n) * T2(n) = O(f(n) * g(n)),

 

Function     Name 

-------------------- 

  c        Constant 

  logn     Logarithmic 

  log2n    Log-squared

 

  n        Linear 

  n log n 

  n2       Quadratic

 

  n3       Cubic

 

  2n       Exponential

 

Figure 2.1 Typical growth rates 

RULE 2:  

If T(x) is a polynomial of degree n, then T(x) = (xn). 

 

RULE 3:  

logk n = O(n) for any constant k. This tells us that logarithms grow very slowly. 

To see that rule 1(a) is correct, note that by definition there exist four 

constants c1, c2, n1, and n2 such that T1(n)  c1 f(n) for n  n1 and T2(n) 

 c2g(n) for n  n2. Let n0 = max(n1, n2). Then, for n  n0, T1(n)  c1f

(n) and T2(n)  c2g(n), so that T1(n) + T2(n)  c1f(n) + c2g(n). Let c3 = max

(c1, c2). Then,  
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           T1(n) + T2(n)  c3f(n) + c3g(n)

 

                          c3(f(n) + g(n))

 

                          2c3 max(f(n), g(n))

 

                          c max(f(n), g(n)) 

for c = 2c3 and n  n0. 

 

We leave proofs of the other relations given above as exercises for the reader. 
This information is sufficient to arrange most of the common functions by growth 
rate (see Fig. 2.1).  

Several points are in order. First, it is very bad style to include constants or 

low-order terms inside a Big-Oh. Do not say T(n) = O(2n2) or T(n) = O(n2 + n). In 

both cases, the correct form is T(n) = O(n2). This means that in any analysis 
that will require a Big-Oh answer, all sorts of shortcuts are possible. Lower-
order terms can generally be ignored, and constants can be thrown away. 
Considerably less precision is required in these cases.  

Secondly, we can always determine the relative growth rates of two functions f(n) 

and g(n) by computing limn  f(n)/g(n), using L'Hôpital's rule if 
necessary.*  

*L'Hôpital's rule states that if limn  f(n) =  and limn  g(n) = 

, then limn  f(n)/g(n) = limn  f'(n) / g'(n), where f'(n) and g'(n) 

are the derivatives of f(n) and g(n), respectively.  

The limit can have four possible values:  

 The limit is 0: This means that f(n) = o(g(n)).  

 The limit is c  0: This means that f(n) = (g(n)).  

 The limit is : This means that g(n) = o(f(n)).  

 The limit oscillates: There is no relation (this will not happen in our 
context).  

页码，4/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



Using this method almost always amounts to overkill. Usually the relation between 
f(n) and g(n) can be derived by simple algebra. For instance, if f(n) = n log n 

and g(n) = n1.5, then to decide which of f(n) and g(n) grows faster, one really 

needs to determine which of log n and n0.5 grows faster. This is like determining 

which of log2 n or n grows faster. This is a simple problem, because it is 
already known that n grows faster than any power of a log. Thus, g(n) grows 
faster than f(n).  

One stylistic note: It is bad to say f(n)  O(g(n)), because the inequality is 

implied by the definition. It is wrong to write f(n)  O(g(n)), which does not 
make sense.  

2.2. Model 

In order to analyze algorithms in a formal framework, we need a model of 
computation. Our model is basically a normal computer, in which instructions are 
executed sequentially. Our model has the standard repertoire of simple 
instructions, such as addition, multiplication, comparison, and assignment, but, 
unlike real computers, it takes exactly one time unit to do anything (simple). To 
be reasonable, we will assume that, like a modern computer, our model has fixed 
size (say 32-bit) integers and that there are no fancy operations, such as matrix 
inversion or sorting, that clearly cannot be done in one time unit. We also 
assume infinite memory.  

This model clearly has some weaknesses. Obviously, in real life, not all 
operations take exactly the same time. In particular, in our model one disk read 
counts the same as an addition, even though the addition is typically several 
orders of magnitude faster. Also, by assuming infinite memory, we never worry 
about page faulting, which can be a real problem, especially for efficient 
algorithms. This can be a major problem in many applications.  

2.3. What to Analyze 

The most important resource to analyze is generally the running time. Several 
factors affect the running time of a program. Some, such as the compiler and 
computer used, are obviously beyond the scope of any theoretical model, so, 
although they are important, we cannot deal with them here. The other main 
factors are the algorithm used and the input to the algorithm.  

Typically, the size of the input is the main consideration. We define two 
functions, Tavg(n) and Tworst(n), as the average and worst-case running time, 

respectively, used by an algorithm on input of size n. Clearly, Tavg(n)  

Tworst(n). If there is more than one input, these functions may have more than 

one argument.  

We remark that generally the quantity required is the worst-case time, unless 
otherwise specified. One reason for this is that it provides a bound for all 
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input, including particularly bad input, that an average-case analysis does not 
provide. The other reason is that average-case bounds are usually much more 
difficult to compute. In some instances, the definition of "average" can affect 
the result. (For instance, what is average input for the following problem?)  

As an example, in the next section, we shall consider the following problem:  

MAXIMUM SUBSEQUENCE SUM PROBLEM:  

Given (possibly negative) integers a1, a2, . . . , an, find the maximum value of 

. (For convenience, the maximum subsequence sum is 0 if all the integers 
are negative.)  

Example:  

For input -2, 11, -4, 13, -5, -2, the answer is 20 (a2 through a4). 
 

This problem is interesting mainly because there are so many algorithms to solve 
it, and the performance of these algorithms varies drastically. We will discuss 
four algorithms to solve this problem. The running time on some computer (the 
exact computer is unimportant) for these algorithms is given in Figure 2.2.  

There are several important things worth noting in this table. For a small amount 
of input, the algorithms all run in a blink of the eye, so if only a small amount 
of input is expected, it might be silly to expend a great deal of effort to 
design a clever algorithm. On the other hand, there is a large market these days 
for rewriting programs that were written five years ago based on a no-longer-
valid assumption of small input size. These programs are now too slow, because 
they used poor algorithms. For large amounts of input, Algorithm 4 is clearly the 
best choice (although Algorithm 3 is still usable).  

Second, the times given do not include the time required to read the input. For 
Algorithm 4, the time merely to read in the input from a disk is likely to be an 
order of magnitude larger than the time required to solve the problem. This is 
typical of many efficient algorithms. Reading the data is generally the 
bottleneck; once the data are read, the problem can be solved quickly. For 
inefficient algorithms this is not true, and significant computer resources must 
be used. Thus, it is important that, where possible, algorithms be efficient 
enough not to be the bottleneck of a problem.  

      Algorithm           1          2         3        4   

--------------------    ----------------------------------- 

         Time           O(n3)      O(n2)  O(n log n)  (n)  

 

------------------------------------------------------------ 

  Input  n = 10         0.00103    0.00045  0.00066  0.00034 

  Size   n = 100        0.47015    0.01112  0.00486  0.00063 
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         n = 1,000    448.77       1.1233   0.05843  0.00333 

         n = 10,000      NA      111.13     0.68631  0.03042 

         n = 100,000     NA         NA      8.0113   0.29832 

Figure 2.2 Running time of several algorithms for maximum subsequence sum (in 
seconds) 

Figure 2.3 shows the growth rates of the running times of the four algorithms. 
Even though this graph encompasses only values of n ranging from 10 to 100, the 
relative growth rates are still evident. Although the graph for Algorithm 3 seems 
linear, it is easy to verify that it is not, by using a straightedge (or piece of 
paper). Figure 2.4 shows the performance for larger values. It dramatically 
illustrates how useless inefficient algorithms are for even moderately large 
amounts of input.  

  

Figure 2.3 Plot (n vs. milliseconds) of various maximum subsequence sum 
algorithms 

  

Figure 2.4 Plot (n vs. seconds) of various maximum subsequence sum algorithms 
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2.4. Running Time Calculations 

There are several ways to estimate the running time of a program. The previous 
table was obtained empirically. If two programs are expected to take similar 
times, probably the best way to decide which is faster is to code them both up 
and run them!  

Generally, there are several algorithmic ideas, and we would like to eliminate 
the bad ones early, so an analysis is usually required. Furthermore, the ability 
to do an analysis usually provides insight into designing efficient algorithms. 
The analysis also generally pinpoints the bottlenecks, which are worth coding 
carefully.  

To simplify the analysis, we will adopt the convention that there are no 
particular units of time. Thus, we throw away leading constants. We will also 
throw away low-order terms, so what we are essentially doing is computing a Big-
Oh running time. Since Big-Oh is an upper bound, we must be careful to never 
underestimate the running time of the program. In effect, the answer provided is 
a guarantee that the program will terminate within a certain time period. The 
program may stop earlier than this, but never later.  

2.4.1. A Simple Example 

Here is a simple program fragment to calculate   

unsigned int 

sum( int n ) 

{ 

unsigned int i, partial_sum; 

/*1*/       partial_sum = 0; 

/*2*/       for( i=1; i<=n; i++ ) 

/*3*/            partial_sum += i*i*i; 

/*4*/       return( partial_sum ); 

} 

The analysis of this program is simple. The declarations count for no time. Lines 
1 and 4 count for one unit each. Line 3 counts for three units per time executed 
(two multiplications and one addition) and is executed n times, for a total of 3n

units. Line 2 has the hidden costs of initializing i, testing i  n, and 
incrementing i. The total cost of all these is 1 to initialize, n + 1 for all the 
tests, and n for all the increments, which is 2n + 2. We ignore the costs of 
calling the function and returning, for a total of 5n + 4. Thus, we say that this 
function is O (n).  
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If we had to perform all this work every time we needed to analyze a program, the 
task would quickly become infeasible. Fortunately, since we are giving the answer 
in terms of Big-Oh, there are lots of shortcuts that can be taken without 
affecting the final answer. For instance, line 3 is obviously an O (1) statement 
(per execution), so it is silly to count precisely whether it is two, three, or 
four units -- it does not matter. Line 1 is obviously insignificant compared to 
the for loop, so it is silly to waste time here. This leads to several obvious 
general rules.  

2.4.2. General Rules 

RULE 1-FOR LOOPS:  

The running time of a for loop is at most the running time of the statements 
inside the for loop (including tests) times the number of iterations.  

RULE 2-NESTED FOR LOOPS:  

Analyze these inside out. The total running time of a statement inside a group of 
nested for loops is the running time of the statement multiplied by the product 
of the sizes of all the for loops.  

As an example, the following program fragment is O(n2): 

 

for( i=0; i<n; i++ ) 

for( j=0; j<n; j++ ) 

k++; 

RULE 3-CONSECUTIVE STATEMENTS:  

These just add (which means that the maximum is the one that counts -- see 1(a) 
on page 16).  

As an example, the following program fragment, which has O(n) work followed by O 

(n2) work, is also O (n2):  

for( i=0; i<n; i++) 

a[i] = 0; 

for( i=0; i<n; i++ ) 

for( j=0; j<n; j++ ) 

a[i] += a[j] + i + j; 

RULE 4-lF/ELSE:  

For the fragment  

if( cond ) 
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S1 

else 

S2 

the running time of an if/else statement is never more than the running time of 
the test plus the larger of the running times of S1 and S2.  

Clearly, this can be an over-estimate in some cases, but it is never an under-
estimate.  

Other rules are obvious, but a basic strategy of analyzing from the inside (or 
deepest part) out works. If there are function calls, obviously these must be 
analyzed first. If there are recursive procedures, there are several options. If 
the recursion is really just a thinly veiled for loop, the analysis is usually 
trivial. For instance, the following function is really just a simple loop and is 
obviously O (n):  

unsigned int 

factorial( unsigned int n ) 

{ 

if( n <= 1 ) 

return 1; 

else 

return( n * factorial(n-1) ); 

} 

This example is really a poor use of recursion. When recursion is properly used, 
it is difficult to convert the recursion into a simple loop structure. In this 
case, the analysis will involve a recurrence relation that needs to be solved. To 
see what might happen, consider the following program, which turns out to be a 
horrible use of recursion:  

/* Compute Fibonacci numbers as described Chapter 1 */ 

unsigned int 

fib( unsigned int n ) 

{ 

/*1*/       if( n <= 1 ) 

/*2*/            return 1; 

else 

页码，10/30Structures, Algorithm Analysis: CHAPTER 2: ALGORITHM ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



/*3*/            return( fib(n-1) + fib(n-2) ); 

} 

At first glance, this seems like a very clever use of recursion. However, if the 
program is coded up and run for values of n around 30, it becomes apparent that 
this program is terribly inefficient. The analysis is fairly simple. Let T(n) be 
the running time for the function fib(n). If n = 0 or n = 1, then the running 
time is some constant value, which is the time to do the test at line 1 and 
return. We can say that T(0) = T(1) = 1, since constants do not matter. The 
running time for other values of n is then measured relative to the running time 
of the base case. For n > 2, the time to execute the function is the constant 
work at line 1 plus the work at line 3. Line 3 consists of an addition and two 
function calls. Since the function calls are not simple operations, they must be 
analyzed by themselves. The first function call is fib(n - 1) and hence, by the 
definition of T, requires T(n - 1) units of time. A similar argument shows that 
the second function call requires T(n - 2) units of time. The total time required 
is then T(n - 1) + T(n - 2) + 2, where the 2 accounts for the work at line 1 plus 

the addition at line 3. Thus, for n 2, we have the following formula for the 
running time of fib(n):  

T(n) = T(n - 1) + T(n - 2) + 2 

Since fib(n) = fib(n - 1) + fib(n - 2), it is easy to show by induction that T(n) 

 fib(n). In Section 1.2.5, we showed that fib(n) < (5/3) . A similar 

calculation shows that fib(n)  (3/2) , and so the running time of this 
program grows exponentially. This is about as bad as possible. By keeping a 
simple array and using a for loop, the running time can be reduced substantially. 

This program is slow because there is a huge amount of redundant work being 
performed, violating the fourth major rule of recursion (the compound interest 
rule), which was discussed in Section 1.3. Notice that the first call on line 3, 
fib(n - 1), actually computes fib(n - 2) at some point. This information is 
thrown away and recomputed by the second call on line 3. The amount of 
information thrown away compounds recursively and results in the huge running 
time. This is perhaps the finest example of the maxim "Don't compute anything 
more than once" and should not scare you away from using recursion. Throughout 
this book, we shall see outstanding uses of recursion.  

2.4.3 Solutions for the Maximum Subsequence Sum 
Problem 

We will now present four algorithms to solve the maximum subsequence sum problem 
posed earlier. The first algorithm is depicted in Figure 2.5. The indices in the 
for loops reflect the fact that, in C, arrays begin at 0, instead of 1. Also, the 
algorithm computes the actual subsequences (not just the sum); additional code is 
required to transmit this information to the calling routine.  

Convince yourself that this algorithm works (this should not take much). The 
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running time is O(n ) and is entirely due to lines 5 and 6, which consist of an O
(1) statement buried inside three nested for loops. The loop at line 2 is of size 
n.  

int 

max_subsequence_sum( int a[], unsigned int n ) 

{ 

int this_sum, max_sum, best_i, best_j, i, j, k; 

/*1*/       max_sum = 0; best_i = best_j = -1; 

/*2*/       for( i=0; i<n; i++ ) 

/*3*/           for( j=i; j<n; j++ ) 

{ 

/*4*/                this_sum=0; 

/*5*/                for( k = i; k<=j; k++ ) 

/*6*/                     this_sum += a[k]; 

/*7*/                if( this_sum > max_sum ) 

{    /* update max_sum, best_i, best_j */ 

/*8*/                      max_sum = this_sum; 

/*9*/                      best_i = i; 

/*10*/                     best_j = j; 

} 

} 

/*11*/      return( max_sum ); 

} 

Figure 2.5 Algorithm 1 

The second loop has size n - i + 1, which could be small, but could also be of 
size n. We must assume the worst, with the knowledge that this could make the 
final bound a bit high. The third loop has size j - i + 1, which, again, we must 

assume is of size n. The total is O(1  n  n  n) = O(n ). Statement 1 

takes only O(1) total, and statements 7 to 10 take only O(n ) total, since they 
are easy statements inside only two loops.  

It turns out that a more precise analysis, taking into account the actual size of 
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these loops, shows that the answer is (n ), and that our estimate above was a 
factor of 6 too high (which is all right, because constants do not matter). This 
is generally true in these kinds of problems. The precise analysis is obtained 

from the sum  1, which tells how many times line 6 is executed. 
The sum can be evaluated inside out, using formulas from Section 1.2.3. In 
particular, we will use the formulas for the sum of the first n integers and 
first n squares. First we have  

  

Next we evaluate  

  

This sum is computed by observing that it is just the sum of the first n - i + 1 
integers. To complete the calculation, we evaluate  

  

We can avoid the cubic running time by removing a for loop. Obviously, this is 
not always possible, but in this case there are an awful lot of unnecessary 
computations present in the algorithm. The inefficiency that the improved 

algorithm corrects can be seen by noticing that  so the 
computation at lines 5 and 6 in Algorithm 1 is unduly expensive. Figure 2.6 shows 

an improved algorithm. Algorithm 2 is clearly O(n ); the analysis is even simpler 
than before.  

There is a recursive and relatively complicated O(n log n) solution to this 
problem, which we now describe. If there didn't happen to be an O(n) (linear) 
solution, this would be an excellent example of the power of recursion. The 
algorithm uses a "divide-and-conquer" strategy. The idea is to split the problem 
into two roughly equal subproblems, each of which is half the size of the 
original. The subproblems are then solved recursively. This is the "divide" part. 
The "conquer" stage consists of patching together the two solutions of the 
subproblems, and possibly doing a small amount of additional work, to arrive at a 
solution for the whole problem.  

int 

max_subsequence_sum( int a[], unsigned int n ) 
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{ 

int this_sum, max_sum, best_i, best_j, i, j, k; 

/*1*/       max_sum = 0; best_i = best_j = -1; 

/*2*/       for( i=0; i<n; i++ ) 

{ 

/*3*/            this_sum = 0; 

/*4*/            for( j=i; j<n; j++ ) 

{ 

/*5*/                 this_sum += a[j]; 

/*6*/                 if( this_sum > max_sum ) 

/* update max_sum, best_i, best_j */; 

} 

} 

/*7*/       return( max_sum ); 

} 

Figure 2.6 Algorithm 2 

In our case, the maximum subsequence sum can be in one of three places. Either it 
occurs entirely in the left half of the input, or entirely in the right half, or 
it crosses the middle and is in both halves. The first two cases can be solved 
recursively. The last case can be obtained by finding the largest sum in the 
first half that includes the last element in the first half and the largest sum 
in the second half that includes the first element in the second half. These two 
sums can then be added together. As an example, consider the following input:  

     First Half            Second Half 

---------------------------------------- 

  4   -3   5   -2        -1   2   6   -2 

The maximum subsequence sum for the first half is 6 (elements a1 through a3), and 

for the second half is 8 (elements a6 through a7).  

The maximum sum in the first half that includes the last element in the first 
half is 4 (elements a1 through a4), and the maximum sum in the second half that 

includes the first element in the second half is 7 (elements a5 though a7). Thus, 

the maximum sum that spans both halves and goes through the middle is 4 + 7 = 11 
(elements a1 through a7).  
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We see, then, that among the three ways to form a large maximum subsequence, for 
our example, the best way is to include elements from both halves. Thus, the 
answer is 11. Figure 2.7 shows an implementation of this strategy.  

int 

max_sub_sequence_sum( int a[], unsigned int n ) 

{ 

return max_sub_sum( a, 0, n-1 ); 

} 

int 

max_sub_sum( int a[], int left, int right ) 

{ 

int max_left_sum, max_right_sum; 

int max_left_border_sum, max_right_border_sum; 

int left_border_sum, right_border_sum; 

int center, i; 

/*1*/       if ( left == right )      /* Base Case */ 

/*2*/            if( a[left] > 0 ) 

/*3*/                 return a[left]; 

else 

/*4*/                return 0; 

/*5*/       center = (left + right )/2; 

/*6*/       max_left_sum = max_sub_sum( a, left, center ); 

/*7*/       max_right_sum = max_sub_sum( a, center+1, right ); 

/*8*/       max_left_border_sum = 0; left_border_sum = 0; 

/*9*/       for( i=center; i>=left; i-- ) 

{ 

/*10*/           left_border_sum += a[i]; 

/*11*/           if( left_border_sum > max_left_border_sum ) 

/*12*/                max_left_border_sum = left_border_sum; 
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} 

/*13*/      max_right_border_sum = 0; right_border_sum = 0; 

/*14*/      for( i=center+1; i<=right; i++ ) 

{ 

/*15*/           right_border_sum += a[i]; 

/*16*/           if( right_border_sum > max_right_border_sum ) 

/*17*/                max_right_border_sum = right_border_sum; 

} 

/*18*/      return max3( max_left_sum, max_right_sum, 

max_left_border_sum + max_right_border_sum ); 

} 

Figure 2.7 Algorithm 3 

The code for Algorithm 3 deserves some comment. The general form of the call for 
the recursive procedure is to pass the input array along with the left and right 
borders, which delimit the portion of the array that is operated upon. A one-line 
driver program sets this up by passing the borders 0 and n -1 along with the 
array.  

Lines 1 to 4 handle the base case. If left == right, then there is one element, 
and this is the maximum subsequence if the element is nonnegative. The case left 
> right is not possible unless n is negative (although minor perturbations in the 
code could mess this up). Lines 6 and 7 perform the two recursive calls. We can 
see that the recursive calls are always on a smaller problem than the original, 
although, once again, minor perturbations in the code could destroy this 
property. Lines 8 to 12 and then 13 to 17 calculate the two maximum sums that 
touch the center divider. The sum of these two values is the maximum sum that 
spans both halves. The pseudoroutine max3 returns the largest of the three 
possibilities.  

Algorithm 3 clearly requires more effort to code than either of the two previous 
algorithms. However, shorter code does not always mean better code. As we have 
seen in the earlier table showing the running times of the algorithms, this 
algorithm is considerably faster than the other two for all but the smallest of 
input sizes.  

The running time is analyzed in much the same way as for the program that 
computes the Fibonacci numbers. Let T(n) be the time it takes to solve a maximum 
subsequence sum problem of size n. If n = 1, then the program takes some constant 
amount of time to execute lines 1 to 4, which we shall call one unit. Thus, T(1) 
= 1. Otherwise, the program must perform two recursive calls, the two for loops 
between lines 9 and 17, and some small amount of bookkeeping, such as lines 5 and 
18. The two for loops combine to touch every element from a0 to an_1, and there 
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is constant work inside the loops, so the time expended in lines 9 to 17 is O(n). 
The code in lines 1 to 5, 8, and 18 is all a constant amount of work and can thus 
be ignored when compared to O(n). The remainder of the work is performed in lines 
6 and 7. These lines solve two subsequence problems of size n/2 (assuming n is 
even). Thus, these lines take T(n/2) units of time each, for a total of 2T(n/2). 
The total time for the algorithm then is 2T(n/2) + O(n). This gives the equations 

T(1) = 1 

T(n) = 2T(n/2) + O(n) 

To simplify the calculations, we can replace the O(n) term in the equation above 
with n; since T(n) will be expressed in Big-Oh notation anyway, this will not 
affect the answer. In Chapter 7, we shall see how to solve this equation 
rigorously. For now, if T(n) = 2T(n/2) + n, and T(1) = 1, then T(2) = 4 = 2 * 2, 
T(4) = 12 = 4 * 3, T(8) = 32 = 8 * 4, T(16) = 80 = 16 * 5. The pattern that is 

evident, and can be derived, is that if n = 2 , then T(n) = n * (k + 1) = n log n
+ n = O(n log n).  

This analysis assumes n is even, since otherwise n/2 is not defined. By the 
recursive nature of the analysis, it is really valid only when n is a power of 2, 
since otherwise we eventually get a subproblem that is not an even size, and the 
equation is invalid. When n is not a power of 2, a somewhat more complicated 
analysis is required, but the Big-Oh result remains unchanged.  

In future chapters, we will see several clever applications of recursion. Here, 
we present a fourth algorithm to find the maximum subsequence sum. This algorithm 
is simpler to implement than the recursive algorithm and also is more efficient. 
It is shown in Figure 2.8.  

int 

max_subsequence_sum( int a[], unsigned int n )  

{ 

int this_sum, max_sum, best_i, best_j, i, j; 

/*1*/       i = this_sum = max_sum = 0; best_i = best_j = -1; 

/*2*/       for( j=0; j<n; j++ ) 

{ 

/*3*/            this_sum += a[j]; 

/*4*/            if( this_sum > max_sum ) 

{       /* update max_sum, best_i, best_j */ 

/*5*/                 max_sum = this_sum; 

/*6*/                 best_i = i; 

/*7*/                 best_j = j; 
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} 

else 

/*8*/            if( this_sum < 0 ) 

{ 

/*9*/                i = j + 1; 

/*10*/               this_sum = 0; 

} 

} 

/*11*/      return( max_sum ); 

} 

Figure 2.8 Algorithm 4 

It should be clear why the time bound is correct, but it takes a little thought 
to see why the algorithm actually works. This is left to the reader. An extra 
advantage of this algorithm is that it makes only one pass through the data, and 
once a[i] is read and processed, it does not need to be remembered. Thus, if the 
array is on a disk or tape, it can be read sequentially, and there is no need to 
store any part of it in main memory. Furthermore, at any point in time, the 
algorithm can correctly give an answer to the subsequence problem for the data it 
has already read (the other algorithms do not share this property). Algorithms 
that can do this are called on-line algorithms. An on-line algorithm that 
requires only constant space and runs in linear time is just about as good as 
possible.  

2.4.4 Logarithms in the Running Time 

The most confusing aspect of analyzing algorithms probably centers around the 
logarithm. We have already seen that some divide-and-conquer algorithms will run 
in O(n log n) time. Besides divide-and-conquer algorithms, the most frequent 
appearance of logarithms centers around the following general rule: An algorithm 
is O(log n) if it takes constant (O(1)) time to cut the problem size by a 

fraction (which is usually ). On the other hand, if constant time is required 
to merely reduce the problem by a constant amount (such as to make the problem 
smaller by 1), then the algorithm is O(n).  

Something that should be obvious is that only special kinds of problems can be O
(log n). For instance, if the input is a list of n numbers, an algorithm must 

take (n) merely to read the input in. Thus when we talk about O(log n) 
algorithms for these kinds of problems, we usually presume that the input is 
preread. We provide three examples of logarithmic behavior.  

Binary Search 
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The first example is usually referred to as binary search:  

BINARY SEARCH:  

Given an integer x and integers a1, a2, . . . , an, which are presorted and 

already in memory, find i such that ai = x, or return i = 0 if x is not in the 

input.  

The obvious solution consists of scanning through the list from left to right and 
runs in linear time. However, this algorithm does not take advantage of the fact 
that the list is sorted and is thus not likely to be best. The best strategy is 
to check if x is the middle element. If so, the answer is at hand. If x is 
smaller than the middle element, we can apply the same strategy to the sorted 
subarray to the left of the middle element; likewise, if x is larger than the 
middle element, we look to the right half. (There is also the case of when to 
stop.) Figure 2.9 shows the code for binary search (the answer is mid). As usual, 
the code reflects C's convention that arrays begin with index 0. Notice that the 
variables cannot be declared unsigned (why?). In cases where the unsigned 
qualifier is questionable, we will not use it. As an example, if the unsigned 
qualifier is dependent on an array not beginning at zero, we will discard it.  

We will also avoid using the unsigned type for variables that are counters in a 
for loop, because it is common to change the direction of a loop counter from 
increasing to decreasing and the unsigned qualifier is typically appropriate for 
the former case only. For example, the code in Exercise 2.10 does not work if i 
is declared unsigned.  

Clearly all the work done inside the loop is O(1) per iteration, so the analysis 
requires determining the number of times around the loop. The loop starts with 

high - low = n - 1 and finishes with high - low  -1. Every time through the 
loop the value high - low must be at least halved from its previous value; thus, 

the number of times around the loop is at most log(n - 1)  + 2. (As an 
example, if high - low = 128, then the maximum values of high - low after each 
iteration are 64, 32, 16, 8, 4, 2, 1, 0, -1.) Thus, the running time is O(log n). 
Equivalently, we could write a recursive formula for the running time, but this 
kind of brute-force approach is usually unnecessary when you understand what is 
really going on and why.  

Binary search can be viewed as our first data structure. It supports the find 
operation in O(log n) time, but all other operations (in particular insert) 
require O(n) time. In applications where the data are static (that is, insertions 
and deletions are not allowed), this could be a very useful data structure. The 
input would then need to be sorted once, but afterward accesses would be fast. An 
example could be a program that needs to maintain information about the periodic 
table of elements (which arises in chemistry and physics). This table is 
relatively stable, as new elements are added infrequently. The element names 
could be kept sorted. Since there are only about 110 elements, at most eight 
accesses would be required to find an element. Performing a sequential search 
would require many more accesses.  

int 
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binary_search( input_type a[ ], input_type x, unsigned int n ) 

{ 

int low, mid, high;       /* Can't be unsigned; why? */ 

/*1*/       low = 0; high = n - 1; 

/*2*/       while( low <= high ) 

{ 

/*3*/            mid = (low + high)/2; 

/*4*/            if( a[mid] < x ) 

/*5*/                 low = mid + 1; 

else 

/*6*/           if ( a[mid] < x ) 

/*7*/                 high = mid - 1; 

else 

/*8*/                return( mid );  /* found */ 

} 

/*9*/       return( NOT_FOUND ); 

} 

Figure 2.9 Binary search. 

Euclid's Algorithm 

A second example is Euclid's algorithm for computing the greatest common divisor. 
The greatest common divisor (gcd) of two integers is the largest integer that 
divides both. Thus, gcd (50, 15) = 5. The algorithm in Figure 2.10 computes gcd

(m, n), assuming m  n. (If n > m, the first iteration of the loop swaps 
them).  

The algorithm works by continually computing remainders until 0 is reached. The 
last nonzero remainder is the answer. Thus, if m = 1,989 and n = 1,590, then the 
sequence of remainders is 399, 393, 6, 3, 0. Therefore, gcd (1989, 1590) = 3. As 
the example shows, this is a fast algorithm.  

As before, the entire running time of the algorithm depends on determining how 
long the sequence of remainders is. Although log n seems like a good answer, it 
is not at all obvious that the value of the remainder has to decrease by a 
constant factor, since we see that the remainder went from 399 to only 393 in the 
example. Indeed, the remainder does not decrease by a constant factor in one 
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iteration. However, we can prove that after two iterations, the remainder is at 
most half of its original value. This would show that the number of iterations is 
at most 2 log n = O(log n) and establish the running time. This proof is easy, so 
we include it here. It follows directly from the following theorem.  

unsigned int 

gcd( unsigned int m, unsigned int n ) 

{ 

unsigned int rem; 

/*1*/       while( n > 0 ) 

{ 

/*2*/            rem = m % n; 

/*3*/            m = n; 

/*4*/            n = rem; 

} 

/*5*/       return( m ); 

} 

Figure 2.10 Euclid's algorithm. 

THEOREM 2.1.  

If m > n, then mmod n < m/2.  

PROOF:  

There are two cases. If n  m/2, then obviously, since the remainder is 
smaller than n, the theorem is true for this case. The other case is n > m/2. But 
then n goes into m once with a remainder m - n < m/2, proving the theorem.  

One might wonder if this is the best bound possible, since 2 log n is about 20 
for our example, and only seven operations were performed. It turns out that the 
constant can be improved slightly, to roughly 1.44 log n, in the worst case 
(which is achievable if m and n are consecutive Fibonacci numbers). The average-
case performance of Euclid's algorithm requires pages and pages of highly 
sophisticated mathematical analysis, and it turns out that the average number of 

iterations is about .  

Exponentiation 

Our last example in this section deals with raising an integer to a power (which 
is also an integer). Numbers that result from exponentiation are generally quite 
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large, so an analysis only works if we can assume that we have a machine that can 
store such large integers (or a compiler that can simulate this). We will count 
the number of multiplications as the measurement of running time.  

int 

pow( int x, unsigned int n) 

{ 

/*1*/       if( n == 0 ) 

/*2*/           return 1; 

/*1*/       if( n == 1 ) 

/*4*/           return x; 

/*5*/       if( even( n ) ) 

/*6*/           return( pow( x*x, n/2 ) );

 

else 

/*7*/           return( pow( x*x, n/2 ) * x );

 

} 

Figure 2.11 Efficient exponentiation 

The obvious algorithm to compute xn uses n - 1 multiples. The recursive algorithm 
in Figure 2.11 does better. Lines 1 to 4 handle the base case of the recursion. 

Otherwise, if n is even, we have xn = xn/2 . xn/2, and if n is odd, x = x(n-1)/2 

 x(n-1)/2  x. 
 

For instance, to compute x62, the algorithm does the following calculations, 
which involves only nine multiplications:  

x3 = (x2)x,  x7 = (x3)2x,  x15 = (x7)2x,  x31 = (x15)2x,  x62 = (x31)2
 

The number of multiplications required is clearly at most 2 log n, because at most two 

multiplications (if n is odd) are required to halve the problem. Again, a recurrence formula can 

be written and solved. Simple intuition obviates the need for a brute-force approach. 

It is sometimes interesting to see how much the code can be tweaked without affecting 
correctness. In Figure 2.11, lines 3 to 4 are actually unnecessary, because if n is 1, then line 
7 does the right thing. Line 7 can also be rewritten as  

/*7*/   return( pow( x, n-1 ) * x );

 

without affecting the correctness of the program. Indeed, the program will still run in O(log n), 
because the sequence of multiplications is the same as before. However, all of the following 
alternatives for line 6 are bad, even though they look correct:  
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/*6a*/   return( pow( pow( x, 2 ), n/2 ) ); 

/*6b*/   return( pow( pow( x, n/2 ), 2 ) );

 

/*6c*/   return( pow( x, n/2 ) * pow( x, n/2 ) );

 

Both lines 6a and 6b are incorrect because when n is 2, one of the recursive calls to pow has 2 
as the second argument. Thus, no progress is made, and an infinite loop results (in an eventual 
crash).  

Using line 6c affects the efficiency, because there are now two recursive calls of size n/2 
instead of only one. An analysis will show that the running time is no longer O(log n). We leave 
it as an exercise to the reader to determine the new running time.  

2.4.5 Checking Your Analysis
 

Once an analysis has been performed, it is desirable to see if the answer is correct and as good 

as possible. One way to do this is to code up the program and see if the empirically observed 
running time matches the running time predicted by the analysis. When n doubles, the running time 
goes up by a factor of 2 for linear programs, 4 for quadratic programs, and 8 for cubic programs. 
Programs that run in logarithmic time take only an additive constant longer when n doubles, and 
programs that run in O(n log n) take slightly more than twice as long to run under the same 
circumstances. These increases can be hard to spot if the lower-order terms have relatively large 
coefficients and n is not large enough. An example is the jump from n = 10 to n = 100 in the 
running time for the various implementations of the maximum subsequence sum problem. It also can 
be very difficult to differentiate linear programs from O(n log n) programs purely on empirical 
evidence.  

Another commonly used trick to verify that some program is O(f(n)) is to compute the values T(n)/ 

f(n) for a range of n (usually spaced out by factors of 2), where T(n) is the empirically 
observed running time. If f(n) is a tight answer for the running time, then the computed values 
converge to a positive constant. If f(n) is an over-estimate, the values converge to zero. If f
(n) is an under-estimate and hence wrong, the values diverge.  

As an example, the program fragment in Figure 2.12 computes the probability that two distinct 
positive integers, less than or equal to n and chosen randomly, are relatively prime. (As n gets 

large, the answer approaches 6/ 2.) 

 

You should be able to do the analysis for this program instantaneously. Figure 2.13 shows the 
actual observed running time for this routine on a real computer. The table shows that the last 
column is most likely, and thus the analysis that you should have gotten is probably correct. 

Notice that there is not a great deal of difference between O(n2) and O(n2 log n), since 
logarithms grow so slowly.  

2.4.6. A Grain of Salt
 

Sometimes the analysis is shown empirically to be an over-estimate. If this is the case, then 
either the analysis needs to be tightened (usually by a clever observation), or it may be the 
case that the average running time is significantly less than the worst-case running time and no 
improvement in the bound is possible. There are many complicated algorithms for which the worst-
case bound is achievable by some bad input but is usually an over-estimate in practice. 
Unfortunately, for most of these problems, an average-case analysis is extremely complex (in many 
cases still unsolved), and a worst-case bound, even though overly pessimistic, is the best 
analytical result known.  

rel = 0; tot = 0;

 

for( i=1; i<=n; i++ )
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for( j=i+1; j<=n; j++ ) 

{

 

tot++;

 

if( gcd( i, j) = 1 )

 

rel++;

 

}

 

printf( "Percentage of relatively prime pairs is %lf\n",

 

( (double) rel )/tot );

 

Figure 2.12 Estimate the probability that two random numbers are relatively prime

 

    n     CPU time (T)     T/n2        T/n3     T/n2log n

 

---------------------------------------------------------

 

    100       022        .002200   .000022000   .0004777

 

    200       056        .001400   .000007000   .0002642

 

    300       118        .001311   .000004370   .0002299

 

    400       207        .001294   .000003234   .0002159

 

    500       318        .001272   .000002544   .0002047

 

---------------------------------------------------------

 

    600       466        .001294   .000002157   .0002024

 

    700       644        .001314   .000001877   .0002006

 

    800       846        .001322   .000001652   .0001977

 

    900     1,086        .001341   .000001490   .0001971

 

  1,000     1,362        .001362   .000001362   .0001972

 

---------------------------------------------------------

 

  1,500     3,240        .001440   .000000960   .0001969

 

  2,000     5,949        .001482   .000000740   .0001947

 

  4,000    25,720        .001608   .000000402   .0001938

 

Figure 2.13 Empirical running times for previous routine

 

Summary
 

This chapter gives some hints on how to analyze the complexity of programs. Unfortunately, it is 

not a complete guide. Simple programs usually have simple analyses, but this is not always the 
case. As an example, we shall see, later in the text, a sorting algorithm (Shellsort, Chapter 7) 
and an algorithm for maintaining disjoint sets (Chapter 8) each of which requires about 20 lines 
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of code. The analysis of Shellsort is still not complete, and the disjoint set algorithm has an 
analysis that is extremely difficult and requires pages and pages of intricate calculations. Most 
of the analysis that we will encounter here will be simple and involve counting through loops.  

An interesting kind of analysis, which we have not touched upon, is lowerbound analysis. We will 

see an example of this in Chapter 7, where it is proved that any algorithm that sorts by using 

only comparisons requires (n log n) comparisons in the worst case. Lower-bound proofs are 
generally the most difficult, because they apply not to an algorithm but to a class of algorithms 
that solve a problem.  

We close by mentioning that some of the algorithms described here have real-life application. The 

gcd algorithm and the exponentiation algorithm are both used in cryptography. Specifically, a 
200-digit number is raised to a large power (usually another 200-digit number), with only the low 
200 or so digits retained after each multiplication. Since the calculations require dealing with 
200-digit numbers, efficiency is obviously important. The straightforward algorithm for 

exponentiation would require about 10200 multiplications, whereas the algorithm presented 
requires only about 1,200.  

Exercises
 

2.1 Order the following functions by growth rate: n, , n1.5, n2, n log n, n log log n, n log2 

n, n log(n2), 2/n, 2 , 2n/2, 37, n2 log n, n3. Indicate which functions grow at the same rate.  

2.2 Suppose Tl(n) = O(f(n)) and T2(n) = O(f(n)). Which of the following are true? 

 

a. T1(n) + T2(n) = O(f(n)) 

 

b. T1(n) - T2(n) = o(f(n)) 

 

 

 

d. T1(n) = O(T2(n)) 

 

2.3 Which function grows faster: n log n or n1+ /   > 0 ?

 

 

2.4 Prove that for any constant, k, logkn = o(n). 

 

2.5 Find two functions f(n) and g(n) such that neither (n) = O(g(n)) nor g(n) = O(f(n)). 

 

2.6 For each of the following six program fragments: 

 

a. Give an analysis of the running time (Big-Oh will do). 

 

b. Implement the code in the language of your choice, and give the running time for several 
values of n.  
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c. Compare your analysis with the actual running times.  

(1)   sum = 0;

 

for( i=0; i<n; i++ )

 

sum++;

 

(2)   sum = 0;

 

for( i=0; i<n; i++ )

 

for( j=0; j<n; j++ )

 

sum++;

 

(3)   sum = 0;

 

for( i=0; i<n; i++ )

 

for( j=0; j<n*n; j++ )

 

sum++;

 

(4)   sum = 0;

 

for( i=0; i<n; i++ )

 

for( j=0; j<i; j++ )

 

sum++;

 

(5)   sum = 0;

 

for( i=0; i<n; i++ )

 

for( j=0; j<i*i; j++ )

 

for( k=0; k<j; k++)

 

sum++;

 

(6)   sum = 0;

 

for( i=1; i<n; i++ )

 

for( j=1; j<i*i; j++ )

 

if( j%1 == 0 )

 

for( k=0; k<j; k++ )

 

sum++;

 

2.7 Suppose you need to generate a random permutation of the first n integers. For example, {4, 

3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but {5, 4, 1, 2, 1} is not, because one 
number (1) is duplicated and another (3) is missing. This routine is often used in simulation of 
algorithms. We assume the existence of a random number generator, rand_int(i, j), which generates 
integers between i and j with equal probability. Here are three algorithms:  

1. Fill the array a from a[0] to a[n - 1] as follows: To fill a[i], generate random numbers until 
you get one that is not already in a[0], a[1], a[2], . . . , a[i-1].  
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2. Same as algorithm (1), but keep an extra array called the used array. When a random number, 
ran, is first put in the array a, set used[ran] = 1. This means that when filling a[i] with a 
random number, you can test in one step to see whether the random number has been used, instead 
of the (possibly) i steps in the first algorithm.  

3. Fill the array such that a[i] = i + 1. Then 

 

for( i=1; i<n; i++ )

 

swap( &a[i], &a[ rand_int( 0, i ) ] );

 

a. Prove that all three algorithms generate only legal permutations and that all permutations are 
equally likely.  

b. Give as accurate (Big-Oh) an analysis as you can of the expected running time of each 
algorithm.  

c. Write (separate) programs to execute each algorithm 10 times, to get a good average. Run 
program (1) for n = 250, 500, 1,000, 2,000; program (2) for n = 2,500, 5,000, 10,000, 20,000, 
40,000, 80,000, and program (3) for n = 10,000, 20,000, 40,000, 80,000, 160,000, 320,000, 
640,000.  

d. Compare your analysis with the actual running times. 

 

e. What is the worst-case running time of each algorithm? 

 

2.8 Complete the table in Figure 2.2 with estimates for the running times that were too long to 

simulate. Interpolate the running times for these algorithms and estimate the time required to 
compute the maximum subsequence sum of one million numbers. What assumptions have you made?  

2.9 How much time is required to compute  

 

a. using a simple routine to perform exponentiation? 

 

b. using the routine in Section 2.4.4? 

 

2.10 Consider the following algorithm (known as Horner's rule) to evaluate  

 

poly = 0;

 

for( i=n; i>=0; i-- )

 

poly = x * poly + ai

 

a. Show how the steps are performed by this algorithm for x = 3, f(x) = 4x + 8x + x + 2. 

b. Explain why this algorithm works. 

 

c. What is the running time of this algorithm? 

 

2.11 Give an efficient algorithm to determine if there exists an integer i such that ai = i in an 

array of integers a1 < a2 < a3 < . . . < an. What is the running time of your algorithm?  

2.12 Give efficient algorithms (along with running time analyses) to 
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a. find the minimum subsequence sum  

*b. find the minimum positive subsequence sum 

 

*c. find the maximum subsequence product 

 

2.13 a. Write a program to determine if a positive integer, n, is prime. 

 

b. In terms of n, what is the worst-case running time of your program? (You should be able to do 

this in .) 
 

c. Let B equal the number of bits in the binary representation of n. What is the value of B? 

 

d. In terms of B, what is the worst-case running time of your program? 

 

e. Compare the running times to determine if a 20-bit and a 40-bit number are prime. 

 

f. Is it more reasonable to give the running time in terms of n or B? Why? 

 

*2.14 The Sieve of Erastothenes is a method used to compute all primes less than n. We begin by 
making a table of integers 2 to n. We find the smallest integer, i, that is not crossed out, 

print i, and cross out i, 2i, 3i, . . . . When  the algorithm terminates. What is the 
running time of this algorithm?  

2.15 Show that x62 can be computed with only eight multiplications. 

 

2.16 Write the fast exponentiation routine without recursion. 

 

2.17 Give a precise count on the number of multiplication used by the fast exponentiation 
routine. (Hint: Consider the binary representation of n.)  

2.18 Programs A and B are analyzed and found to have worst-case running times no greater than 

150n log2 n and n
2, respectively. Answer the following questions if possible:  

a. Which program has the better guarantee on the running time, for large values of n (n > 
10,000)?  

b. Which program has the better guarantee on the running time, for small values of n (n < 100)? 

 

c. Which program will run faster on average for n = 1,000? 

 

d. Is it possible that program B will run faster than program A on all possible inputs ? 

 

2.19 A majority element in an array, A, of size n is an element that appears more than n/2 times 
(thus, there is at most one). For example, the array  

3, 3, 4, 2, 4, 4, 2, 4, 4

 

has a majority element (4), whereas the array 

 

3, 3, 4, 2, 4, 4, 2, 4

 

does not. If there is no majority element, your program should indicate this. Here is a sketch of 
an algorithm to solve the problem:  
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First, a candidate majority element is found (this is the harder part). This candidate is the 
only element that could possibly be the majority element. The second step determines if this 
candidate is actually the majority. This is just a sequential search through the array. To find a 
candidate in the array, A, form a second array, B. Then compare A1 and A2. If they are equal, add 

one of these to B; otherwise do nothing. Then compare A3 and A4. Again if they are equal, add one 

of these to B; otherwise do nothing. Continue in this fashion until the entire array is read. 
Then recursively find a candidate for B; this is the candidate for A (why?.  

a. How does the recursion terminate? 

 

*b. How is the case where n is odd handled? 

 

*c. What is the running time of the algorithm? 

 

d. How can we avoid using an extra array B? 

 

*e. Write a program to compute the majority element. 

 

*2.20 Why is it important to assume that integers in our computer model have a fixed size? 

 

2.21 Consider the word puzzle problem described in Chapter 1. Suppose we fix the size of the 
longest word to be 10 characters.  

a. In terms of r and c, which are the number of rows and columns in the puzzle, and W, which is 
the number of words, what is the running time of the algorithms described in Chapter 1?  

b. Suppose the word list is presorted. Show how to use binary search to obtain an algorithm with 
significantly better running time.  

2.22 Suppose that line 5 in the binary search routine had the expression low = mid instead of low 
= mid + 1. Would the routine still work?  

2.23 Suppose that lines 6 and 7 in Algorithm 3 (Fig. 2.7) are replaced by 

 

/*6*/    max_left_sum = max_sub_sum( a, left, center-1);

 

/*7*/    max_right_sum = max_sub_sum( a, center, right);

 

Would the routine still work? 

 

*2.24 The inner loop of the cubic maximum subsequence sum algorithm performs n(n + 1)(n + 2)/6 
iterations of the innermost code. The quadratic version performs n(n + 1)/2 iterations. The 
linear version performs n iterations. What pattern is evident? Can you give a combinatoric 
explanation of this phenomenon?  
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CHAPTER 3: 
LISTS, STACKS, AND QUEUES 

This chapter discusses three of the most simple and basic data structures. 
Virtually every significant program will use at least one of these structures 
explicitly, and a stack is always implicitly used in your program, whether or not 
you declare one. Among the highlights of this chapter, we will  

 Introduce the concept of Abstract Data Types (ADTs).  

 Show how to efficiently perform operations on lists.  

 Introduce the stack ADT and its use in implementing recursion.  

 Introduce the queue ADT and its use in operating systems and algorithm 
design.  

Because these data structures are so important, one might expect that they are 
hard to implement. In fact, they are extremely easy to code up; the main 
difficulty is keeping enough discipline to write good general-purpose code for 
routines that are generally only a few lines long.  

3.1. Abstract Data Types (ADTs) 

One of the basic rules concerning programming is that no routine should ever 
exceed a page. This is accomplished by breaking the program down into modules. 
Each module is a logical unit and does a specific job. Its size is kept small by 
calling other modules. Modularity has several advantages. First, it is much 
easier to debug small routines than large routines. Second, it is easier for 
several people to work on a modular program simultaneously. Third, a well-written 
modular program places certain dependencies in only one routine, making changes 
easier. For instance, if output needs to be written in a certain format, it is 
certainly important to have one routine to do this. If printing statements are 
scattered throughout the program, it will take considerably longer to make 
modifications. The idea that global variables and side effects are bad is 
directly attributable to the idea that modularity is good.  

An abstract data type (ADT) is a set of operations. Abstract data types are 
mathematical abstractions; nowhere in an ADT's definition is there any mention 
of how the set of operations is implemented. This can be viewed as an extension 
of modular design.  

Objects such as lists, sets, and graphs, along with their operations, can be 
viewed as abstract data types, just as integers, reals, and booleans are data 
types. Integers, reals, and booleans have operations associated with them, and so 
do abstract data types. For the set ADT, we might have such operations as union, 

Next ChapterReturn to Table of ContentsPrevious Chapter
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intersection, size, and complement. Alternately, we might only want the two 
operations union and find, which would define a different ADT on the set.  

The basic idea is that the implementation of these operations is written once in 
the program, and any other part of the program that needs to perform an operation 
on the ADT can do so by calling the appropriate function. If for some reason 
implementation details need to change, it should be easy to do so by merely 
changing the routines that perform the ADT operations. This change, in a perfect 
world, would be completely transparent to the rest of the program.  

There is no rule telling us which operations must be supported for each ADT; 
this is a design decision. Error handling and tie breaking (where appropriate) 
are also generally up to the program designer. The three data structures that we 
will study in this chapter are primary examples of ADTs. We will see how each 
can be implemented in several ways, but if they are done correctly, the programs 
that use them will not need to know which implementation was used.  

3.2. The List ADT 

We will deal with a general list of the form a1, a2, a3, . . . , an. We say that 

the size of this list is n. We will call the special list of size 0 a null list. 

For any list except the null list, we say that ai+l follows (or succeeds) ai (i < 

n) and that ai-1 precedes ai (i > 1). The first element of the list is a1, and 

the last element is an. We will not define the predecessor of a1 or the successor 

of an. The position of element ai in a list is i. Throughout this discussion, we 

will assume, to simplify matters, that the elements in the list are integers, but 
in general, arbitrarily complex elements are allowed.  

Associated with these "definitions" is a set of operations that we would like to 
perform on the list ADT. Some popular operations are print_list and make_null, 
which do the obvious things; find, which returns the position of the first 
occurrence of a key; insert and delete, which generally insert and delete some 
key from some position in the list; and find_kth, which returns the element in 
some position (specified as an argument). If the list is 34, 12, 52, 16, 12, then 
find(52) might return 3; insert(x,3) might make the list into 34, 12, 52, x, 16, 
12 (if we insert after the position given); and delete(3) might turn that list 
into 34, 12, x, 16, 12.  

Of course, the interpretation of what is appropriate for a function is entirely 
up to the programmer, as is the handling of special cases (for example, what does 
find(1) return above?). We could also add operations such as next and previous, 
which would take a position as argument and return the position of the successor 
and predecessor, respectively.  

3.2.1. Simple Array Implementation of Lists 

Obviously all of these instructions can be implemented just by using an array. 
Even if the array is dynamically allocated, an estimate of the maximum size of 
the list is required. Usually this requires a high over-estimate, which wastes 
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considerable space. This could be a serious limitation, especially if there are 
many lists of unknown size.  

An array implementation allows print_list and find to be carried out in linear 
time, which is as good as can be expected, and the find_kth operation takes 
constant time. However, insertion and deletion are expensive. For example, 
inserting at position 0 (which amounts to making a new first element) requires 
first pushing the entire array down one spot to make room, whereas deleting the 
first element requires shifting all the elements in the list up one, so the worst 
case of these operations is O(n). On average, half the list needs to be moved for 
either operation, so linear time is still required. Merely building a list by n 
successive inserts would require quadratic time.  

Because the running time for insertions and deletions is so slow and the list 
size must be known in advance, simple arrays are generally not used to implement 
lists.  

3.2.2. Linked Lists 

In order to avoid the linear cost of insertion and deletion, we need to ensure 
that the list is not stored contiguously, since otherwise entire parts of the 
list will need to be moved. Figure 3.1 shows the general idea of a linked list.  

The linked list consists of a series of structures, which are not necessarily 
adjacent in memory. Each structure contains the element and a pointer to a 
structure containing its successor. We call this the next pointer. The last 
cell's next pointer points to ; this value is defined by C and cannot be confused 
with another pointer. ANSI C specifies that is zero.  

Recall that a pointer variable is just a variable that contains the address where 
some other data is stored. Thus, if p is declared to be a pointer to a structure, 
then the value stored in p is interpreted as the location, in main memory, where 
a structure can be found. A field of that structure can be accessed by p

field_name, where field_name is the name of the field we wish to examine. 
Figure 3.2 shows the actual representation of the list in Figure 3.1. The list 
contains five structures, which happen to reside in memory locations 1000, 800, 
712, 992, and 692 respectively. The next pointer in the first structure has the 
value 800, which provides the indication of where the second structure is. The 
other structures each have a pointer that serves a similar purpose. Of course, in 
order to access this list, we need to know where the first cell can be found. A 
pointer variable can be used for this purpose. It is important to remember that a 
pointer is just a number. For the rest of this chapter, we will draw pointers 
with arrows, because they are more illustrative.  

  

Figure 3.1 A linked list 
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Figure 3.2 Linked list with actual pointer values 

  

Figure 3.3 Deletion from a linked list 

  

Figure 3.4 Insertion into a linked list 

To execute print_list(L) or find(L,key), we merely pass a pointer to the first 
element in the list and then traverse the list by following the next pointers. 
This operation is clearly linear-time, although the constant is likely to be 
larger than if an array implementation were used. The find_kth operation is no 
longer quite as efficient as an array implementation; find_kth(L,i) takes O(i) 
time and works by traversing down the list in the obvious manner. In practice, 
this bound is pessimistic, because frequently the calls to find_kth are in sorted 
order (by i). As an example, find_kth(L,2), find_kth(L,3), find_kth(L,4), 
find_kth(L,6) can all be executed in one scan down the list.  

The delete command can be executed in one pointer change. Figure 3.3 shows the 
result of deleting the third element in the original list.  

The insert command requires obtaining a new cell from the system by using an 
malloc call (more on this later) and then executing two pointer maneuvers. The 
general idea is shown in Figure 3.4. The dashed line represents the old pointer. 

3.2.3. Programming Details 

The description above is actually enough to get everything working, but there are 
several places where you are likely to go wrong. First of all, there is no really 
obvious way to insert at the front of the list from the definitions given. 
Second, deleting from the front of the list is a special case, because it changes 
the start of the list; careless coding will lose the list. A third problem 
concerns deletion in general. Although the pointer moves above are simple, the 
deletion algorithm requires us to keep track of the cell before the one that we 
want to delete.  
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Figure 3.5 Linked list with a header 

It turns out that one simple change solves all three problems. We will keep a 
sentinel node, which is sometimes referred to as a header or dummy node. This is 
a common practice, which we will see several times in the future. Our convention 
will be that the header is in position 0. Figure 3.5 shows a linked list with a 
header representing the list a1, a2, . . . , a5.  

To avoid the problems associated with deletions, we need to write a routine 
find_previous, which will return the position of the predecessor of the cell we 
wish to delete. If we use a header, then if we wish to delete the first element 
in the list, find_previous will return the position of the header. The use of a 
header node is somewhat controversial. Some people argue that avoiding special 
cases is not sufficient justification for adding fictitious cells; they view the 
use of header nodes as little more than old-style hacking. Even so, we will use 
them here, precisely because they allow us to show the basic pointer 
manipulations without obscuring the code with special cases. Otherwise, whether 
or not a header should be used is a matter of personal preference.  

As examples, we will write about half of the list ADT routines. First, we need 
our declarations, which are given in Figure 3.6.  

The first function that we will write tests for an empty list. When we write code 
for any data structure that involves pointers, it is always best to draw a 
picture first. Figure 3.7 shows an empty list; from the figure it is easy to 
write the function in Figure 3.8.  

The next function, which is shown in Figure 3.9, tests whether the current 
element, which by assumption exists, is the last of the list.  

typedef struct node *node_ptr; 

struct node 

{ 

element_type element; 

node_ptr next; 

}; 

typedef node_ptr LIST; 

typedef node_ptr position; 

Figure 3.6 Type declarations for linked lists 
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Figure 3.7 Empty list with header 

int 

is_empty( LIST L ) 

{ 

return( L->next == NULL ); 

} 

Figure 3.8 Function to test whether a linked list is empty 

int 

is_last( position p, LIST L ) 

{ 

return( p->next == NULL ); 

} 

Figure 3.9 Function to test whether current position is the last in a linked list

The next routine we will write is find. Find, shown in Figure 3.10, returns the 
position in the list of some element. Line 2 takes advantage of the fact that the 
and (&&) operation is short-circuited: if the first half of the and is false, the 
result is automatically false and the second half is not executed.  

/* Return position of x in L; NULL if not found */ 

position 

find ( element_type x, LIST L ) 

{ 

position p; 

/*1*/        p = L->next; 

/*2*/        while( (p != NULL) && (p->element != x) ) 

/*3*/        p = p->next; 

/*4*/        return p; 
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} 

Figure 3.10 Find routine 

Some programmers find it tempting to code the find routine recursively, possibly 
because it avoids the sloppy termination condition. We shall see later that this 
is a very bad idea and should be avoided at all costs.  

Our fourth routine will delete some element x in list L. We need to decide what 
to do if x occurs more than once or not at all. Our routine deletes the first 
occurrence of x and does nothing if x is not in the list. To do this, we find p, 
which is the cell prior to the one containing x, via a call to find_previous. The 
code to implement this is shown in Figure 3.11. The find_previous routine is 
similar to find and is shown in Figure 3.12.  

The last routine we will write is an insertion routine. We will pass an element 
to be inserted along with the list L and a position p. Our particular insertion 
routine will insert an element after the position implied by p. This decision is 
arbitrary and meant to show that there are no set rules for what insertion does. 
It is quite possible to insert the new element into position p (which means 
before the element currently in position p), but doing this requires knowledge of 
the element before position p. This could be obtained by a call to find_previous. 
It is thus important to comment what you are doing. This has been done in Figure 
3.13.  

Notice that we have passed the list to the insert and is_last routines, even 
though it was never used. We did this because another implementation might need 
this information, and so not passing the list would defeat the idea of using 
ADTs.*  

* This is legal, but some compilers will issue a warning.  

/* Delete from a list. Cell pointed */ 

/* to by p->next is wiped out. */ 

/* Assume that the position is legal. */ 

/* Assume use of a header node. */ 

void 

delete( element_type x, LIST L ) 

{ 

position p, tmp_cell; 

p = find_previous( x, L ); 

if( p->next != NULL )  /* Implicit assumption of header use */ 

{                      /* x is found: delete it */ 
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tmp_cell = p->next; 

p->next = tmp_cell->next; /* bypass the cell to be deleted */ 

free( tmp_cell ); 

} 

} 

Figure 3.11 Deletion routine for linked lists 

/* Uses a header. If element is not found, then next field */ 

/* of returned value is NULL */ 

position 

find_previous( element_type x, LIST L ) 

{ 

position p; 

/*1*/  p = L; 

/*2*/  while( (p->next != NULL) && (p->next->element != x) ) 

/*3*/       p = p->next; 

/*4*/  return p; 

} 

Figure 3.12 Find_previous--the find routine for use with delete 

/* Insert (after legal position p).*/ 

/* Header implementation assumed. */ 

void 

insert( element_type x, LIST L, position p ) 

{ 

position tmp_cell; 

/*1*/        tmp_cell = (position) malloc( sizeof (struct node) ); 

/*2*/        if( tmp_cell == NULL ) 

/*3*/              fatal_error("Out of space!!!"); 

else 
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{ 

/*4*/              tmp_cell->element = x; 

/*5*/              tmp_cell->next = p->next; 

/*6*/              p->next = tmp_cell; 

} 

} 

Figure 3.13 Insertion routine for linked lists 

With the exception of the find and find_previous routines, all of the operations 
we have coded take O(1) time. This is because in all cases only a fixed number of 
instructions are performed, no matter how large the list is. For the find and 
find_previous routines, the running time is O(n) in the worst case, because the 
entire list might need to be traversed if the element is either not found or is 
last in the list. On average, the running time is O(n), because on average, half 
the list must be traversed.  

We could write additional routines to print a list and to perform the next 
function. These are fairly straightforward. We could also write a routine to 
implement previous. We leave these as exercises.  

3.2.4. Common Errors 

The most common error that you will get is that your program will crash with a 
nasty error message from the system, such as "memory access violation" or 
"segmentation violation." This message usually means that a pointer variable 
contained a bogus address. One common reason is failure to initialize the 
variable. For instance, if line 1 in Figure 3.14 is omitted, then p is undefined 
and is not likely to be pointing at a valid part of memory. Another typical error 
would be line 6 in Figure 3.13. If p is , then the indirection is illegal. This 
function knows that p is not , so the routine is OK. Of course, you should 
comment this so that the routine that calls insert will insure this. Whenever you 
do an indirection, you must make sure that the pointer is not NULL. Some C 
compliers will implicity do this check for you, but this is not part of the C 
standard. When you port a program from one compiler to another, you may find that 
it no longer works. This is one of the common reasons why.  

The second common mistake concerns when and when not to use malloc to get a new 
cell. You must remember that declaring a pointer to a structure does not create 
the structure but only gives enough space to hold the address where some 
structure might be. The only way to create a record that is not already declared 
is to use the malloc command. The command malloc(size_p) has the system create, 
magically, a new structure and return a pointer to it. If, on the other hand, you 
want to use a pointer variable to run down a list, there is no need to declare a 
new structure; in that case the malloc command is inappropriate. A type cast is 
used to make both sides of the assignment operator compatible. The C library 
provides other variations of malloc such as calloc.  
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void 

delete_list( LIST L ) 

{ 

position p; 

/*1*/        p = L->next;        /* header assumed */ 

/*2*/        L->next = NULL; 

/*3*/        while( p != NULL ) 

{ 

/*4*/             free( p ); 

/*5*/             p = p->next; 

} 

} 

Figure 3.14 Incorrect way to delete a list 

When things are no longer needed, you can issue a free command to inform the 
system that it may reclaim the space. A consequence of the free(p) command is 
that the address that p is pointing to is unchanged, but the data that resides at 
that address is now undefined.  

If you never delete from a linked list, the number of calls to malloc should 
equal the size of the list, plus 1 if a header is used. Any less, and you cannot 
possibly have a working program. Any more, and you are wasting space and probably 
time. Occasionally, if your program uses a lot of space, the system may be unable 
to satisfy your request for a new cell. In this case a pointer is returned.  

After a deletion in a linked list, it is usually a good idea to free the cell, 
especially if there are lots of insertions and deletions intermingled and memory 
might become a problem. You need to keep a temporary variable set to the cell to 
be disposed of, because after the pointer moves are finished, you will not have a 
reference to it. As an example, the code in Figure 3.14 is not the correct way to 
delete an entire list (although it may work on some systems).  

Figure 3.15 shows the correct way to do this. Disposal is not necessarily a fast 
thing, so you might want to check to see if the disposal routine is causing any 
slow performance and comment it out if this is the case. This author has written 
a program (see the exercises) that was made 25 times faster by commenting out the 
disposal (of 10,000 nodes). It turned out that the cells were freed in a rather 
peculiar order and apparently caused an otherwise linear program to spend O(n log 
n) time to dispose of n cells.  

One last warning: malloc(sizeof node_ptr) is legal, but it doesn't allocate 
enough space for a structure. It allocates space only for a pointer.  
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void 

delete_list( LIST L ) 

{ 

position p, tmp; 

/*1*/        p = L->next;   /* header assumed */

 

/*2*/        L->next = NULL; 

/*3*/        while( p != NULL ) 

{ 

/*4*/             tmp = p->next; 

/*5*/             free( p ); 

/*6*/             p = tmp; 

} 

} 

Figure 3.15 Correct way to delete a list 

  

Figure 3.16 A doubly linked list 

3.2.5. Doubly Linked Lists 

Sometimes it is convenient to traverse lists backwards. The standard 
implementation does not help here, but the solution is simple. Merely add an 
extra field to the data structure, containing a pointer to the previous cell. The 
cost of this is an extra link, which adds to the space requirement and also 
doubles the cost of insertions and deletions because there are more pointers to 
fix. On the other hand, it simplifies deletion, because you no longer have to 
refer to a key by using a pointer to the previous cell; this information is now 
at hand. Figure 3.16 shows a doubly linked list.  

3.2.6. Circularly Linked Lists 

A popular convention is to have the last cell keep a pointer back to the first. 
This can be done with or without a header (if the header is present, the last 
cell points to it), and can also be done with doubly linked lists (the first 
cell's previous pointer points to the last cell). This clearly affects some of 
the tests, but the structure is popular in some applications. Figure 3.17 shows a 
double circularly linked list with no header.  
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3.2.7. Examples 

We provide three examples that use linked lists. The first is a simple way to 
represent single-variable polynomials. The second is a method to sort in linear 
time, for some special cases. Finally, we show a complicated example of how 
linked lists might be used to keep track of course registration at a university. 

The Polynomial ADT 

We can define an abstract data type for single-variable polynomials (with 

nonnegative exponents) by using a list. Let . If most of the 
coefficients ai are nonzero, we can use a simple array to store the coefficients. 

We could then write routines to perform addition, subtraction, multiplication, 
differentiation, and other operations on these polynomials. In this case, we 
might use the type declarations given in Figure 3.18. We could then write 
routines to perform various operations. Two possibilities are addition and 
multiplication. These are shown in Figures 3.19 to 3.21. Ignoring the time to 
initialize the output polynomials to zero, the running time of the multiplication 
routine is proportional to the product of the degree of the two input 
polynomials. This is adequate for dense polynomials, where most of the terms are 

present, but if p1(x) = 10x
1000 + 5x14 + 1 and p2(x) = 3x

1990 - 2x1492 + 11x + 5, 

then the running time is likely to be unacceptable. One can see that most of the 
time is spent multiplying zeros and stepping through what amounts to nonexistent 
parts of the input polynomials. This is always undesirable.  

  

Figure 3.17 A double circularly linked list 

typedef struct 

{ 

int coeff_array[ MAX_DEGREE+1 ]; 

unsigned int high_power; 

} *POLYNOMIAL; 

Figure 3.18 Type declarations for array implementation of the polynomial ADT 

An alternative is to use a singly linked list. Each term in the polynomial is 
contained in one cell, and the cells are sorted in decreasing order of exponents. 
For instance, the linked lists in Figure 3.22 represent p1(x) and p2(x). We could 

then use the declarations in Figure 3.23.  

void 
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zero_polynomial( POLYNOMIAL poly ) 

{ 

unsigned int i; 

for( i=0; i<=MAX_DEGREE; i++ ) 

poly->coeff_array[i] = 0; 

poly->high_power = 0; 

} 

Figure 3.19 Procedure to initialize a polynomial to zero 

void 

add_polynomial( POLYNOMIAL poly1, POLYNOMIAL poly2, 

POLYNOMIAL poly_sum ) 

{ 

int i; 

zero_polynomial( poly_sum ); 

poly_sum->high_power = max( poly1->high_power, 

poly2->high_power); 

for( i=poly_sum->high_power; i>=0; i-- ) 

poly_sum->coeff_array[i] = poly1->coeff_array[i] 

+ poly2->coeff_array[i]; 

} 

Figure 3.20 Procedure to add two polynomials 

void 

mult_polynomial( POLYNOMIAL poly1, POLYNOMIAL poly2, 

POLYNOMIAL poly_prod ) 

{ 

unsigned int i, j; 

zero_polynomial( poly_prod ); 

poly_prod->high_power = poly1->high_power 
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+ poly2->high_power; 

if( poly_prod->high_power > MAX_DEGREE ) 

error("Exceeded array size"); 

else 

for( i=0; i<=poly->high_power; i++ ) 

for( j=0; j<=poly2->high_power; j++ ) 

poly_prod->coeff_array[i+j] += 

poly1->coeff_array[i] * poly2->coeff_array[j]; 

} 

Figure 3.21 Procedure to multiply two polynomials 

  

Figure 3.22 Linked list representations of two polynomials 

typedef struct node *node_ptr;

 

struct node 

{ 

int coefficient; 

int exponent; 

node_ptr next; 

} ; 

typedef node_ptr POLYNOMIAL; /* keep nodes sorted by exponent */

 

Figure 3.23 Type declaration for linked list implementation of the Polynomial 
ADT 

The operations would then be straightforward to implement. The only potential 
difficulty is that when two polynomials are multiplied, the resultant polynomial 
will have to have like terms combined. There are several ways to do this, but we 
will leave this as an exercise.  
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Radix Sort 

A second example where linked lists are used is called radix sort. Radix sort is 
sometimes known as card sort, because it was used, until the advent of modern 
computers, to sort old-style punch cards.  

If we have n integers in the range 1 to m (or 0 to m - 1) 9, we can use this 
information to obtain a fast sort known as bucket sort. We keep an array called 
count, of size m, which is initialized to zero. Thus, count has m cells (or 
buckets), which are initially empty. When ai is read, increment (by one) count

[ai]. After all the input is read, scan the count array, printing out a 

representation of the sorted list. This algorithm takes O(m + n); the proof is 

left as an exercise. If m = (n), then bucket sort is O(n).  

Radix sort is a generalization of this. The easiest way to see what happens is by 
example. Suppose we have 10 numbers, in the range 0 to 999, that we would like to 

sort. In general, this is n numbers in the range 0 to np - 1 for some constant p.
Obviously, we cannot use bucket sort; there would be too many buckets. The trick 
is to use several passes of bucket sort. The natural algorithm would be to 
bucket-sort by the most significant "digit" (digit is taken to base n), then next 
most significant, and so on. That algorithm does not work, but if we perform 
bucket sorts by least significant "digit" first, then the algorithm works. Of 
course, more than one number could fall into the same bucket, and, unlike the 
original bucket sort, these numbers could be different, so we keep them in a 
list. Notice that all the numbers could have some digit in common, so if a simple 
array were used for the lists, then each array would have to be of size n, for a 

total space requirement of (n2). 
 

The following example shows the action of radix sort on 10 numbers. The input is 
64, 8, 216, 512, 27, 729, 0, 1, 343, 125 (the first ten cubes arranged randomly). 
The first step bucket sorts by the least significant digit. In this case the math 
is in base 10 (to make things simple), but do not assume this in general. The 
buckets are as shown in Figure 3.24, so the list, sorted by least significant 
digit, is 0, 1, 512, 343, 64, 125, 216, 27, 8, 729. These are now sorted by the 
next least significant digit (the tens digit here) (see Fig. 3.25). Pass 2 gives 
output 0, 1, 8, 512, 216, 125, 27, 729, 343, 64. This list is now sorted with 
respect to the two least significant digits. The final pass, shown in Figure 
3.26, bucket-sorts by most significant digit. The final list is 0, 1, 8, 27, 64, 
125, 216, 343, 512, 729.  

To see that the algorithm works, notice that the only possible failure would 
occur if two numbers came out of the same bucket in the wrong order. But the 
previous passes ensure that when several numbers enter a bucket, they enter in 
sorted order. The running time is O(p(n + b)) where p is the number of passes, n 
is the number of elements to sort, and b is the number of buckets. In our case, b
= n.  

  0  1  512  343  64  125  216  27  8  729 

------------------------------------------- 
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  0  1    2    3   4    5    6   7  8    9 

Figure 3.24 Buckets after first step of radix sort 

  8       729 

  1  216   27 

  0  512  125     343     64 

-------------------------------------- 

  0    1    2  3    4  5   6  7  8  9 

Figure 3.25 Buckets after the second pass of radix sort 

  64 

  27 

   8 

   1 

   0  125  216  343     512     729 

------------------------------------------ 

   0    1    2    3  4    5  6    7  8  9 

Figure 3.26 Buckets after the last pass of radix sort 

As an example, we could sort all integers that are representable on a computer 

(32 bits) by radix sort, if we did three passes over a bucket size of 211. This 
algorithm would always be O(n) on this computer, but probably still not as 
efficient as some of the algorithms we shall see in Chapter 7, because of the 
high constant involved (remember that a factor of log n is not all that high, and 
this algorithm would have the overhead of maintaining linked lists).  

Multilists 

Our last example shows a more complicated use of linked lists. A university with 
40,000 students and 2,500 courses needs to be able to generate two types of 
reports. The first report lists the class registration for each class, and the 
second report lists, by student, the classes that each student is registered for. 

The obvious implementation might be to use a two-dimensional array. Such an array 
would have 100 million entries. The average student registers for about three 
courses, so only 120,000 of these entries, or roughly 0.1 percent, would actually 
have meaningful data.  

What is needed is a list for each class, which contains the students in the 
class. We also need a list for each student, which contains the classes the 
student is registered for. Figure 3.27 shows our implementation.  

页码，16/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



As the figure shows, we have combined two lists into one. All lists use a header 
and are circular. To list all of the students in class C3, we start at C3 and 
traverse its list (by going right). The first cell belongs to student S1. 
Although there is no explicit information to this effect, this can be determined 
by following the student's linked list until the header is reached. Once this is 
done, we return to C3's list (we stored the position we were at in the course 
list before we traversed the student's list) and find another cell, which can be 
determined to belong to S3. We can continue and find that S4 and S5 are also in 
this class. In a similar manner, we can determine, for any student, all of the 
classes in which the student is registered.  

  

Figure 3.27 Multilist implementation for registration problem 

Using a circular list saves space but does so at the expense of time. In the 
worst case, if the first student was registered for every course, then every 
entry would need to be examined in order to determine all the course names for 
that student. Because in this application there are relatively few courses per 
student and few students per course, this is not likely to happen. If it were 
suspected that this could cause a problem, then each of the (nonheader) cells 
could have pointers directly back to the student and class header. This would 
double the space requirement, but simplify and speed up the implementation.  

3.2.8. Cursor Implementation of Linked Lists 

Many languages, such as BASIC and FORTRAN, do not support pointers. If linked 
lists are required and pointers are not available, then an alternate 
implementation must be used. The alternate method we will describe is known as a 
cursor implementation.  

The two important items present in a pointer implementation of linked lists are  

页码，17/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



1. The data is stored in a collection of structures. Each structure contains the 
data and a pointer to the next structure.  

2. A new structure can be obtained from the system's global memory by a call to 
malloc and released by a call to free.  

Our cursor implementation must be able to simulate this. The logical way to 
satisfy condition 1 is to have a global array of structures. For any cell in the 
array, its array index can be used in place of an address. Figure 3.28 gives the 
type declarations for a cursor implementation of linked lists.  

We must now simulate condition 2 by allowing the equivalent of malloc and free 
for cells in the CURSOR_SPACE array. To do this, we will keep a list (the 
freelist) of cells that are not in any list. The list will use cell 0 as a 
header. The initial configuration is shown in Figure 3.29.  

A value of 0 for next is the equivalent of a pointer. The initialization of 
CURSOR_SPACE is a straightforward loop, which we leave as an exercise. To perform 
an malloc, the first element (after the header) is removed from the freelist.  

typedef unsigned int node_ptr; 

struct node 

{ 

element_type element; 

node_ptr next; 

}; 

typedef node_ptr LIST; 

typedef node_ptr position; 

struct node CURSOR_SPACE[ SPACE_SIZE ]; 

Figure 3.28 Declarations for cursor implementation of linked lists 

  Slot  Element  Next 

---------------------- 

    0              1 

    1              2 

    2              3 

    3              4 

    4              5 

    5              6 
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    6              7 

    7              8 

    8              9 

    9             10 

   10              0 

Figure 3.29 An initialized CURSOR_SPACE 

To perform a free, we place the cell at the front of the freelist. Figure 3.30 
shows the cursor implementation of malloc and free. Notice that if there is no 
space available, our routine does the correct thing by setting p = 0. This 
indicates that there are no more cells left, and also makes the second line of 
cursor_new a nonoperation (no-op).  

Given this, the cursor implementation of linked lists is straightforward. For 
consistency, we will implement our lists with a header node. As an example, in 
Figure 3.31, if the value of L is 5 and the value of M is 3, then L represents 
the list a, b, e, and M represents the list c, d, f.  

position 

cursor_alloc( void ) 

{ 

position p; 

p = CURSOR_SPACE[O].next; 

CURSOR_SPACE[0].next = CURSOR_SPACE[p].next; 

return p; 

} 

void 

cursor_free( position p) 

{ 

CURSOR_SPACE[p].next = CURSOR_SPACE[O].next; 

CURSOR_SPACE[O].next = p; 

} 

Figure 3.30 Routines: cursor-alloc and cursor-free 

  Slot  Element  Next 

---------------------- 
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    0      -       6 

    1      b       9 

    2      f       0 

    3    header    7 

    4      -       0 

    5    header   10 

    6      -       4 

    7      c       8 

    8      d       2 

    9      e       0 

   10      a       1 

Figure 3.31 Example of a cursor implementation of linked lists 

To write the functions for a cursor implementation of linked lists, we must pass 
and return the identical parameters as the pointer implementation. The routines 
are straightforward. Figure 3.32 implements a function to test whether a list is 
empty. Figure 3.33 implements the test of whether the current position is the 
last in a linked list.  

The function find in Figure 3.34 returns the position of x in list L.  

The code to implement deletion is shown in Figure 3.35. Again, the interface for 
the cursor implementation is identical to the pointer implementation. Finally, 
Figure 3.36 shows a cursor implementation of insert.  

The rest of the routines are similarly coded. The crucial point is that these 
routines follow the ADT specification. They take specific arguments and perform 
specific operations. The implementation is transparent to the user. The cursor 
implementation could be used instead of the linked list implementation, with 
virtually no change required in the rest of the code.  

int 

is_empty( LIST L )  /* using a header node */ 

{ 

return( CURSOR_SPACE[L].next == 0 

} 

Figure 3.32 Function to test whether a linked list is empty--cursor 
implementation 

页码，20/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



int 

is_last( position p, LIST L)  /* using a header node */ 

{ 

return( CURSOR_SPACE[p].next == 0 

} 

Figure 3.33 Function to test whether p is last in a linked list--cursor 
implementation 

position 

find( element_type x, LIST L) /* using a header node */ 

{ 

position p; 

/*1*/       p = CURSOR_SPACE[L].next; 

/*2*/       while( p && CURSOR_SPACE[p].element != x ) 

/*3*/             p = CURSOR_SPACE[p].next; 

/*4*/       return p; 

} 

Figure 3.34 Find routine--cursor implementation 

void 

delete( element_type x, LIST L ) 

{ 

position p, tmp_cell; 

p = find_previous( x, L ); 

if( !is_last( p, L) ) 

{ 

tmp_cell = CURSOR_SPACE[p].next; 

CURSOR_SPACE[p].next = CURSOR_SPACE[tmp_cell].next; 

cursor_free( tmp_cell ); 

} 

} 
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Figure 3.35 Deletion routine for linked lists--cursor implementation 

/* Insert (after legal position p); */ 

/* header implementation assumed */ 

void 

insert( element_type x, LIST L, position p ) 

{ 

position tmp_cell; 

/*1*/       tmp_cell = cursor_alloc( ) 

/*2*/       if( tmp_cell ==0 ) 

/*3*/       fatal_error("Out of space!!!"); 

else 

{ 

/*4*/            CURSOR_SPACE[tmp_cell].element = x; 

/*5*/            CURSOR_SPACE[tmp_cell].next = CURSOR_SPACE[p].next; 

/*6*/            CURSOR_SPACE[p].next = tmp_cell; 

} 

} 

Figure 3.36 Insertion routine for linked lists--cursor implementation 

The freelist represents an interesting data structure in its own right. The cell 
that is removed from the freelist is the one that was most recently placed there 
by virtue of free. Thus, the last cell placed on the freelist is the first cell 
taken off. The data structure that also has this property is known as a stack, 
and is the topic of the next section.  

3.3. The Stack ADT 

3.3.1. Stack Model 

A stack is a list with the restriction that inserts and deletes can be performed 
in only one position, namely the end of the list called the top. The fundamental 
operations on a stack are push, which is equivalent to an insert, and pop, which 
deletes the most recently inserted element. The most recently inserted element 
can be examined prior to performing a pop by use of the top routine. A pop or top
on an empty stack is generally considered an error in the stack ADT. On the 
other hand, running out of space when performing a push is an implementation 
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error but not an ADT error.  

Stacks are sometimes known as LIFO (last in, first out) lists. The model 
depicted in Figure 3.37 signifies only that pushes are input operations and pops 
and tops are output. The usual operations to make empty stacks and test for 
emptiness are part of the repertoire, but essentially all that you can do to a 
stack is push and pop.  

Figure 3.38 shows an abstract stack after several operations. The general model 
is that there is some element that is at the top of the stack, and it is the only 
element that is visible.  

  

Figure 3.37 Stack model: input to a stack is by push, output is by pop 

  

Figure 3.38 Stack model: only the top element is accessible 

3.3.2. Implementation of Stacks 

Of course, since a stack is a list, any list implementation will do. We will give 
two popular implementations. One uses pointers and the other uses an array, but, 
as we saw in the previous section, if we use good programming principles the 
calling routines do not need to know which method is being used.  

Linked List Implementation of Stacks 

The first implementation of a stack uses a singly linked list. We perform a push 
by inserting at the front of the list. We perform a pop by deleting the element 
at the front of the list. A top operation merely examines the element at the 
front of the list, returning its value. Sometimes the pop and top operations are 
combined into one. We could use calls to the linked list routines of the previous 
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section, but we will rewrite the stack routines from scratch for the sake of 
clarity.  

First, we give the definitions in Figure 3.39. We implement the stack using a 
header. Then Figure 3.40 shows that an empty stack is tested for in the same 
manner as an empty list.  

Creating an empty stack is also simple. We merely create a header node; make_null
sets the next pointer to NULL (see Fig. 3.41). The push is implemented as an 
insertion into the front of a linked list, where the front of the list serves as 
the top of the stack (see Fig. 3.42). The top is performed by examining the 
element in the first position of the list (see Fig. 3.43). Finally, we implement 
pop as a delete from the front of the list (see Fig. 3.44).  

It should be clear that all the operations take constant time, because nowhere in 
any of the routines is there even a reference to the size of the stack (except 
for emptiness), much less a loop that depends on this size. The drawback of this 
implementation is that the calls to malloc and free are expensive, especially in 
comparison to the pointer manipulation routines. Some of this can be avoided by 
using a second stack, which is initially empty. When a cell is to be disposed 
from the first stack, it is merely placed on the second stack. Then, when new 
cells are needed for the first stack, the second stack is checked first.  

Array Implementation of Stacks 

An alternative implementation avoids pointers and is probably the more popular 
solution. The only potential hazard with this strategy is that we need to declare 
an array size ahead of time. Generally this is not a problem, because in typical 
applications, even if there are quite a few stack operations, the actual number 
of elements in the stack at any time never gets too large. It is usually easy to 
declare the array to be large enough without wasting too much space. If this is 
not possible, then a safe course would be to use a linked list implementation.  

If we use an array implementation, the implementation is trivial. Associated with 
each stack is the top of stack, tos, which is -1 for an empty stack (this is how 
an empty stack is initialized). To push some element x onto the stack, we 
increment tos and then set STACK[tos] = x, where STACK is the array representing 
the actual stack. To pop, we set the return value to STACK[tos] and then 
decrement tos. Of course, since there are potentially several stacks, the STACK 
array and tos are part of one structure representing a stack. It is almost always 
a bad idea to use global variables and fixed names to represent this (or any) 
data structure, because in most real-life situations there will be more than one 
stack. When writing your actual code, you should attempt to follow the model as 
closely as possible, so that no part of your code, except for the stack routines, 
can attempt to access the array or top-of-stack variable implied by each stack. 
This is true for all ADT operations. Modern languages such as Ada and C++ can 
actually enforce this rule.  

typedef struct node *node_ptr;

 

struct node 

{ 

页码，24/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



element_type element; 

node_ptr next; 

}; 

typedef node_ptr STACK; 

/* Stack implementation will use a header. */

 

Figure 3.39 Type declaration for linked list implementation of the stack ADT 

int 

is_empty( STACK S ) 

{ 

return( S->next == NULL ); 

} 

Figure 3.40 Routine to test whether a stack is empty-linked list implementation 

STACK 

create_stack( void ) 

{ 

STACK S; 

S = (STACK) malloc( sizeof( struct node ) ); 

if( S == NULL ) 

fatal_error("Out of space!!!"); 

return S; 

} 

void 

make_null( STACK S ) 

{ 

if( S != NULL ) 

S->next = NULL; 

else 

error("Must use create_stack first"); 
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} 

Figure 3.41 Routine to create an empty stack-linked list implementation 

void 

push( element_type x, STACK S ) 

{ 

node_ptr tmp_cell; 

tmp_cell = (node_ptr) malloc( sizeof ( struct node ) ); 

if( tmp_cell == NULL ) 

fatal_error("Out of space!!!"); 

else 

{ 

tmp_cell->element = x; 

tmp_cell->next = S->next; 

S->next = tmp_cell; 

} 

} 

Figure 3.42 Routine to push onto a stack-linked list implementation 

element_type 

top( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

return S->next->element; 

} 

Figure 3.43 Routine to return top element in a stack--linked list implementation 

void 

pop( STACK S ) 
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{ 

node_ptr first_cell; 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

{ 

first_cell = S->next; 

S->next = S->next->next; 

free( first_cell ); 

} 

} 

Figure 3.44 Routine to pop from a stack--linked list implementation 

Notice that these operations are performed in not only constant time, but very 
fast constant time. On some machines, pushes and pops (of integers) can be 
written in one machine instruction, operating on a register with auto-increment 
and auto-decrement addressing. The fact that most modern machines have stack 
operations as part of the instruction set enforces the idea that the stack is 
probably the most fundamental data structure in computer science, after the 
array.  

One problem that affects the efficiency of implementing stacks is error testing. 
Our linked list implementation carefully checked for errors. As described above, 
a pop on an empty stack or a push on a full stack will overflow the array bounds 
and cause a crash. This is obviously undesirable, but if checks for these 
conditions were put in the array implementation, they would likely take as much 
time as the actual stack manipulation. For this reason, it has become a common 
practice to skimp on error checking in the stack routines, except where error 
handling is crucial (as in operating systems). Although you can probably get away 
with this in most cases by declaring the stack to be large enough not to overflow 
and ensuring that routines that use pop never attempt to pop an empty stack, this 
can lead to code that barely works at best, especially when programs get large 
and are written by more than one person or at more than one time. Because stack 
operations take such fast constant time, it is rare that a significant part of 
the running time of a program is spent in these routines. This means that it is 
generally not justifiable to omit error checks. You should always write the error 
checks; if they are redundant, you can always comment them out if they really 
cost too much time. Having said all this, we can now write routines to implement 
a general stack using arrays.  

A STACK is defined in Figure 3.45 as a pointer to a structure. The structure 
contains the top_of_stack and stack_size fields. Once the maximum size is known, 
the stack array can be dynamically allocated. Figure 3.46 creates a stack of a 
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given maximum size. Lines 3-5 allocate the stack structure, and lines 6-8 
allocate the stack array. Lines 9 and 10 initialize the top_of_stack and 
stack_size fields. The stack array does not need to be initialized. The stack is 
returned at line 11.  

The routine dispose_stack should be written to free the stack structure. This 
routine first frees the stack array and then the stack structure (See Figure 
3.47). Since create_stack requires an argument in the array implementation, but 
not in the linked list implementation, the routine that uses a stack will need to 
know which implementation is being used unless a dummy parameter is added for the 
later implementation. Unfortunately, efficiency and software idealism often 
create conflicts.  

struct stack_record 

{ 

unsigned int stack_size; 

int top_of_stack; 

element_type *stack_array; 

}; 

typedef struct stack_record *STACK; 

#define EMPTY_TOS (-1) /* Signifies an empty stack */ 

Figure 3.45 STACK definition--array implementaion 

STACK 

create_stack( unsigned int max_elements ) 

{ 

STACK S; 

/*1*/       if( max_elements < MIN_STACK_SIZE ) 

/*2*/            error("Stack size is too small"); 

/*3*/       S = (STACK) malloc( sizeof( struct stack_record ) ); 

/*4*/       if( S == NULL ) 

/*5*/            fatal_error("Out of space!!!"); 

/*6*/       S->stack_array = (element_type *) 

malloc( sizeof( element_type ) * max_elements ); 

/*7*/       if( S->stack_array == NULL ) 

/*8*/            fatal_error("Out of space!!!"); 
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/*9*/       S->top_of_stack = EMPTY_TOS; 

/*10*/      S->stack_size = max_elements; 

/*11*/      return( S ); 

} 

Figure 3.46 Stack creation--array implementaion 

void 

dispose_stack( STACK S ) 

{ 

if( S != NULL ) 

{ 

free( S->stack_array ); 

free( S ); 

} 

} 

Figure 3.47 Routine for freeing stack--array implementation 

We have assumed that all stacks deal with the same type of element. In many 
languages, if there are different types of stacks, then we need to rewrite a new 
version of the stack routines for each different type, giving each version a 
different name. A cleaner alternative is provided in C++, which allows one to 
write a set of generic stack routines and essentially pass the type as an 
argument.* C++ also allows stacks of several different types to retain the same 
procedure and function names (such as push and pop): The compiler decides which 
routines are implied by checking the type of the calling routine.  

*This is somewhat of an oversimplification.  

Having said all this, we will now rewrite the four stack routines. In true ADT 
spirit, we will make the function and procedure heading look identical to the 
linked list implementation. The routines themselves are very simple and follow 
the written description exactly (see Figs. 3.48 to 3.52).  

Pop is occasionally written as a function that returns the popped element (and 
alters the stack). Although current thinking suggests that functions should not 
change their input variables, Figure 3.53 illustrates that this is the most 
convenient method in C.  

int 

is_empty( STACK S ) 
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{ 

return( S->top_of_stack == EMPTY_TOS ); 

} 

Figure 3.48 Routine to test whether a stack is empty--array implementation 

void 

make_null( STACK S ) 

{ 

S->top_of_stack = EMPTY_TOS; 

} 

Figure 3.49 Routine to create an empty stack--array implementation 

void 

push( element_type x, STACK S ) 

{ 

if( is_full( S ) ) 

error("Full stack"); 

else 

S->stack_array[ ++S->top_of_stack ] = x; 

} 

Figure 3.50 Routine to push onto a stack--array implementation 

element_type 

top( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

return S->stack_array[ S->top_of_stack ]; 

} 

Figure 3.51 Routine to return top of stack--array implementation 
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void 

pop( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

S->top_of_stack--; 

} 

Figure 3.52 Routine to pop from a stack--array implementation 

element_type 

pop( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

return S->stack_array[ S->top_of_stack-- ]; 

} 

Figure 3.53 Routine to give top element and pop a stack--array implementation 

3.3.3. Applications 

It should come as no surprise that if we restrict the operations allowed on a 
list, those operations can be performed very quickly. The big surprise, however, 
is that the small number of operations left are so powerful and important. We 
give three of the many applications of stacks. The third application gives a deep 
insight into how programs are organized.  

Balancing Symbols 

Compilers check your programs for syntax errors, but frequently a lack of one 
symbol (such as a missing brace or comment starter) will cause the compiler to 
spill out a hundred lines of diagnostics without identifying the real error.  

A useful tool in this situation is a program that checks whether everything is 
balanced. Thus, every right brace, bracket, and parenthesis must correspond to 
their left counterparts. The sequence [()] is legal, but [(]) is wrong. 
Obviously, it is not worthwhile writing a huge program for this, but it turns out 
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that it is easy to check these things. For simplicity, we will just check for 
balancing of parentheses, brackets, and braces and ignore any other character 
that appears.  

The simple algorithm uses a stack and is as follows:  

Make an empty stack. Read characters until end of file. If the character is an 
open anything, push it onto the stack. If it is a close anything, then if the 
stack is empty report an error. Otherwise, pop the stack. If the symbol popped is 
not the corresponding opening symbol, then report an error. At end of file, if 
the stack is not empty report an error.  

You should be able to convince yourself that this algorithm works. It is clearly 
linear and actually makes only one pass through the input. It is thus on-line and 
quite fast. Extra work can be done to attempt to decide what to do when an error 
is reported--such as identifying the likely cause.  

Postfix Expressions 

Suppose we have a pocket calculator and would like to compute the cost of a 
shopping trip. To do so, we add a list of numbers and multiply the result by 
1.06; this computes the purchase price of some items with local sales tax added. 
If the items are 4.99, 5.99, and 6.99, then a natural way to enter this would be 
the sequence  

4.99 + 5.99 + 6.99 * 1.06 =

 

Depending on the calculator, this produces either the intended answer, 19.05, or 
the scientific answer, 18.39. Most simple four-function calculators will give the 
first answer, but better calculators know that multiplication has higher 
precedence than addition.  

On the other hand, some items are taxable and some are not, so if only the first 
and last items were actually taxable, then the sequence  

4.99 * 1.06 + 5.99 + 6.99 * 1.06 =

 

would give the correct answer (18.69) on a scientific calculator and the wrong 
answer (19.37) on a simple calculator. A scientific calculator generally comes 
with parentheses, so we can always get the right answer by parenthesizing, but 
with a simple calculator we need to remember intermediate results.  

A typical evaluation sequence for this example might be to multiply 4.99 and 
1.06, saving this answer as a1. We then add 5.99 and a1, saving the result in a1. 

We multiply 6.99 and 1.06, saving the answer in a2, and finish by adding al and 

a2, leaving the final answer in al. We can write this sequence of operations as 

follows:  

4.99 1.06 * 5.99 + 6.99 1.06 * +

 

This notation is known as postfix or reverse Polish notation and is evaluated 
exactly as we have described above. The easiest way to do this is to use a stack. 
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When a number is seen, it is pushed onto the stack; when an operator is seen, the 
operator is applied to the two numbers (symbols) that are popped from the stack 
and the result is pushed onto the stack. For instance, the postfix expression  

6 5 2 3 + 8 * + 3 + *

 

is evaluated as follows: The first four symbols are placed on the stack. The resulting stack is 

 

 

Next a '+' is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed. 

 

 

 

Next 8 is pushed. 

 

 

 

Now a '*' is seen, so 8 and 5 are popped as 8 * 5 = 40 is pushed. 

 

 

 

Next a '+' is seen, so 40 and 5 are popped and 40 + 5 = 45 is pushed. 

 

 

 

Now, 3 is pushed. 
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Next '+' pops 3 and 45 and pushes 45 + 3 = 48. 

 

 

 

Finally, a '*' is seen and 48 and 6 are popped, the result 6 * 48 = 288 is pushed. 

 

 

 

The time to evaluate a postfix expression is O(n), because processing each element in the input 
consists of stack operations and thus takes constant time. The algorithm to do so is very simple. 
Notice that when an expression is given in postfix notation, there is no need to know any 
precedence rules; this is an obvious advantage.  

Infix to Postfix Conversion
 

Not only can a stack be used to evaluate a postfix expression, but we can also use a stack to 
convert an expression in standard form (otherwise known as infix) into postfix. We will 
concentrate on a small version of the general problem by allowing only the operators +, *, and 

(, ), and insisting on the usual precedence rules. We will further assume that the expression is 
legal. Suppose we want to convert the infix expression  

a + b * c + ( d * e + f ) * g

 

into postfix. A correct answer is a b c * + d e * f + g * +. 

 

When an operand is read, it is immediately placed onto the output. Operators are not immediately 
output, so they must be saved somewhere. The correct thing to do is to place operators that have 
been seen, but not placed on the output, onto the stack. We will also stack left parentheses when 
they are encountered. We start with an initially empty stack.  

If we see a right parenthesis, then we pop the stack, writing symbols until we encounter a 
(corresponding) left parenthesis, which is popped but not output.  

If we see any other symbol ('+','*', '(' ), then we pop entries from the stack until we find an 

entry of lower priority. One exception is that we never remove a '(' from the stack except when 
processing a ')'. For the purposes of this operation, '+' has lowest priority and '(' highest. 
When the popping is done, we push the operand onto the stack.  
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Finally, if we read the end of input, we pop the stack until it is empty, writing symbols onto 
the output.  

To see how this algorithm performs, we will convert the infix expression above into its postfix 
form. First, the symbol a is read, so it is passed through to the output. Then '+' is read and 
pushed onto the stack. Next b is read and passed through to the output. The state of affairs at 
this juncture is as follows:  

 

 

Next a '*' is read. The top entry on the operator stack has lower precedence than '*', so nothing 

is output and '*' is put on the stack. Next, c is read and output. Thus far, we have  

 

 

The next symbol is a '+'. Checking the stack, we find that we will pop a '*' and place it on the 

output, pop the other '+', which is not of lower but equal priority, on the stack, and then push 
the '+'.  

 

 

The next symbol read is an '(', which, being of highest precedence, is placed on the stack. Then 
d is read and output.  

 

 

We continue by reading a '*'. Since open parentheses do not get removed except when a closed 

parenthesis is being processed, there is no output. Next, e is read and output.  
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The next symbol read is a '+'. We pop and output '*' and then push '+'. Then we read and output 

. 

 

 

 

Now we read a ')', so the stack is emptied back to the '('. We output a '+'. 

 

 

 

We read a '*' next; it is pushed onto the stack. Then g is read and output. 

 

 

 

The input is now empty, so we pop and output symbols from the stack until it is empty. 

 

 

 

As before, this conversion requires only O(n) time and works in one pass through the input. We 
can add subtraction and division to this repertoire by assigning subtraction and addition equal 
priority and multiplication and division equal priority. A subtle point is that the expression a 
- b - c will be converted to ab - c- and not abc - -. Our algorithm does the right thing, because 
these operators associate from left to right. This is not necessarily the case in general, since 

exponentiation associates right to left: 223 = 28 = 256 not 43 = 64. We leave as an exercise the 
problem of adding exponentiation to the repertoire of assignments.  

Function Calls
 

The algorithm to check balanced symbols suggests a way to implement function calls. The problem 
here is that when a call is made to a new function, all the variables local to the calling 
routine need to be saved by the system, since otherwise the new function will overwrite the 
calling routine's variables. Furthermore, the current location in the routine must be saved so 
that the new function knows where to go after it is done. The variables have generally been 
assigned by the compiler to machine registers, and there are certain to be conflicts (usually all 
procedures get some variables assigned to register #1), especially if recursion is involved. The 
reason that this problem is similar to balancing symbols is that a function call and function 
return are essentially the same as an open parenthesis and closed parenthesis, so the same ideas 
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should work.  

When there is a function call, all the important information that needs to be saved, such as 
register values (corresponding to variable names) and the return address (which can be obtained 
from the program counter, which is typically in a register), is saved "on a piece of paper" in an 
abstract way and put at the top of a pile. Then the control is transferred to the new function, 
which is free to replace the registers with its values. If it makes other function calls, it 
follows the same procedure. When the function wants to return, it looks at the "paper" at the top 
of the pile and restores all the registers. It then makes the return jump.  

Clearly, all of this work can be done using a stack, and that is exactly what happens in 
virtually every programming language that implements recursion. The information saved is called 
either an activation record or stack frame. The stack in a real computer frequently grows from 
the high end of your memory partition downwards, and on many systems there is no checking for 
overflow. There is always the possibility that you will run out of stack space by having too many 
simultaneously active functions. Needless to say, running out of stack space is always a fatal 
error.  

In languages and systems that do not check for stack overflow, your program will crash without an 
explicit explanation. On these systems, strange things may happen when your stack gets too big, 
because your stack will run into part of your program. It could be the main program, or it could 
be part of your data, especially if you have a big array. If it runs into your program, your 
program will be corrupted; you will have nonsense instructions and will crash as soon as they are 
executed. If the stack runs into your data, what is likely to happen is that when you write 
something into your data, it will destroy stack information -- probably the return address -- and 
your program will attempt to return to some weird address and crash.  

In normal events, you should not run out of stack space; doing so is usually an indication of 
runaway recursion (forgetting a base case). On the other hand, some perfectly legal and seemingly 
innocuous program can cause you to run out of stack space. The routine in Figure 3.54, which 
prints out a linked list, is perfectly legal and actually correct. It properly handles the base 
case of an empty list, and the recursion is fine. This program can be proven correct. 
Unfortunately, if the list contains 20,000 elements, there will be a stack of 20,000 activation 
records representing the nested calls of line 3. Activation records are typically large because 
of all the information they contain, so this program is likely to run out of stack space. (If 
20,000 elements are not enough to make the program crash, replace the number with a larger one.) 

This program is an example of an extremely bad use of recursion known as tail recursion. Tail 
recursion refers to a recursive call at the last line. Tail recursion can be mechanically 
eliminated by changing the recursive call to a goto preceded by one assignment per function 
argument. This simulates the recursive call because nothing needs to be saved -- after the 
recursive call finishes, there is really no need to know the saved values. Because of this, we 
can just go to the top of the function with the values that would have been used in a recursive 
call. The program in Figure 3.55 shows the improved version. Keep in mind that you should use the 
more natural while loop construction. The goto is used here to show how a compiler might 
automatically remove the recursion.  

Removal of tail recursion is so simple that some compilers do it automatically. Even so, it is 
best not to find out that yours does not.  

void             /* Not using a header */

 

print_list( LIST L )

 

{

 

/*1*/       if( L != NULL )

 

{

 

/*2*/            print_element( L->element );
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/*3*/            print_list( L->next ); 

}

 

}

 

Figure 3.54 A bad use of recursion: printing a linked list

 

void

 

print_list( LIST L ) /* No header */

 

{

 

top:

 

if( L != NULL )

 

{

 

print_element( L->element );

 

L = L->next;

 

goto top;

 

}

 

}

 

Figure 3.55 Printing a list without recursion; a compiler might do this (you should not)

 

Recursion can always be completely removed (obviously, the compiler does so in converting to 
assembly language), but doing so can be quite tedious. The general strategy requires using a 
stack and is obviously worthwhile only if you can manage to put only the bare minimum on the 
stack. We will not dwell on this further, except to point out that although nonrecursive programs 
are certainly generally faster than recursive programs, the speed advantage rarely justifies the 
lack of clarity that results from removing the recursion.  

3.4. The Queue ADT
 

Like stacks, queues are lists. With a queue, however, insertion is done at one end, whereas 
deletion is performed at the other end.  

3.4.1. Queue Model

 

The basic operations on a queue are enqueue, which inserts an element at the end of the list 
(called the rear), and dequeue, which deletes (and returns) the element at the start of the list 
(known as the front). Figure 3.56 shows the abstract model of a queue.  
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Figure 3.56 Model of a queue 

3.4.2. Array Implementation of Queues

 

As with stacks, any list implementation is legal for queues. Like stacks, both the linked list 
and array implementations give fast O(1) running times for every operation. The linked list 
implementation is straightforward and left as an exercise. We will now discuss an array 
implementation of queues.  

For each queue data structure, we keep an array, QUEUE[], and the positions q_front and q_rear, 
which represent the ends of the queue. We also keep track of the number of elements that are 
actually in the queue, q_size. All this information is part of one structure, and as usual, 
except for the queue routines themselves, no routine should ever access these directly. The 
following figure shows a queue in some intermediate state. By the way, the cells that are blanks 
have undefined values in them. In particular, the first two cells have elements that used to be 
in the queue.  

 

 

The operations should be clear. To enqueue an element x, we increment q_size and q_rear, then set 
QUEUE[q_rear] = x. To dequeue an element, we set the return value to QUEUE[q_front], decrement 
q_size, and then increment q_front. Other strategies are possible (this is discussed later). We 
will comment on checking for errors presently.  

There is one potential problem with this implementation. After 10 enqueues, the queue appears to 
be full, since q_front is now 10, and the next enqueue would be in a nonexistent position. 
However, there might only be a few elements in the queue, because several elements may have 
already been dequeued. Queues, like stacks, frequently stay small even in the presence of a lot 
of operations.  

The simple solution is that whenever q_front or q_rear gets to the end of the array, it is 
wrapped around to the beginning. The following figure shows the queue during some operations. 
This is known as a circular array implementation.  
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The extra code required to implement the wraparound is minimal (although it probably doubles the 
running time). If incrementing either q_rear or q_front causes it to go past the array, the value 
is reset to the first position in the array.  

There are two warnings about the circular array implementation of queues. First, it is important 
to check the queue for emptiness, because a dequeue when the queue is empty will return an 
undefined value, silently.  

Secondly, some programmers use different ways of representing the front and rear of a queue. For 
instance, some do not use an entry to keep track of the size, because they rely on the base case 
that when the queue is empty, q_rear = q_front - 1. The size is computed implicitly by comparing 
q_rear and q_front. This is a very tricky way to go, because there are some special cases, so be 
very careful if you need to modify code written this way. If the size is not part of the 
structure, then if the array size is A_SIZE, the queue is full when there are A_SIZE -1 elements, 
since only A_SIZE different sizes can be differentiated, and one of these is 0. Pick any style 
you like and make sure that all your routines are consistent. Since there are a few options for 
implementation, it is probably worth a comment or two in the code, if you don't use the size 
field.  
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In applications where you are sure that the number of enqueues is not larger than the size of the 
queue, obviously the wraparound is not necessary. As with stacks, dequeues are rarely performed 
unless the calling routines are certain that the queue is not empty. Thus error calls are 
frequently skipped for this operation, except in critical code. This is generally not 
justifiable, because the time savings that you are likely to achieve are too minimal.  

We finish this section by writing some of the queue routines. We leave the others as an exercise 
to the reader. First, we give the type definitions in 

Figure 3.57. We add a maximum size field, 
as was done for the array implementation of the stack; queue_create and queue_dispose routines 
also need to be provided. We also provide routines to test whether a queue is empty and to make 
an empty queue (Figs. 3.58 and 3.59). The reader can write the function is_full, which performs 
the test implied by its name. Notice that q_rear is preinitialized to 1 before q_front. The final 
operation we will write is the enqueue routine. Following the exact description above, we arrive 
at the implementation in Figure 3.60.  

3.4.3. Applications of Queues
 

There are several algorithms that use queues to give efficient running times. Several of these 
are found in graph theory, and we will discuss them later in 

Chapter 9. For now, we will give 
some simple examples of queue usage.  

struct queue_record

 

{

 

unsigned int q_max_size;  /* Maximum # of elements */

 

/* until Q is full */

 

unsigned int q_front;

 

unsigned int q_rear;

 

unsigned int q_size;      /* Current # of elements in Q */

 

element_type *q_array;

 

};

 

typedef struct queue_record * QUEUE;

 

Figure 3.57 Type declarations for queue--array implementation

 

int

 

is_empty( QUEUE Q )

 

{

 

return( Q->q_size == 0 );

 

}

 

Figure 3.58 Routine to test whether a queue is empty-array implementation

 

void

 

make_null ( QUEUE Q )

 

{
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Q->q_size = 0; 

Q->q_front = 1;

 

Q->q_rear = 0;

 

}

 

Figure 3.59 Routine to make an empty queue-array implementation

 

unsigned int

 

succ( unsigned int value, QUEUE Q )

 

{

 

if( ++value == Q->q_max_size )

 

value = 0;

 

return value;

 

}

 

void

 

enqueue( element_type x, QUEUE Q )

 

{

 

if( is_full( Q ) )

 

error("Full queue");

 

else

 

{

 

Q->q_size++;

 

Q->q_rear = succ( Q->q_rear, Q );

 

Q->q_array[ Q->q_rear ] = x;

 

}

 

}

 

Figure 3.60 Routines to enqueue-array implementation

 

When jobs are submitted to a printer, they are arranged in order of arrival. Thus, essentially, 
jobs sent to a line printer are placed on a queue.*  

*We say essentially a queue, because jobs can be killed. This amounts to a deletion from the 
middle of the queue, which is a violation of the strict definition.  

Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket 
counters are queues, because service is first-come first-served.  

Another example concerns computer networks. There are many network setups of personal computers 
in which the disk is attached to one machine, known as the file server. Users on other machines 
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are given access to files on a first-come first-served basis, so the data structure is a queue.  

Further examples include the following: 

 

 Calls to large companies are generally placed on a queue when all operators are busy. 

 

 In large universities, where resources are limited, students must sign a waiting list if all 
terminals are occupied. The student who has been at a terminal the longest is forced off first, 
and the student who has been waiting the longest is the next user to be allowed on.  

A whole branch of mathematics, known as queueing theory, deals with computing, probabilistically, 
how long users expect to wait on a line, how long the line gets, and other such questions. The 
answer depends on how frequently users arrive to the line and how long it takes to process a user 
once the user is served. Both of these parameters are given as probability distribution 
functions. In simple cases, an answer can be computed analytically. An example of an easy case 
would be a phone line with one operator. If the operator is busy, callers are placed on a waiting 
line (up to some maximum limit). This problem is important for businesses, because studies have 
shown that people are quick to hang up the phone.  

If there are k operators, then this problem is much more difficult to solve. Problems that are 
difficult to solve analytically are often solved by a simulation. In our case, we would need to 
use a queue to perform the simulation. If k is large, we also need other data structures to do 
this efficiently. We shall see how to do this simulation in Chapter 6. We could then run the 
simulation for several values of k and choose the minimum k that gives a reasonable waiting time. 

Additional uses for queues abound, and as with stacks, it is staggering that such a simple data 
structure can be so important.  

Summary
 

This chapter describes the concept of ADTs and illustrates the concept with three of the most 
common abstract data types. The primary objective is to separate the implementation of the 
abstract data types from their function. The program must know what the operations do, but it is 
actually better off not knowing how it is done.  

Lists, stacks, and queues are perhaps the three fundamental data structures in all of computer 
science, and their use is documented through a host of examples. In particular, we saw how stacks 
are used to keep track of procedure and function calls and how recursion is actually implemented. 
This is important to understand, not just because it makes procedural languages possible, but 
because knowing how recursion is implemented removes a good deal of the mystery that surrounds 
its use. Although recursion is very powerful, it is not an entirely free operation; misuse and 
abuse of recursion can result in programs crashing.  

Exercises
 

3.1 Write a program to print out the elements of a singly linked list. 

 

3.2 You are given a linked list, L, and another linked list, P, containing integers, sorted in 
ascending order. The operation print_lots(L,P) will print the elements in L that are in positions 
specified by P. For instance, if P = 1, 3, 4, 6, the first, third, fourth, and sixth elements in 
L are printed. Write the routine print_lots(L,P). You should use only the basic list operations. 
What is the running time of your routine?  

3.3 Swap two adjacent elements by adjusting only the pointers (and not the data) using 
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a. singly linked lists,  

b. doubly linked lists. 

 

3.4 Given two sorted lists, L1 and L2, write a procedure to compute L1  L2 using only the 

basic list operations.  

3.5 Given two sorted lists, L1 and L2, write a procedure to compute L1  L2 using only the 

basic list operations.  

3.6 Write a function to add two polynomials. Do not destroy the input. Use a linked list 
implementation. If the polynomials have m and n terms respectively, what is the time complexity 
of your program?  

3.7 Write a function to multiply two polynomials, using a linked list implementation. You must 
make sure that the output polynomial is sorted by exponent and has at most one term of any power.

a. Give an algorithm to solve this problem in O(m2n2) time. 

 

*b. Write a program to perform the multiplication in O(m2n) time, where m is the number of terms 
in the polynomial of fewer terms.  

*c. Write a program to perform the multiplication in O(mn log(mn)) time. 

 

d. Which time bound above is the best? 

 

3.8 Write a program that takes a polynomial, (x), and computes ( (x))p. What is the 
complexity of your program? Propose at least one alternative solution that could be competitive 

for some plausible choices of (x) and p. 

 

3.9 Write an arbitrary-precision integer arithmetic package. You should use a strategy similar to 

polynomial arithmetic. Compute the distribution of the digits 0 to 9 in 24000.  

3.10 The Josephus problem is the following mass suicide "game": n people, numbered 1 to n, are 
sitting in a circle. Starting at person 1, a handgun is passed. After m passes, the person 
holding the gun commits suicide, the body is removed, the circle closes ranks, and the game 
continues with the person who was sitting after the corpse picking up the gun. The last survivor 
is tried for n - 1 counts of manslaughter. Thus, if m = 0 and n = 5, players are killed in order 
and player 5 stands trial. If m = 1 and n = 5, the order of death is 2, 4, 1, 5.  

a. Write a program to solve the Josephus problem for general values of m and n. Try to make your 
program as efficient as possible. Make sure you dispose of cells.  

b. What is the running time of your program? 

 

c. If m = 1, what is the running time of your program? How is the actual speed affected by the 
free routine for large values of n (n > 10000)?  

3.11 Write a program to find a particular element in a singly linked list. Do this both 
recursively and nonrecursively, and compare the running times. How big does the list have to be 
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before the recursive version crashes?  

3.12 a. Write a nonrecursive procedure to reverse a singly linked list in O(n) time. 

 

*b. Write a procedure to reverse a singly linked list in O(n) time using constant extra space. 

 

3.13 You have to sort an array of student records by social security number. Write a program to 
do this, using radix sort with 1000 buckets and three passes.  

3.14 Write a program to read a graph into adjacency lists using 

 

a. linked lists 

 

b. cursors 

 

3.15 a. Write an array implementation of self-adjusting lists. A self-adjusting list is like a 
regular list, except that all insertions are performed at the front, and when an element is 
accessed by a find, it is moved to the front of the list without changing the relative order of 
the other items.  

b. Write a linked list implementation of self-adjusting lists. 

 

*c. Suppose each element has a fixed probability, pi, of being accessed. Show that the elements 

with highest access probability are expected to be close to the front.  

3.16 Suppose we have an array-based list a[0..n -1] and we want to delete all duplicates. 
last_position is initially n - 1, but gets smaller as elements are deleted. Consider the 
pseudocode program fragment in Figure 3.61. The procedure DELETE deletes the element in position 
j and collapses the list.  

a. Explain how this procedure works. 

 

b. Rewrite this procedure using general list operations. 

 

/*1*/  for( i=0; i<last_position; i++ )

 

{

 

/*2*/       j = i + 1;

 

/*3*/       while( j<last_position )

 

/*4*/            if( a[i] == a[j]

 

/*5*/                 DELETE(j);

 

                 else

 

/*6*/                 j++;

 

}

 

Figure 3.61 Routine to remove duplicates from a lists--array implementation

 

*c. Using a standard array implementation, what is the running time of this procedure? 
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d. What is the running time using a linked list implementation?  

*e. Give an algorithm to solve this problem in O(n log n) time. 

 

**f. Prove that any algorithm to solve this problem requires (n log n) comparisons if only 
comparisons are used. Hint: Look to 

Chapter 7. 
 

*g. Prove that if we allow operations besides comparisons, and the keys are real numbers, then we 
can solve the problem without using comparisons between elements.  

3.17 An alternative to the deletion strategy we have given is to use lazy deletion. To delete an 
element, we merely mark it deleted (using an extra bit field). The number of deleted and 
nondeleted elements in the list is kept as part of the data structure. If there are as many 
deleted elements as nondeleted elements, we traverse the entire list, performing the standard 
deletion algorithm on all marked nodes.  

a. List the advantages and disadvantages of lazy deletion. 

 

b. Write routines to implement the standard linked list operations using lazy deletion. 

 

3.18 Write a program to check for balancing symbols in the following languages: 

 

a. Pascal (begin/end, ( ), [ ], { }). 

 

b. C (/* */, ( ), [ ], { }). 

 

*c. Explain how to print out an error message that is likely to reflect the probable cause. 

 

3.19 Write a program to evaluate a postfix expression. 

 

3.20 a. Write a program to convert an infix expression which includes '(', ')', '+', '-', '*' and 
'/' to postfix.  

b. Add the exponentiation operator to your repertoire. 

 

c. Write a program to convert a postfix expression to infix. 

 

3.21 Write routines to implement two stacks using only one array. Your stack routines should not 
declare an overflow unless every slot in the array is used.  

3.22 *a. Propose a data structure that supports the stack push and pop operations and a third 
operation find_min, which returns the smallest element in the data structure, all in O(1) worst 
case time.  

*b. Prove that if we add the fourth operation delete_min which finds and removes the smallest 

element, then at least one of the operations must take (logn) time. (This requires reading 

Chapter 7.)  

3.23 *Show how to implement three stacks in one array. 

 

3.24 If the recursive routine in Section 2.4 used to compute Fibonacci numbers is run for n = 50, 
is stack space likely to run out? Why or why not?  
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3.25 Write the routines to implement queues using 
 

a. linked lists 

 

b. arrays 

 

3.26 A deque is a data structure consisting of a list of items, on which the following operations 
are possible:  

push(x,d): Insert item x on the front end of deque d. 

 

pop(d): Remove the front item from deque d and return it. 

 

inject(x,d): Insert item x on the rear end of deque d. 

 

eject(d): Remove the rear item from deque d and return it. 

 

Write routines to support the deque that take O(1) time per operation. 

 

Go to 
Chapter 4 Return to Table of Contents 
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CHAPTER 4: 
TREES 

For large amounts of input, the linear access time of linked lists is 
prohibitive. In this chapter we look at a simple data structure for which the 
running time of most operations is O(log n) on average. We also sketch a 
conceptually simple modification to this data structure that guarantees the above 
time bound in the worst case and discuss a second modification that essentially 
gives an O(log n) running time per operation for a long sequence of instructions. 

The data structure that we are referring to is known as a binary search tree. 
Trees in general are very useful abstractions in computer science, so we will 
discuss their use in other, more general applications. In this chapter, we will  

 See how trees are used to implement the file system of several popular 
operating systems.  

 See how trees can be used to evaluate arithmetic expressions.  

 Show how to use trees to support searching operations in O(log n) average 
time, and how to refine these ideas to obtain O(log n) worst-case bounds. We will 
also see how to implement these operations when the data is stored on a disk.  

4.1. Preliminaries 

A tree can be defined in several ways. One natural way to define a tree is 
recursively. A tree is a collection of nodes. The collection can be empty, which 
is sometimes denoted as A. Otherwise, a tree consists of a distinguished node r, 
called the root, and zero or more (sub)trees T1, T2, . . . , Tk, each of whose 

roots are connected by a directed edge to r.  

The root of each subtree is said to be a child of r, and r is the parent of each 
subtree root. Figure 4.1 shows a typical tree using the recursive definition.  

From the recursive definition, we find that a tree is a collection of n nodes, 
one of which is the root, and n - 1 edges. That there are n - 1 edges follows 
from the fact that each edge connects some node to its parent, and every node 
except the root has one parent (see Fig. 4.2).  

  

Next ChapterReturn to Table of ContentsPrevious Chapter
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Figure 4.1 Generic tree 

  

Figure 4.2 A tree 

In the tree of Figure 4.2, the root is A. Node F has A as a parent and K, L, and 
M as children. Each node may have an arbitrary number of children, possibly zero. 
Nodes with no children are known as leaves; the leaves in the tree above are B, 
C, H, I, P, Q, K, L, M, and N. Nodes with the same parent are siblings; thus K, 
L, and M are all siblings. Grandparent and grandchild relations can be defined in 
a similar manner.  

A path from node n1 to nk is defined as a sequence of nodes n1, n2, . . . , nk 

such that ni is the parent of ni+1 for 1  i < k. The length of this path is 

the number of edges on the path, namely k -1. There is a path of length zero from 
every node to itself. Notice that in a tree there is exactly one path from the 
root to each node.  

For any node ni, the depth of ni is the length of the unique path from the root 

to ni. Thus, the root is at depth 0. The height of ni is the longest path from ni
to a leaf. Thus all leaves are at height 0. The height of a tree is equal to the 
height of the root. For the tree in Figure 4.2, E is at depth 1 and height 2; F 
is at depth 1 and height 1; the height of the tree is 3. The depth of a tree is 
equal to the depth of the deepest leaf; this is always equal to the height of the 
tree.  

If there is a path from n1 to n2, then n1 is an ancestor of n2 and n2 is a 

descendant of n1. If n1  n2, then n1 is a proper ancestor of n2 and n2 is a 

proper descendant of n1.  

4.1.1. Implementation of Trees 

One way to implement a tree would be to have in each node, besides its data, a 
pointer to each child of the node. However, since the number of children per node 
can vary so greatly and is not known in advance, it might be infeasible to make 
the children direct links in the data structure, because there would be too much 
wasted space. The solution is simple: Keep the children of each node in a linked 
list of tree nodes. The declaration in Figure 4.3 is typical.  
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typedef struct tree_node *tree_ptr; 

struct tree_node 

{ 

element_type element; 

tree_ptr first_child; 

tree_ptr next_sibling; 

}; 

Figure 4.3 Node declarations for trees 

  

Figure 4.4 First child/next sibling representation of the tree shown in Figure 
4.2 

Figure 4.4 shows how a tree might be represented in this implementation. Arrows 
that point downward are first_child pointers. Arrows that go left to right are 
next_sibling pointers. Null pointers are not drawn, because there are too many.  

In the tree of Figure 4.4, node E has both a pointer to a sibling (F) and a 
pointer to a child (I), while some nodes have neither.  

4.1.2. Tree Traversals with an Application 

There are many applications for trees. One of the popular uses is the directory 
structure in many common operating systems, including UNIX, VAX/VMS, and DOS. 
Figure 4.5 is a typical directory in the UNIX file system.  

The root of this directory is /usr. (The asterisk next to the name indicates 
that /usr is itself a directory.) /usr has three children, mark, alex, and bill, 
which are themselves directories. Thus, /usr contains three directories and no 
regular files. The filename /usr/mark/book/ch1.r is obtained by following the 
leftmost child three times. Each / after the first indicates an edge; the result 
is the full pathname. This hierarchical file system is very popular, because it 
allows users to organize their data logically. Furthermore, two files in 
different directories can share the same name, because they must have different 
paths from the root and thus have different pathnames. A directory in the UNIX 
file system is just a file with a list of all its children, so the directories 
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are structured almost exactly in accordance with the type declaration above.* 
Indeed, if the normal command to print a file is applied to a directory, then the 
names of the files in the directory can be seen in the output (along with other 
non-ASCII information).  

*Each directory in the UNIX file system also has one entry that points to itself and another entry that 
points to the parent of the directory. Thus, technically, the UNIX file system is not a tree, but is 
treelike.  

  

Figure 4.5 Unix directory 

void 

list_directory ( Directory_or_file D ) 

{ 

list_dir ( D, 0 ); 

} 

void 

list_dir ( Directory_or_file D, unsigned int depth ) 

{ 

/*1*/        if ( D is a legitimate entry) 

{ 

/*2*/             print_name ( depth, D ); 

/*3*/             if( D is a directory ) 

/*4*/                  for each child, c, of D 

/*5*/                       list_dir( c, depth+1 ); 

} 

} 
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Figure 4.6 Routine to list a directory in a hierarchical file system 

Suppose we would like to list the names of all of the files in the directory. Our 
output format will be that files that are depth d will have their names indented 
by d tabs. Our algorithm is given in Figure 4.6.  

The heart of the algorithm is the recursive procedure list_dir. This routine 
needs to be started with the directory name and a depth of 0, to signify no 
indenting for the root. This depth is an internal bookkeeping variable, and is 
hardly a parameter that a calling routine should be expected to know about. Thus 
the driver routine list_directory is used to interface the recursive routine to 
the outside world.  

The logic of the algorithm is simple to follow. The argument to list_dir is some 
sort of pointer into the tree. As long as the pointer is valid, the name implied 
by the pointer is printed out with the appropriate number of tabs. If the entry 
is a directory, then we process all children recursively, one by one. These 
children are one level deeper, and thus need to be indented an extra space. The 
output is in Figure 4.7.  

This traversal strategy is known as a preorder traversal. In a preorder 
traversal, work at a node is performed before (pre) its children are processed. 
When this program is run, it is clear that line 2 is executed exactly once per 
node, since each name is output once. Since line 2 is executed at most once per 
node, line 3 must also be executed once per node. Furthermore, line 5 can be 
executed at most once for each child of each node. But the number of children is 
exactly one less than the number of nodes. Finally, the for loop iterates once 
per execution of line 5, plus once each time the loop ends. Each for loop 
terminates on a NULL pointer, but there is at most one of those per node. Thus, 
the total amount of work is constant per node. If there are n file names to be 
output, then the running time is O(n).  

/usr 

mark 

book 

chr1.c 

chr2.c 

chr3.c 

course 

cop3530 

fall88 

syl.r 

spr89 
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syl.r 

sum89 

syl.r 

junk.c 

alex 

junk.c 

bill 

work 

course 

cop3212 

fall88 

grades 

prog1.r 

prog2.r 

fall89 

prog1.r 

prog2.r 

grades 

Figure 4.7 The (preorder) directory listing 

Another common method of traversing a tree is the postorder traversal. In a 
postorder traversal, the work at a node is performed after (post) its children 
are evaluated. As an example, Figure 4.8 represents the same directory structure 
as before, with the numbers in parentheses representing the number of disk blocks 
taken up by each file.  

Since the directories are themselves files, they have sizes too. Suppose we would 
like to calculate the total number of blocks used by all the files in the tree. 
The most natural way to do this would be to find the number of blocks contained 
in the subdirectories /usr/mark (30), /usr/alex (9), and /usr/bill (32). The 
total number of blocks is then the total in the subdirectories (71) plus the one 
block used by /usr, for a total of 72. The function size_directory in Figure 4.9 
implements this strategy.  
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Figure 4.8 Unix directory with file sizes obtained via postorder traversal 

unsigned int 

size_directory( Directory_or_file D ) 

{ 

unsigned int total_size; 

/*1*/         total_size = 0; 

/*2*/         if( D is a legitimate entry) 

{ 

/*3*/              total_size = file_size( D ); 

/*4*/              if( D is a directory ) 

/*5*/                   for each child, c, of D 

/*6*/                        total_size += size_directory( c ); 

} 

/*7*/         return( total_size ); 

} 

Figure 4.9 Routine to calculate the size of a directory 

                ch1.r                3 

                ch2.r                2 

                ch3.r                4 

           book                     10 

                syl.r                1 

                     fall88          2 
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                syl.r                5 

                     spr89           6 

                syl.r                2 

                     sum89           3 

                cop3530             12 

           course                   13 

           junk.c                    6 

      mark                          30 

           junk.c                    8 

      alex                           9 

           work                      1 

                         grades      3 

                         prog1.r     4 

                         prog2.r     1 

                    fall88           9 

                         prog2.r     2 

                         prog1.r     7 

                         grades      9 

                    fall89          19 

               cop3212              29 

          course                    30 

     bill                           32 

/usr                                72 

Figure 4.10 Trace of the size function 

If D is not a directory, then size_directory merely returns the number of blocks 
used by D. Otherwise, the number of blocks used by D is added to the number of 
blocks (recursively) found in all of the children. To see the difference between 
the postorder traversal strategy and the preorder traversal strategy, Figure 4.10 
shows how the size of each directory or file is produced by the algorithm.  

4.2. Binary Trees 
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A binary tree is a tree in which no node can have more than two children.  

Figure 4.11 shows that a binary tree consists of a root and two subtrees, Tl and 

Tr, both of which could possibly be empty.  

A property of a binary tree that is sometimes important is that the depth of an 
average binary tree is considerably smaller than n. An analysis shows that the 

average depth is , and that for a special type of binary tree, namely the 
binary search tree, the average value of the depth is O(log n). Unfortunately, 
the depth can be as large as n -1, as the example in Figure 4.12 shows.  

  

Figure 4.11 Generic binary tree 

  

Figure 4.12 Worst-case binary tree 

4.2.1. Implementation 

Because a binary tree has at most two children, we can keep direct pointers to 
them. The declaration of tree nodes is similar in structure to that for doubly 
linked lists, in that a node is a structure consisting of the key information 
plus two pointers (left and right) to other nodes (see  

typedef struct tree_node *tree_ptr; 

struct tree_node 

{ 

element_type element; 
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tree_ptr left; 

tree_ptr right; 

}; 

typedef tree_ptr TREE; 

Figure 4.13 Binary tree node declarations 

Many of the rules that apply to linked lists will apply to trees as well. In 
particular, when an insertion is performed, a node will have to be created by a 
call to malloc. Nodes can be freed after deletion by calling free.  

We could draw the binary trees using the rectangular boxes that are customary for 
linked lists, but trees are generally drawn as circles connected by lines, 
because they are actually graphs. We also do not explicitly draw NULL pointers 
when referring to trees, because every binary tree with n nodes would require n + 
1 NULL pointers.  

Binary trees have many important uses not associated with searching. One of the 
principal uses of binary trees is in the area of compiler design, which we will 
now explore.  

4.2.2. Expression Trees 

Figure 4.14 shows an example of an expression tree. The leaves of an expression 
tree are operands, such as constants or variable names, and the other nodes 
contain operators. This particular tree happens to be binary, because all of the 
operations are binary, and although this is the simplest case, it is possible for 
nodes to have more than two children. It is also possible for a node to have only 
one child, as is the case with the unary minus operator. We can evaluate an 
expression tree, T, by applying the operator at the root to the values obtained 
by recursively evaluating the left and right subtrees. In our example, the left 
subtree evaluates to a + (b * c) and the right subtree evaluates to ((d *e) + f )
*g. The entire tree therefore represents (a + (b*c)) + (((d * e) + f)* g).  

We can produce an (overly parenthesized) infix expression by recursively 
producing a parenthesized left expression, then printing out the operator at the 
root, and finally recursively producing a parenthesized right expression. This 
general strattegy ( left, node, right ) is known as an inorder traversal; it is 
easy to remember because of the type of expression it produces.  

An alternate traversal strategy is to recursively print out the left subtree, the 
right subtree, and then the operator. If we apply this strategy to our tree 
above, the output is a b c * + d e * f + g * +, which is easily seen to be the 
postfix representation of Section 3.3.3. This traversal strategy is generally 
known as a postorder traversal. We have seen this traversal strategy earlier in 
Section 4.1.  
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Figure 4.14 Expression tree for (a + b * c) + ((d * e + f ) * g) 

A third traversal strategy is to print out the operator first and then 
recursively print out the left and right subtrees. The resulting expression, + + 
a * b c * + * d e f g, is the less useful prefix notation and the traversal 
strategy is a preorder traversal, which we have also seen earlier in Section 4.1. 
We will return to these traversal strategies once again later in the chapter.  

Constructing an Expression Tree 

We now give an algorithm to convert a postfix expression into an expression tree. 
Since we already have an algorithm to convert infix to postfix, we can generate 
expression trees from the two common types of input. The method we describe 
strongly resembles the postfix evaluation algorithm of Section 3.2.3. We read our 
expression one symbol at a time. If the symbol is an operand, we create a one-
node tree and push a pointer to it onto a stack. If the symbol is an operator, we 
pop pointers to two trees T1 and T2 from the stack (T1 is popped first) and form 

a new tree whose root is the operator and whose left and right children point to 
T2 and T1 respectively. A pointer to this new tree is then pushed onto the stack. 

As an example, suppose the input is  

a b + c d e + * * 

The first two symbols are operands, so we create one-node trees and push pointers 
to them onto a stack.*  

*For convenience, we will have the stack grow from left to right in the diagrams. 

  

Next, a '+' is read, so two pointers to trees are popped, a new tree is formed, 
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and a pointer to it is pushed onto the stack.*   

Next, c, d, and e are read, and for each a one-node tree is created and a pointer 
to the corresponding tree is pushed onto the stack.  

  

Now a '+' is read, so two trees are merged.  

  

Continuing, a '*' is read, so we pop two tree pointers and form a new tree with a 
'*' as root.  
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Finally, the last symbol is read, two trees are merged, and a pointer to the 
final tree is left on the stack.  

  

4.3. The Search Tree ADT-Binary Search 
Trees 

An important application of binary trees is their use in searching. Let us assume 
that each node in the tree is assigned a key value. In our examples, we will 
assume for simplicity that these are integers, although arbitrarily complex keys 
are allowed. We will also assume that all the keys are distinct, and deal with 
duplicates later.  

The property that makes a binary tree into a binary search tree is that for every 
node, X, in the tree, the values of all the keys in the left subtree are smaller 
than the key value in X, and the values of all the keys in the right subtree are 
larger than the key value in X. Notice that this implies that all the elements in 
the tree can be ordered in some consistent manner. In Figure 4.15, the tree on 
the left is a binary search tree, but the tree on the right is not. The tree on 
the right has a node with key 7 in the left subtree of a node with key 6 (which 
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happens to be the root).  

We now give brief descriptions of the operations that are usually performed on 
binary search trees. Note that because of the recursive definition of trees, it 
is common to write these routines recursively. Because the average depth of a 
binary search tree is O(log n), we generally do not need to worry about running 
out of stack space. We repeat our type definition in Figure 4.16. Since all the 
elements can be ordered, we will assume that the operators <, >, and = can be 
applied to them, even if this might be syntactically erroneous for some types.  

  

Figure 4.15 Two binary trees (only the left tree is a search tree) 

typedef struct tree_node *tree_ptr; 

struct tree_node 

{ 

element_type element; 

tree_ptr left; 

tree_ptr right; 

}; 

typedef tree_ptr SEARCH_TREE; 

Figure 4.16 Binary search tree declarations 

4.3.1. Make_null 

This operation is mainly for initialization. Some programmers prefer to 
initialize the first element as a one-node tree, but our implementation follows 
the recursive definition of trees more closely. It is also a simple routine, as 
evidenced by Figure 4.17.  

4.3.2. Find 

This operation generally requires returning a pointer to the node in tree T that 
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has key x, or NULL if there is no such node. The structure of the tree makes this 
simple. If T is , then we can just return . Otherwise, if the key stored at T is 
x, we can return T. Otherwise, we make a recursive call on a subtree of T, either 
left or right, depending on the relationship of x to the key stored in T. The 
code in Figure 4.18 is an implementation of this strategy.  

SEARCH_TREE 

make_null ( void ) 

{ 

return NULL; 

} 

Figure 4.17 Routine to make an empty tree 

tree_ptr 

find( element_type x, SEARCH_TREE T ) 

{ 

if( T == NULL ) 

return NULL; 

if( x < T->element ) 

return( find( x, T->left ) ); 

else 

if( x > T->element ) 

return( find( x, T->right ) ); 

else 

return T; 

} 

Figure 4.18 Find operation for binary search trees 

Notice the order of the tests. It is crucial that the test for an empty tree be 
performed first, since otherwise the indirections would be on a NULL pointer. The 
remaining tests are arranged with the least likely case last. Also note that both 
recursive calls are actually tail recursions and can be easily removed with an 
assignment and a goto. The use of tail recursion is justifiable here because the 
simplicity of algorithmic expression compensates for the decrease in speed, and 
the amount of stack space used is expected to be only O(log n).  

4.3.3. Find_min and find_max 
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These routines return the position of the smallest and largest elements in the 
tree, respectively. Although returning the exact values of these elements might 
seem more reasonable, this would be inconsistent with the find operation. It is 
important that similar-looking operations do similar things. To perform a 
find_min, start at the root and go left as long as there is a left child. The 
stopping point is the smallest element. The find_max routine is the same, except 
that branching is to the right child.  

This is so easy that many programmers do not bother using recursion. We will code 
the routines both ways by doing find_min recursively and find_max nonrecursively 
(see Figs. 4.19 and 4.20).  

Notice how we carefully handle the degenerate case of an empty tree. Although 
this is always important to do, it is especially crucial in recursive programs. 
Also notice that it is safe to change T in find_max, since we are only working 
with a copy. Always be extremely careful, however, because a statement such as T 
-> right : =T -> right -> right will make changes in most languages.  

tree_ptr 

find_min( SEARCH_TREE T ) 

{ 

if( T == NULL ) 

return NULL; 

else 

if( T->left == NULL ) 

return( T ); 

else 

return( find_min ( T->left ) ); 

} 

Figure 4.19 Recursive implementation of find_min for binary search trees 

tree_ptr 

find_max( SEARCH_TREE T ) 

{ 

if( T != NULL ) 

while( T->right != NULL ) 

T = T->right; 

return T; 
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} 

Figure 4.20 Nonrecursive implementation of find_max for binary search trees 

4.3.4. Insert 

The insertion routine is conceptually simple. To insert x into tree T, proceed 
down the tree as you would with a find. If x is found, do nothing (or "update" 
something). Otherwise, insert x at the last spot on the path traversed. Figure 
4.21 shows what happens. To insert 5, we traverse the tree as though a find were 
occurring. At the node with key 4, we need to go right, but there is no subtree, 
so 5 is not in the tree, and this is the correct spot.  

Duplicates can be handled by keeping an extra field in the node record indicating 
the frequency of occurrence. This adds some extra space to the entire tree, but 
is better than putting duplicates in the tree (which tends to make the tree very 
deep). Of course this strategy does not work if the key is only part of a larger 
record. If that is the case, then we can keep all of the records that have the 
same key in an auxiliary data structure, such as a list or another search tree.  

  

Figure 4.21 Binary search trees before and after inserting 5 

Figure 4.22 shows the code for the insertion routine. Since T points to the root 
of the tree, and the root changes on the first insertion, insert is written as a 
function that returns a pointer to the root of the new tree. Lines 8 and 10 
recursively insert and attach x into the appropriate subtree.  

tree_ptr 

insert( element_type x, SEARCH_TREE T ) 

{ 

/*1*/       if( T == NULL ) 

{  /* Create and return a one-node tree */ 

/*2*/            T = (SEARCH_TREE) malloc ( sizeof (struct tree_node) ); 

/*3*/            if( T == NULL ) 
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/*4*/                fatal_error("Out of space!!!"); 

else 

{ 

/*5*/                T->element = x; 

/*6*/                T->left = T->right = NULL; 

} 

} 

else 

/*7*/       if( x < T->element ) 

/*8*/            T->left = insert( x, T->left ); 

else 

/*9*/       if( x > T->element ) 

/*10*/           T->right = insert( x, T->right ); 

/* else x is in the tree already. We'll do nothing */ 

/*11*/      return T; /* Don't forget this line!! */ 

} 

Figure 4.22 Insertion into a binary search tree 

4.3.5. Delete 

As is common with many data structures, the hardest operation is deletion. Once 
we have found the node to be deleted, we need to consider several possibilities. 

If the node is a leaf, it can be deleted immediately. If the node has one child, 
the node can be deleted after its parent adjusts a pointer to bypass the node (we 
will draw the pointer directions explicitly for clarity). See Figure 4.23. Notice 
that the deleted node is now unreferenced and can be disposed of only if a 
pointer to it has been saved.  

The complicated case deals with a node with two children. The general strategy is 
to replace the key of this node with the smallest key of the right subtree (which 
is easily found) and recursively delete that node (which is now empty). Because 
the smallest node in the right subtree cannot have a left child, the second 
delete is an easy one. Figure 4.24 shows an initial tree and the result of a 
deletion. The node to be deleted is the left child of the root; the key value is 
2. It is replaced with the smallest key in its right subtree (3), and then that 
node is deleted as before.  
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Figure 4.23 Deletion of a node (4) with one child, before and after 

  

Figure 4.24 Deletion of a node (2) with two children, before and after 

The code in Figure 4.25 performs deletion. It is inefficient, because it makes 
two passes down the tree to find and delete the smallest node in the right 
subtree when this is appropriate. It is easy to remove this inefficiency, by 
writing a special delete_min function, and we have left it in only for 
simplicity.  

If the number of deletions is expected to be small, then a popular strategy to 
use is lazy deletion: When an element is to be deleted, it is left in the tree 
and merely marked as being deleted. This is especially popular if duplicate keys 
are present, because then the field that keeps count of the frequency of 
appearance can be decremented. If the number of real nodes in the tree is the 
same as the number of "deleted" nodes, then the depth of the tree is only 
expected to go up by a small constant (why?), so there is a very small time 
penalty associated with lazy deletion. Also, if a deleted key is reinserted, the 
overhead of allocating a new cell is avoided.  

tree_ptr 

delete( element_type x, SEARCH_TREE T ) 

{ 
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tree_ptr tmp_cell, child; 

if( T == NULL ) 

error("Element not found"); 

else 

if( x < T->element )  /* Go left */ 

T->left = delete( x, T->left ); 

else 

if( x > T->element )  /* Go right */ 

T->right = delete( x, T->right ); 

else      /* Found element to be deleted */ 

if( T->left && T->right )  /* Two children */ 

{      /* Replace with smallest in right subtree */ 

tmp_cell = find_min( T->right ); 

T->element = tmp_cell->element; 

T->right = delete( T->element, T->right ); 

} 

else      /* One child */ 

} 

tmp_cell = T; 

if( T->left == NULL )      /* Only a right child */ 

child = T->right; 

if( T->right == NULL )     /* Only a left child */ 

child = T->left; 

free( tmp_cell ); 

return child; 

} 

return T; 

} 

Figure 4.25 Deletion routine for binary search trees 
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4.3.6. Average-Case Analysis 

Intuitively, we expect that all of the operations of the previous section, except 
make_null, should take O(log n) time, because in constant time we descend a level 
in the tree, thus operating on a tree that is now roughly half as large. Indeed, 
the running time of all the operations, except make_null, is O(d), where d is the 
depth of the node containing the accessed key.  

We prove in this section that the average depth over all nodes in a tree is O(log 
n) on the assumption that all trees are equally likely.  

The sum of the depths of all nodes in a tree is known as the internal path 
length. We will now calculate the average internal path length of a binary search 
tree, where the average is taken over all possible binary search trees.  

Let D(n) be the internal path length for some tree T of n nodes. D(1) = 0. An n-
node tree consists of an i-node left subtree and an (n - i - 1)-node right 

subtree, plus a root at depth zero for 0  i < n. D(i) is the internal path 
length of the left subtree with respect to its root. In the main tree, all these 
nodes are one level deeper. The same holds for the right subtree. Thus, we get 
the recurrence  

D(n) = D(i) + D(n - i -1) + n -1 

If all subtree sizes are equally likely, which is true for binary search trees 
(since the subtree size depends only on the relative rank of the first element 
inserted into the tree), but not binary trees, then the average value of both D

(i) and D(n - i -1) is . This yields  

  

This recurrence will be encountered and solved in Chapter 7, obtaining an average 
value of D(n) = O(n log n). Thus, the expected depth of any node is O(log n). As 
an example, the randomly generated 500-node tree shown in Figure 4.26 has nodes 
at expected depth 9.98.  

It is tempting to say immediately that this result implies that the average 
running time of all the operations discussed in the previous section is O(log n), 
but this is not entirely true. The reason for this is that because of deletions, 
it is not clear that all binary search trees are equally likely. In particular, 
the deletion algorithm described above favors making the left subtrees deeper 
than the right, because we are always replacing a deleted node with a node from 
the right subtree. The exact effect of this strategy is still unknown, but it 
seems only to be a theoretical novelty. It has been shown that if we alternate 

insertions and deletions (n2) times, then the trees will have an expected 

depth of . After a quarter-million random insert/delete pairs, the tree 
that was somewhat right-heavy in Figure 4.26 looks decidedly unbalanced (average 
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depth = 12.51). See Figure 4.27.  

  

Figure 4.26 A randomly generated binary search tree 

We could try to eliminate the problem by randomly choosing between the smallest 
element in the right subtree and the largest in the left when replacing the 
deleted element. This apparently eliminates the bias and should keep the trees 
balanced, but nobody has actually proved this. In any event, this phenomenon 
appears to be mostly a theoretical novelty, because the effect does not show up 

at all for small trees, and stranger still, if o(n2) insert/delete pairs are 
used, then the tree seems to gain balance!  

  

Figure 4.27 Binary search tree after O(n2) insert/delete pairs
 

The main point of this discussion is that deciding what "average" means is 
generally extremely difficult and can require assumptions which may or may not be 
valid. In the absence of deletions, or when lazy deletion is used, it can be 
shown that all binary search trees are equally likely and we can conclude that 
the average running times of the operations above are O(log n). Except for 
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strange cases like the one discussed above, this result is very consistent with 
observed behavior.  

If the input comes into a tree presorted, then a series of inserts will take 
quadratic time and give a very expensive implementation of a linked list, since 
the tree will consist only of nodes with no left children. One solution to the 
problem is to insist on an extra structural condition called balance: no node is 
allowed to get too deep.  

There are quite a few general algorithms to implement balanced trees. Most are 
quite a bit more complicated than a standard binary search tree, and all take 
longer on average. They do, however, provide protection against the 
embarrassingly simple cases. Below, we will sketch one of the oldest forms of 
balanced search trees, the AVL tree.  

A second, newer, method is to forego the balance condition and allow the tree to 
be arbitrarily deep, but after every operation, a restructuring rule is applied 
that tends to make future operations efficient. These types of data structures 
are generally classified as self-adjusting. In the case of a binary search tree, 
we can no longer guarantee an O(log n) bound on any single operation, but can 
show that any sequence of m operations takes total time O(m log n) in the worst 
case. This is generally sufficient protection against a bad worst case. The data 
structure we will discuss is known as a splay tree; its analysis is fairly 
intricate and is discussed in Chapter 11.  

4.4. AVL Trees 

An AVL (Adelson-Velskii and Landis) tree is a binary search tree with a balance 
condition. The balance condition must be easy to maintain, and it ensures that 
the depth of the tree is O(log n). The simplest idea is to require that the left 
and right subtrees have the same height. As Figure 4.28 shows, this idea does not 
force the tree to be shallow.  

  

Figure 4.28 A bad binary tree. Requiring balance at the root is not enough. 

Another balance condition would insist that every node must have left and right 
subtrees of the same height. If the height of an empty subtree is defined to be -

1 (as is usual), then only perfectly balanced trees of 2k - 1 nodes would satisfy 
this criterion. Thus, although this guarantees trees of small depth, the balance 
condition is too rigid to be useful and needs to be relaxed.  
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An AVL tree is identical to a binary search tree, except that for every node in 
the tree, the height of the left and right subtrees can differ by at most 1. (The 
height of an empty tree is defined to be -1.) In Figure 4.29 the tree on the left 
is an AVL tree, but the tree on the right is not. Height information is kept for 
each node (in the node structure). It is easy to show that the height of an AVL 
tree is at most roughly 1.44 log(n + 2) - .328, but in practice it is about log(n
+ 1) + 0.25 (although the latter claim has not been proven). As an example, the 
AVL tree of height 9 with the fewest nodes (143) is shown in Figure 4.30. This 
tree has as a left subtree an AVL tree of height 7 of minimum size. The right 
subtree is an AVL tree of height 8 of minimum size. This tells us that the 
minimum number of nodes, N(h), in an AVL tree of height h is given by N(h) = N(h
-1) + N(h - 2) + 1. For h = 0, N(h) = 1. For h = 1, N(h) = 2. The function N(h) 
is closely related to the Fibonacci numbers, from which the bound claimed above 
on the height of an AVL tree follows.  

Thus, all the tree operations can be performed in O(log n) time, except possibly 
insertion (we will assume lazy deletion). When we do an insertion, we need to 
update all the balancing information for the nodes on the path back to the root, 
but the reason that insertion is potentially difficult is that inserting a node 

could violate the AVL tree property. (For instance, inserting  into the AVL
tree in Figure 4.29 would destroy the balance condition at the node with key 8.) 
If this is the case, then the property has to be restored before the insertion 
step is considered over. It turns out that this can always be done with a simple 
modification to the tree, known as a rotation. We describe rotations in the 
following section.  

  

Figure 4.29 Two binary search trees. Only the left tree is AVL. 
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Figure 4.30 Smallest AVL tree of height 9 

4.4.1. Single Rotation  

4.4.2. Double Rotation  

4.4.1. Single Rotation 

The two trees in Figure 4.31 contain the same elements and are both binary search 
trees. First of all, in both trees k1 < k2. Second, all elements in the subtree X

are smaller than k1 in both trees. Third, all elements in subtree Z are larger 

than k2. Finally, all elements in subtree Y are in between k1 and k2. The 

conversion of one of the above trees to the other is known as a rotation. A 
rotation involves only a few pointer changes (we shall see exactly how many 
later), and changes the structure of the tree while preserving the search tree 
property.  

The rotation does not have to be done at the root of a tree; it can be done at 
any node in the tree, since that node is the root of some subtree. It can 
transform either tree into the other. This gives a simple method to fix up an 
AVL tree if an insertion causes some node in an AVL tree to lose the balance 
property: Do a rotation at that node. The basic algorithm is to start at the node 
inserted and travel up the tree, updating the balance information at every node 
on the path. If we get to the root without having found any badly balanced nodes, 
we are done. Otherwise, we do a rotation at the first bad node found, adjust its 
balance, and are done (we do not have to continue going to the root). In many 
cases, this is sufficient to rebalance the tree. For instance, in Figure 4.32, 

after the insertion of the  in the original AVL tree on the left, node 8 
becomes unbalanced. Thus, we do a single rotation between 7 and 8, obtaining the 
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tree on the right.  

  

Figure 4.31 Single rotation 

  

Figure 4.32 AVL property destroyed by insertion of , then fixed by a rotation 

Let us work through a rather long example. Suppose we start with an initially 
empty AVL tree and insert the keys 1 through 7 in sequential order. The first 
problem occurs when it is time to insert key 3, because the AVL property is 
violated at the root. We perform a single rotation between the root and its right 
child to fix the problem. The tree is shown in the following figure, before and 
after the rotation:  

  

To make things clearer, a dashed line indicates the two nodes that are the 
subject of the rotation. Next, we insert the key 4, which causes no problems, but 
the insertion of 5 creates a violation at node 3, which is fixed by a single 
rotation. Besides the local change caused by the rotation, the programmer must 
remember that the rest of the tree must be informed of this change. Here, this 
means that 2's right child must be reset to point to 4 instead of 3. This is easy 
to forget to do and would destroy the tree (4 would be inaccessible).  
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Next, we insert 6. This causes a balance problem for the root, since its left 
subtree is of height 0, and its right subtree would be height 2. Therefore, we 
perform a single rotation at the root between 2 and 4.  

  

The rotation is performed by making 2 a child of 4 and making 4's original left 
subtree the new right subtree of 2. Every key in this subtree must lie between 2 
and 4, so this transformation makes sense. The next key we insert is 7, which 
causes another rotation.  

  

4.4.2. Double Rotation 

The algorithm described in the preceding paragraphs has one problem. There is a 
case where the rotation does not fix the tree. Continuing our example, suppose we 
insert keys 8 through 15 in reverse order. Inserting 15 is easy, since it does 
not destroy the balance property, but inserting 14 causes a height imbalance at 
node 7.  
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As the diagram shows, the single rotation has not fixed the height imbalance. The 
problem is that the height imbalance was caused by a node inserted into the tree 
containing the middle elements (tree Y in Fig. 4.31) at the same time as the 
other trees had identical heights. The case is easy to check for, and the 
solution is called a double rotation, which is similar to a single rotation but 
involves four subtrees instead of three. In Figure 4.33, the tree on the left is 
converted to the tree on the right. By the way, the effect is the same as 
rotating between k1 and k2 and then between k2 and k3. There is a symmetric case, 

which is also shown (see Fig. 4.34).  

  

Figure 4.33 (Right-left) double rotation 

  

Figure 4.34 (Left-right) double rotation 

In our example, the double rotation is a right-left double rotation and involves 
7, 15, and 14. Here, k3 is the node with key 7, k1 is the node with key 15, and 

k2 is the node with key 14. Subtrees A, B, C, and D are all empty.  
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Next we insert 13, which requires a double rotation. Here the double rotation is 
again a right-left double rotation that will involve 6, 14, and 7 and will 
restore the tree. In this case, k3 is the node with key 6, k1 is the node with 

key 14, and k2 is the node with key 7. Subtree A is the tree rooted at the node 

with key 5, subtree B is the empty subtree that was originally the left child of 
the node with key 7, subtree C is the tree rooted at the node with key 13, and 
finally, subtree D is the tree rooted at the node with key 15.  

  

If 12 is now inserted, there is an imbalance at the root. Since 12 is not between 
4 and 7, we know that the single rotation will work.  

  

Insertion of 11 will require a single rotation:  
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To insert 10, a single rotation needs to be performed, and the same is true for 
the subsequent insertion of 9. We insert 8 without a rotation, creating the 
almost perfectly balanced tree that follows.  

  

Finally, we insert  to show the symmetric case of the double rotation. 

Notice that  causes the node containing 9 to become unbalanced. Since  

is between 9 and 8 (which is 9's child on the path to , a double rotation 
needs to be performed, yielding the following tree.  
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The reader can verify that any imbalance caused by an insertion into an AVL tree 
can always be fixed by either a single or double rotation. The programming 
details are fairly straightforward, except that there are several cases. To 
insert a new node with key x into an AVL tree T, we recursively insert x into 
the appropriate subtree of T (let us call this Tlr). If the height of Tlr does 

not change, then we are done. Otherwise, if a height imbalance appears in T, we 
do the appropriate single or double rotation depending on x and the keys in T and 
Tlr, update the heights (making the connection from the rest of the tree above), 

and are done. Since one rotation always suffices, a carefully coded nonrecursive 
version generally turns out to be significantly faster than the recursive 
version. However, nonrecursive versions are quite difficult to code correctly, so 
many programmers implement AVL trees recursively.  

Another efficiency issue concerns storage of the height information. Since all 
that is really required is the difference in height, which is guaranteed to be 
small, we could get by with two bits (to represent +1, 0, -1) if we really try. 
Doing so will avoid repetitive calculation of balance factors but results in some 
loss of clarity. The resulting code is somewhat more complicated than if the 
height were stored at each node. If a recursive routine is written, then speed is 
probably not the main consideration. In this case, the slight speed advantage 
obtained by storing balance factors hardly seems worth the loss of clarity and 
relative simplicity. Furthermore, since most machines will align this to at least 
an 8-bit boundary anyway, there is not likely to be any difference in the amount 
of space used. Eight bits will allow us to store absolute heights of up to 255. 
Since the tree is balanced, it is inconceivable that this would be insufficient 
(see the exercises).  

With all this, we are ready to write the AVL routines. We will do only a partial 
job and leave the rest as an exercise. First, we need the declarations. These are 
given in Figure 4.35. We also need a quick function to return the height of a 
node. This function is necessary to handle the annoying case of a NULL pointer. 
This is shown in Figure 4.36. The basic insertion routine is easy to write, since 
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it consists mostly of function calls (see Fig. 4.37).  

typedef struct avl_node *avl_ptr; 

struct avl_node 

{ 

element_type element; 

avl_ptr left; 

avl_ptr right; 

int height; 

}; 

typedef avl_ptr SEARCH_TREE; 

Figure 4.35 Node declaration for AVL trees 

int 

height( avl_ptr p ) 

{ 

if( p == NULL ) 

return -1; 

else 

return p->height; 

} 

Figure 4.36 Function to compute height of an AVL node 

For the trees in Figure 4.38, s_rotate_left converts the tree on the left to the 
tree on the right, returning a pointer to the new root. s_rotate_right is 
symmetric. The code is shown in Figure 4.39.  

The last function we will write will perform the double rotation pictured in 
Figure 4.40, for which the code is shown in Figure 4.41.  

Deletion in AVL trees is somewhat more complicated than insertion. Lazy deletion 
is probably the best strategy if deletions are relatively infrequent.  

4.5. Splay Trees 

We now describe a relatively simple data structure, known as a splay tree, that 
guarantees that any m consecutive tree operations take at most O(m log n) time. 
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Although this guarantee does not preclude the possibility that any single 
operation might take O(n) time, and thus the bound is not as strong as an O(log 
n) worst-case bound per operation, the net effect is the same: There are no bad 
input sequences. Generally, when a sequence of m operations has total worst-case 
running time of O(m f(n)), we say that the amortized running time is O(f(n)). 
Thus, a splay tree has O(log n) amortized cost per operation. Over a long 
sequence of operations, some may take more, some less.  

Splay trees are based on the fact that the O(n) worst-case time per operation for 
binary search trees is not bad, as long at it occurs relatively infrequently. Any 
one access, even if it takes O(n), is still likely to be extremely fast. The 
problem with binary search trees is that it is possible, and not uncommon, for a 
whole sequence of bad accesses to take place. The cumulative running time then 
becomes noticeable. A search tree data structure with O(n) worst-case time, but a 
guarantee of at most O(m log n) for any m consecutive operations, is certainly 
satisfactory, because there are no bad sequences.  

If any particular operation is allowed to have an O(n) worst-case time bound, and 
we still want an O(log n) amortized time bound, then it is clear that whenever a 
node is accessed, it must be moved. Otherwise, once we find a deep node, we could 
keep performing finds on it. If the node does not change location, and each 

access costs O(n), then a sequence of m accesses will cost O(m  n).  

SEARCH_TREE 

insert( element_type x, SEARCH_TREE T ) 

{ 

return insert1( x, T, NULL ); 

} 

SEARCH_TREE 

insert1( element_type x, SEARCH_TREE T, avl_ptr parent ) 

{ 

avl_ptr rotated_tree; 

if( T == NULL ) 

{  /* Create and return a one-node tree */ 

T = (SEARCH_TREE) malloc ( sizeof (struct avl_node) ); 

if( T == NULL ) 

fatal_error("Out of space!!!"); 

else 

{ 
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T->element = x; T->height = 0; 

T->left = T->right = NULL; 

} 

} 

else 

{ 

if( x < T->element ) 

{ 

T->left = insert1( x, T->left, T ); 

if( ( height( T->left ) - height( T->right ) ) == 2 

{ 

if( x < T->left->element ) 

rotated_tree = s_rotate_left( T ); 

else 

rotated_tree = d_rotate_left( T ); 

if( parent->left == T ) 

parent->left = rotated_tree; 

else 

parent->right = rotated_tree; 

} 

else 

T->height = max( height(T->left), height(T->right) ) + 1; 

} 

else 

/* Symmetric Case for right subtree */; 

/* Else x is in the tree already. We'll do nothing */ 

} 

return T; 

} 
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Figure 4.37 Insertion into an AVL tree 

  

Figure 4.38 

/* This function can be called only if k2 has a left child. */ 

/* Perform a rotate between a node (k2) and its left child. */ 

/* Update heights. */ 

/* Then return new root. */ 

avl_ptr 

s_rotate_left( avl_ptr k2 ) 

{ 

avl_ptr k1; 

k1 = k2->left; 

k2->left = k1->right; 

k1->right = k2; 

k2->height = max( height(k2->left), height(k2->right) ) + 1; 

k1->height = max( height(k1->left), k2->height ) + 1; 

return k1;  /* New root */ 

} 

Figure 4.39 Routine to perform single rotation 

  

Figure 4.40 
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/* This function can be called only if k3 has a left child */ 

/* and k3's left child has a right child */ 

/* Do the left-right double rotation. Update heights */ 

avl_ptr 

d_rotate_left( avl_ptr k3 ) 

{ 

/* rotate between k1 and k2 */ 

k3->left = s_rotate_right( k3->left ); 

/* rotate between k3 and k2 */ 

return( s_rotate_left( k3 ) ); 

} 

Figure 4.41 Routine to perform double rotation 

The basic idea of the splay tree is that after a node is accessed, it is pushed 
to the root by a series of AVL tree rotations. Notice that if a node is deep, 
there are many nodes on the path that are also relatively deep, and by 
restructuring we can make future accesses cheaper on all these nodes. Thus, if 
the node is unduly deep, then we want this restructuring to have the side effect 
of balancing the tree (to some extent). Besides giving a good time bound in 
theory, this method is likely to have practical utility, because in many 
applications when a node is accessed, it is likely to be accessed again in the 
near future. Studies have shown that this happens much more often than one would 
expect. Splay trees also do not require the maintenance of height or balance 
information, thus saving space and simplifying the code to some extent 
(especially when careful implementations are written).  

4.5.1. A Simple Idea (That Does Not Work)  

4.5.2. Splaying  

4.5.1. A Simple Idea (That Does Not Work) 

One way of performing the restructuring described above is to perform single 
rotations, bottom up. This means that we rotate every node on the access path 
with its parent. As an example, consider what happens after an access (a find) on 
k1 in the following tree.  
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The access path is dashed. First, we would perform a single rotation between k1 

and its parent, obtaining the following tree.  

  

Then, we rotate between k1 and k3, obtaining the next tree. 
 

  

Then two more rotations are performed until we reach the root.  
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These rotations have the effect of pushing k1 all the way to the root, so that 

future accesses on k1 are easy (for a while). Unfortunately, it has pushed 

another node (k3) almost as deep as k1 used to be. An access on that node will 

then push another node deep, and so on. Although this strategy makes future 
accesses of k1 cheaper, it has not significantly improved the situation for the 

other nodes on the (original) access path. It turns out that it is possible to 
prove that using this strategy, there is a sequence of m operations requiring 

(m  n) time, so this idea is not quite good enough. The simplest way to 
show this is to consider the tree formed by inserting keys 1, 2, 3, . . . , n 
into an initially empty tree (work this example out). This gives a tree 
consisting of only left children. This is not necessarily bad, though, since the 
time to build this tree is O(n) total. The bad part is that accessing the node 
with key 1 takes n -1 units of time. After the rotations are complete, an access 
of the node with key 2 takes n - 2 units of time. The total for accessing all the 

keys in order is . After they are accessed, the tree reverts to its 
original state, and we can repeat the sequence.  

4.5.2. Splaying 

The splaying strategy is similar to the rotation idea above, except that we are a 
little more selective about how rotations are performed. We will still rotate 
bottom up along the access path. Let x be a (nonroot) node on the access path at 
which we are rotating. If the parent of x is the root of the tree, we merely 
rotate x and the root. This is the last rotation along the access path. 
Otherwise, x has both a parent (p) and a grandparent (g), and there are two 

页码，38/65Structures, Algorithm Analysis: CHAPTER 4: TREES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



cases, plus symmetries, to consider. The first case is the zig-zag case (see Fig. 
4.42). Here x is a right child and p is a left child (or vice versa). If this is 
the case, we perform a double rotation, exactly like an AVL double rotation. 
Otherwise, we have a zig-zig case: x and p are either both left children or both 
right children. In that case, we transform the tree on the left of Figure 4.43 to 
the tree on the right.  

  

Figure 4.42 Zig-zag 

  

Figure 4.43 Zig-zig 

As an example, consider the tree from the last example, with a find on k1: 
 

  

The first splay step is at k1, and is clearly a zig-zag, so we perform a standard 

AVL double rotation using k1, k2, and k3. The resulting tree follows.  
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The next splay step at k1 is a zig-zig, so we do the zig-zig rotation with k1, 

k4, and k5, obtaining the final tree.  

  

Although it is hard to see from small examples, splaying not only moves the 
accessed node to the root, but also has the effect of roughly halving the depth 
of most nodes on the access path (some shallow nodes are pushed down at most two 
levels).  

  

Figure 4.44 Result of splaying at node 1 

To see the difference that splaying makes over simple rotation, consider again 
the effect of inserting keys 1, 2, 3, . . . , n into an initially empty tree. 
This takes a total of O(n), as before, and yields the same tree as simple 
rotations. Figure 4.44 shows the result of splaying at the node with key 1. The 
difference is that after an access of the node with key 1, which takes n -1 
units, the access on the node with key 2 will only take about n/2 units instead 
of n - 2 units; there are no nodes quite as deep as before.  
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Figure 4.45 Result of splaying at node 1 a tree of all left children 

  

Figure 4.46 Result of splaying previous tree at node 2 

An access on the node with key 2 will bring nodes to within n/4 of the root, and 
this is repeated until the depth becomes roughly log n (an example with n = 7 is 
too small to see the effect well). Figures 4.45 to 4.53 show the result of 
accessing keys 1 through 9 in a 32-node tree that originally contains only left 
children. Thus we do not get the same bad behavior from splay trees that is 
prevalent in the simple rotation strategy. (Actually, this turns out to be a very 
good case. A rather complicated proof shows that for this example, the n accesses 
take a total of O(n) time).  

These figures show off the fundamental and crucial property of splay trees. When 
access paths are long, thus leading to a longer-than-normal search time, the 
rotations tend to be good for future operations. When accesses are cheap, the 
rotations are not as good and can be bad. The extreme case is the initial tree 
formed by the insertions. All the insertions were constant-time operations 
leading to a bad initial tree. At that point in time, we had a very bad tree, but 
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we were running ahead of schedule and had the compensation of less total running 
time. Then a couple of really horrible accesses left a nearly balanced tree, but 
the cost was that we had to give back some of the time that had been saved. The 
main theorem, which we will prove in Chapter 11, is that we never fall behind a 
pace of O(log n) per operation: We are always on schedule, even though there are 
occasionally bad operations.  

Because the rotations for splay trees are performed in pairs from the bottom up, 
a recursive implementation does not work, (although modifications to the splaying 
steps can be made to allow a recursive implementation). The pairs of nodes to 
consider are not known until the length of the path is determined to be even or 
odd. Thus, splay trees are coded nonrecursively and work in two passes. The first 
pass goes down the tree and the second goes back up, performing rotations. This 
requires that the path be saved. This can be done by using a stack (which might 
need to store n pointers) or by adding an extra field to the node record that 
will point to the parent. Neither method is particularly difficult to implement. 
We will provide code for the splaying routine on the assumption that each node 
stores its parent.  

  

Figure 4.47 Result of splaying previous tree at node 3 

  

Figure 4.48 Result of splaying previous tree at node 4 
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Figure 4.49 Result of splaying previous tree at node 5 

  

Figure 4.50 Result of splaying previous tree at node 6 

  

Figure 4.51 Result of splaying previous tree at node 7 

  

Figure 4.52 Result of splaying previous tree at node 8 

  

Figure 4.53 Result of splaying previous tree at node 9 
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The type declarations (Fig. 4.54) are simple to understand. The splaying routine 
(Fig. 4.55) takes as argument the last node on the accessed path and makes it the 
new root. The routines single_rotate and double_rotate choose the correct type of 
rotation. We provide the code for single_rotate in Figure 4.56.  

The rotation routines are similar to the AVL rotations, except that the parent 
pointers must be maintained. Some sample routines are in the figures that follow. 
Since zig rotations always make x the new root, we know that x will have no 
parent after the operation. The code for this is in Figure 4.57.  

Zig-zigs and Zig-zags are similar. We will write the one routine to perform the 
zig-zig splay when both x and p are left children. One way to do this is to write 
a single_rotate routine that includes pointer changes for the parent, and then 
implement the complex rotations with two single rotations. This is the way we 
coded the AVL routines. We have taken a different approach in Figure 4.58 to 
show the diversity of styles available. See Figure 4.59. You should try to code 
the other cases yourself; it will be excellent pointer manipulation practice.  

typedef struct splay_node *splay_ptr; 

struct splay_node 

{ 

element_type element; 

splay_ptr left; 

splay-ptr right; 

splay-ptr parent; 

}; 

typedef splay_ptr SEARCH_TREE; 

Figure 4.54 Type declarations for splay trees 

void 

splay( splay_ptr current ) 

{ 

splay_ptr father; 

father = current->parent; 

while( father != NULL ) 

{ 

if( father->parent == NULL ) 

single_rotate (current ); 
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else 

double_rotate( current ); 

father = current->parent; 

} 

} 

Figure 4.55 Basic splay routine 

void 

single_rotate( splay_ptr x ) 

{ 

if( x->parent->left == x) 

zig_left( x ); 

else 

zig_right( x ); 

} 

Figure 4.56 Single rotation 

void 

zig_left( splay_ptr x ) 

{ 

splay ptr p, B; 

p = x->parent; 

B = x->right; 

x->right = p;      /* x's new right child is p*/ 

x->parent = NULL;  /* x will now be a root */ 

if( B != NULL ) 

B->parent = p; 

p->left = B; 

p->parent = x; 

} 
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Figure 4.57 Single rotation between root and its left child 

We can perform deletion by accessing the node to be deleted. This puts the node 
at the root. If it is deleted, we get two subtrees TL and TR (left and right). If 

we find the largest element in TL (which is easy), then this element is rotated 

to the root of TL, and TL will now have a root with no right child. We can finish 

the deletion by making TR the right child.  

The analysis of splay trees is difficult, because it must take into account the 
ever-changing structure of the tree. On the other hand, splay trees are much 
simpler to program than AVL trees, since there are fewer cases to consider and 
no balance information to maintain. Our splay tree code may look complicated, but 
as pointed out before, it can be simplified; it is probably much simpler than a 
nonrecursive AVL implementation. Some empirical evidence suggests that this 
translates into faster code in practice, although the case for this is far from 
complete. Finally, we point out that there are several variations of splay trees 
that can perform even better in practice.  

  

Figure 4.58 

void 

zig_zig_left( splay_ptr x ) 

{ 

splay_ptr p, g, B, C, ggp; 

p = x->parent; 

g = p->parent; 

B = x->right; 

C = p->right; 

ggp = g->parent; 

x->right = p;           /* x's new right child is p*/ 

p->parent = x; 

p->right = g;           /* p's new right child is g */ 

g->parent = p; 
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if( B != NULL )         /* p's new left child is subtree B */ 

B->parent = p; 

p->left = B; 

if( C != NULL )         /* g's new left child is subtree C */ 

C->parent = g; 

g->left = C; 

x->parent = ggp;        /* connect to rest of the tree */ 

if( ggp ! = NULL ) 

if( gpp->left == g ) 

ggp->left = x; 

else 

ggp->right = x; 

} 

Figure 4.59 Routine to perform a zig-zig when both children are initially left 
children 

4.6. Tree Traversals (Revisited) 

Because of the ordering information in a binary search tree, it is simple to list 
all the keys in sorted order. The recursive procedure in Figure 4.60 does this.  

Convince yourself that this procedure works. As we have seen before, this kind of 
routine when applied to trees is known as an inorder traversal (which makes 
sense, since it lists the keys in order). The general strategy of an inorder 
traversal is to process the left subtree first, then perform processing at the 
current node, and finally process the right subtree. The interesting part about 
this algorithm, aside from its simplicity, is that the total running time is O
(n). This is because there is constant work being performed at every node in the 
tree. Each node is visited once, and the work performed at each node is testing 
against NULL, setting up two procedure calls, and doing a print_element. Since 
there is constant work per node and n nodes, the running time is O(n).  

void 

print_tree( SEARCH_TREE T ) 

{ 

if( T != NULL ) 

{ 
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print_tree( T->left ); 

print_element( T->element ); 

print_tree( T->right ); 

} 

} 

Figure 4.60 Routine to print a binary search tree in order 

Sometimes we need to process both subtrees first before we can process a node. 
For instance, to compute the height of a node, we need to know the height of the 
subtrees first. The code in Figure 4.61 computes this. Since it is always a good 
idea to check the special cases - and crucial when recursion is involved - notice 
that the routine will declare the height of a leaf to be zero, which is correct. 
This general order of traversal, which we have also seen before, is known as a 
postorder traversal. Again, the total running time is O(n), because constant work 
is performed at each node.  

The third popular traversal scheme that we have seen is preorder traversal. Here, 
the node is processed before the children. This could be useful, for example, if 
you wanted to label each node with its depth.  

The common idea in all of these routines is that you handle the NULL case first, 
and then the rest. Notice the lack of extraneous variables. These routines pass 
only the tree, and do not declare or pass any extra variables. The more compact 
the code, the less likely that a silly bug will turn up. A fourth, less often 
used, traversal (which we have not seen yet) is level-order traversal. In a 
level-order traveresal, all nodes at depth d are processed before any node at 
depth d + 1. Level-order traversal differs from the other traversals in that it 
is not done recursively; a queue is used, instead of the implied stack of 
recursion.  

int 

height( TREE T ) 

{ 

if( T == NULL ) 

return -1; 

else 

return ( max( height(T->left), height(T->right) ) + 1 ); 

} 

Figure 4.61 Routine to compute the height of a tree using a postorder traversal 

4.7. B-Trees 
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Although all of the search trees we have seen so far are binary, there is a 
popular search tree that is not binary. This tree is known as a B-tree.  

A B-tree of order m is a tree with the following structural properties:  

 The root is either a leaf or has between 2 and m children.  

 All nonleaf nodes (except the root) have between m/2  and m children. 

 All leaves are at the same depth.  

All data is stored at the leaves. Contained in each interior node are pointers 
p1, p2, . . . , pm to the children, and values k1, k2, . . . , km - 1, 

representing the smallest key found in the subtrees p2, p3, . . . , pm 

respectively. Of course, some of these pointers might be NULL, and the 
corresponding ki would then be undefined. For every node, all the keys in subtree 

p1 are smaller than the keys in subtree p2, and so on. The leaves contain all the 

actual data, which is either the keys themselves or pointers to records 
containing the keys. We will assume the former to keep our examples simple. There 
are various definitions of B-trees that change this structure in mostly minor 
ways, but this definition is one of the popular forms. We will also insist (for 

now) that the number of keys in a leaf is also between m/2  and m.  

The tree in Figure 4.62 is an example of a B-tree of order 4.  

  

Figure 4.62 B-tree of order 4 

A B-tree of order 4 is more popularly known as a 2-3-4 tree, and a B-tree of 
order 3 is known as a 2-3 tree. We will describe the operation of B-trees by 
using the special case of 2-3 trees. Our starting point is the 2-3 tree that 
follows.  
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We have drawn interior nodes (nonleaves) in ellipses, which contain the two 
pieces of data for each node. A dash line as a second piece of information in an 
interior node indicates that the node has only two children. Leaves are drawn in 
boxes, which contain the keys. The keys in the leaves are ordered. To perform a 
find, we start at the root and branch in one of (at most) three directions, 
depending on the relation of the key we are looking for to the two (possibly one) 
values stored at the node.  

To perform an insert on a previously unseen key, x, we follow the path as though 
we were performing a find. When we get to a leaf node, we have found the correct 
place to put x. Thus, to insert a node with key 18, we can just add it to a leaf 
without causing any violations of the 2-3 tree properties. The result is shown in 
the following figure.  

  

Unfortunately, since a leaf can hold only two or three keys, this might not 
always be possible. If we now try to insert 1 into the tree, we find that the 
node where it belongs is already full. Placing our new key into this node would 
give it a fourth element which is not allowed. This can be solved by making two 
nodes of two keys each and adjusting the information in the parent.  
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Unfortunately, this idea does not always work, as can be seen by an attempt to 
insert 19 into the current tree. If we make two nodes of two keys each, we obtain 
the following tree.  

  

This tree has an internal node with four children, but we only allow three per 
node. The solution is simple. We merely split this node into two nodes with two 
children. Of course, this node might be one of three children itself, and thus 
splitting it would create a problem for its parent (which would now have four 
children), but we can keep on splitting nodes on the way up to the root until we 
either get to the root or find a node with only two children. In our case, we can 
get by with splitting only the first internal node we see, obtaining the 
following tree.  

  

If we now insert an element with key 28, we create a leaf with four children, 
which is split into two leaves of two children:  
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This creates an internal node with four children, which is then split into two 
children. What we have done here is split the root into two nodes. When we do 
this, we have a special case, which we finish by creating a new root. This is how 
(the only way) a 2-3 tree gains height.  

  

Notice also that when a key is inserted, the only changes to internal nodes occur 
on the access path. These changes can be made in time proportional to the length 
of this path, but be forewarned that there are quite a few cases to handle, and 
it is easy to do this wrong.  

There are other ways to handle the case where a node becomes overloaded with 
children, but the method we have described is probably the simplest. When 
attempting to add a fourth key to a leaf, instead of splitting the node into two 
we can first attempt to find a sibling with only two keys. For instance, to 
insert 70 into the tree above, we could move 58 to the leaf containing 41 and 52, 
place 70 with 59 and 61, and adjust the entries in the internal nodes. This 
strategy can also be applied to internal nodes and tends to keep more nodes full. 
The cost of this is slightly more complicated routines, but less space tends to 
be wasted.  

We can perform deletion by finding the key to be deleted and removing it. If this 
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key was one of only two keys in a node, then its removal leaves only one key. We 
can fix this by combining this node with a sibling. If the sibling has three 
keys, we can steal one and have both nodes with two keys. If the sibling has only 
two keys, we combine the two nodes into a single node with three keys. The parent 
of this node now loses a child, so we might have to percolate this strategy all 
the way to the top. If the root loses its second child, then the root is also 
deleted and the tree becomes one level shallower. As we combine nodes, we must 
remember to update the information kept at the internal nodes.  

With general B-trees of order m, when a key is inserted, the only difficulty 
arises when the node that is to accept the key already has m keys. This key gives 

the node m + 1 keys, which we can split into two nodes with  (m + 1) / 2 

and  (m + 1) / 2  keys respectively. As this gives the parent an extra 
node, we have to check whether this node can be accepted by the parent and split 
the parent if it already has m children. We repeat this until we find a parent 
with less than m children. If we split the root, we create a new root with two 
children.  

The depth of a B-tree is at most log m/2 n . At each node on the path, 

we perform O(log m) work to determine which branch to take (using a binary 
search), but an insert or delete could require O(m) work to fix up all the 
information at the node. The worst-case running time for each of the insert and 
delete operations is thus O(m logm n) = O( (m / log m ) log n), but a find takes 

only O(log n ). The best (legal) choice of m for running time considerations has 
been shown empirically to be either m = 3 or m = 4; this agrees with the bounds 
above, which show that as m gets larger, the insertion and deletion times 
increase. If we are only concerned with main memory speed, higher order B-trees, 
such as 5-9 trees, are not an advantage.  

The real use of B-trees lies in database systems, where the tree is kept on a 
physical disk instead of main memory. Accessing a disk is typically several 
orders of magnitude slower than any main memory operation. If we use a B-tree of 
order m, then the number of disk accesses is O(logm n). Although each disk access 

carries the overhead of O(log m) to determine the direction to branch, the time 
to perform this computation is typically much smaller than the time to read a 
block of memory and can thus be considered inconsequential (as long as m is 
chosen reasonably). Even if updates are performed and O(m) computing time is 
required at each node, this too is generally not significant. The value of m is 
then chosen to be the largest value that still allows an interior node to fit 

into one disk block, and is typically in the range 32  m  256. The maximum 
number of elements that are stored in a leaf is chosen so that if the leaf is 
full, it fits in one block. This means that a record can always be found in very 
few disk accesses, since a typical B-tree will have a depth of only 2 or 3, and 
the root (and possibly the first level) can be kept in main memory.  

Analysis suggests that a B-tree will be ln 2 = 69 percent full. Better space 
utilization can be obtained if, instead of always splitting a node when the tree 
obtains its (m + 1)th entry, the routine searches for a sibling that can take the 
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extra child. The details can be found in the references.  

Summary 

We have seen uses of trees in operating systems, compiler design, and searching. 
Expression trees are a small example of a more general structure known as a parse 
tree, which is a central data structure in compiler design. Parse trees are not 
binary, but are relatively simple extensions of expression trees (although the 
algorithms to build them are not quite so simple).  

Search trees are of great importance in algorithm design. They support almost all 
the useful operations, and the logarithmic average cost is very small. 
Nonrecursive implementations of search trees are somewhat faster, but the 
recursive versions are sleeker, more elegant, and easier to understand and debug. 
The problem with search trees is that their performance depends heavily on the 
input being random. If this is not the case, the running time increases 
significantly, to the point where search trees become expensive linked lists.  

We saw several ways to deal with this problem. AVL trees work by insisting that 
all nodes' left and right subtrees differ in heights by at most one. This ensures 
that the tree cannot get too deep. The operations that do not change the tree, as 
insertion does, can all use the standard binary search tree code. Operations that 
change the tree must restore the tree. This can be somewhat complicated, 
especially in the case of deletion. We showed how to restore the tree after 
insertions in O(log n) time.  

We also examined the splay tree. Nodes in splay trees can get arbitrarily deep, 
but after every access the tree is adjusted in a somewhat mysterious manner. The 
net effect is that any sequence of m operations takes O(m log n) time, which is 
the same as a balanced tree would take.  

B-trees are balanced m-way (as opposed to 2-way or binary) trees, which are well 
suited for disks; a special case is the 2-3 tree, which is another common method 
of implementing balanced search trees.  

In practice, the running time of all the balanced tree schemes is worse (by a 
constant factor) than the simple binary search tree, but this is generally 
acceptable in view of the protection being given against easily obtained worst-
case input.  

A final note: By inserting elements into a search tree and then performing an 
inorder traversal, we obtain the elements in sorted order. This gives an O(n log 
n) algorithm to sort, which is a worst-case bound if any sophisticated search 
tree is used. We shall see better ways in Chapter 7, but none that have a lower 
time bound.  

Exercises 

Questions 4.1 to 4.3 refer to the tree in Figure 4.63.  

4.1 For the tree in Figure 4.63 :  
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a. Which node is the root?  

b. Which nodes are leaves?  

  

Figure 4.63 

4.2 For each node in the tree of Figure 4.63 :  

a. Name the parent node.  

b. List the children.  

c. List the siblings.  

d. Compute the depth.  

e. Compute the height.  

4.3 What is the depth of the tree in Figure 4.63?  

4.4 Show that in a binary tree of n nodes, there are n + 1 pointers representing 
children.  

4.5 Show that the maximum number of nodes in a binary tree of height h is 2h+1 - 
1.  

4.6 A full node is a node with two children. Prove that the number of full nodes 
plus one is equal to the number of leaves in a binary tree.  

4.7 Suppose a binary tree has leaves l1, l2, . . . , lm at depth d1, d2, . . . , 

dm, respectively. Prove that  and determine when the equality is 

true.  

4.8 Give the prefix, infix, and postfix expressions corresponding to the tree in 
Figure 4.64.  
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4.9 a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially 
empty binary search tree.  

b. Show the result of deleting the root.  

4.10 Write routines to implement the basic binary search tree operations.  

4.11 Binary search trees can be implemented with cursors, using a strategy 
similar to a cursor linked list implementation. Write the basic binary search 
tree routines using a cursor implementation.  

4.12 Suppose you want to perform an experiment to verify the problems that can be 
caused by random insert/delete pairs. Here is a strategy that is not 
perfectlyrandom, but close enough. You build a tree with n elements by inserting 

n elements chosen at random from the range 1 to m = n. You then perform n2 
pairs of insertions followed by deletions. Assume the existence of a routine, 
rand_int(a,b), which returns a uniform random integer between a and b inclusive. 

  

Figure 4.64 Tree for Exercise 4.8 

a. Explain how to generate a random integer between 1 and m that is not already 

in the tree (so a random insert can be performed). In terms of n and , what 
is the running time of this operation?  

b. Explain how to generate a random integer between 1 and m that is already in 
the tree (so a random delete can be performed). What is the running time of this 
operation?  

c. What is a good choice of ? Why?  

4.13 Write a program to evaluate empirically the following strategies for 
deleting nodes with two children:  

a. Replace with the largest node, X, in TL and recursively delete X. 
 

b. Alternately replace with the largest node in TL and the smallest node in TR, 
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and recursively delete appropriate node.  

c. Replace with either the largest node in TL or the smallest node in TR 
(recursively deleting the appropriate node), making the choice randomly. Which 
strategy seems to give the most balance? Which takes the least CPU time to 
process the entire sequence?  

4.14 ** Prove that the depth of a random binary search tree (depth of the deepest 
node) is O(log n), on average.  

4.15 *a. Give a precise expression for the minimum number of nodes in an AVL 
tree of height h.  

b. What is the minimum number of nodes in an AVL tree of height 15?  

4.16 Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty 
AVL tree.  

4.17 * Keys 1, 2, . . . , 2k -1 are inserted in order into an initially empty 
AVL tree. Prove that the resulting tree is perfectly balanced.  

4.18 Write the remaining procedures to implement AVL single and double 
rotations.  

4.19 Write a nonrecursive function to insert into an AVL tree.  

4.20 * How can you implement (nonlazy) deletion in AVL trees?  

4.21 a. How many bits are required per node to store the height of a node in an 
n-node AVL tree?  

b. What is the smallest AVL tree that overflows an 8-bit height counter?  

4.22 Write the functions to perform the double rotation without the inefficiency 
of doing two single rotations.  

4.23 Show the result of accessing the keys 3, 9, 1, 5 in order in the splay tree 
in Figure 4.65.  
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Figure 4.65 

4.24 Show the result of deleting the element with key 6 in the resulting splay 
tree for the previous exercise.  

4.25 Nodes 1 through n = 1024 form a splay tree of left children.  

a. What is the internal path length of the tree (exactly)?  

*b. Calculate the internal path length after each of find(1), find(2), find(3), 
find(4), find(5), find(6).  

*c. If the sequence of successive finds is continued, when is the internal path 
length minimized?  

4.26 a. Show that if all nodes in a splay tree are accessed in sequential order, 
the resulting tree consists of a chain of left children.  

**b. Show that if all nodes in a splay tree are accessed in sequential order, 
then the total access time is O(n), regardless of the initial tree.  

4.27 Write a program to perform random operations on splay trees. Count the total 
number of rotations performed over the sequence. How does the running time 
compare to AVL trees and unbalanced binary search trees?  

4.28 Write efficient functions that take only a pointer to a binary tree, T, and 
compute  

a. the number of nodes in T  

b. the number of leaves in T  

c. the number of full nodes in T  

What is the running time of your routines?  

4.29 Write a function to generate an n-node random binary search tree with 
distinct keys 1 through n. What is the running time of your routine?  
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4.30 Write a function to generate the AVL tree of height h with fewest nodes. 
What is the running time of your function?  

4.31 Write a function to generate a perfectly balanced binary search tree of 

height h with keys 1 through 2h+1 - 1. What is the running time of your function?

4.32 Write a function that takes as input a binary search tree, T, and two keys 

k1 and k2, which are ordered so that k1  k2, and prints all elements x in the 

tree such that k1  key(x)  k2. Do not assume any information about the 

type of keys except that they can be ordered (consistently). Your program should 
run in O(K + log n) average time, where K is the number of keys printed. Bound 
the running time of your algorithm.  

4.33 The larger binary trees in this chapter were generated automatically by a 
program. This was done by assigning an (x, y) coordinate to each tree node, 
drawing a circle around each coordinate (this is hard to see in some pictures), 
and connecting each node to its parent. Assume you have a binary search tree 
stored in memory (perhaps generated by one of the routines above) and that each 
node has two extra fields to store the coordinates.  

a. The x coordinate can be computed by assigning the inorder traversal number. 
Write a routine to do this for each node in the tree.  

b. The y coordinate can be computed by using the negative of the depth of the 
node. Write a routine to do this for each node in the tree.  

c. In terms of some imaginary unit, what will the dimensions of the picture be? 
How can you adjust the units so that the tree is always roughly two-thirds as 
high as it is wide?  

d. Prove that using this system no lines cross, and that for any node, X, all 
elements in X's left subtree appear to the left of X and all elements in X's 
right subtree appear to the right of X.  

4.34 Write a general-purpose tree-drawing program that will convert a tree into 
the following graph-assembler instructions:  

a. circle(x, y)  

b. drawline(i, j)  

The first instruction draws a circle at (x, y), and the second instruction 
connects the ith circle to the jth circle (circles are numbered in the order 
drawn). You should either make this a program and define some sort of input 
language or make this a function that can be called from any program. What is the 
running time of your routine?  

4.35 Write a routine to list out the nodes of a binary tree in level-order. List 
the root, then nodes at depth 1, followed by nodes at depth 2, and so on. You 
must do this in linear time. Prove your time bound.  
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4.36 a. Show the result of inserting the following keys into an initially empty 
2-3 tree: 3, 1, 4, 5, 9, 2, 6, 8, 7, 0.  

b. Show the result of deleting 0 and then 9 from the 2-3 tree created in part 
(a).  

4.37 *a. Write a routine to perform insertion from a B-tree.  

*b. Write a routine to perform deletion from a B-tree. When a key is deleted, is 
it necessary to update information in the internal nodes?  

  

Figure 4.66 Tree for Exercise 4.39 

*c. Modify your insertion routine so that if an attempt is made to add into a 
node that already has m entries, a search is performed for a sibling with less 
than m children before the node is split.  

4.38 A B*-tree of order m is a B-tree in which each each interior node has 
between 2m/3 and m children. Describe a method to perform insertion into a B*-
tree.  

4.39 Show how the tree in Figure 4.66 is represented using a child/sibling 
pointer implementation.  

4.40 Write a procedure to traverse a tree stored with child/sibling links.  

4.41 Two binary trees are similar if they are both empty or both nonempty and 
have similar left and right subtrees. Write a function to decide whether two 
binary trees are similar. What is the running time of your program?  

4.42 Two trees, T1 and T2, are isomorphic if T1 can be transformed into T2 by 

swapping left and right children of (some of the) nodes in T1. For instance, the 

two trees in Figure 4.67 are isomorphic because they are the same if the children 
of A, B, and G, but not the other nodes, are swapped.  

a. Give a polynomial time algorithm to decide if two trees are isomorphic.  

*b. What is the running time of your program (there is a linear solution)?  

4.43 *a. Show that via AVL single rotations, any binary search tree T1 can be 

transformed into another search tree T2 (with the same keys).  
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*b. Give an algorithm to perform this transformation using O(n log n) rotations 
on average.  

**c. Show that this transformation can be done with O(n) rotations, worst-case.  

  

Figure 4.67 Two isomorphic trees 

4.44 Suppose we want to add the operation find_kth to our repertoire. The 

operation find_kth(T,i) returns the element in tree T with ith smallest key. 
Assume all elements have distinct keys. Explain how to modify the binary search 
tree to support this operation in O(log n) average time, without sacrificing the 
time bounds of any other operation.  

4.45 Since a binary search tree with n nodes has n + 1 pointers, half the space 
allocated in a binary search tree for pointer information is wasted. Suppose that 
if a node has a left child, we make its left child point to its inorder 
predecessor, and if a node has a right child, we make its right child point to 
its inorder successor. This is known as a threaded tree and the extra pointers 
are called threads.  

a. How can we distinguish threads from real children pointers?  

b. Write routines to perform insertion and deletion into a tree threaded in the 
manner described above.  

c. What is the advantage of using threaded trees?  

4.46 A binary search tree presupposes that searching is based on only one key per 
record. Suppose we would like to be able to perform searching based on either of 
two keys, key1 or key2.  

a. One method is to build two separate binary search trees. How many extra 
pointers does this require?  

b. An alternative method is a 2-d tree. A 2-d tree is similar to a binary search 
tree, except that branching at even levels is done with respect to key1, and 

branching at odd levels is done with key2. Figure 4.68 shows a 2-d tree, with the 

first and last names as keys, for post-WWII presidents. The presidents' names 
were inserted chronologically (Truman, Eisenhower, Kennedy, Johnson, Nixon, Ford, 
Carter, Reagan, Bush). Write a routine to perform insertion into a 2-d tree.  

c. Write an efficient procedure that prints all records in the tree that 
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simultaneously satisfy the constraints low1  key1  high1 and low2  key2

 high2. 
 

d. Show how to extend the 2-d tree to handle more than two search keys. The 
resulting strategy is known as a k-d tree.  

  

Figure 4.68 A 2-d tree 
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CHAPTER 5: 
HASHING 

In Chapter 4, we discussed the search tree ADT, which allowed various operations 
on a set of elements. In this chapter, we discuss the hash table ADT, which 
supports only a subset of the operations allowed by binary search trees.  

The implementation of hash tables is frequently called hashing. Hashing is a 
technique used for performing insertions, deletions and finds in constant average 
time. Tree operations that require any ordering information among the elements 
are not supported efficiently. Thus, operations such as find_min, find_max, and 
the printing of the entire table in sorted order in linear time are not 
supported.  

The central data structure in this chapter is the hash table. We will  

 See several methods of implementing the hash table.  

 Compare these methods analytically.  

 Show numerous applications of hashing.  

 Compare hash tables with binary search trees.  

5.1. General Idea 

The ideal hash table data structure is merely an array of some fixed size, 
containing the keys. Typically, a key is a string with an associated value (for 
instance, salary information). We will refer to the table size as H_SIZE, with 
the understanding that this is part of a hash data structure and not merely some 
variable floating around globally. The common convention is to have the table run 
from 0 to H_SIZE-1; we will see why shortly.  

Each key is mapped into some number in the range 0 to H_SIZE - 1 and placed in 
the appropriate cell. The mapping is called a hash function, which ideally should 
be simple to compute and should ensure that any two distinct keys get different 
cells. Since there are a finite number of cells and a virtually inexhaustible 
supply of keys, this is clearly impossible, and thus we seek a hash function that 
distributes the keys evenly among the cells. Figure 5.1 is typical of a perfect 
situation. In this example, john hashes to 3, phil hashes to 4, dave hashes to 6, 
and mary hashes to 7.  

Next ChapterReturn to Table of ContentsPrevious Chapter
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Figure 5.1 An ideal hash table 

This is the basic idea of hashing. The only remaining problems deal with choosing 
a function, deciding what to do when two keys hash to the same value (this is 
known as a collision), and deciding on the table size.  

5.2. Hash Function 

If the input keys are integers, then simply returning key mod H_SIZE is generally 
a reasonable strategy, unless key happens to have some undesirable properties. In 
this case, the choice of hash function needs to be carefully considered. For 
instance, if the table size is 10 and the keys all end in zero, then the standard 
hash function is obviously a bad choice. For reasons we shall see later, and to 
avoid situations like the one above, it is usually a good idea to ensure that the 
table size is prime. When the input keys are random integers, then this function 
is not only very simple to compute but also distributes the keys evenly.  

Usually, the keys are strings; in this case, the hash function needs to be chosen 
carefully.  

One option is to add up the ASCII values of the characters in the string. In 
Figure 5.2 we declare the type INDEX, which is returned by the hash function. The 
routine in Figure 5.3 implements this strategy and uses the typical C method of 
stepping through a string.  

The hash function depicted in Figure 5.3 is simple to implement and computes an 
answer quickly. However, if the table size is large, the function does not 
distribute the keys well. For instance, suppose that H_SIZE = 10,007 (10,007 is a 
prime number). Suppose all the keys are eight or fewer characters long. Since a 
char has an integer value that is always at most 127, the hash function can only 
assume values between 0 and 1016, which is 127 * 8. This is clearly not an 
equitable distribution!  

typedef unsigned int INDEX; 

Figure 5.2 Type returned by hash function 
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INDEX 

hash( char *key, unsigned int H_SIZE ) 

{ 

unsigned int hash_val = 0; 

/*1*/       while( *key != '\0' ) 

/*2*/            hash_val += *key++; 

/*3*/       return( hash_val % H_SIZE ); 

} 

Figure 5.3 A simple hash function 

Another hash function is shown in Figure 5.4. This hash function assumes key has 
at least two characters plus the NULL terminator. 27 represents the number of 

letters in the English alphabet, plus the blank, and 729 is 272. This function 
only examines the first three characters, but if these are random, and the table 
size is 10,007, as before, then we would expect a reasonably equitable 

distribution. Unfortunately, English is not random. Although there are 263 = 
17,576 possible combinations of three characters (ignoring blanks), a check of a 
reasonably large on-line dictionary reveals that the number of different 
combinations is actually only 2,851. Even if none of these combinations collide, 
only 28 percent of the table can actually be hashed to. Thus this function, 
although easily computable, is also not appropriate if the hash table is 
reasonably large.  

Figure 5.5 shows a third attempt at a hash function. This hash function involves 
all characters in the key and can generally be expected to distribute well (it 

computes  key/key_size - i - 1] 32i, and brings the result into proper 
range). The code computes a polynomial function (of 32) by use of Horner's rule. 

For instance, another way of computing hk = k1 + 27k2 + 27
2k3 is by the formula hk

= ((k3) * 27 + k2) * 27 + k1. Horner's rule extends this to an nth degree 

polynomial.  

We have used 32 instead of 27, because multiplication by 32 is not really a 
multiplication, but amounts to bit-shifting by five. In line 2, the addition 
could be replaced with a bitwise exclusive or, for increased speed.  

INDEX 

hash( char *key, unsigned int H_SIZE ) 

{ 

return ( ( key[0] + 27*key[1] + 729*key[2] ) % H_SIZE ); 

} 
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Figure 5.4 Another possible hash function -- not too good 

INDEX 

hash( char *key, unsigned int H_SIZE ) 

{ 

unsigned int hash_val = O; 

/*1*/       while( *key != '\0' ) 

/*2*/            hash_val = ( hash_val << 5 ) + *key++; 

/*3*/       return( hash_val % H_SIZE ); 

} 

Figure 5.5 A good hash function 

The hash function described in Figure 5.5 is not necessarily the best with 
respect to table distribution, but does have the merit of extreme simplicity (and 
speed if overflows are allowed). If the keys are very long, the hash function 
will take too long to compute. Furthermore, the early characters will wind up 
being left-shifted out of the eventual answer. A common practice in this case is 
not to use all the characters. The length and properties of the keys would then 
influence the choice. For instance, the keys could be a complete street address. 
The hash function might include a couple of characters from the street address 
and perhaps a couple of characters from the city name and ZIP code. Some 
programmers implement their hash function by using only the characters in the odd 
spaces, with the idea that the time saved computing the hash function will make 
up for a slightly less evenly distributed function.  

The main programming detail left is collision resolution. If, when inserting an 
element, it hashes to the same value as an already inserted element, then we have 
a collision and need to resolve it. There are several methods for dealing with 
this. We will discuss two of the simplest: open hashing and closed hashing.*  

*These are also commonly known as separate chaining and open addressing, 
respectively.  

5.3. Open Hashing (Separate Chaining) 

The first strategy, commonly known as either open hashing, or separate chaining, 
is to keep a list of all elements that hash to the same value. For convenience, 
our lists have headers. This makes the list implementation the same as in Chapter 
3. If space is tight, it might be preferable to avoid their use. We assume for 
this section that the keys are the first 10 perfect squares and that the hashing 
function is simply hash(x) = x mod 10. (The table size is not prime, but is used 
here for simplicity.) Figure 5.6 should make this clear.  

To perform a find, we use the hash function to determine which list to traverse. 
We then traverse this list in the normal manner, returning the position where the 
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item is found. To perform an insert, we traverse down the appropriate list to 
check whether the element is already in place (if duplicates are expected, an 
extra field is usually kept, and this field would be incremented in the event of 
a match). If the element turns out to be new, it is inserted either at the front 
of the list or at the end of the list, whichever is easiest. This is an issue 
most easily addressed while the code is being written. Sometimes new elements are 
inserted at the front of the list, since it is convenient and also because 
frequently it happens that recently inserted elements are the most likely to be 
accessed in the near future.  

  

Figure 5.6 An open hash table 

The type declarations required to implement open hashing are in Figure 5.7. The 
first few lines are the same as the linked list declarations of Chapter 3. The 
hash table structure contains the actual size and an array of linked lists, which 
are dynamically allocated when the table is initialized. The HASH_TABLE type is 
just a pointer to this structure.  

typedef struct list_node *node_ptr;

 

struct list_node

 

{

 

element_type element;

 

node_ptr next;

 

};

 

typedef node_ptr LIST;

 

typedef node_ptr position;

 

/* LIST *the_list will be an array of lists, allocated later */

 

/* The lists will use headers, allocated later */

 

struct hash_tbl

 

{
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unsigned int table_size; 

LIST *the_lists;

 

};

 

typedef struct hash_tbl *HASH_TABLE;

 

Figure 5.7 Type declaration for open hash table

 

Notice that the the_lists field is actually a pointer to a pointer to a list_node structure. If 

typedefs and abstraction are not used, this can be quite confusing. 

HASH_TABLE

 

initialize_table( unsigned int table_size )

 

{

 

HASH_TABLE H;

 

int i;

 

/*1*/       if( table size < MIN_TABLE_SIZE )

 

{

 

/*2*/            error("Table size too small");

 

/*3*/            return NULL;

 

}

 

/* Allocate table */

 

/*4*/       H = (HASH_TABLE) malloc ( sizeof (struct hash_tbl) );

 

/*5*/       if( H == NULL )

 

/*6*/            fatal_error("Out of space!!!");

 

/*7*/       H->table_size = next_prime( table_size );

 

/* Allocate list pointers */

 

/*8*/       H->the_lists = (position *)

 

malloc( sizeof (LIST) * H->table_size );

 

/*9*/       if( H->the_lists == NULL )

 

/*10*/           fatal_error("Out of space!!!");

 

/* Allocate list headers */

 

/*11*/      for(i=0; i<H->table_size; i++ )

 

{
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/*12*/           H->the_lists[i] = (LIST) malloc 

( sizeof (struct list_node) );

 

/*13*/           if( H->the_lists[i] == NULL )

 

/*14*/                fatal_error("Out of space!!!");

 

else

 

/*15*/                H->the_lists[i]->next = NULL;

 

}

 

/*16*/      return H;

 

}

 

Figure 5.8 Initialization routine for open hash table

 

Figure 5.8 shows the initialization function, which uses the same ideas that were seen in the 
array implementation of stacks. Lines 4 through 6 allocate a hash table structure. If space is 
available, then H will point to a structure containing an integer and a pointer to a list. Line 7 
sets the table size to a prime number, and lines 8 through 10 attempt to allocate an array of 
lists. Since a LIST is defined to be a pointer, the result is an array of pointers.  

If our LIST implementation was not using headers, we could stop here. Since our implementation 
uses headers, we must allocate one header per list and set its next field to NULL. This is done 
in lines 11 through 15. Of course, lines 12 through 15 could be replaced with the statement  

H->the_lists[i] = make_null();

 

Although we have not used this option, because in this instance it is preferable to make the code 
as self-contained as possible, it is certainly worth considering. An inefficiency of our code is 
that the malloc on line 12 is performed H->table_size times. This can be avoided by replacing 
line 12 with one call to malloc before the loop occurs:  

H->the lists = (LIST*) malloc

 

(H->table_size * sizeof (struct list_node));

 

Line 16 returns H. 

The call find(key, H) will return a pointer to the cell containing key. The code to implement 
this is shown in Figure 5.9. Notice that lines 2 through 5 are identical to the code to perform a 
find that is given in Chapter 3. Thus, the list ADT implementation in Chapter 3 could be used 
here. Remember that if element_type is a string, comparison and assignment must be done with 
strcmp and strcpy, respectively.  

Next comes the insertion routine. If the item to be inserted is already present, then we do 
nothing; otherwise we place it at the front of the list (see Fig. 5.10).*  

*Since the table in Figure 5.6 was created by inserting at the end of the list, the code in 
Figure 5.10 will produce a table with the lists in Figure 5.6 reversed.  
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position 

find( element_type key, HASH_TABLE H )

 

{

 

position p;

 

LIST L;

 

/*1*/       L = H->the_lists[ hash( key, H->table_size) ];

 

/*2*/       p = L->next;

 

/*3*/       while( (p != NULL) && (p->element != key) )

 

/* Probably need strcmp!! */

 

/*4*/            p = p->next;

 

/*5*/       return p;

 

}

 

Figure 5.9 Find routine for open hash table

 

void

 

insert( element_type key, HASH_TABLE H )

 

{

 

position pos, new_cell;

 

LIST L;

 

/*1*/      pos = find( key, H );

 

/*2*/      if( pos == NULL )

 

{

 

/*3*/          new_cell = (position) malloc(sizeof(struct list_node));

 

/*4*/          if( new_cell == NULL )

 

/*5*/              fatal_error("Out of space!!!");

 

else

 

{

 

/*6*/              L = H->the_lists[ hash( key, H->table size ) ];

 

/*7*/              new_cell->next = L->next;

 

/*8*/              new_cell->element = key; /* Probably need strcpy!! */

 

/*9*/              L->next = new_cell;

 

}
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} 

}

 

Figure 5.10 Insert routine for open hash table

 

The element can be placed anywhere in the list; this is most convenient in our case. Notice that 
the code to insert at the front of the list is essentially identical to the code in 

Chapter 3 
that implements a push using linked lists. Again, if the ADTs in Chapter 3 have already been 
carefully implemented, they can be used here.  

The insertion routine coded in Figure 5.10 is somewhat poorly coded, because it computes the hash 
function twice. Redundant calculations are always bad, so this code should be rewritten if it 
turns out that the hash routines account for a significant portion of a program's running time.  

The deletion routine is a straightforward implementation of deletion in a linked list, so we will 
not bother with it here. If the repertoire of hash routines does not include deletions, it is 
probably best to not use headers, since their use would provide no simplification and would waste 
considerable space. We leave this as an exercise, too.  

Any scheme could be used besides linked lists to resolve the collisions-a binary search tree or 
even another hash table would work, but we expect that if the table is large and the hash 
function is good, all the lists should be short, so it is not worthwhile to try anything 
complicated.  

We define the load factor, , of a hash table to be the ratio of the number of elements in the 

hash table to the table size. In the example above,  = 1.0. The average length of a list is 

. The effort required to perform a search is the constant time required to evaluate the hash 
function plus the time to traverse the list.  
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Figure 5.11 Closed hash table with linear probing, after each insertion

 

In an unsuccessful search, the number of links to traverse is  (excluding the final NULL 

link) on average. A successful search requires that about 1 + ( /2) links be traversed, since 
there is a guarantee that one link must be traversed (since the search is successful), and we 
also expect to go halfway down a list to find our match. This analysis shows that the table size 
is not really important, but the load factor is. The general rule for open hashing is to make the 

table size about as large as the number of elements expected (in other words, let   1). 
It is also a good idea, as mentioned before, to keep the table size prime to ensure a good 
distribution.  

5.4. Closed Hashing (Open Addressing)

 

Open hashing has the disadvantage of requiring pointers. This tends to slow the algorithm down a 
bit because of the time required to allocate new cells, and also essentially requires the 
implementation of a second data structure. Closed hashing, also known as open addressing, is an 
alternative to resolving collisions with linked lists. In a closed hashing system, if a collision 
occurs, alternate cells are tried until an empty cell is found. More formally, cells h0(x), h1

(x), h2(x), . . . are tried in succession where hi(x) = (hash(x) + (i))mod H_SIZE, with 

(0) = 0. The function, , is the collision resolution strategy. Because all the data goes 
inside the table, a bigger table is needed for closed hashing than for open hashing. Generally, 

the load factor should be below  = 0.5 for closed hashing. We now look at three common 
collision resolution strategies.  

5.4.1. Linear Probing 

 

5.4.2. Quadratic Probing 

 

5.4.3. Double Hashing 

 

5.4.1. Linear Probing
 

In linear probing,  is a linear function of i, typically (i) = i. This amounts to trying 
cells sequentially (with wraparound) in search of an empty cell. Figure 5.11 shows the result of 
inserting keys {89, 18, 49, 58, 69} into a closed table using the same hash function as before 

and the collision resolution strategy, (i) = i. 

 

The first collision occurs when 49 is inserted; it is put in the next available spot, namely spot 
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0, which is open. 58 collides with 18, 89, and then 49 before an empty cell is found three away. 
The collision for 69 is handled in a similar manner. As long as the table is big enough, a free 
cell can always be found, but the time to do so can get quite large. Worse, even if the table is 
relatively empty, blocks of occupied cells start forming. This effect, known as primary 
clustering, means that any key that hashes into the cluster will require several attempts to 
resolve the collision, and then it will add to the cluster.  

Although we will not perform the calculations here, it can be shown that the expected number of 

probes using linear probing is roughly 1/2(1 + 1/(1 - )2) for insertions and unsuccessful 

searches and 1/2(1 + 1/ (1- )) for successful searches. The calculations are somewhat 
involved. It is easy to see from the code that insertions and unsuccessful searches require the 
same number of probes. A moment's thought suggests that on average, successful searches should 
take less time than unsuccessful searches.  

The corresponding formulas, if clustering were not a problem, are fairly easy to derive. We will 
assume a very large table and that each probe is independent of the previous probes. These 
assumptions are satisfied by a random collision resolution strategy and are reasonable unless 

 is very close to 1. First, we derive the expected number of probes in an unsuccessful 
search. This is just the expected number of probes until we find an empty cell. Since the 

fraction of empty cells is 1 - , the number of cells we expect to probe is 1/(1 - ). The 
number of probes for a successful search is equal to the number of probes required when the 
particular element was inserted. When an element is inserted, it is done as a result of an 
unsuccessful search. Thus we can use the cost of an unsuccessful search to compute the average 
cost of a successful search.  

The caveat is that  changes from 0 to its current value, so that earlier insertions are 

cheaper and should bring the average down. For instance, in the table above,  = 0.5, but the 

cost of accessing 18 is determined when 18 is inserted. At that point,  = 0.2. Since 18 was 
inserted into a relatively empty table, accessing it should be easier than accessing a recently 
inserted element such as 69. We can estimate the average by using an integral to calculate the 
mean value of the insertion time, obtaining  

 

 

These formulas are clearly better than the corresponding formulas for linear probing. Clustering 
is not only a theoretical problem but actually occurs in real implementations. 

Figure 5.12 
compares the performance of linear probing (dashed curves) with what would be expected from more 
random collision resolution. Successful searches are indicated by an S, and unsuccessful searches 
and insertions are marked with U and I, respectively.  

If  = 0.75, then the formula above indicates that 8.5 probes are expected for an insertion in 

linear probing. If  = 0.9, then 50 probes are expected, which is unreasonable. This compares 
with 4 and 10 probes for the respective load factors if clustering were not a problem. We see 
from these formulas that linear probing can be a bad idea if the table is expected to be more 

than half full. If  = 0.5, however, only 2.5 probes are required on average for insertion and 
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only 1.5 probes are required, on average, for a successful search.  

5.4.2. Quadratic Probing
 

Quadratic probing is a collision resolution method that eliminates the primary clustering problem 
of linear probing. Quadratic probing is what you would expect-the collision function is 

quadratic. The popular choice is (i) = i2. Figure 5.13 shows the resulting closed table with 
this collision function on the same input used in the linear probing example.  

When 49 collides with 89, the next position attempted is one cell away. This cell is empty, so 49 
is placed there. Next 58 collides at position 8. Then the cell one away is tried but another 

collision occurs. A vacant cell is found at the next cell tried, which is 22 = 4 away. 58 is thus 
placed in cell 2. The same thing happens for 69.  

For linear probing it is a bad idea to let the hash table get nearly full, because performance 
degrades. For quadratic probing, the situation is even more drastic: There is no guarantee of 
finding an empty cell once the table gets more than half full, or even before the table gets half 
full if the table size is not prime. This is because at most half of the table can be used as 
alternate locations to resolve collisions.  

Indeed, we prove now that if the table is half empty and the table size is prime, then we are 
always guaranteed to be able to insert a new element.  

THEOREM 5.1. 

 

If quadratic probing is used, and the table size is prime, then a new element can always be 
inserted if the table is at least half empty.  

PROOF: 

 

Let the table size, H_SIZE, be an (odd) prime greater than 3. We show that the first 

H_SIZE/2  alternate locations are all distinct. Two of these locations are h(x) + i2(mod 

H_SIZE) and h(x) + j2(mod H_SIZE), where 0 < i, j  H_SIZE/2 . Suppose, for the sake 

of contradiction, that these locations are the same, but i  j. Then 

 

h(x) + i2 = h(x) + j2     (mod H_SIZE)

 

i2 = j2             (mod H_SIZE)

 

i2 - j2 = 0            (mod H_SIZE)

 

(i - j)(i + j) = 0            (mod H_SIZE)
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Figure 5.12 Number of probes plotted against load factor for linear probing (dashed) and random 
strategy. S is successful search,U is unsuccessful search, I is insertion 

 

 

Figure 5.13 Closed hash table with quadratic probing, after each insertion

 

Since H_SIZE is prime, it follows that either (i - j) or (i + j) is equal to 0 (mod H_SIZE). 

Since i and j are distinct, the first option is not possible. Since 0 < i, j < H_SIZE/2

, the second option is also impossible. Thus, the first H_SIZE/2  alternate 
locations are distinct. Since the element to be inserted can also be placed in the cell to which 

it hashes (if there are no collisions), any element has H_SIZE/2  locations into which 

it can go. If at most H_SIZE/2  positions are taken, then an empty spot can always be 
found.  
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If the table is even one more than half full, the insertion could fail (although this is 
extremely unlikely). Therefore, it is important to keep this in mind. It is also crucial that the 

table size be prime.* If the table size is not prime, the number of alternate locations can be 
severely reduced. As an example, if the table size were 16, then the only alternate locations 
would be at distances 1, 4, or 9 away.  

*If the table size is a prime of the form 4k + 3, and the quadratic collision resolution strategy 

f(i) = + i2 is used, then the entire table can be probed. The cost is a slightly more complicated 
routine.  

Standard deletion cannot be performed in a closed hash table, because the cell might have caused 
a collision to go past it. For instance, if we remove 89, then virtually all of the remaining 
finds will fail. Thus, closed hash tables require lazy deletion, although in this case there 
really is no laziness implied.  

The type declarations required to implement closed hashing are in 

Figure 5.14. Instead of an 
array of lists, we have an array of hash table entry cells, which, as in open hashing, are 
allocated dynamically. Initializing the table (Figure 5.15) consists of allocating space (lines 1 
through 10) and then setting the info field to empty for each cell.  

enum kind_of_entry { legitimate, empty, deleted };

 

struct hash_entry

 

{

 

element_type element;

 

enum kind_of_entry info;

 

};

 

typedef INDEX position;

 

typedef struct hash_entry cell;

 

/* the_cells is an array of hash_entry cells, allocated later */

 

struct hash_tbl

 

{

 

unsigned int table_size;

 

cell *the_cells;

 

};

 

typedef struct hash_tbl *HASH_TABLE;

 

Figure 5.14 Type declaration for closed hash tables

 

HASH_TABLE

 

initialize_table( unsigned int table_size )

 

{
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HASH_TABLE H; 

int i;

 

/*1*/       if( table_size < MIN_TABLE_SIZE )

 

{

 

/*2*/            error("Table size too small");

 

/*3*/            return NULL;

 

}

 

/* Allocate table */

 

/*4*/       H = (HASH_TABLE) malloc( sizeof ( struct hash_tbl ) );

 

/*5*/       if( H == NULL )

 

/*6*/           fatal_error("Out of space!!!");

 

/*7*/       H->table_size = next_prime( table_size );

 

/* Allocate cells */

 

/*8*/       H->the cells = (cell *) malloc

 

( sizeof ( cell ) * H->table_size );

 

/*9*/       if( H->the_cells == NULL )

 

/*10*/           fatal_error("Out of space!!!");

 

/*11*/      for(i=0; i<H->table_size; i++ )

 

/*12*/           H->the_cells[i].info = empty;

 

/*13*/      return H;

 

}

 

Figure 5.15 Routine to initialize closed hash table

 

As with open hashing, find(key, H) will return the position of key in the hash table. If key is 
not present, then find will return the last cell. This cell is where key would be inserted if 
needed. Further, because it is marked empty, it is easy to tell that the find failed. We assume 
for convenience that the hash table is at least twice as large as the number of elements in the 
table, so quadratic resolution will always work. Otherwise, we would need to test i before line 
4. In the implementation in 

Figure 5.16, elements that are marked as deleted count as being in 
the table. This can cause problems, because the table can get too full prematurely. We shall 
discuss this item presently.  

Lines 4 through 6 represent the fast way of doing quadratic resolution. From the definition of 
the quadratic resolution function, f(i) = f(i - 1) + 2i -1, so the next cell to try can be 
determined with a multiplication by two (really a bit shift) and a decrement. If the new location 
is past the array, it can be put back in range by subtracting H_SIZE. This is faster than the 
obvious method, because it avoids the multiplication and division that seem to be required. The 
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variable name i is not the best one to use; we only use it to be consistent with the text.  

position

 

find( element_type key, HASH_TABLE H )

 

{

 

position i, current_pos;

 

/*1*/       i = 0;

 

/*2*/       current_pos = hash( key, H->table_size );

 

/* Probably need strcmp! */

 

/*3*/       while( (H->the_cells[current_pos].element != key ) &&

 

(H->the_cells[current_pos].info != empty ) )

 

{

 

/*4*/             current_pos += 2*(++i) - 1;

 

/*5*/             if( current_pos >= H->table_size )

 

/*6*/                  current_pos -= H->table_size;

 

}

 

/*7*/       return current_pos;

 

}

 

Figure 5.16 Find routine for closed hashing with quadratic probing

 

The final routine is insertion. As with open hashing, we do nothing if key is already present. It 
is a simple modification to do something else. Otherwise, we place it at the spot suggested by 
the find routine. The code is shown in 

Figure 5.17. 

 

Although quadratic probing eliminates primary clustering, elements that hash to the same position 
will probe the same alternate cells. This is known as secondary clustering. Secondary clustering 
is a slight theoretical blemish. Simulation results suggest that it generally causes less than an 

extra  probe per search. The following technique eliminates this, but does so at the cost of 
extra multiplications and divisions.  

5.4.3. Double Hashing

 

The last collision resolution method we will examine is double hashing. For double hashing, one 

popular choice is f(i) = i  h2(x). This formula says that we apply a second hash function to 

x and probe at a distance h2(x), 2h2(x), . . ., and so on. A poor choice of h2(x) would be 
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disastrous. For instance, the obvious choice h2(x) = x mod 9 would not help if 99 were inserted 

into the input in the previous examples. Thus, the function must never evaluate to zero. It is 
also important to make sure all cells can be probed (this is not possible in the example below, 
because the table size is not prime). A function such as h2(x) = R - (x mod R), with R a prime 

smaller than H_SIZE, will work well. If we choose R = 7, then Figure 5.18 shows the results of 
inserting the same keys as before.  

void

 

insert( element_type key, HASH_TABLE H )

 

{

 

position pos;

 

pos = find( key, H );

 

if( H->the_cells[pos].info != legitimate )

 

{    /* ok to insert here */

 

H->the_cells[pos].info = legitimate;

 

H->the_cells[pos].element = key;

 

/* Probably need strcpy!! */

 

}

 

}

 

Figure 5.17 Insert routine for closed hash tables with quadratic probing

 

 

 

Figure 5.18 Closed hash table with double hashing, after each insertion
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The first collision occurs when 49 is inserted. h2(49) = 7 - 0 = 7, so 49 is inserted in position 

6. h2(58) = 7 - 2 = 5, so 58 is inserted at location 3. Finally, 69 collides and is inserted at a 

distance h2(69) = 7 - 6 = 1 away. If we tried to insert 60 in position 0, we would have a 

collision. Since h2(60) = 7 - 4 = 3, we would then try positions 3, 6, 9, and then 2 until an 

empty spot is found. It is generally possible to find some bad case, but there are not too many 
here.  

As we have said before, the size of our sample hash table is not prime. We have done this for 
convenience in computing the hash function, but it is worth seeing why it is important to make 
sure the table size is prime when double hashing is used. If we attempt to insert 23 into the 
table, it would collide with 58. Since h2(23) = 7 - 2 = 5, and the table size is 10, we 

essentially have only one alternate location, and it is already taken. Thus, if the table size is 
not prime, it is possible to run out of alternate locations prematurely. However, if double 
hashing is correctly implemented, simulations imply that the expected number of probes is almost 
the same as for a random collision resolution strategy. This makes double hashing theoretically 
interesting. Quadratic probing, however, does not require the use of a second hash function and 
is thus likely to be simpler and faster in practice.  

5.5. Rehashing

 

If the table gets too full, the running time for the operations will start taking too long and 
inserts might fail for closed hashing with quadratic resolution. This can happen if there are too 
many deletions intermixed with insertions. A solution, then, is to build another table that is 
about twice as big (with associated new hash function) and scan down the entire original hash 
table, computing the new hash value for each (non-deleted) element and inserting it in the new 
table.  

As an example, suppose the elements 13, 15, 24, and 6 are inserted into a closed hash table of 
size 7. The hash function is h(x) = x mod 7. Suppose linear probing is used to resolve 
collisions. The resulting hash table appears in 

Figure 5.19. 

 

If 23 is inserted into the table, the resulting table in Figure 5.20 will be over 70 percent 
full. Because the table is so full, a new table is created. The size of this table is 17, because 
this is the first prime which is twice as large as the old table size. The new hash function is 
then h(x) = x mod 17. The old table is scanned, and elements 6, 15, 23, 24, and 13 are inserted 
into the new table. The resulting table appears in Figure 5.21.  

This entire operation is called rehashing. This is obviously a very expensive operation -- the 
running time is O(n), since there are n elements to rehash and the table size is roughly 2n, but 
it is actually not all that bad, because it happens very infrequently. In particular, there must 
have been n/2 inserts prior to the last rehash, so it essentially adds a constant cost to each 
insertion.* If this data structure is part of the program, the effect is not noticeable. On the 
other hand, if the hashing is performed as part of an interactive system, then the unfortunate 
user whose insertion caused a rehash could see a slowdown.  

*This is why the new table is made twice as large as the old table. 
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Figure 5.19 Closed hash table with linear probing with input 13,15, 6, 24

 

 

 

Figure 5.20 Closed hash table with linear probing after 23 is inserted
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Figure 5.21 Closed hash table after rehashing

 

Rehashing can be implemented in several ways with quadratic probing. One alternative is to rehash 
as soon as the table is half full. The other extreme is to rehash only when an insertion fails. A 
third, middle of the road, strategy is to rehash when the table reaches a certain load factor. 
Since performance does degrade as the load factor increases, the third strategy, implemented with 
a good cutoff, could be best.  

Rehashing frees the programmer from worrying about the table size and is important because hash 
tables cannot be made arbitrarily large in complex programs. The exercises ask you to investigate 
the use of rehashing in conjunction with lazy deletion. Rehashing can be used in other data 
structures as well. For instance, if the queue data structure of 

Chapter 3 became full, we could 
declare a double-sized array and copy everything over, freeing the original.  

Figure 5.22 shows that rehashing is simple to implement. 

 

HASH_TABLE

 

rehash( HASH_TABLE H )

 

{

 

unsigned int i, old_size;

 

cell *old_cells;

 

/*1*/        old_cells = H->the_cells;
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/*2*/        old_size = H->table_size; 

/* Get a new, empty table */

 

/*3*/       H = initialize_table( 2*old_size );

 

/* Scan through old table, reinserting into new */

 

/*4*/       for( i=0; i<old_size; i++ )

 

/*5*/            if( old_cells[i].info == legitimate )

 

/*6*/                 insert( old_cells[i].element, H );

 

/*7*/       free( old_cells );

 

/*8*/       return H;

 

}

 

Figure 5.22

 

5.6. Extendible Hashing

 

Our last topic in this chapter deals with the case where the amount of data is too large to fit 
in main memory. As we saw in Chapter 4, the main consideration then is the number of disk 
accesses required to retrieve data.  

As before, we assume that at any point we have n records to store; the value of n changes over 
time. Furthermore, at most m records fit in one disk block. We will use m = 4 in this section.  

If either open hashing or closed hashing is used, the major problem is that collisions could 
cause several blocks to be examined during a find, even for a well-distributed hash table. 
Furthermore, when the table gets too full, an extremely expensive rehashing step must be 
performed, which requires O(n) disk accesses.  

A clever alternative, known as extendible hashing, allows a find to be performed in two disk 
accesses. Insertions also require few disk accesses.  

We recall from Chapter 4 that a B-tree has depth O(logm/2
n). As m increases, the depth of a B-

tree decreases. We could in theory choose m to be so large that the depth of the B-tree would be 
1. Then any find after the first would take one disk access, since, presumably, the root node 
could be stored in main memory. The problem with this strategy is that the branching factor is so 
high that it would take considerable processing to determine which leaf the data was in. If the 
time to perform this step could be reduced, then we would have a practical scheme. This is 
exactly the strategy used by extendible hashing.  

Let us suppose, for the moment, that our data consists of several six-bit integers. Figure 5.23 
shows an extendible hashing scheme for this data. The root of the "tree" contains four pointers 
determined by the leading two bits of the data. Each leaf has up to m = 4 elements. It happens 
that in each leaf the first two bits are identical; this is indicated by the number in 
parentheses. To be more formal, D will represent the number of bits used by the root, which is 

sometimes known as the directory. The number of entries in the directory is thus 2D. dl is the 

number of leading bits that all the elements of some leaf l have in common. dl will depend on the 
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particular leaf, and dl  D. 

 

 

 

Figure 5.23 Extendible hashing: original data

 

Suppose that we want to insert the key 100100. This would go into the third leaf, but as the 
third leaf is already full, there is no room. We thus split this leaf into two leaves, which are 
now determined by the first three bits. This requires increasing the directory size to 3. These 
changes are reflected in 

Figure 5.24. 

 

Notice that all of the leaves not involved in the split are now pointed to by two adjacent 
directory entries. Thus, although an entire directory is rewritten, none of the other leaves are 
actually accessed.  

If the key 000000 is now inserted, then the first leaf is split, generating two leaves with dl = 

3. Since D = 3, the only change required in the directory is the updating of the 000 and 001 
pointers. See Figure 5.25.  

This very simple strategy provides quick access times for insert and find operations on large 
databases. There are a few important details we have not considered.  

First, it is possible that several directory splits will be required if the elements in a leaf 
agree in more than D + 1 leading bits. For instance, starting at the original example, with D = 
2, if 111010, 111011, and finally 111100 are inserted, the directory size must be increased to 4 
to distinguish between the five keys. This is an easy detail to take care of, but must not be 
forgotten. Second, there is the possibility of duplicate keys; if there are more than m 
duplicates, then this algorithm does not work at all. In this case, some other arrangements need 
to be made.  

These possibilities suggest that it is important for the bits to be fairly random. This can be 
accomplished by hashing the keys into a reasonably long integer; hence the reason for the name.  
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Figure 5.24 Extendible hashing: after insertion of 100100 and directory split

 

 

 

Figure 5.25 Extendible hashing: after insertion of 000000 and leaf split

 

We close by mentioning some of the performance properties of extendible hashing, which are 
derived after a very difficult analysis. These results are based on the reasonable assumption 
that the bit patterns are uniformly distributed.  

The expected number of leaves is (n / m) log2 e. Thus the average leaf is ln 2 = 0.69 full. This 

is the same as B-trees, which is not entirely surprising, since for both data structures new 
nodes are created when the (m + 1)st entry is added.  

The more surprising result is that the expected size of the directory (in other words, 2D) is O

(n1+1 /m/ m). If m is very small, then the directory can get unduly large. In this case, we can 
have the leaves contain pointers to the records instead of the actual records, thus increasing 
the value of m. This adds a second disk access to each find operation in order to maintain a 
smaller directory. If the directory is too large to fit in main memory, the second disk access 
would be needed anyway.  

页码，23/30Structures, Algorithm Analysis: CHAPTER 5: HASHING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



Summary 

Hash tables can be used to implement the insert and find operations in constant average time. It 
is especially important to pay attention to details such as load factor when using hash tables, 
since otherwise the time bounds are not valid. It is also important to choose the hash function 
carefully when the key is not a short string or integer.  

For open hashing, the load factor should be close to 1, although performance does not 
significantly degrade unless the load factor becomes very large. For closed hashing, the load 
factor should not exceed 0.5, unless this is completely unavoidable. If linear probing is used, 
performance degenerates rapidly as the load factor approaches 1. Rehashing can be implemented to 
allow the table to grow (and shrink), thus maintaining a reasonable load factor. This is 
important if space is tight and it is not possible just to declare a huge hash table.  

Binary search trees can also be used to implement insert and find operations. Although the 
resulting average time bounds are O(log n), binary search trees also support routines that 
require order and are thus more powerful. Using a hash table, it is not possible to find the 
minimum element. It is not possible to search efficiently for a string unless the exact string is 
known. A binary search tree could quickly find all items in a certain range; this is not 
supported by hash tables. Furthermore, the O(log n) bound is not necessarily that much more than 
O (1), especially since no multiplications or divisions are required by search trees.  

On the other hand, the worst case for hashing generally results from an implementation error, 
whereas sorted input can make binary trees perform poorly. Balanced search trees are quite 
expensive to implement, so if no ordering information is required and there is any suspicion that 
the input might be sorted, then hashing is the data structure of choice.  

Hashing applications are abundant. Compilers use hash tables to keep track of declared variables 
in source code. The data structure is known as a symbol table. Hash tables are the ideal 
application for this problem because only inserts and finds are performed. Identifiers are 
typically short, so the hash function can be computed quickly.  

A hash table is useful for any graph theory problem where the nodes have real names instead of 
numbers. Here, as the input is read, vertices are assigned integers from 1 onwards by order of 
appearance. Again, the input is likely to have large groups of alphabetized entries. For example, 
the vertices could be computers. Then if one particular installation lists its computers as ibm1, 
ibm2, ibm3, . . . , there could be a dramatic effect on efficiency if a search tree is used.  

A third common use of hash tables is in programs that play games. As the program searches through 
different lines of play, it keeps track of positions it has seen by computing a hash function 
based on the position (and storing its move for that position). If the same position reoccurs, 
usually by a simple transposition of moves, the program can avoid expensive recomputation. This 
general feature of all game-playing programs is known as the transposition table.  

Yet another use of hashing is in online spelling checkers. If misspelling detection (as opposed 
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to correction) is important, an entire dictionary can be prehashed and words can be checked in 
constant time. Hash tables are well suited for this, because it is not important to alphabetize 
words; printing out misspellings in the order they occurred in the document is certainly 
acceptable.  

We close this chapter by returning to the word puzzle problem of 

Chapter 1. If the second 
algorithm described in Chapter 1 is used, and we assume that the maximum word size is some small 
constant, then the time to read in the dictionary containing W words and put it in a hash table 
is O(W). This time is likely to be dominated by the disk I/O and not the hashing routines. The 
rest of the algorithm would test for the presence of a word for each ordered quadruple (row, 
column, orientation, number of characters). As each lookup would be O(1), and there are only a 
constant number of orientations (8) and characters per word, the running time of this phase would 

be O(r  c). The total running time would be O (r  c + W), which is a distinct 

improvement over the original O (r  c  W). We could make further optimizations, which 
would decrease the running time in practice; these are described in the exercises.  

Exercises
 

5.1 Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function h(x) = x(mod 10), 
show the resulting  

a. open hash table 

 

b. closed hash table using linear probing 

 

c. closed hash table using quadratic probing 

 

d. closed hash table with second hash function h2(x) = 7 - (x mod 7) 

 

5.2 Show the result of rehashing the hash tables in Exercise 5.1. 

 

5.3 Write a program to compute the number of collisions required in a long random sequence of 
insertions using linear probing, quadratic probing, and double hashing.  

5.4 A large number of deletions in an open hash table can cause the table to be fairly empty, 
which wastes space. In this case, we can rehash to a table half as large. Assume that we rehash 
to a larger table when there are twice as many elements as the table size. How empty should an 
open table be before we rehash to a smaller table?  

5.5 An alternative collision resolution strategy is to define a sequence, f(i) = ri, where r0 = 0

and r1, r2, . . . , rn is a random permutation of the first n integers (each integer appears 
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exactly once).  

a. Prove that under this strategy, if the table is not full, then the collision can always be 
resolved.  

b. Would this strategy be expected to eliminate clustering? 

 

c. If the load factor of the table is , what is the expected time to perform an insert? 

 

d. If the load factor of the table is  , what is the expected time for a successful search? 

 

e. Give an efficient algorithm (theoretically as well as practically) to generate the random 
sequence. Explain why the rules for choosing P are important.  

5.6 What are the advantages and disadvantages of the various collision resolution strategies? 

 

5.7 Write a program to implement the following strategy for multiplying two sparse polynomials 
P1, P2 of size m and n respectively. Each polynomial is represented as a linked list with cells 

consisting of a coefficient, an exponent, and a next pointer (Exercise 3.7). We multiply each 
term in P1 by a term in P2 for a total of mn operations. One method is to sort these terms and 

combine like terms, but this requires sorting mn records, which could be expensive, especially in 
small-memory environments. Alternatively, we could merge terms as they are computed and then sort 
the result.  

a. Write a program to implement the alternate strategy. 

 

b. If the output polynomial has about O(m + n) terms, then what is the running time of both 
methods?  

5.8 A spelling checker reads an input file and prints out all words not in some online 
dictionary. Suppose the dictionary contains 30,000 words and the file is one megabyte, so that 
the algorithm can make only one pass through the input file. A simple strategy is to read the 
dictionary into a hash table and look for each input word as it is read. Assuming that an average 
word is seven characters and that it is possible to store words of length l in l + 1 bytes (so 
space waste is not much of a consideration), and assuming a closed table, how much space does 
this require?  

5.9 If memory is limited and the entire dictionary cannot be stored in a hash table, we can still 
get an efficient algorithm that almost always works. We declare an array H_TABLE of bits 
(initialized to zeros) from 0 to TABLE_SIZE - 1. As we read in a word, we set H_TABLE[hash(word)] 
= 1. Which of the following is true?  

a. If a word hashes to a location with value 0, the word is not in the dictionary. 

 

b. If a word hashes to a location with value 1, then the word is in the dictionary. 
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Suppose we choose TABLE_SIZE = 300,007.  

c. How much memory does this require? 

 

d. What is the probability of an error in this algorithm? 

 

e. A typical document might have about three actual misspellings per page of 500 words. Is this 
algorithm usable?  

5.10 *Describe a procedure that avoids initializing a hash table (at the expense of memory). 

 

5.11 Suppose we want to find the first occurrence of a string p1p2. . . pk in a long input string 

a1a2 . . . an. We can solve this problem by hashing the pattern string, obtaining a hash value 

hp, and comparing this value with the hash value formed from a1a2 . . . ak,a2a3 . . . ak+1,a3a4 . 

. . ak+2, and so on until an-k+1an-k+2 . . . an. If we have a match of hash values, we compare 

the strings character by character to verify the match. We return the position (in a) if the 
strings actually do match, and we continue in the unlikely event that the match is false.  

*a. Show that if the hash value of aiai+1 . . . ai + k - 1 is known, then the hash value of 

ai+1ai+2 . . . ai+k can be computed in constant time.  

b. Show that the running time is O(k + n) plus the time spent refuting false matches. 

 

*c. Show that the expected number of false matches is negligible. 

 

d. Write a program to implement this algorithm. 

 

**e. Describe an algorithm that runs in O(k + n) worst case time. 

 

**f. Describe an algorithm that runs in O(n/k) average time. 

 

5.12 A BASIC program consists of a series of statements, each of which is numbered in ascending 
order. Control is passed by use of a goto or gosub and a statement number. Write a program that 
reads in a legal BASIC program and renumbers the statements so that the first starts at number f
and each statement has a number d higher than the previous statement. You may assume an upper 
limit of n statements, but the statement numbers in the input might be as large as a 32-bit 
integer. Your program must run in linear time.  

5.13 a. Implement the word puzzle program using the algorithm described at the end of the 
chapter.  

b. We can get a big speed increase by storing, in addition to each word w, all of w's prefixes. 
(If one of w's prefixes is another word in the dictionary, it is stored as a real word). Although 
this may seem to increase the size of the hash table drastically, it does not, because many words 
have the same prefixes. When a scan is performed in a particular direction, if the word that is 
looked up is not even in the hash table as a prefix, then the scan in that direction can be 
terminated early. Use this idea to write an improved program to solve the word puzzle.  
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c. If we are willing to sacrifice the sanctity of the hash table ADT, we can speed up the 
program in part (b) by noting that if, for example, we have just computed the hash function for 
"excel," we do not need to compute the hash function for "excels" from scratch. Adjust your hash 
function so that it can take advantage of its previous calculation.  

d. In 

Chapter 2, we suggested using binary search. Incorporate the idea of using prefixes into 
your binary search algorithm. The modification should be simple. Which algorithm is faster?  

5.14 Show the result of inserting the keys 10111101, 00000010, 10011011, 10111110, 01111111, 
01010001, 10010110, 00001011, 11001111, 10011110, 11011011, 00101011, 01100001, 11110000, 
01101111 into an initially empty extendible hashing data structure with m = 4.  

5.15 Write a program to implement extendible hashing. If the table is small enough to fit in main 
memory, how does its performance compare with open and closed hashing?  
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CHAPTER 6: 
PRIORITY QUEUES (HEAPS) 

Although jobs sent to a line printer are generally placed on a queue, this might 
not always be the best thing to do. For instance, one job might be particularly 
important, so that it might be desirable to allow that job to be run as soon as 
the printer is available. Conversely, if, when the printer becomes available, 
there are several one-page jobs and one hundred-page job, it might be reasonable 
to make the long job go last, even if it is not the last job submitted. 
(Unfortunately, most systems do not do this, which can be particularly annoying 
at times.)  

Similarly, in a multiuser environment, the operating system scheduler must decide 
which of several processes to run. Generally a process is only allowed to run for 
a fixed period of time. One algorithm uses a queue. Jobs are initially placed at 
the end of the queue. The scheduler will repeatedly take the first job on the 
queue, run it until either it finishes or its time limit is up, and place it at 
the end of the queue if it does not finish. This strategy is generally not 
appropriate, because very short jobs will seem to take a long time because of the 
wait involved to run. Generally, it is important that short jobs finish as fast 
as possible, so these jobs should have preference over jobs that have already 
been running. Furthermore, some jobs that are not short are still very important 
and should also have preference.  

This particular application seems to require a special kind of queue, known as a 
priority queue. In this chapter, we will discuss  

 Efficient implementation of the priority queue ADT.  

 Uses of priority queues.  

 Advanced implementations of priority queues.  

The data structures we will see are among the most elegant in computer science.  

6.1. Model 

A priority queue is a data structure that allows at least the following two 
operations: insert, which does the obvious thing, and delete_min, which finds, 
returns and removes the minimum element in the heap. The insert operation is the 
equivalent of enqueue, and delete_min is the priority queue equivalent of the 
queue's dequeue operation. The delete_min function also alters its input. Current 
thinking in the software engineering community suggests that this is no longer a 
good idea. However, we will continue to use this function because of historical 
reasons--many programmers expect delete_min to operate this way.  

Next ChapterReturn to Table of ContentsPrevious Chapter
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Figure 6.1 Basic model of a priority queue 

As with most data structures, it is sometimes possible to add other operations, 
but these are extensions and not part of the basic model depicted in Figure 6.1. 

Priority queues have many applications besides operating systems. In Chapter 7, 
we will see how priority queues are used for external sorting. Priority queues 
are also important in the implementation of greedy algorithms, which operate by 
repeatedly finding a minimum; we will see specific examples in Chapters 9 and 10. 
In this chapter we will see a use of priority queues in discrete event 
simulation.  

6.2. Simple Implementations 

There are several obvious ways to implement a priority queue. We could use a 
simple linked list, performing insertions at the front in O(1) and traversing the 
list, which requires O(n) time, to delete the minimum. Alternatively, we could 
insist that the list be always kept sorted; this makes insertions expensive (O
(n)) and delete_mins cheap (O(1)). The former is probably the better idea of the 
two, based on the fact that there are never more delete_mins than insertions.  

Another way of implementing priority queues would be to use a binary search tree. 
This gives an O(log n) average running time for both operations. This is true in 
spite of the fact that although the insertions are random, the deletions are not. 
Recall that the only element we ever delete is the minimum. Repeatedly removing a 
node that is in the left subtree would seem to hurt the balance of the tree by 
making the right subtree heavy. However, the right subtree is random. In the 
worst case, where the delete_mins have depleted the left subtree, the right 
subtree would have at most twice as many elements as it should. This adds only a 
small constant to its expected depth. Notice that the bound can be made into a 
worst-case bound by using a balanced tree; this protects one against bad 
insertion sequences.  

Using a search tree could be overkill because it supports a host of operations 
that are not required. The basic data structure we will use will not require 
pointers and will support both operations in O(log n) worst-case time. Insertion 
will actually take constant time on average, and our implementation will allow 
building a heap of n items in linear time, if no deletions intervene. We will 
then discuss how to implement heaps to support efficient merging. This additional 
operation seems to complicate matters a bit and apparently requires the use of 
pointers.  
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6.3. Binary Heap 

The implementation we will use is known as a binary heap. Its use is so common 
for priority queue implementations that when the word heap is used without a 
qualifier, it is generally assumed to be referring to this implementation of the 
data structure. In this section, we will refer to binary heaps as merely heaps. 
Like binary search trees, heaps have two properties, namely, a structure property 
and a heap order property. As with AVL trees, an operation on a heap can destroy 
one of the properties, so a heap operation must not terminate until all heap 
properties are in order. This turns out to be simple to do.  

6.3.1. Structure Property  

6.3.2. Heap Order Property  

6.3.3. Basic Heap Operations  

6.3.4. Other Heap Operations  

6.3.1. Structure Property 

A heap is a binary tree that is completely filled, with the possible exception of 
the bottom level, which is filled from left to right. Such a tree is known as a 
complete binary tree. Figure 6.2 shows an example.  

It is easy to show that a complete binary tree of height h has between 2h and 

2h+1 - 1 nodes. This implies that the height of a complete binary tree is log 

n , which is clearly O(log n).  

An important observation is that because a complete binary tree is so regular, it 
can be represented in an array and no pointers are necessary. The array in Figure 
6.3 corresponds to the heap in Figure 6.2.  
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Figure 6.2 A complete binary tree 

  

Figure 6.3 Array implementation of complete binary tree 

For any element in array position i, the left child is in position 2i, the right 
child is in the cell after the left child (2i + 1), and the parent is in position 

i/2 . Thus not only are pointers not required, but the operations required 
to traverse the tree are extremely simple and likely to be very fast on most 
computers. The only problem with this implementation is that an estimate of the 
maximum heap size is required in advance, but typically this is not a problem. In 
the figure above, the limit on the heap size is 13 elements. The array has a 
position 0; more on this later.  

A heap data structure will, then, consist of an array (of whatever type the key 
is) and integers representing the maximum 2nd current heap size. Figure 6.4 shows 
a typical priority queue declaration. Notice the similarity to the stack 
declaration in Figure 3.47. Figure 6.4a creates an empty heap. Line 11 will be 
explained later.  

Throughout this chapter, we shall draw the heaps as trees, with the implication 
that an actual implementation will use simple arrays.  

6.3.2. Heap Order Property 

The property that allows operations to be performed quickly is the heap order 
property. Since we want to be able to find the minimum quickly, it makes sense 
that the smallest element should be at the root. If we consider that any subtree 
should also be a heap, then any node should be smaller than all of its 
descendants.  

Applying this logic, we arrive at the heap order property. In a heap, for every 
node X, the key in the parent of X is smaller than (or equal to) the key in X, 
with the obvious exception of the root (which has no parent).* In Figure 6.5 the 
tree on the left is a heap, but the tree on the right is not (the dashed line 
shows the violation of heap order). As usual, we will assume that the keys are 
integers, although they could be arbitrarily complex.  

*Analogously, we can declare a (max) heap, which enables us to efficiently find 
and remove the maximum element, by changing the heap order property. Thus, a 
priority queue can be used to find either a minimum or a maximum, but this needs 
to be decided ahead of time.  

By the heap order property, the minimum element can always be found at the root. 
Thus, we get the extra operation, find_min, in constant time.  

struct heap_struct 
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{ 

/* Maximum # that can fit in the heap */ 

unsigned int max_heap_size; 

/* Current # of elements in the heap */ 

unsigned int size; 

element_type *elements; 

}; 

typedef struct heap_struct *PRIORITY_QUEUE; 

Figure 6.4 Declaration for priority queue 

PRIORITY_QUEUE 

create_pq( unsigned int max_elements ) 

{ 

PRIORITY_QUEUE H; 

/*1*/       if( max_elements < MIN_PQ_SIZE ) 

/*2*/            error("Priority queue size is too small"); 

/*3*/       H = (PRIORITY_QUEUE) malloc ( sizeof (struct heap_struct) ); 

/*4*/       if( H == NULL ) 

/*5*/            fatal_error("Out of space!!!"); 

/* Allocate the array + one extra for sentinel */ 

/*6*/       H->elements = (element_type *) malloc 

( ( max_elements+1) * sizeof (element_type) ); 

/*7*/       if( H->elements == NULL ) 

/*8*/           fatal_error("Out of space!!!"); 

/*9*/       H->max_heap_size = max_elements; 

/*10*/      H->size = 0; 

/*11*/      H->elements[0] = MIN_DATA; 

/*12*/      return H; 

} 
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Figure 6.4a 

  

Figure 6.5 Two complete trees (only the left tree is a heap) 

6.3.3. Basic Heap Operations 

It is easy (both conceptually and practically) to perform the two required 
operations. All the work involves ensuring that the heap order property is 
maintained.  

Insert  

Delete_min  

Insert 

To insert an element x into the heap, we create a hole in the next available 
location, since otherwise the tree will not be complete. If x can be placed in 
the hole without violating heap order, then we do so and are done. Otherwise we 
slide the element that is in the hole's parent node into the hole, thus bubbling 
the hole up toward the root. We continue this process until x can be placed in 
the hole. Figure 6.6 shows that to insert 14, we create a hole in the next 
available heap location. Inserting 14 in the hole would violate the heap order 
property, so 31 is slid down into the hole. This strategy is continued in Figure 
6.7 until the correct location for 14 is found.  

This general strategy is known as a percolate up; the new element is percolated 
up the heap until the correct location is found. Insertion is easily implemented 
with the code shown in Figure 6.8.  

We could have implemented the percolation in the insert routine by performing 
repeated swaps until the correct order was established, but a swap requires three 
assignment statements. If an element is percolated up d levels, the number of 
assignments performed by the swaps would be 3d. Our method uses d + 1 
assignments.  
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Figure 6.6 Attempt to insert 14: creating the hole, and bubbling the hole up 

  

Figure 6.7 The remaining two steps to insert 14 in previous heap 

/* H->element[0] is a sentinel */ 

void 

insert( element_type x, PRIORITY_QUEUE H ) 

{ 

unsigned int i; 

/*1*/       if( is_full( H ) ) 

/*2*/            error("Priority queue is full"); 

else 

{ 

/*3*/            i = ++H->size; 

/*4*/            while( H->elements[i/2] > x ) 

{ 

/*5*/                 H->elements[i] = H->elements[i/2]; 

/*6*/                 i /= 2; 

} 
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/*7*/            H->elements[i] = x; 

} 

} 

Figure 6.8 Procedure to insert into a binary heap 

If the element to be inserted is the new minimum, it will be pushed all the way 
to the top. At some point, i will be 1 and we will want to break out of the while
loop. We could do this with an explicit test, but we have chosen to put a very 
small value in position 0 in order to make the while loop terminate. This value 
must be guaranteed to be smaller than (or equal to) any element in the heap; it 
is known as a sentinel. This idea is similar to the use of header nodes in linked 
lists. By adding a dummy piece of information, we avoid a test that is executed 
once per loop iteration, thus saving some time.  

The time to do the insertion could be as much as O (log n), if the element to be 
inserted is the new minimum and is percolated all the way to the root. On 
average, the percolation terminates early; it has been shown that 2.607 
comparisons are required on average to perform an insert, so the average insert 
moves an element up 1.607 levels.  

Delete_min 

Delete_mins are handled in a similar manner as insertions. Finding the minimum is 
easy; the hard part is removing it. When the minimum is removed, a hole is 
created at the root. Since the heap now becomes one smaller, it follows that the 
last element x in the heap must move somewhere in the heap. If x can be placed in 
the hole, then we are done. This is unlikely, so we slide the smaller of the 
hole's children into the hole, thus pushing the hole down one level. We repeat 
this step until x can be placed in the hole. Thus, our action is to place x in 
its correct spot along a path from the root containing minimum children.  

In Figure 6.9 the left figure shows a heap prior to the delete_min. After 13 is 
removed, we must now try to place 31 in the heap. 31 cannot be placed in the 
hole, because this would violate heap order. Thus, we place the smaller child 
(14) in the hole, sliding the hole down one level (see Fig. 6.10). We repeat this 
again, placing 19 into the hole and creating a new hole one level deeper. We then 
place 26 in the hole and create a new hole on the bottom level. Finally, we are 
able to place 31 in the hole (Fig. 6.11). This general strategy is known as a 
percolate down. We use the same technique as in the insert routine to avoid the 
use of swaps in this routine.  
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Figure 6.9 Creation of the hole at the root 

  

Figure 6.10 Next two steps in delete_min 

  

Figure 6.11 Last two steps in delete_min 

A frequent implementation error in heaps occurs when there are an even number of 
elements in the heap, and the one node that has only one child is encountered. 
You must make sure not to assume that there are always two children, so this 
usually involves an extra test. In the code, depicted in Figure 6.12, we've done 
this test at line 8. One extremely tricky solution is always to ensure that your 
algorithm thinks every node has two children. Do this by placing a sentinel, of 
value higher than any in the heap, at the spot after the heap ends, at the start 
of each percolate down when the heap size is even. You should think very 
carefully before attempting this, and you must put in a prominent comment if you 
do use this technique.  

element_type 

delete_min( PRIORITY_QUEUE H ) 
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{ 

unsigned int i, child; 

element_type min_element, last_element; 

/*1*/       if( is_empty( H ) ) 

{ 

/*2*/            error("Priority queue is empty"); 

/*3*/            return H->elements[0]; 

} 

/*4*/       min_element = H->elements[1]; 

/*5*/       last_element = H->elements[H->size--]; 

/*6*/       for( i=1; i*2 <= H->size; i=child ) 

{ 

/* find smaller child */ 

/*7*/            child = i*2; 

/*8*/            if( ( child != H->size ) && 

( H->elements[child+1] < H->elements [child] ) ) 

/*9*/                 child++; 

/* percolate one level */ 

/*10*/           if( last_element > H->elements[child] ) 

/*11*/                H->elements[i] = H->elements[child]; 

else 

/*12*/                break; 

} 

/*13*/      H->elements[i] = last_element; 

/*14*/      return min_element; 

} 

Figure 6.12 Function to perform delete_min in a binary heap 

Although this eliminates the need to test for the presence of a right child, you 
cannot eliminate the requirement that you test when you reach the bottom because 
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this would require a sentinel for every leaf.  

The worst-case running time for this operation is O(log n). On average, the 
element that is placed at the root is percolated almost to the bottom of the heap 
(which is the level it came from), so the average running time is O (log n).  

6.3.4. Other Heap Operations 

Notice that although finding the minimum can be performed in constant time, a 
heap designed to find the minimum element (also known as a (min) heap) is of no 
help whatsoever in finding the maximum element. In fact, a heap has very little 
ordering information, so there is no way to find any particular key without a 
linear scan through the entire heap. To see this, consider the large heap 
structure (the elements are not shown) in Figure 6.13, where we see that the only 
information known about the maximum element is that it is at one of the leaves. 
Half the elements, though, are contained in leaves, so this is practically 
useless information. For this reason, if it is important to know where elements 
are, some other data structure, such as a hash table, must be used in addition to 
the heap. (Recall that the model does not allow looking inside the heap.)  

If we assume that the position of every element is known by some other method, 
then several other operations become cheap. The three operations below all run in 
logarithmic worst-case time.  

Decrease_key  

Increase_key  

Delete  

Build_heap  

Decrease_key 

The decrease_key(x, , H) operation lowers the value of the key at position x 

by a positive amount . Since this might violate the heap order, it must be 
fixed by a percolate up. This operation could be useful to system administrators: 
they can make their programs run with highest priority  
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Figure 6.13 A very large complete binary tree 

Increase_key 

The increase_key(x, , H) operation increases the value of the key at position 

x by a positive amount . This is done with a percolate down. Many schedulers 
automatically drop the priority of a process that is consuming excessive CPU 
time.  

Delete 

The delete(x, H) operation removes the node at position x from the heap. This is 

done by first performing decrease_key(x, , H) and then performing delete_min 
(H). When a process is terminated by a user (instead of finishing normally), it 
must be removed from the priority queue.  

Build_heap 

The build_heap(H) operation takes as input n keys and places them into an empty 
heap. Obviously, this can be done with n successive inserts. Since each insert 
will take O(1) average and O(log n) worst-case time, the total running time of 
this algorithm would be O(n) average but O(n log n) worst-case. Since this is a 
special instruction and there are no other operations intervening, and we already 
know that the instruction can be performed in linear average time, it is 
reasonable to expect that with reasonable care a linear time bound can be 
guaranteed.  

The general algorithm is to place the n keys into the tree in any order, 
maintaining the structure property. Then, if percolate_down(i) percolates down 
from node i, perform the algorithm in Figure 6.14 to create a heap-ordered tree. 

The first tree in Figure 6.15 is the unordered tree. The seven remaining trees in 
Figures 6.15 through 6.18 show the result of each of the seven percolate downs. 
Each dashed line corresponds to two comparisons: one to find the smaller child 
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and one to compare the smaller child with the node. Notice that there are only 10 
dashed lines in the entire algorithm (there could have been an 11th -- where?) 
corresponding to 20 comparisons.  

for(i=n/2; i>0; i-- ) 

percolate_down( i ); 

Figure 6.14 Sketch of build_heap 

  

Figure 6.15 Left: initial heap; right: after percolate_down(7) 

  

Figure 6.16 Left: after percolate_down(6); right: after percolate_down(5) 

  

Figure 6.17 Left: after percolate_down(4); right: after percolate_down(3) 
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Figure 6.18 Left: after percolate_down(2); right: after percolate_down(1) 

To bound the running time of build_heap, we must bound the number of dashed 
lines. This can be done by computing the sum of the heights of all the nodes in 
the heap, which is the maximum number of dashed lines. What we would like to show 
is that this sum is O(n).  

THEOREM 6.1.  

For the perfect binary tree of height h containing 2h+1 - 1 nodes, the sum of the 

heights of the nodes is 2h+1 - 1 - (h + 1).  

PROOF:  

It is easy to see that this tree consists of 1 node at height h, 2 nodes at 

height h - 1, 22 nodes at height h - 2, and in general 2i nodes at height h - i. 
The sum of the heights of all the nodes is then  

  

= h +2(h - 1) + 4(h - 2) + 8(h - 3) + 16(h - 4) +. . .+ 2h-1(1) 
 

(6.1) 

Multiplying by 2 gives the equation  

2S = 2h + 4(h - 1) + 8(h - 2) + 16(h - 3) + . . . + 2h(1) 

 

(6.2) 

We subtract these two equations and obtain Equation (6.3). We find that certain 
terms almost cancel. For instance, we have 2h - 2(h - 1) = 2, 4(h - 1) - 4(h - 2) 

= 4, and so on. The last term in Equation (6.2), 2h, does not appear in Equation 
(6.1); thus, it appears in Equation (6.3). The first term in Equation (6.1), h, 
does not appear in equation (6.2); thus, -h appears in Equation (6.3).  

We obtain  

S = - h + 2 + 4 + 8 + . . . + 2h-1 + 2h = (2h+1 - 1) - (h + 1) 
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(6.3) 

which proves the theorem.  

A complete tree is not a perfect binary tree, but the result we have obtained is 
an upper bound on the the sum of the heights of the nodes in a complete tree. 

Since a complete tree has between 2h and 2h+1 nodes, this theorem implies that 
this sum is O(n), where n is the number of nodes.  

Although the result we have obtained is sufficient to show that build_heap is 
linear, the bound on the sum of the heights is not as strong as possible. For a 

complete tree with n = 2h nodes, the bound we have obtained is roughly 2n. The 
sum of the heights can be shown by induction to be n - b(n), where b(n) is the 
number of 1s in the binary representation of n.  

6.4. Applications of Priority Queues 

We have already mentioned how priority queues are used in operating systems 
design. In Chapter 9, we will see how priority queues are used to implement 
several graph algorithms efficiently. Here we will show how to use priority 
queues to obtain solutions to two problems.  

6.4.1. The Selection Problem  

6.4.2. Event Simulation  

6.4.1. The Selection Problem 

The first problem we will examine is the selection problem from Chapter 1. Recall 
that the input is a list of n elements, which can be totally ordered, and an 
integer k. The selection problem is to find the kth largest element.  

Two algorithms were given in Chapter 1, but neither is very efficient. The first 
algorithm, which we shall call Algorithm 1A, is to read the elements into an 
array and sort them, returning the appropriate element. Assuming a simple sorting 

algorithm, the running time is O(n2). The alternative algorithm, 1B, is to read k
elements into an array and sort them. The smallest of these is in the kth 
position. We process the remaining elements one by one. As an element arrives, it 
is compared with kth element in the array. If it is larger, then the kth element 
is removed, and the new element is placed in the correct place among the 
remaining k - 1 elements. When the algorithm ends, the element in the kth 

position is the answer. The running time is O(n  k) (why?). If k = n/2

, then both algorithms are O(n2). Notice that for any k, we can solve the 

symmetric problem of finding the (n - k + 1)th smallest element, so k = n/2

 is really the hardest case for these algorithms. This also happens to be the 
most interesting case, since this value of k is known as the median.  
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We give two algorithms here, both of which run in O(n log n) in the extreme case 

of k = n/2 , which is a distinct improvement.  

Algorithm 6A  

Algorithm 6B  

Algorithm 6A 

For simplicity, we assume that we are interested in finding the kth smallest 
element. The algorithm is simple. We read the n elements into an array. We then 
apply the build_heap algorithm to this array. Finally, we'll perform k delete_min
operations. The last element extracted from the heap is our answer. It should be 
clear that by changing the heap order property, we could solve the original 
problem of finding the kth largest element.  

The correctness of the algorithm should be clear. The worst-case timing is O(n) 
to construct the heap, if build_heap is used, and O(log n) for each delete_min. 
Since there are k delete_mins, we obtain a total running time of O(n + k log n). 
If k = O(n/log n), then the running time is dominated by the build_heap operation 
and is O(n). For larger values of k, the running time is O(k log n). If k = 

n/2 , then the running time is (n log n).  

Notice that if we run this program for k = n and record the values as they leave 
the heap, we will have essentially sorted the input file in O(n log n) time. In 
Chapter 7, we will refine this idea to obtain a fast sorting algorithm known as 
heapsort.  

Algorithm 6B 

For the second algorithm, we return to the original problem and find the kth 
largest element. We use the idea from Algorithm 1B. At any point in time we will 
maintain a set S of the k largest elements. After the first k elements are read, 
when a new element is read, it is compared with the kth largest element, which we 
denote by Sk. Notice that Sk is the smallest element in S. If the new element is 

larger, then it replaces Sk in S. S will then have a new smallest element, which 

may or may not be the newly added element. At the end of the input, we find the 
smallest element in S and return it as the answer.  

This is essentially the same algorithm described in Chapter 1. Here, however, we 
will use a heap to implement S. The first k elements are placed into the heap in 
total time O(k) with a call to build_heap. The time to process each of the 
remaining elements is O(1), to test if the element goes into S, plus O(log k), to 
delete Sk and insert the new element if this is necessary. Thus, the total time 

is O(k + (n - k ) log k ) = O (n log k ) . This algorithm also gives a bound of 

(n log n) for finding the median.  

In Chapter 7, we will see how to solve this problem in O(n) average time. In 
Chapter 10, we will see an elegant, albeit impractical, algorithm to solve this 
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problem in O(n) worst-case time.  

6.4.2. Event Simulation 

In Section 3.4.3, we described an important queuing problem. Recall that we have 
a system, such as a bank, where customers arrive and wait on a line until one of 
k tellers is available. Customer arrival is governed by a probability 
distribution function, as is the service time (the amount of time to be served 
once a teller is available). We are interested in statistics such as how long on 
average a customer has to wait or how long the line might be.  

With certain probability distributions and values of k, these answers can be 
computed exactly. However, as k gets larger, the analysis becomes considerably 
more difficult, so it is appealing to use a computer to simulate the operation of 
the bank. In this way, the bank officers can determine how many tellers are 
needed to ensure reasonably smooth service.  

A simulation consists of processing events. The two events here are (a) a 
customer arriving and (b) a customer departing, thus freeing up a teller.  

We can use the probability functions to generate an input stream consisting of 
ordered pairs of arrival time and service time for each customer, sorted by 
arrival time. We do not need to use the exact time of day. Rather, we can use a 
quantum unit, which we will refer to as a tick.  

One way to do this simulation is to start a simulation clock at zero ticks. We 
then advance the clock one tick at a time, checking to see if there is an event. 
If there is, then we process the event(s) and compile statistics. When there are 
no customers left in the input stream and all the tellers are free, then the 
simulation is over.  

The problem with this simulation strategy is that its running time does not 
depend on the number of customers or events (there are two events per customer), 
but instead depends on the number of ticks, which is not really part of the 
input. To see why this is important, suppose we changed the clock units to 
milliticks and multiplied all the times in the input by 1,000. The result would 
be that the simulation would take 1,000 times longer!  

The key to avoiding this problem is to advance the clock to the next event time 
at each stage. This is conceptually easy to do. At any point, the next event that 
can occur is either (a) the next customer in the input file arrives, or (b) one 
of the customers at a teller leaves. Since all the times when the events will 
happen are available, we just need to find the event that happens nearest in the 
future and process that event.  

If the event is a departure, processing includes gathering statistics for the 
departing customer and checking the line (queue) to see whether there is another 
customer waiting. If so, we add that customer, process whatever statistics are 
required, compute the time when that customer will leave, and add that departure 
to the set of events waiting to happen.  

If the event is an arrival, we check for an available teller. If there is none, 
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we place the arrival on the line (queue); otherwise we give the customer a 
teller, compute the customer's departure time, and add the departure to the set 
of events waiting to happen.  

The waiting line for customers can be implemented as a queue. Since we need to 
find the event nearest in the future, it is appropriate that the set of 
departures waiting to happen be organized in a priority queue. The next event is 
thus the next arrival or next departure (whichever is sooner); both are easily 
available.  

It is then straightforward, although possibly time-consuming, to write the 
simulation routines. If there are C customers (and thus 2C events) and k tellers, 
then the running time of the simulation would be O(C log(k + 1))* because 
computing and processing each event takes O(logH), where H = k + 1 is the size of 
the heap.  

* We use O(C log( k + 1)) instead of O(C log k) to avoid confusion for the k = 1 
case.  

6.5. d-Heaps 

Binary heaps are so simple that they are almost always used when priority queues 
are needed. A simple generalization is a d-heap, which is exactly like a binary 
heap except that all nodes have d children (thus, a binary heap is a 2-heap). 
Figure 6.19 shows a 3-heap.  

Notice that a d-heap is much more shallow than a binary heap, improving the 
running time of inserts to O(logdn). However, the delete_min operation is more 

expensive, because even though the tree is shallower, the minimum of d children 
must be found, which takes d - 1 comparisons using a standard algorithm. This 
raises the time for this operation to O(d logdn). If d is a constant, both 

running times are, of course, O(log n). Furthermore, although an array can still 
be used, the multiplications and divisions to find children and parents are now 
by d, which seriously increases the running time, because we can no longer 
implement division by a bit shift. d-heaps are interesting in theory, because 
there are many algorithms where the number of insertions is much greater than the 
number of delete_mins (and thus a theoretical speedup is possible). They are also 
of interest when the priority queue is too large to fit entirely in main memory. 
In this case, a d-heap can be advantageous in much the same way as B-trees.  

The most glaring weakness of the heap implementation, aside from the inability to 
perform finds is that combining two heaps into one is a hard operation. This 
extra operation is known as a merge. There are quite a few ways of implementing 
heaps so that the running time of a merge is O(log n). We will now discuss three 
data structures, of various complexity, that support the merge operation 
efficiently. We will defer any complicated analysis until Chapter 11.  
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Figure 6.19 A d-heap 

6.6. Leftist Heaps 

It seems difficult to design a data structure that efficiently supports merging 
(that is, processes a merge in o(n) time) and uses only an array, as in a binary 
heap. The reason for this is that merging would seem to require copying one array 

into another which would take (n) time for equal-sized heaps. For this 
reason, all the advanced data structures that support efficient merging require 
the use of pointers. In practice, we can expect that this will make all the other 
operations slower; pointer manipulation is generally more time-consuming than 
multiplication and division by two.  

Like a binary heap, a leftist heap has both a structural property and an ordering 
property. Indeed, a leftist heap, like virtually all heaps used, has the same 
heap order property we have already seen. Furthermore, a leftist heap is also a 
binary tree. The only difference between a leftist heap and a binary heap is that 
leftist heaps are not perfectly balanced, but actually attempt to be very 
unbalanced.  

6.6.1. Leftist Heap Property  

6.6.2. Leftist Heap Operations  

6.6.1. Leftist Heap Property 

We define the null path length, npl(X) of any node X to be the length of the 
shortest path from X to a node without two children. Thus, the npl of a node with 
zero or one child is 0, while npl(NULL) = -1. In the tree in Figure 6.20, the 
null path lengths are indicated inside the tree nodes.  

Notice that the null path length of any node is 1 more than the minimum of the 
null path lengths of its children. This applies to nodes with less than two 
children because the null path length of is -1.  

The leftist heap property is that for every node X in the heap, the null path 
length of the left child is at least as large as that of the right child. This 
property is satisfied by only one of the trees in Figure 6.20, namely, the tree 
on the left. This property actually goes out of its way to ensure that the tree 
is unbalanced, because it clearly biases the tree to get deep towards the left. 
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Indeed, a tree consisting of a long path of left nodes is possible (and actually 
preferable to facilitate merging); hence the name leftist heap.  

  

Figure 6.20 Null path lengths for two trees; only the left tree is leftist 

Because leftist heaps tend to have deep left paths, it follows that the right 
path ought to be short. Indeed, the right path down a leftist heap is as short as 
any in the heap. Otherwise, there would be a path that goes through some node X 
and takes the left child. Then X would violate the leftist property.  

THEOREM 6.2.  

A leftist tree with r nodes on the right path must have at least 2r - 1 nodes. 

 

PROOF:  

The proof is by induction. If r = 1, there must be at least one tree node. 
Otherwise, suppose that the theorem is true for 1, 2, . . ., r. Consider a 
leftist tree with r + 1 nodes on the right path. Then the root has a right 
subtree with r nodes on the right path, and a left subtree with at least r nodes 
on the right path (otherwise it would not be leftist). Applying the inductive 

hypothesis to these subtrees yields a minimum of 2r - 1 nodes in each subtree. 

This plus the root gives at least 2r+1 - 1 nodes in the tree, proving the 
theorem.  

From this theorem, it follows immediately that a leftist tree of n nodes has a 

right path containing at most log(n + 1)  nodes. The general idea for the 
leftist heap operations is to perform all the work on the right path, which is 
guaranteed to be short. The only tricky part is that performing inserts and 
merges on the right path could destroy the leftist heap property. It turns out to 
be extremely easy to restore the property.  

6.6.2. Leftist Heap Operations 

The fundamental operation on leftist heaps is merging. Notice that insertion is 
merely a special case of merging, since we may view an insertion as a merge of a 
one-node heap with a larger heap. We will first give a simple recursive solution 
and then show how this might be done nonrecursively. Our input is the two leftist 
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heaps, H1 and H2, in Figure 6.21. You should check that these heaps really are 

leftist. Notice that the smallest elements are at the roots. In addition to space 
for the data and left and right pointers, each cell will have an entry that 
indicates the null path length.  

If either of the two heaps is empty, then we can return the other heap. 
Otherwise, to merge the two heaps, we compare their roots. First, we recursively 
merge the heap with the larger root with the right subheap of the heap with the 
smaller root. In our example, this means we recursively merge H2 with the subheap 

of H1 rooted at 8, obtaining the heap in Figure 6.22.  

Since this tree is formed recursively, and we have not yet finished the 
description of the algorithm, we cannot at this point show how this heap was 
obtained. However, it is reasonable to assume that the resulting tree is a 
leftist heap, because it was obtained via a recursive step. This is much like the 
inductive hypothesis in a proof by induction. Since we can handle the base case 
(which occurs when one tree is empty), we can assume that the recursive step 
works as long as we can finish the merge; this is rule 3 of recursion, which we 
discussed in Chapter 1. We now make this new heap the right child of the root of 
H1 (see Fig. 6.23).  

  

Figure 6.21 Two leftist heaps H1 and H2
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Figure 6.22 Result of merging H2 with H1's right subheap
 

 

 

Figure 6.23 Result of attaching leftist heap of previous figure as H1's right child

 

Although the resulting heap satisfies the heap order property, it is not leftist because the left 
subtree of the root has a null path length of 1 while the right subtree has null path length of 
2. Thus, the leftist property is violated at the root. However, it is easy to see that the 
remainder of the tree must be leftist. The right subtree of the root is leftist, because of the 
recursive step. The left subtree of the root has not been changed, so it too must still be 
leftist. Thus, we only need to fix the root. We can make the entire tree leftist by merely 
swapping the root's left and right children (

Fig. 6.24) and updating the null path length -- the 
new null path length is 1 plus the null path length of the new right child -- completing the 
merge. Notice that if the null path length is not updated, then all null path lengths will be 0, 
and the heap will not be leftist but merely random. In this case, the algorithm will work, but 
the time bound we will claim will no longer be valid.  

The description of the algorithm translates directly into code. The type definition (Fig. 6.25) 
is the same as the binary tree, except that it is augmented with the npl (null path length) 
field. We have seen in Chapter 4 that when an element is inserted into an empty binary tree, the 
pointer to the root will need to change. The easiest way to implement this is to have the 
insertion routine return a pointer to the new tree. Unfortunately, this will make the leftist 
heap insert incompatible with the binary heap insert (which does not return anything). The last 
line in Figure 6.25 represents one way out of this quandary. The leftist heap insertion routine 
which returns the new tree will be called insert1; the insert macro will make an insertion 
compatible with binary heaps. Using macros this way may not be the best or safest course, but the 
alternative, declaring a PRIORITY QUEUE as a pointer to a tree_ptr will flood the code with extra 
asterisks.  

Because insert is a macro and is textually substituted by the preprocessor, any routine that 
calls insert must be able to see the macro definition. Figure 6.25 would typically be a header 
file, so placing the macro declaration there is the only reasonable course. As we will see later. 
delete_min also needs to be written as a macro.  
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Figure 6.24 Result of swapping children of H1's root
 

typedef struct tree_node *tree_ptr;

 

struct tree_node

 

{

 

element_type element;

 

tree_ptr left;

 

tree_ptr right;

 

unsigned int npl;

 

};

 

typedef tree_ptr PRIORITY_QUEUE;

 

#define insert( x, H ) ( H = insert1( (x), H ) )

 

Figure 6.25 Leftist heap type declarations

 

The routine to merge (
Fig. 6.26) is a driver designed to remove special cases and ensure that H1 

has the smaller root. The actual merging is performed in merge1 (Fig. 6.27).  

The time to perform the merge is proportional to the sum of the length of the right paths, 
because constant work is performed at each node visited during the recursive calls. Thus we 
obtain an O(log n) time bound to merge two leftist heaps. We can also perform this operation 
nonrecursively by essentially performing two passes. In the first pass, we create a new tree by 
merging the right paths of both heaps. To do this, we arrange the nodes on the right paths of H1 

and H2 in sorted order, keeping their respective left children. In our example, the new right 

path is 3, 6, 7, 8, 18 and the resulting tree is shown in Figure 6.28. A second pass is made up 
the heap, and child swaps are performed at nodes that violate the leftist heap property. In 
Figure 6.28, there is a swap at nodes 7 and 3, and the same tree as before is obtained. The 
nonrecursive version is simpler to visualize but harder to code. We leave it to the reader to 
show that the recursive and nonrecursive procedures do the same thing.  

PRIORITY_QUEUE
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merge( PRIORITY_QUEUE H1, PRIORITY_QUEUE H2 ) 

{

 

/*1*/       if( H1 == NULL )

 

/*2*/            return H2;

 

/*3*/       if( H2 == NULL )

 

/*4*/            return H1;

 

/*5*/       if( H1->element < H2->element )

 

/*6*/            return merge1( H1, H2 );

 

else

 

/*7*/            return merge1( H2, H1 );

 

}

 

Figure 6.26 Driving routine for merging leftist heaps

 

/* For merge1, H1 has smaller root, H1 and H2 are not NULL */

 

PRIORITY_QUEUE

 

merge1( PRIORITY_QUEUE H1, PRIORITY_QUEUE H2 )

 

{

 

/*1*/       if( H1->left == NULL )  /* single node */

 

/*2*/            H1->left = H2;     /* H1->right is already NULL,

 

H1->npl is already 0*/

 

else

 

{

 

/*3*/            H1->right = merge( H1->right, H2 );

 

/*4*/            if( H1->left->npl < H1->right->npl )

 

/*5*/                 swap_children( H1 );

 

/*6*/            H1->npl = H1->right->npl + 1;

 

}

 

/*7*/       return H1;

 

}

 

Figure 6.27 Actual routine to merge leftist heaps
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Figure 6.28 Result of merging right paths of H1 and H2

 

As mentioned above, we can carry out insertions by making the item to be inserted a one-node heap 
and performing a merge. To perform a delete_min, we merely destroy the root, creating two heaps, 
which can then be merged. Thus, the time to perform a delete_min is O(logn). These two routines 
are coded in Figure 6.29 and Figure 6.30. Delete_min can be written as a macro that calls 
delete_min1 and find_min. This is left as an exercise to the reader.  

The call to free on line 4 of Figure 6.30 might look chancy, but it is actually correct. The call 
does not destroy the variable H; rather, it indicates that the cell to which it points can be 
used. That cell is placed on the freelist. H, which is a pointer, is then set to point somewhere 
else by line 5. Also, notice how the headings for these routines can be made identical to those 
for the binary heap implementation. Either priority queue package could be used, and the 
implementation would be completely transparent to the calling routines.  

Finally, we can build a leftist heap in O(n) time by building a binary heap (obviously using a 
pointer implementation). Although a binary heap is clearly leftist, this is not necessarily the 
best solution, because the heap we obtain is the worst possible leftist heap. Furthermore, 
traversing the tree in reverse-level order is not as easy with pointers. The build_heap effect 
can be obtained by recursively building the left and right subtrees and then percolating the root 
down. The exercises contain an alternative solution.  

PRIORITY_QUEUE

 

insert1( element_type x, PRIORITY_QUEUE H )

 

{

 

tree_ptr single_node;

 

/*1*/       single_node = (tree_ptr) malloc( sizeof (struct tree_node) );

 

/*2*/       if( single_node == NULL )

 

/*3*/           fatal_error("Out of space!!!");

 

else

 

{

 

/*4*/           single_node->element = x; single_node->npl = 0;
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/*5*/           single_node->left = single_node->right = NULL; 

/*6*/           H = merge( single_node, H );

 

}

 

/*7*/       return H;

 

}

 

Figure 6.29 Insertion routine for leftist heaps

 

/* Delete_min1 returns the new tree; */

 

/* to get the minimum use find_min */

 

/* This is for convenience. */

 

PRIORITY_QUEUE

 

delete_min1( PRIORITY_QUEUE H )

 

{

 

PRIORITY_QUEUE left_heap, right_heap;

 

/*1*/       left_heap = H->left;

 

/*2*/       right_heap = H->right;

 

/*3*/       free( H );

 

/*4*/       return merge( left_heap, right_heap );

 

}

 

Figure 6.30 Delete_min routine for leftist heaps

 

6.7. Skew Heaps
 

A skew heap is a self-adjusting version of a leftist heap that is incredibly simple to implement. 
The relationship of skew heaps to leftist heaps is analogous to the relation between splay trees 
and AVL trees. Skew heaps are binary trees with heap order, but there is no structural 
constraint on these trees. Unlike leftist heaps, no information is maintained about the null path 
length of any node. The right path of a skew heap can be arbitrarily long at any time, so the 
worst-case running time of all operations is O(n). However, as with splay trees, it can be shown 
(see Chapter 11) that for any m consecutive operations, the total worst-case running time is O(m 
log n). Thus, skew heaps have O(log n) amortized cost per operation.  

As with leftist heaps, the fundamental operation on skew heaps is merging. The merge routine is 
once again recursive, and we perform the exact same operations as before, with one exception. The 
difference is that for leftist heaps, we check to see whether the left and right children satisfy 
the leftist heap order property and swap them if they do not. For skew heaps, the swap is 
unconditional -- we always do it, with the one exception that the smallest of all the nodes on 
the right paths does not have its children swapped. This one exception is what happens in the 
natural recursive implementation, so it is not really a special case at all. Furthermore, it is 
not necessary to prove the bounds, but since this node is guaranteed not to have a right child, 
it would be silly to perform the swap and give it one. (In our example, there are no children of 
this node, so we do not worry about it.) Again, suppose our input is the same two heaps as 
before, Figure 6.31.  
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If we recursively merge H2 with the subheap of H1 rooted at 8, we will get the heap in Figure 

6.32.  

Again, this is done recursively, so by the third rule of recursion (Section 1.3) we need not 
worry about how it was obtained. This heap happens to be leftist, but there is no guarantee that 
this is always the case. We make this heap the new left child of H1 and the old left child of H1 

becomes the new right child (see Fig. 6.33).  

 

 

Figure 6.31 Two skew heaps H1 and H2

 

 

 

Figure 6.32 Result of merging H2 with H1's right subheap
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Figure 6.33 Result of merging skew heaps H1 and H2

 

The entire tree is leftist, but it is easy to see that that is not always true: Inserting 15 into 

this new heap would destroy the leftist property.  

We can perform all operations nonrecursively, as with leftist heaps, by merging the right paths 
and swapping left and right children for every node on the right path, with the exception of the 
last. After a few examples, it becomes clear that since all but the last node on the right path 
have their children swapped, the net effect is that this becomes the new left path (see the 
preceding example to convince yourself). This makes it very easy to merge two skew heaps 
visually.  

The implementation of skew heaps is left as a (trivial) exercise. Skew heaps have the advantage 
that no extra space is required to maintain path lengths and no tests are required to determine 
when to swap children. It is an open problem to determine precisely the expected right path 
length of both leftist and skew heaps (the latter is undoubtedly more difficult). Such a 
comparison would make it easier to determine whether the slight loss of balance information is 
compensated by the lack of testing.  

6.8. Binomial Queues

 

Although both leftist and skew heaps support merging, insertion, and delete_min all effectively 
in O(log n) time per operation, there is room for improvement because we know that binary heaps 
support insertion in constant average time per operation. Binomial queues support all three 
operations in O(log n) worst-case time per operation, but insertions take constant time on 
average.  

< P> 

 

6.8.1. Binomial Queue Structure

 

Binomial queues differ from all the priority queue implementations that we have seen in that a 
binomial queue is not a heap-ordered tree but rather a collection of heap-ordered trees, known as 
a forest. Each of the heap-ordered trees are of a constrained form known as a binomial tree (the 
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name will be obvious later). There is at most one binomial tree of every height. A binomial tree 
of height 0 is a one-node tree; a binomial tree, Bk, of height k is formed by attaching a 

binomial tree, Bk-1, to the root of another binomial tree, Bk-1. Figure 6.34 shows binomial trees 

B0, B1, B2, B3, and B4.  

It is probably obvious from the diagram that a binomial tree, Bk consists of a root with children 

B0, B1, . . ., Bk-1. Binomial trees of height k have exactly 2
k nodes, and the number of nodes at 

depth d is the binomial coefficient . If we impose heap order on the binomial trees and allow 
at most one binomial tree of any height, we can uniquely represent a priority queue of any size 
by a collection of binomial trees. For instance, a priority queue of size 13 could be represented 
by the forest B3, B2, B0. We might write this representation as 1101, which not only represents 

13 in binary but also represents the fact that B3, B2 and B0 are present in the representation 

and B1 is not.  

As an example, a priority queue of six elements could be represented as in Figure 6.35. 

 

 

 

Figure 6.34 Binomial trees B0, B1, B2, B3, and B4

 

 

 

Figure 6.35 Binomial queue H1 with six elements

 

6.8.2. Binomial Queue Operations
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The minimum element can then be found by scanning the roots of all the trees. Since there are at 
most log n different trees, the minimum can be found in O(log n) time. Alternatively, we can 
maintain knowledge of the minimum and perform the operation in O(1) time, if we remember to 
update the minimum when it changes during other operations.  

Merging two binomial queues is a conceptually easy operation, which we will describe by example. 
Consider the two binomial queues, H1 and H2 with six and seven elements, respectively, pictured 

in Figure 6.36.  

The merge is performed by essentially adding the two queues together. Let H3 be the new binomial 

queue. Since H1 has no binomial tree of height 0 and H2 does, we can just use the binomial tree 

of height 0 in H2 as part of H3. Next, we add binomial trees of height 1. Since both H1 and H2 

have binomial trees of height 1, we merge them by making the larger root a subtree of the 
smaller, creating a binomial tree of height 2, shown in Figure 6.37. Thus, H3 will not have a 

binomial tree of height 1. There are now three binomial trees of height 2, namely, the original 
trees of H1 and H2 plus the tree formed by the previous step. We keep one binomial tree of height 

2 in H3 and merge the other two, creating a binomial tree of height 3. Since H1 and H2 have no 

trees of height 3, this tree becomes part of H3 and we are finished. The resulting binomial queue 

is shown in Figure 6.38.  

 

 

Figure 6.36 Two binomial queues H1 and H2

 

 

 

Figure 6.37 Merge of the two B1 trees in H1 and H2
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Figure 6.38 Binomial queue H3: the result of merging H1 and H2

 

Since merging two binomial trees takes constant time with almost any reasonable implementation, 
and there are O(log n) binomial trees, the merge takes O(log n) time in the worst case. To make 
this operation efficient, we need to keep the trees in the binomial queue sorted by height, which 
is certainly a simple thing to do.  

Insertion is just a special case of merging, since we merely create a one-node tree and perform a 
merge. The worst-case time of this operation is likewise O(log n). More precisely, if the 
priority queue into which the element is being inserted has the property that the smallest 
nonexistent binomial tree is Bi, the running time is proportional to i + 1. For example, H3 (Fig. 

6.38) is missing a binomial tree of height 1, so the insertion will terminate in two steps. Since 

each tree in a binomial queue is present with probability , it follows that we expect an 
insertion to terminate in two steps, so the average time is constant. Furthermore, an easy 
analysis will show that performing n inserts on an initially empty binomial queue will take O(n) 
worst-case time. Indeed, it is possible to do this operation using only n - 1 comparisons; we 
leave this as an exercise.  

As an example, we show in Figures 6.39 through 6.45 the binomial queues that are formed by 
inserting 1 through 7 in order. Inserting 4 shows off a bad case. We merge 4 with B0, obtaining a 

new tree of height 1. We then merge this tree with B1, obtaining a tree of height 2, which is the 

new priority queue. We count this as three steps (two tree merges plus the stopping case). The 
next insertion after 7 is inserted is another bad case and would require three tree merges.  

A delete_min can be performed by first finding the binomial tree with the smallest root. Let this 
tree be Bk, and let the original priority queue be H. We remove the binomial tree Bk from the 

forest of trees in H, forming the new binomial queue H'. We also remove the root of Bk, creating 

binomial trees B0, B1, . . . , Bk - l, which collectively form priority queue H''. We finish the 

operation by merging H' and H''.  

As an example, suppose we perform a delete_min on H3, which is shown again in 

Figure 6.46. The 
minimum root is 12, so we obtain the two priority queues H' and H'' in Figure 6.47 and Figure 
6.48. The binomial queue that results from merging H' and H'' is the final answer and is shown in 
Figure 6.49.  

For the analysis, note first that the delete_min operation breaks the original binomial queue 
into two. It takes O (log n) time to find the tree containing the minimum element and to create 
the queues H' and H''. Merging these two queues takes O (log n) time, so the entire delete_min 
operation takes O (log n) time.  

6.8.3. Implementation of Binomial Queues
 

The delete_min operation requires the ability to find all the subtrees of the root quickly, so 
the standard representation of general trees is required: The children of each node are kept in a 
linked list, and each node has a pointer to its first child (if any). This operation also 
requires that the children be ordered by the size of their subtrees, in essentially the same way 
as we have been drawing them. The reason for this is that when a delete_min is performed, the 
children will form the binomial queue H''.  
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We also need to make sure that it is easy to merge two trees. Two binomial trees can be merged 
only if they have the same size, so if this is to be done efficiently, the size of the tree must 
be stored in the root. Also, when two trees are merged, one of the trees is added as a child to 
the other. Since this new tree will be the last child (as it will be the largest subtree), we 
must be able to keep track of the last child of each node efficiently. Only then will we be able 
to merge two binomial trees, and thus two binomial queues, efficiently. One way to do this is to 
use a circular doubly linked list. In this list, the left sibling of the first child will be the 
last child. The right sibling of the last child could be defined as the first child, but it might 
be easier just to define it as . This makes it easy to test whether the child we are pointing to 
is the last.  

To summarize, then, each node in a binomial tree will contain the data, first child, left and 
right sibling, and the number of children (which we will call the rank). Since a binomial queue 
is just a list of trees, we can use a pointer to the smallest tree as the reference to the data 
structure.  

Figure 6.51 shows how the binomial queue in Figure 6.50 is represented. Figure 6.52 shows the 
type declarations for a node in the binomial tree.  

In order to merge two binomial queues, we need a routine to merge two binomial trees of the same 
size. Figure 6.53 shows how the pointers change when two binomial trees are merged. First, the 
root of the new tree gains a child, so we must update its rank. We then need to change several 
pointers in order to splice one tree into the list of children of the root of the other tree. The 
code to do this is simple and shown in Figure 6.54.  

 

 

Figure 6.39 After 1 is inserted

 

 

 

Figure 6.40 After 2 is inserted

 

 

 

Figure 6.41 After 3 is inserted
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Figure 6.42 After 4 is inserted

 

 

 

Figure 6.43 After 5 is inserted

 

 

 

Figure 6.44 After 6 is inserted

 

 

 

Figure 6.45 After 7 is inserted

 

 

 

Figure 6.46 Binomial queue H3
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Figure 6.47 Binomial queue H', containing all the binomial trees in H3 except B3

 

 

 

Figure 6.48 Binomial queue H'': B3 with 12 removed

 

 

 

Figure 6.49 Result of delete_min(H3)

 

 

 

Figure 6.50 Binomial queue H3 drawn as a forest

 

 

 

Figure 6.51 Representation of binomial queue H3 
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typedef struct tree_node *tree_ptr; 

struct tree_node

 

{

 

element_type element;

 

tree_ptr l_sib;

 

tree_ptr r_sib;

 

tree_ptr f_child;

 

unsigned int rank;

 

};

 

typedef tree_ptr PRIORITY_QUEUE;

 

Figure 6.52 Binomial queue type declarations

 

 

 

Figure 6.53 Merging two binomial trees

 

The routine to merge two binomial queues is relatively simple. We use recursion to keep the code 
size small; a nonrecursive procedure will give better performance, and is left as 

Exercise 6.32. 
We assume the macro extract(T, H), which removes the first tree from the priority queue H, 
placing the tree in T. Suppose the smallest binomial tree is contained in H1, but not in H2. 

Then, to merge H1, we remove the first tree in H1 and add to it the result of merging the rest of 

H1 with H2. If the smallest tree is contained in both Hl and H2, then we remove both trees and 

merge them, obtaining a one-tree binomial queue H'. We then merge the remainder of Hl and H2, 

and merge this result with H'. This strategy is implemented in Figure 6.55. The other routines 
are straightforward implementations, which we leave as exercises.  

/* Merge two equal-sized binomial trees */

 

tree_ptr

 

merge_tree( tree_ptr T1, tree_ptr T2 )

 

{
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if( T1->element > T2->element ) 

return merge_tree( T2, T1 );

 

if( T1->rank++ == 0 )

 

T1->f_child = T2;

 

else

 

{

 

T2->l_sib = T1->f_child->l_sib;

 

T2->l_sib->r_sib = T2;

 

T1->f_child->l_sib = T2;

 

}

 

return T1;

 

}

 

Figure 6.54 Routine to merge two equal-sized binomial trees

 

We can extend binomial queues to support some of the nonstandard operations that binary heaps 
allow, such as decrease_key and delete, when the position of the affected element is known. A 
decrease_key is a percolate up, which can be performed in O(log n) time if we add a field to each 
node pointing to its parent. An arbitrary delete can be performed by a combination of 
decrease_key and delete_min in O(log n) time.  

Summary
 

In this chapter we have seen various implementations and uses of the priority queue ADT. The 
standard binary heap implementation is elegant because of its simplicity and speed. It requires 
no pointers and only a constant amount of extra space, yet supports the priority queue operations 
efficiently.  

We considered the additional merge operation and developed three implementations, each of which 
is unique in its own way. The leftist heap is a wonderful example of the power of recursion. The 
skew heap represents a remarkable data structure because of the lack of balance criteria. Its 
analysis, which we will perform in 

Chapter 11, is interesting in its own right. The binomial 
queue shows how a simple idea can be used to achieve a good time bound.  

We have also seen several uses of priority queues, ranging from operating systems scheduling to 
simulation. We will see their use again in Chapters 7, 9, 10.  

PRIORITY_QUEUE

 

merge( PRIORITY_QUEUE H1, PRIORITY_QUEUE H2 )

 

{

 

PRIORITY_QUEUE H3;
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tree_ptr T1, T2, T3; 

/*1*/       if( H1 == NULL )

 

/*2*/            return H2;

 

/*3*/       if( H2 == NULL )

 

/*4*/            return H1;

 

/*5*/       if( H1->rank < H2->rank )

 

{

 

/*6*/            T1 = extract( H1 ); /* extract is a macro */

 

/*7*/            H3 = merge( H1, H2 );

 

/*8*/            T1->l_sib = H3->l_sib;

 

/*9*/            H3->l_sib->r_sib = NULL;

 

/*10*/           T1->r_sib = H3; H3->l_sib = T1;

 

/*11*/           return T1;

 

{

 

/*12*/      if( H2->rank < H1->rank )

 

/*13*/           return merge( H2, H1 );

 

/* Otherwise, first two trees have same rank */

 

/*14*/      T1 = extract( H1 ); T2 = extract( H2 );

 

/*15*/      H3 = merge( H1, H2 );

 

/*16*/      T3 = merge_tree( T1, T2 );

 

/*17*/      return merge( T3, H3 );

 

}

 

Figure 6.55 Routine to merge two priority queues

 

Exercises

 

6.1 Suppose that we replace the delete_min function with find_min. Can both insert and find_min 
be implemented in constant time?  

6.2 a. Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and 2, one at 
a time, into an initially empty binary heap.  
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b. Show the result of using the linear-time algorithm to build a binary heap using the same 
input.  

6.3 Show the result of performing three delete_min operations in the heap of the previous 
exercise.  

6.4 Write the routines to do a percolate up and a percolate down in a binary heap. 

 

6.5 Write and test a program that performs the operations insert, delete_min, build_heap, 
find_min, decrease_key, delete, and increase_key in a binary heap.  

6.6 How many nodes are in the large heap in Figure 6.13? 

 

6.7 a. Prove that for binary heaps, build_heap does at most 2n - 2 comparisons between elements. 

b. Show that a heap of 8 elements can be constructed in 8 comparisons between heap elements. 

 

**c. Give an algorithm to build a binary heap in 13/8n + O(log n) element comparisons. 

 

** 6.8 Show that the expected depth of the kth smallest element in a large complete heap (you may 
assume n = 2k - 1) is bounded by log k.  

6.9 * a. Give an algorithm to find all nodes less than some value, x, in a binary heap. Your 
algorithm should run in O(K), where K is the number of nodes output.  

b. Does your algorithm extend to any of the other heap structures discussed in this chapter? 

 

**6.10 Propose an algorithm to insert m nodes into a binary heap on n elements in O(m + log n) 
time. Prove your time bound.  

6.11 Write a program to take n elements and do the following: 

 

a. Insert them into a heap one by one, 

 

b. Build a heap in linear time. 
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Compare the running time of both algorithms for sorted, reverse-ordered, and random inputs.  

6.12 Each delete_min operation uses 2 log n comparisons in the worst case. 

 

*a. Propose a scheme so that the delete_min operation uses only log n + log log n + O(1) 
comparisons between elements. This need not imply less data movement.  

**b. Extend your scheme in part (a) so that only log n + log log log n + O(1) comparisons are 
performed.  

**c. How far can you take this idea? 

 

d. Do the savings in comparisons compensate for the increased complexity of your algorithm? 

 

6.13 If a d-heap is stored as an array, for an entry located in position i, where are the parents 
and children?  

6.14 Suppose we need to perform m percolate_ups and n delete_mins on a d-heap that initially has 
n elements.  

a. What is the total running time of all operations in terms of m, n, and d? 

 

b. If d = 2, what is the running time of all heap operations? 

 

c. If d = (n), what is the total running time? 

 

*d. What choice of d minimizes the total running time? 

 

6.15 A min-max heap is a data structure that supports both delete_min and delete_max in O(log n) 
per operation. The structure is identical to a binary heap, but the heap order property is that 
for any node, X, at even depth, the key stored at X is smaller than the parent but larger than 
the grandparent (where this makes sense), and for any node X at odd depth, the key stored at X is 
larger than the parent but smaller than the grandparent. See Figure 6.56.  

a. How do we find the minimum and maximum elements? 

 

*b. Give an algorithm to insert a new node into the min-max heap. 

 

*c. Give an algorithm to perform delete_min and delete_max. 

 

*d. Can you build a min-max heap in linear time? 

 

*e. Suppose we would like to support delete_min, delete_max, and merge. Propose a data structure 
to support all operations in O(log n) time.  
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6.16 Merge the two leftist heaps in Figure 6.57. 

 

6.17 Show the result of inserting keys 1 to 15 in order into an initially empty leftist heap. 

 

6.18 Prove or disprove: A perfectly balanced tree forms if keys 1 to 2k - 1 are inserted in order 
into an initially empty leftist heap.  

6.19 Give an example of input which generates the best leftist heap. 

 

 

 

Figure 6.56 Min-max heap

 

 

 

Figure 6.57
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6.20 a. Can leftist heaps efficiently support decrease_key? 

 

b. What changes, if any (if possible), are required to do this? 

 

6.21 One way to delete nodes from a known position in a leftist heap is to use a lazy strategy. 
To delete a node, merely mark it deleted. When a find_min or delete_min is performed, there is a 
potential problem if the root is marked deleted, since then the node has to be actually deleted 
and the real minimum needs to be found, which may involve deleting other marked nodes. In this 
strategy, deletes cost one unit, but the cost of a delete_min or find_min depends on the number 
of nodes that are marked deleted. Suppose that after a delete_min or find_min there are k fewer 
marked nodes than before the operation.  

*a. Show how to perform the delete_min in O(k log n) time. 

 

**b. Propose an implementation, with an analysis to show that the time to perform the delete_min 
is O(k log(2n/k)).  

6.22 We can perform build_heap in linear time for leftist heaps by considering each element as a 
one-node leftist heap, placing all these heaps on a queue, and performing the following step: 
Until only one heap is on the queue, dequeue two heaps, merge them, and enqueue the result.  

a. Prove that this algorithm is O(n) in the worst case. 

 

b. Why might this algorithm be preferable to the algorithm described in the text? 

 

6.23 Merge the two skew heaps in Figure 6.57. 

 

6.24 Show the result of inserting keys 1 to 15 in order into a skew heap. 

 

6.25 Prove or disprove: A perfectly balanced tree forms if the keys 1 to 2k - 1 are inserted in 
order into an initially empty skew heap.  

6.26 A skew heap of n elements can be built using the standard binary heap algorithm. Can we use 
the same merging strategy described in Exercise 6.22 for skew heaps to get an O(n) running time? 

6.27 Prove that a binomial tree Bk has binomial trees B0, B1, . . . , Bk-1 as children of the 
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root.  

6.28 Prove that a binomial tree of height k has  nodes at depth d. 

 

6.29 Merge the two binomial queues in Figure 6.58. 

 

6.30 a. Show that n inserts into an initially empty binomial queue takes O(n) time in the worst 
case.  

b. Give an algorithm to build a binomial queue of n elements, using at most n - 1 comparisons 
between elements.  

*6.31 Propose an algorithm to insert m nodes into a binomial queue of n elements in O(m + log n) 
worst-case time. Prove your bound.  

6.32 Write nonrecursive routines to perform merge, insert, and delete_min using binomial queues. 

**6.33 Suppose we extend binomial queues to allow at most two trees of the same height per 
structure. Can we obtain O(1) worst-case time for insertion while retaining O(log n) for the 
other operations?  

 

 

Figure 6.58

 

页码，42/46Structures, Algorithm Analysis: CHAPTER 6: PRIORITY QUEUES (HEAPS)

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



6.34 Suppose you have a number of boxes, each of which can hold total weight C and items i1, i2, 

i3, . . . , in, which weigh w1, w2, w3, . . . , wn. The object is to pack all the items without 

placing more weight in any box than its capacity and using as few boxes as possible. For 
instance, if C = 5, and the items have weights 2, 2, 3, 3, then we can solve the problem with two 
boxes. In general, this problem is very hard and no efficient solution is known. Write programs 
to implement efficiently the following approximation strategies:  

*a. Place the weight in the first box for which it fits (creating a new box if there is no box 
with enough room). (This strategy and all that follow would give three boxes, which is 
suboptimal.)  

b. Place the weight in the box with the most room for it. 

 

*c. Place the weight in the most filled box that can accept it without overflowing. 

 

**d. Are any of these strategies enhanced by presorting the items by weight? 

 

6.35 Suppose we want to add the decrease_all_keys( ) operation to the heap repertoire. The 
result of this operation is that all keys in the heap have their value decreased by an amount 

. For the heap implementation of your choice, explain the necessary modifications so that all 
other operations retain their running times and decrease_all_keys runs in O(1).  

6.36 Which of the two selection algorithms has the better time bound? 
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CHAPTER 7: 
SORTING 

In this chapter we discuss the problem of sorting an array of elements. To 
simplify matters, we will assume in our examples that the array contains only 
integers, although, obviously, more complicated structures are possible. For most 
of this chapter, we will also assume that the entire sort can be done in main 
memory, so that the number of elements is relatively small (less than a million). 
Sorts that cannot be performed in main memory and must be done on disk or tape 
are also quite important. This type of sorting, known as external sorting, will 
be discussed at the end of the chapter.  

Our investigation of internal sorting will show that  

 There are several easy algorithms to sort in O(n2), such as insertion sort. 

 There is an algorithm, Shellsort, that is very simple to code, runs in o

(n2), and is efficient in practice.  

 There are slightly more complicated O(n log n) sorting algorithms.  

 Any general-purpose sorting algorithm requires (n log n) comparisons.  

The rest of this chapter will describe and analyze the various sorting 
algorithms. These algorithms contain interesting and important ideas for code 
optimization as well as algorithm design. Sorting is also an example where the 
analysis can be precisely performed. Be forewarned that where appropriate, we 
will do as much analysis as possible.  

7.1. Preliminaries 

The algorithms we describe will all be exchangeable. Each will be passed an array 
containing the elements and an integer containing the number of elements.  

We will assume that n, the number of elements passed to our sorting routines, has 
already been checked and is legal. For some of the sorting routines, it will be 
convenient to place a sentinel in position 0, so we will assume that the array 
ranges from 0 to n. The actual data will start at position 1 for all the sorts.  

We will also assume the existence of the "<" and ">" operators, which can be used 
to place a consistent ordering on the input. Besides the assignment operator, 
these are the only operations allowed on the input data. Sorting under these 
conditions is known as comparison-based sorting.  

7.2. Insertion Sort 

Next ChapterReturn to Table of ContentsPrevious Chapter
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7.2.1. The Algorithm 

One of the simplest sorting algorithms is the insertion sort. Insertion sort 
consists of n - 1 passes. For pass p = 2 through n, insertion sort ensures that 
the elements in positions 1 through p are in sorted order. Insertion sort makes 
use of the fact that elements in positions 1 through p - 1 are already known to 
be in sorted order. Figure 7.1 shows a sample file after each pass of insertion 
sort.  

Figure 7.1 shows the general strategy. In pass p, we move the pth element left 
until its correct place is found among the first p elements. The code in Figure 
7.2 implements this strategy. The sentinel in a[0] terminates the while loop in 
the event that in some pass an element is moved all the way to the front. Lines 3 
through 6 implement that data movement without the explicit use of swaps. The 
element in position p is saved in tmp, and all larger elements (prior to position 
p) are moved one spot to the right. Then tmp is placed in the correct spot. This 
is the same technique that was used in the implementation of binary heaps.  

Original        34   8  64  51  32  21     Positions Moved 

---------------------------------------------------------- 

After p = 2      8  34  64  51  32  21             1 

After p = 3      8  34  64  51  32  21             0 

After p = 4      8  34  51  64  32  21             1 

After p = 5      8  32  34  51  64  21             3 

After p = 6      8  21  32  34  51  64             4 

Figure 7.1 Insertion sort after each pass 

void 

insertion_sort( input_type a[ ], unsigned int n ) 

{ 

unsigned int j, p; 

input_type tmp; 

/*1*/       a[0] = MIN_DATA;         /* sentinel */ 

/*2*/       for( p=2; p <= n; p++ ) 

{ 

/*3*/            tmp = a[p]; 

/*4*/            for( j = p; tmp < a[j-1]; j-- ) 

/*5*/                 a[j] = a[j-1]; 
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/*6*/            a[j] = tmp; 

} 

} 

Figure 7.2 Insertion sort routine. 

7.2.2. Analysis of Insertion Sort 

Because of the nested loops, each of which can take n iterations, insertion sort 

is O(n2). Furthermore, this bound is tight, because input in reverse order can 
actually achieve this bound. A precise calculation shows that the test at line 4 
can be executed at most p times for each value of p. Summing over all p gives a 
total of  

  

On the other hand, if the input is presorted, the running time is O(n), because 
the test in the inner for loop always fails immediately. Indeed, if the input is 
almost sorted (this term will be more rigorously defined in the next section), 
insertion sort will run quickly. Because of this wide variation, it is worth 
analyzing the average-case behavior of this algorithm. It turns out that the 

average case is (n2) for insertion sort, as well as for a variety of other 
sorting algorithms, as the next section shows.  

7.3. A Lower Bound for Simple Sorting 
Algorithms 

An inversion in an array of numbers is any ordered pair (i, j) having the 
property that i < j but a[i] > a[j]. In the example of the last section, the 
input list 34, 8, 64, 51, 32, 21 had nine inversions, namely (34,8), (34,32), 
(34,21), (64,51), (64,32), (64,21), (51,32), (51,21) and (32,21). Notice that 
this is exactly the number of swaps that needed to be (implicitly) performed by 
insertion sort. This is always the case, because swapping two adjacent elements 
that are out of place removes exactly one inversion, and a sorted file has no 
inversions. Since there is O(n) other work involved in the algorithm, the running 
time of insertion sort is O(I + n), where I is the number of inversions in the 
original file. Thus, insertion sort runs in linear time if the number of 
inversions is O(n).  

We can compute precise bounds on the average running time of insertion sort by 
computing the average number of inversions in a permutation. As usual, defining 
average is a difficult proposition. We will assume that there are no duplicate 
elements (if we allow duplicates, it is not even clear what the average number of 
duplicates is). Using this assumption, we can assume that the input is some 
permutation of the first n integers (since only relative ordering is important) 
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and that all are equally likely. Under these assumptions, we have the following 
theorem:  

THEOREM 7.1.  

The average number of inversions in an array of n distinct numbers is n(n - 1)/4. 

PROOF:  

For any list, L, of numbers, consider Lr, the list in reverse order. The reverse 

list of the example is 21, 32, 51, 64, 34, 8. Consider any pair of two numbers in 
the list (x, y), with y > x. Clearly, in exactly one of L and Lr this ordered 

pair represents an inversion. The total number of these pairs in a list L and its 
reverse Lr is n(n - 1)/2. Thus, an average list has half this amount, or n(n -

1)/4 inversions.  

This theorem implies that insertion sort is quadratic on average. It also 
provides a very strong lower bound about any algorithm that only exchanges 
adjacent elements.  

THEOREM 7.2.  

Any algorithm that sorts by exchanging adjacent elements requires (n2) time 
on average.  

PROOF:  

The average number of inversions is initially n(n - 1)/4 = (n2). Each swap 

removes only one inversion, so (n2) swaps are required. 
 

This is an example of a lower-bound proof. It is valid not only for insertion 
sort, which performs adjacent exchanges implicitly, but also for other simple 
algorithms such as bubble sort and selection sort, which we will not describe 
here. In fact, it is valid over an entire class of sorting algorithms, including 
those undiscovered, that perform only adjacent exchanges. Because of this, this 
proof cannot be confirmed empirically. Although this lower-bound proof is rather 
simple, in general proving lower bounds is much more complicated than proving 
upper bounds and in some cases resembles voodoo.  

This lower bound shows us that in order for a sorting algorithm to run in 

subquadratic, or o(n2), time, it must do comparisons and, in particular, 
exchanges between elements that are far apart. A sorting algorithm makes progress 
by eliminating inversions, and to run efficiently, it must eliminate more than 
just one inversion per exchange.  

7.4. Shellsort 

Shellsort, named after its inventor, Donald Shell, was one of the first 
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algorithms to break the quadratic time barrier, although it was not until several 
years after its initial discovery that a subquadratic time bound was proven. As 
suggested in the previous section, it works by comparing elements that are 
distant; the distance between comparisons decreases as the algorithm runs until 
the last phase, in which adjacent elements are compared. For this reason, 
Shellsort is sometimes referred to as diminishing increment sort.  

Shellsort uses a sequence, h1, h2, . . . , ht, called the increment sequence. Any 

increment sequence will do as long as h1 = 1, but obviously some choices are 

better than others (we will discuss that question later). After a phase, using 

some increment hk, for every i, we have a[i]  a[i+hk] (where this makes 

sense); all elements spaced hk apart are sorted. The file is then said to be hk-

sorted. For example, Figure 7.3 shows an array after several phases of Shellsort. 
An important property of Shellsort (which we state without proof) is that an hk-

sorted file that is then hk-1-sorted remains hk-sorted. If this were not the 

case, the algorithm would likely be of little value, since work done by early 
phases would be undone by later phases.  

Original      81  94  11  93  12  35  17  95  28  58  41  75  15 

---------------------------------------------------------------- 

After 5-sort  35  17  11  28  12  41  75  15  96  58  81  94  95 

After 3-sort  28  12  11  35  15  41  58  17  94  75  81  96  95 

After 1-sort  11  12  15  17  28  35  41  58  75  81  94  95  96 

Figure 7.3 Shellsort after each pass 

The general strategy to hk-sort is for each position, i, in hk + 1, hk + 2, . . . 

, n, place the element in the correct spot among i, i - hk, i - 2hk, etc. 

Although this does not affect the implementation, a careful examination shows 
that the action of an hk-sort is to perform an insertion sort on hk independent 

sub-arrays. This observation will be important when we analyze the running time 
of Shellsort.  

A popular (but poor) choice for increment sequence is to use the sequence 

suggested by Shell: ht n/2 , and hk = hk+1/2 . 
Figure 7.4 contains a 

program that implements Shellsort using this sequence. We shall see later that 
there are increment sequences that give a significant improvement in the 
algorithm's running time.  

The program in Figure 7.4 avoids the explicit use of swaps in the same manner as 
our implementation of insertion sort. Unfortunately, for Shellsort it is not 
possible to use a sentinel, and so the code in lines 3 through 7 is not quite as 
clean as the corresponding code in insertion sort (lines 3 through 5).  

void 
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shellsort( input_type a[ ], unsigned int n ) 

{ 

unsigned int i, j, increment; 

input_type tmp; 

/*1*/       for( increment = n/2; increment > 0; increment /= 2 ) 

/*2*/            for( i = increment+1; i<=n; i++ ) 

{ 

/*3*/                 tmp = a[i]; 

/*4*/                 for( j = i; j > increment; j -= increment ) 

/*5*/                      if( tmp < a[j-increment] ) 

/*6*/                           a[j] = a[j-increment]; 

else 

/*7*/                           break; 

/*8*/                 a[j] = tmp; 

} 

} 

Figure 7.4 Shellsort routine using Shell's increments (better increments are 
possible) 

7.4.1. Worst-Case Analysis of Shellsort 

Although Shellsort is simple to code, the analysis of its running time is quite 
another story. The running time of Shellsort depends on the choice of increment 
sequence, and the proofs can be rather involved. The average-case analysis of 
Shellsort is a long-standing open problem, except for the most trivial increment 
sequences. We will prove tight worst-case bounds for two particular increment 
sequences.  

THEOREM 7.3.  

The worst-case running time of Shellsort, using Shell's increments, is (n2). 

PROOF:  

The proof requires showing not only an upper bound on the worst-case running time 

but also showing that there exists some input that actually takes (n2) time 
to run. We prove the lower bound first, by constructing a bad case. First, we 
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choose n to be a power of 2. This makes all the increments even, except for the 
last increment, which is 1. Now, we will give as input an array, input_data, with 
the n/2 largest numbers in the even positions and the n/2 smallest numbers in the 
odd positions. As all the increments except the last are even, when we come to 
the last pass, the n/2 largest numbers are still all in even positions and the 
n/2 smallest numbers are still all in odd positions. The ith smallest number (i 

 n/2) is thus in position 2i -1 before the beginning of the last pass. 
Restoring the ith element to its correct place requires moving it i -1 spaces in 
the array. Thus, to merely place the n/2 smallest elements in the correct place 

requires at least  work. As an example, Figure 7.5 shows a bad 
(but not the worst) input when n = 16. The number of inversions remaining after 
the 2-sort is exactly 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28; thus, the last pass will 
take considerable time.  

To finish the proof, we show the upper bound of O(n2). As we have observed 
before, a pass with increment hk consists of hk insertion sorts of about n/hk 

elements. Since insertion sort is quadratic, the total cost of a pass is O(hk

(n/hk)
2) = O(n2/hk). Summing over all passes gives a total bound of 

. Because the increments form a geometric series 
with common ratio 2, and the largest term in the series is 

. Thus we obtain a total bound of O(n2). 
 

The problem with Shell's increments is that pairs of increments are not 
necessarily relatively prime, and thus the smaller increment can have little 
effect. Hibbard suggested a slightly different increment sequence, which gives 
better results in practice (and theoretically). His increments are of the form 1, 

3, 7, . . . , 2k - 1. Although these increments are almost identical, the key 
difference is that consecutive increments have no common factors. We now analyze 
the worst-case running time of Shellsort for this increment sequence. The proof 
is rather complicated.  

    Start     1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

------------------------------------------------------------------- 

After 8-sort  1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

After 4-sort  1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

After 2-sort  1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

After 1-sort  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Figure 7.5 Bad case for Shellsort with Shell's increments 

THEOREM 7.4.  
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The worst-case running time of Shellsort using Hibbard's increments is (n3/2).

PROOF:  

We will prove only the upper bound and leave the proof of the lower bound as an 
exercise. The proof requires some well-known results from additive number theory. 
References to these results are provided at the end of the chapter.  

For the upper bound, as before, we bound the running time of each pass and sum 

over all passes. For increments hk > n
1/2, we will use the bound O(n2/hk) from the 

previous theorem. Although this bound holds for the other increments, it is too 
large to be useful. Intuitively, we must take advantage of the fact that this 
increment sequence is special. What we need to show is that for any element ap in 

position p, when it is time to perform an hk-sort, there are only a few elements 

to the left of position p that are larger than ap.  

When we come to hk-sort the input array, we know that it has already been hk+1- 

and hk+2-sorted. Prior to the hk-sort, consider elements in positions p and p - 

i, i < p. If i is a multiple of hk+1 or hk+2, then clearly a[p - i] < a[p]. We can 

say more, however. If i is expressible as a linear combination (in nonnegative 
integers) of hk+1 and hk+2, then a[p - i] < a[p]. As an example, when we come to 

3-sort, the file is already 7- and 15-sorted. 52 is expressible as a linear 
combination of 7 and 15, because 52 = 1 * 7 + 3 * 15. Thus, a[100] cannot be 

larger than a[152] because a[100]  a[107]  a[122]  a[137]  a [152]. 

Now, hk+2 = 2hk +1 + 1, so hk +1 and hk +2 cannot share a common factor. In this 

case, it is possible to show that all integers that are at least as large as 

(hk+1 - 1)(hk+2 - 1) = 8h
2
k + 4hk can be expressed as a linear combination of hk+1 

and hk+2 (see the reference at the end of the chapter).  

This tells us that the body of the for loop at line 4 can be executed at most 8hk
+ 4 = O(hk) times for each of the n - hk positions. This gives a bound of O(nhk) 

per pass.  

Using the fact that about half the increments satisfy , and assuming 
that t is even, the total running time is then  

  

Because both sums are geometric series, and since ,this simplifies 
to  
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The average-case running time of Shellsort, using Hibbard's increments, is 

thought to be O(n5/4), based on simulations, but nobody has been able to prove 

this. Pratt has shown that the (n3/2) bound applies to a wide range of 
increment sequences.  

Sedgewick has proposed several increment sequences that give an O(n4/3) worst-
case running time (also achievable). The average running time is conjectured to 

be O(n7/6) for these increment sequences. Empirical studies show that these 
sequences perform significantly better in practice than Hibbard's. The best of 
these is the sequence {1, 5, 19, 41, 109, . . .}, in which the terms are either 

of the form 9  4i - 9  2i + 1 or 4i - 3  2i + 1. This is most easily 
implemented by placing these values in an array. This increment sequence is the 
best known in practice, although there is a lingering possibility that some 
increment sequence might exist that could give a significant improvement in the 
running time of Shellsort.  

There are several other results on Shellsort that (generally) require difficult 
theorems from number theory and combinatorics and are mainly of theoretical 
interest. Shellsort is a fine example of a very simple algorithm with an 
extremely complex analysis.  

The performance of Shellsort is quite acceptable in practice, even for n in the 
tens of thousands. The simplicity of the code makes it the algorithm of choice 
for sorting up to moderately large input.  

7.5. Heapsort 

As mentioned in Chapter 6, priority queues can be used to sort in O(n log n) 
time. The algorithm based on this idea is known as heapsort and gives the best 
Big-Oh running time we have seen so far. In practice however, it is slower than a 
version of Shellsort that uses Sedgewick's increment sequence.  

Recall, from Chapter 6, that the basic strategy is to build a binary heap of n 
elements. This stage takes O(n) time. We then perform n delete_min operations. 
The elements leave the heap smallest first, in sorted order. By recording these 
elements in a second array and then copying the array back, we sort n elements. 
Since each delete_min takes O(log n) time, the total running time is O(n log n). 

The main problem with this algorithm is that it uses an extra array. Thus, the 
memory requirement is doubled. This could be a problem in some instances. Notice 
that the extra time spent copying the second array back to the first is only O
(n), so that this is not likely to affect the running time significantly. The 
problem is space.  

A clever way to avoid using a second array makes use of the fact that after each 
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delete_min, the heap shrinks by 1. Thus the cell that was last in the heap can be 
used to store the element that was just deleted. As an example, suppose we have a 
heap with six elements. The first delete_min produces a1. Now the heap has only 

five elements, so we can place a1 in position 6. The next delete_min produces a2. 

Since the heap will now only have four elements, we can place a2 in position 5.  

Using this strategy, after the last delete_min the array will contain the 
elements in decreasing sorted order. If we want the elements in the more typical 
increasing sorted order, we can change the ordering property so that the parent 
has a larger key than the child. Thus we have a (max)heap.  

In our implementation, we will use a (max)heap, but avoid the actual ADT for 
the purposes of speed. As usual, everything is done in an array. The first step 
builds the heap in linear time. We then perform n - 1 delete_maxes by swapping 
the last element in the heap with the first, decrementing the heap size, and 
percolating down. When the algorithm terminates, the array contains the elements 
in sorted order. For instance, consider the input sequence 31, 41, 59, 26, 53, 
58, 97. The resulting heap is shown in Figure 7.6.  

Figure 7.7 shows the heap that results after the first delete_max. As the figures 
imply, the last element in the heap is 31; 97 has been placed in a part of the 
heap array that is technically no longer part of the heap. After 5 more 
delete_max operations, the heap will actually have only one element, but the 
elements left in the heap array will be in sorted order.  

The code to perform heapsort is given in Figure 7.8.  

  

Figure 7.6 (Max) heap after build_heap phase 
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Figure 7.7 Heap after first delete_max 

void 

heapsort( input_type a[], unsigned int n ) 

{ 

int i; 

/*1*/      for( i=n/2; i>0; i-- )      /* build_heap */ 

/*2*/           perc_down (a, i, n ); 

/*3*/      for( i=n; i>=2; i-- ) 

{ 

/*4*/           swap( &a[1], &a[i] );    /* delete_max */ 

/*5*/           perc_down( a, 1, i-1 ); 

} 

} 

void 

perc_down( input_type a[], unsigned int i, unsigned int n ) 

{ 

unsigned int child; 

input_type tmp; 

/*1*/      for( tmp=a[i]; i*2<=n; i=child ) 

{ 
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/*2*/           child = i*2; 

/*3*/           if( ( child != n ) && ( a[child+1] > a[child] ) ) 

/*4*/               child++; 

/*5*/           if( tmp < a[child] ) 

/*6*/                a[i] = a[child]; 

else 

/*7*/                break; 

} 

/*8*/      a[i] = tmp; 

} 

Figure 7.8 Heapsort 

7.6. Mergesort 

We now turn our attention to mergesort. Mergesort runs in O(n log n) worst-case 
running time, and the number of comparisons used is nearly optimal. It is a fine 
example of a recursive algorithm.  

The fundamental operation in this algorithm is merging two sorted lists. Because 
the lists are sorted, this can be done in one pass through the input, if the 
output is put in a third list. The basic merging algorithm takes two input arrays 
a and b, an output array c, and three counters, aptr, bptr, and cptr, which are 
initially set to the beginning of their respective arrays. The smaller of a[aptr] 
and b[bptr] is copied to the next entry in c, and the appropriate counters are 
advanced. When either input list is exhausted, the remainder of the other list is 
copied to c. An example of how the merge routine works is provided for the 
following input.  

  

If the array a contains 1, 13, 24, 26, and b contains 2, 15, 27, 38, then the 
algorithm proceeds as follows: First, a comparison is done between 1 and 2. 1 is 
added to c, and then 13 and 2 are compared.  

  

2 is added to c, and then 13 and 15 are compared.  
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13 is added to c, and then 24 and 15 are compared. This proceeds until 26 and 27 
are compared.  

  

26 is added to c, and the a array is exhausted.  

  

The remainder of the b array is then copied to c.  

  

The time to merge two sorted lists is clearly linear, because at most n - 1 
comparisons are made, where n is the total number of elements. To see this, note 
that every comparison adds an element to c, except the last comparison, which 
adds at least two.  

The mergesort algorithm is therefore easy to describe. If n = 1, there is only 
one element to sort, and the answer is at hand. Otherwise, recursively mergesort 
the first half and the second half. This gives two sorted halves, which can then 
be merged together using the merging algorithm described above. For instance, to 
sort the eight-element array 24, 13, 26, 1, 2, 27, 38, 15, we recursively sort 
the first four and last four elements, obtaining 1, 13, 24, 26, 2, 15, 27, 38. 
Then we merge the two halves as above, obtaining the final list 1, 2, 13, 15, 24, 
26, 27, 38. This algorithm is a classic divide-and-conquer strategy. The problem 
is divided into smaller problems and solved recursively. The conquering phase 
consists of patching together the answers. Divide-and-conquer is a very powerful 
use of recursion that we will see many times.  

An implementation of mergesort is provided in Figure 7.9. The procedure called 
mergesort is just a driver for the recursive routine m_sort.  

页码，13/49Structures, Algorithm Analysis: CHAPTER 7: SORTING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



The merge routine is subtle. If a temporary array is declared locally for each 
recursive call of merge, then there could be log n temporary arrays active at any 
point. This could be fatal on a machine with small memory. On the other hand, if 
the merge routine dynamically allocates and frees the minimum amount of temporary 
memory, considerable time will be used by malloc. A close examination shows that 
since merge is the last line of m_sort, there only needs to be one temporary 
array active at any point. Further, we can use any part of the temporary array; 
we will use the same portion as the input array a. This allows the improvement 
described at the end of this section. Figure 7.10 implements the merge routine.  

7.6.1. Analysis of Mergesort  

7.6.1. Analysis of Mergesort 

Mergesort is a classic example of the techniques used to analyze recursive 
routines. It is not obvious that mergesort can easily be rewritten without 
recursion (it can), so we have to write a recurrence relation for the running 
time. We will assume that n is a power of 2, so that we always split into even 
halves. For n = 1, the time to mergesort is constant, which we will denote by 1. 
Otherwise, the time to mergesort n numbers is equal to the time to do two 
recursive mergesorts of size n/2, plus the time to merge, which is linear. The 
equations below say this exactly:  

T(1) = 1 

T(n) = 2T(n/2) + n 

void 

mergesort( input_type a[], unsigned int n ) 

{ 

input_type *tmp_array; 

tmp_array = (input_type *) malloc 

( (n+1) * sizeof (input_type) ); 

if( tmp_array != NULL ) 

{ 

m_sort( a, tmp_array, 1, n ); 

free( tmp_array ); 

} 

else 

fatal_error("No space for tmp array!!!"); 

} 
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void 

m_sort( input_type a[], input_type tmp_array[ ], 

int left, int right ) 

{ 

int center; 

if( left < right ) 

{ 

center = (left + right) / 2; 

m_sort( a, tmp_array, left, center ); 

m_sort( a, tmp_array, center+1, right ); 

merge( a, tmp_array, left, center+1, right ); 

} 

} 

Figure 7.9 Mergesort routine 

This is a standard recurrence relation, which can be solved several ways. We will 
show two methods. The first idea is to divide the recurrence relation through by 
n. The reason for doing this will become apparent soon. This yields  

  

This equation is valid for any n that is a power of 2, so we may also write  

  

/* 1_pos = start of left half, r_pos = start of right half */ 

void 

merge( input_type a[ ], input_type tmp_array[ ], 

int l_pos, int r_pos, int right_end ) 

{ 

int i, left_end, num_elements, tmp_pos; 

left_end = r_pos - 1; 
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tmp_pos = l_pos; 

num_elements = right_end - l_pos + 1; 

/* main loop */ 

while( ( 1_pos <= left_end ) && ( r_pos <= right_end ) ) 

if( a[1_pos] <= a[r_pos] ) 

tmp_array[tmp_pos++] = a[l_pos++]; 

else 

tmp_array[tmp_pos++] = a[r_pos++]; 

while( l_pos <= left_end )  /* copy rest of first half */ 

tmp_array[tmp_pos++] = a[l_pos++]; 

while( r_pos <= right_end ) /* copy rest of second half */ 

tmp_array[tmp_pos++] = a[r_pos++]; 

/* copy tmp_array back */ 

for(i=1; i <= num_elements; i++, right_end-- ) 

a[right_end] = tmp_array[right_end]; 

} 

Figure 7.10 Merge routine 

and  

  

Now add up all the equations. This means that we add all of the terms on the 
left-hand side and set the result equal to the sum of all of the terms on the 
right-hand side. Observe that the term T(n/2)/(n/2) appears on both sides and 
thus cancels. In fact, virtually all the terms appear on both sides and cancel. 
This is called telescoping a sum. After everything is added, the final result is 

  

because all of the other terms cancel and there are log n equations, and so all 
the 1s at the end of these equations add up to log n. Multiplying through by n 
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gives the final answer.  

T(n) = n log n + n = O(n log n) 

Notice that if we did not divide through by n at the start of the solutions, the 
sum would not telescope. This is why it was necessary to divide through by n.  

An alternative method is to substitute the recurrence relation continually on the 
right-hand side. We have  

T(n) = 2T(n/2) + n 

Since we can substitute n/2 into the main equation,  

2T(n/2) = 2(2(T(n/4)) + n/2) = 4T(n/4) + n 

we have  

T(n) = 4T(n/4) + 2n 

Again, by substituting n/4 into the main equation, we see that  

4T(n/4) = 4(2T(n/8)) + (n/4) = 8T(n/8) + n 

So we have  

T(n) = 8T(n/8) + 3n 

Continuing in this manner, we obtain  

T(n) = 2kT(n/2k) + k  n

 

Using k = log n, we obtain  

T(n) = nT(1) + n log n = n log n + n 

The choice of which method to use is a matter of taste. The first method tends to 

produce scrap work that fits better on a standard  sheet of paper, 
leading to fewer mathematical errors, but it requires a certain amount of 
experience to apply. The second method is more of a brute force approach.  

Recall that we have assumed n = 2k. The analysis can be refined to handle cases 
when n is not a power of 2. The answer turns out to be almost identical (this is 
usually the case).  

Although mergesort's running time is O(n log n), it is hardly ever used for main 
memory sorts. The main problem is that merging two sorted lists requires linear 
extra memory, and the additional work spent copying to the temporary array and 
back, throughout the algorithm, has the effect of slowing down the sort 
considerably. This copying can be avoided by judiciously switching the roles of a
and tmp_array at alternate levels of the recursion. A variant of mergesort can 
also be implemented nonrecursively (Exercise 7.13), but even so, for serious 
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internal sorting applications, the algorithm of choice is quicksort, which is 
described in the next section. Nevertheless, as we will see later in this 
chapter, the merging routine is the cornerstone of most external sorting 
algorithms.  

7.7. Quicksort 

As its name implies, quicksort is the fastest known sorting algorithm in 
practice. Its average running time is O(n log n). It is very fast, mainly due to 

a very tight and highly optimized inner loop. It has O(n2) worst-case 
performance, but this can be made exponentially unlikely with a little effort. 
The quicksort algorithm is simple to understand and prove correct, although for 
many years it had the reputation of being an algorithm that could in theory be 
highly optimized but in practice was impossible to code correctly (no doubt 
because of FORTRAN). Like mergesort, quicksort is a divide-and-conquer 
recursive algorithm. The basic algorithm to sort an array S consists of the 
following four easy steps:  

1. If the number of elements in S is 0 or 1, then return.  

2. Pick any element v in S. This is called the pivot.  

3. Partition S - {v} (the remaining elements in S) into two disjoint groups: S1 = 

{x  S - {v}| x  v}, and S2 = {x  S -{v}| x  v}. 
 

4. Return { quicksort(S1) followed by v followed by quicksort(S2)}. 
 

Since the partition step ambiguously describes what to do with elements equal to 
the pivot, this becomes a design decision. Part of a good implementation is 
handling this case as efficiently as possible. Intuitively, we would hope that 
about half the keys that are equal to the pivot go into S1 and the other half 

into S2, much as we like binary search trees to be balanced.  

Figure 7.11 shows the action of quicksort on a set of numbers. The pivot is 
chosen (by chance) to be 65. The remaining elements in the set are partitioned 
into two smaller sets. Recursively sorting the set of smaller numbers yields 0, 
13, 26, 31, 43, 57 (by rule 3 of recursion). The set of large numbers is 
similarly sorted. The sorted arrangement of the entire set is then trivially 
obtained.  

It should be clear that this algorithm works, but it is not clear why it is any 
faster than mergesort. Like mergesort, it recursively solves two subproblems and 
requires linear additional work (step 3), but, unlike mergesort, the subproblems 
are not guaranteed to be of equal size, which is potentially bad. The reason that 
quicksort is faster is that the partitioning step can actually be performed in 
place and very efficiently. This efficiency more than makes up for the lack of 
equal-sized recursive calls.  

The algorithm as described so far lacks quite a few details, which we now fill 
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in. There are many ways to implement steps 2 and 3; the method presented here is 
the result of extensive analysis and empirical study and represents a very 
efficient way to implement quicksort. Even the slightest deviations from this 
method can cause surprisingly bad results.  

7.7.1. Picking the Pivot  

7.7.2. Partitioning Strategy  

7.7.3. Small Files  

7.7.4. Actual Quicksort Routines  

7.7.5. Analysis of Quicksort  

7.7.6. A Linear-Expected-Time Algorithm for Selection  

7.7.1. Picking the Pivot 

Although the algorithm as described works no matter which element is chosen as 
pivot, some choices are obviously better than others.  
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Figure 7.11 The steps of quicksort illustrated by example 

A Wrong Way  

A Safe Maneuver  

Median-of-Three Partitioning  

A Wrong Way 

The popular, uninformed choice is to use the first element as the pivot. This is 
acceptable if the input is random, but if the input is presorted or in reverse 
order, then the pivot provides a poor partition, because virtually all the 
elements go into S1 or S2. Worse, this happens consistently throughout the 

recursive calls. The practical effect is that if the first element is used as the 
pivot and the input is presorted, then quicksort will take quadratic time to do 
essentially nothing at all, which is quite embarrassing. Moreover, presorted 
input (or input with a large presorted section) is quite frequent, so using the 
first element as pivot is an absolutely horrible idea and should be discarded 
immediately. An alternative is choosing the larger of the first two distinct keys 
as pivot, but this has the same bad properties as merely choosing the first key. 
Do not use that pivoting strategy either.  

A Safe Maneuver 

A safe course is merely to choose the pivot randomly. This strategy is generally 
perfectly safe, unless the random number generator has a flaw (which is not as 
uncommon as you might think), since it is very unlikely that a random pivot would 
consistently provide a poor partition. On the other hand, random number 
generation is generally an expensive commodity and does not reduce the average 
running time of the rest of the algorithm at all.  

Median-of-Three Partitioning 

The median of a group of n numbers is the n/2 th largest number. The best 
choice of pivot would be the median of the file. Unfortunately, this is hard to 
calculate and would slow down quicksort considerably. A good estimate can be 
obtained by picking three elements randomly and using the median of these three 
as pivot. The randomness turns out not to help much, so the common course is to 
use as pivot the median of the left, right and center elements. For instance, 
with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0 as before, the left element is 8, the 

right element is 0 and the center (in position (left + right)/2 ) element 
is 6. Thus, the pivot would be v = 6. Using median-of-three partitioning clearly 
eliminates the bad case for sorted input (the partitions become equal in this 
case) and actually reduces the running time of quicksort by about 5 percent.  

7.7.2. Partitioning Strategy 

There are several partitioning strategies used in practice, but the one described 
here is known to give good results. It is very easy, as we shall see, to do this 
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wrong or inefficiently, but it is safe to use a known method. The first step is 
to get the pivot element out of the way by swapping it with the last element. i 
starts at the first element and j starts at the next-to-last element. If the 
original input was the same as before, the following figure shows the current 
situation.  

8  1  4  9  0  3  5  2  7  6 

                        

i                       j 

For now we will assume that all the elements are distinct. Later on we will worry 
about what to do in the presence of duplicates. As a limiting case, our algorithm 
must do the proper thing if all of the elements are identical. It is surprising 
how easy it is to do the wrong thing.  

What our partitioning stage wants to do is to move all the small elements to the 
left part of the array and all the large elements to the right part. "Small" and 
"large" are, of course, relative to the pivot.  

While i is to the left of j, we move i right, skipping over elements that are 
smaller than the pivot. We move j left, skipping over elements that are larger 
than the pivot. When i and j have stopped, i is pointing at a large element and j
is pointing at a small element. If i is to the left of j, those elements are 
swapped. The effect is to push a large element to the right and a small element 
to the left. In the example above, i would not move and j would slide over one 
place. The situation is as follows.  

8  1  4  9  0  3  5  2  7  6 

                     

i                    j 

We then swap the elements pointed to by i and j and repeat the process until i 
and j cross.  

         After First Swap 

---------------------------- 

2  1  4  9  0  3  5  8  7  6 

                     

i                    j 

      Before Second Swap 

---------------------------- 
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2  1  4  9  0  3  5  8  7  6 

                  

         i        j 

      After Second Swap 

---------------------------- 

2  1  4  5  0  3  9  8  7  6 

                  

         i        j 

     Before Third Swap 

---------------------------- 

2  1  4  5  0  3  9  8  7  6 

   

j  i 

At this stage, i and j have crossed, so no swap is performed. The final part of 
the partitioning is to swap the pivot element with the element pointed to by i.  

           After Swap with Pivot 

--------------------------------------- 

2   1   4   5   0   3   6   8   7     9 

                                      

                        i           pivot 

When the pivot is swapped with i in the last step, we know that every element in 
a position p < i must be small. This is because either position p contained a 
small element to start with, or the large element originally in position p was 
replaced during a swap. A similar argument shows that elements in positions p > i
must be large.  

One important detail we must consider is how to handle keys that are equal to the 
pivot. The questions are whether or not i should stop when it sees a key equal to 
the pivot and whether or not j should stop when it sees a key equal to the pivot. 
Intuitively, i and j ought to do the same thing, since otherwise the partitioning 
step is biased. For instance, if i stops and j does not, then all keys that are 
equal to the pivot will wind up in S2.  
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To get an idea of what might be good, we consider the case where all the keys in 
the file are identical. If both i and j stop, there will be many swaps between 
identical elements. Although this seems useless, the positive effect is that i 
and j will cross in the middle, so when the pivot is replaced, the partition 
creates two nearly equal subfiles. The mergesort analysis tells us that the total 
running time would then be O(n log n).  

If neither i nor j stop, and code is present to prevent them from running off the 
end of the array, no swaps will be performed. Although this seems good, a correct 
implementation would then swap the pivot into the last spot that i touched, which 
would be the next-to-last position (or last, depending on the exact 
implementation). This would create very uneven subfiles. If all the keys are 
identical, the running time is O(n2). The effect is the same as using the first 

element as a pivot for presorted input. It takes quadratic time to do nothing!  

Thus, we find that it is better to do the unnecessary swaps and create even 
subfiles than to risk wildly uneven subfiles. Therefore, we will have both i and 
j stop if they encounter a key equal to the pivot. This turns out to be the only 
one of the four possibilities that does not take quadratic time for this input.  

At first glance it may seem that worrying about a file of identical elements is 
silly. After all, why would anyone want to sort 5,000 identical elements? 
However, recall that quicksort is recursive. Suppose there are 100,000 elements, 
of which 5,000 are identical. Eventually, quicksort will make the recursive call 
on only these 5,000 elements. Then it really will be important to make sure that 
5,000 identical elements can be sorted efficiently.  

7.7.3. Small Files 

For very small files (n  20), quicksort does not perform as well as insertion 
sort. Furthermore, because quicksort is recursive, these cases will occur 
frequently. A common solution is not to use quicksort recursively for small 
files, but instead use a sorting algorithm that is efficient for small files, 
such as insertion sort. An even better idea is to leave the file slightly 
unsorted and finish up with insertion sort. This works well, because insertion 
sort is efficient for nearly sorted files. Using this strategy can actually save 
about 15 percent in the running time (over doing no cutoff at all). A good cutoff 
range is n = 10, although any cutoff between 5 and 20 is likely to produce 
similar results. This also saves nasty degenerate cases, such as taking the 
median of three elements when there are only one or two. Of course, if there is a 
bug in the basic quicksort routine, then the insertion sort will be very, very 
slow.  

7.7.4. Actual Quicksort Routines 

The driver for quicksort is shown in Figure 7.12.  

The general form of the routines will be to pass the array and the range of the 
array (left and right) to be sorted. The first routine to deal with is pivot 
selection. The easiest way to do this is to sort a[left], a[right], and a[center] 
in place. This has the extra advantage that the smallest of the three winds up in 
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a[left], which is where the partitioning step would put it anyway. The largest 
winds up in a[right], which is also the correct place, since it is larger than 
the pivot. Therefore, we can place the pivot in a[right - 1] and initialize i and 
j to left + 1 and right - 2 in the partition phase. Yet another benefit is that 
because a[left] is smaller than the pivot, it will act as a sentinel for j. Thus, 
we do not need to worry about j running past the end. Since i will stop on keys 
equal to the pivot, storing the pivot in a[right - 1] provides a sentinel for i. 
The code in Figure 7.13 does the median-of-three partitioning with all the side 
effects described. It may seem that it is only slightly inefficient to compute 
the pivot by a method that does not actually sort a[left], a[center], and a
[right], but, surprisingly, this produces bad results (see Exercise 7.37).  

The real heart of the quicksort routine is in Figure 7.14. It includes the 
partitioning and recursive calls. There are several things worth noting in this 
implementation. Line 3 initializes i and j to 1 past their correct values, so 
that there are no special cases to consider. This initialization depends on the 
fact that median-of-three partitioning has some side effects; this program will 
not work if you try to use it without change with a simple pivoting strategy, 
because i and j start in the wrong place and there is no longer a sentinel for j. 

void 

quick_sort( input_type a[ ], unsigned int n ) 

{ 

q_sort( a, 1, n ); 

insertion_sort( a, n ); 

} 

Figure 7.12 Driver for quicksort 

/* Return median of left, center, and right. */ 

/* Order these and hide pivot */ 

input_type 

median3( input_type a[], int left, int right ) 

{ 

int center; 

center = (left + right) / 2; 

if( a[left] > a[center] ) 

swap( &a[left], &a[center] ); 

if( a[left] > a[right] ) 

swap( &a[left], &a[right] ); 
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if( a[center] > a[right] ) 

swap( &a[center], &a[right] ); 

/* invariant: a[left] <= a[center] <= a[right] */ 

swap( &a[center], &a[right-1] );     /* hide pivot */ 

return a[right-1];                   /* return pivot */ 

} 

Figure 7.13 Code to perform median-of-three partitioning 

The swap at line 8 is sometimes written explicitly, for speed purposes. For the 
algorithm to be fast, it is necessary to force the compiler to compile this code 
in-line. Many compilers will do this automatically, if asked to, but for those 
that do not the difference can be significant.  

Finally, lines 5 and 6 show why quicksort is so fast. The inner loop of the 
algorithm consists of an increment/decrement (by 1, which is fast), a test, and a 
jump. There is no extra juggling as there is in mergesort. This code is still 
surprisingly tricky. It is tempting to replace lines 3 through 9 with the 
statements in Figure 7.15. This does not work, because there would be an infinite 
loop if a[i] = a[j] = pivot.  

7.7.5. Analysis of Quicksort 

Like mergesort, quicksort is recursive, and hence, its analysis requires solving 
a recurrence formula. We will do the analysis for a quicksort, assuming a random 
pivot (no median-of-three partitioning) and no cutoff for small files. We will 
take T(0) = T(1) = 1, as in mergesort. The running time of quicksort is equal to 
the running time of the two recursive calls plus the linear time spent in the 
partition (the pivot selection takes only constant time). This gives the basic 
quicksort relation  

T(n) = T(i) + T(n - i - 1) + cn  

(7.1) 

where i = |S1| is the number of elements in S1. We will look at three cases. 
 

void 

q_sort( input_type a[], int left, int right ) 

{ 

int i, j; 

input_type pivot; 

/*1*/       if( left + CUTOFF <= right ) 

页码，25/49Structures, Algorithm Analysis: CHAPTER 7: SORTING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



{ 

/*2*/           pivot = median3( a, left, right ); 

/*3*/           i=left; j=right-1; 

/*4*/           for(;;) 

{ 

/*5*/                while( a[++i] < pivot ); 

/*6*/                while( a[--j] > pivot ); 

/*7*/                if( i < j ) 

/*8*/                     swap( &a[i], &a[j] ); 

else 

/*9*/                     break; 

} 

/*10*/          swap( &a[i], &a[right-1] );   /*restore pivot*/ 

/*11*/          q_sort( a, left, i-1 ); 

/*12*/          q_sort( a, i+1, right ); 

} 

} 

Figure 7.14 Main quicksort routine 

/*3*/           i=left+1; j=right-2; 

/*4*/           for(;;) 

{ 

/*5*/                while( a[i] < pivot ) i++; 

/*6*/                while( a[j] > pivot ) j--; 

/*7*/                if( i < j ) 

/*8*/                     swap( &a[i], &a[j] ); 

else 

/*9*/                     break; 

} 
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Figure 7.15 A small change to quicksort, which breaks the algorithm 

Worst-Case Analysis  

Best-Case Analysis  

Average-Case Analysis  

Worst-Case Analysis 

The pivot is the smallest element, all the time. Then i = 0 and if we ignore T(0) 
= 1, which is insignificant, the recurrence is  

T(n) = T(n - 1) + cn, n > 1  

(7.2) 

We telescope, using Equation (7.2) repeatedly. Thus  

T(n -1) = T(n - 2) + c(n - 1)  

(7.3) 

T(n - 2) = T(n - 3) + c(n - 2)  

(7.4) 

...  

T(2) = T(1) + c(2)  

(7.5) 

Adding up all these equations yields  

  

(7.6) 

as claimed earlier.  

Best-Case Analysis 

In the best case, the pivot is in the middle. To simplify the math, we assume 
that the two subfiles are each exactly half the size of the original, and 
although this gives a slight overestimate, this is acceptable because we are only 
interested in a Big-Oh answer.  

T(n) = 2T(n/2) + cn  
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(7.7) 

Divide both sides of Equation (7.7) by n.  

  

(7.8) 

We will telescope using this equation.  

  

(7.9) 

  

(7.10) 

  

(7.11) 

We add all the equations from (7.7) to (7.11) and note that there are log n of 
them:  

  

(7.12) 

which yields  

T(n) = cn log n + n = O(n log n)  

(7.13) 

Notice that this is the exact same analysis as mergesort, hence we get the same 
answer.  

Average-Case Analysis 

This is the most difficult part. For the average case, we assume that each of the 
file sizes for S1 is equally likely, and hence has probability 1/n. This 
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assumption is actually valid for our pivoting and partitioning strategy, but it 
is not valid for some others. Partitioning strategies that do not preserve the 
randomness of the subfiles cannot use this analysis. Interestingly, these 
strategies seem to result in programs that take longer to run in practice.  

With this assumption, the average value of T(i), and hence T(n - i -1), is 

. Equation (7.1) then becomes  

  

(7.14) 

If Equation (7.14) is multiplied by n, it becomes  

  

(7.15) 

We need to remove the summation sign to simplify matters. We note that we can 
telescope with one more equation.  

  

(7.16) 

If we subtract (7.16) from (7.15), we obtain  

nT(n) - (n -1)T(n -1) = 2T(n -1) + 2cn -c  

(7.17) 

We rearrange terms and drop the insignificant -c on the right, obtaining  

nT(n) = (n + 1)T(n -1) + 2cn  

(7.18) 

We now have a formula for T(n) in terms of T(n -1) only. Again the idea is to 
telescope, but Equation (7.18) is in the wrong form. Divide (7.18) by n(n + 1):  

  

(7.19) 
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Now we can telescope.  

  

(7.20) 

  

(7.21) 

  

(7.22) 

Adding equations (7.19) through (7.22) yields  

  

(7.23) 

The sum is about loge , where   0.577 is known as Euler's 

constant, so  

  

(7.24) 

  

(7.25) 

Although this analysis seems complicated, it really is not--the steps are natural 
once you have seen some recurrence relations. The analysis can actually be taken 
further. The highly optimized version that was described above has also been 
analyzed, and this result gets extremely difficult, involving complicated 
recurrences and advanced mathematics. The effects of equal keys has also been 
analyzed in detail, and it turns out that the code presented does the right 
thing.  
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7.7.6. A Linear-Expected-Time Algorithm for Selection 

Quicksort can be modified to solve the selection problem, which we have seen in 
chapters 1 and 6. Recall that by using a priority queue, we can find the kth 
largest (or smallest) element in O(n + k log n). For the special case of finding 
the median, this gives an O(n log n) algorithm.  

Since we can sort the file in O(n log n) time, one might expect to obtain a 
better time bound for selection. The algorithm we present to find the kth 
smallest element in a set S is almost identical to quicksort. In fact, the first 
three steps are the same. We will call this algorithm quickselect. Let |Si| 

denote the number of elements in Si. The steps of quickselect are  

1. If |S| = 1, then k = 1 and return the elements in S as the answer. If a cutoff 

for small files is being used and |S|  CUTOFF, then sort S and return the kth 
smallest element.  

2. Pick a pivot element, v  S.  

3. Partition S - {v} into S1 and S2, as was done with quicksort. 
 

4. If k  |S1|, then the kth smallest element must be in S1. In this case, 

return quickselect (S1, k). If k = 1 + |S1|, then the pivot is the kth smallest 

element and we can return it as the answer. Otherwise, the kth smallest element 
lies in S2, and it is the (k - |S1| - 1)st smallest element in S2. We make a 

recursive call and return quickselect (S2, k - |S1| - 1).  

In contrast to quicksort, quickselect makes only one recursive call instead of 
two. The worst case of quickselect is identical to that of quicksort and is O

(n2). Intuitively, this is because quicksort's worst case is when one of S1 and 

S2 is empty; thus, quickselect is not really saving a recursive call. The average 

running time, however, is O(n). The analysis is similar to quicksort's and is 
left as an exercise.  

The implementation of quickselect is even simpler than the abstract description 
might imply. The code to do this shown in Figure 7.16. When the algorithm 
terminates, the kth smallest element is in position k. This destroys the original 
ordering; if this is not desirable, then a copy must be made.  

/* q_select places the kth smallest element in a[k]*/ 

void 

q_select( input_type a[], int k, int left, int right ) 

{ 
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int i, j; 

input_type pivot; 

/*1*/       if( left + CUTOFF <= right ) 

{ 

/*2*/            pivot = median3( a, left, right ); 

/*3*/            i=left; j=right-1; 

/*4*/            for(;;) 

{ 

/*5*/                 while( a[++i] < pivot ); 

/*6*/                 while( a[--j] > pivot ); 

/*7*/                 if (i < j ) 

/*8*/                      swap( &a[i], &a[j] ); 

else 

/*9*/                     break; 

} 

/*10*/           swap( &a[i], &a[right-1] ); /* restore pivot */ 

/*11*/           if( k < i) 

/*12*/                q_select( a, k, left, i-1 ); 

else 

/*13*/            if( k > i ) 

/*14*/                 q-select( a, k, i+1, right ); 

} 

else 

/*15*/            insert_sort(a, left, right ); 

} 

Figure 7.16 Main quickselect routine 

Using a median-of-three pivoting strategy makes the chance of the worst case 
occuring almost negligible. By carefully choosing the pivot, however, we can 
eliminate the quadratic worst case and ensure an O(n) algorithm. The overhead 
involved in doing this is considerable, so the resulting algorithm is mostly of 
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theoretical interest. In Chapter 10, we will examine the linear-time worst-case 
algorithm for selection, and we shall also see an interesting technique of 
choosing the pivot that results in a somewhat faster selection algorithm in 
practice.  

7.8. Sorting Large Structures 

Throughout our discussion of sorting, we have assumed that the elements to be 
sorted are simply integers. Frequently, we need to sort large structures by a 
certain key. For instance, we might have payroll records, with each record 
consisting of a name, address, phone number, financial information such as 
salary, and tax information. We might want to sort this information by one 
particular field, such as the name. For all of our algorithms, the fundamental 
operation is the swap, but here swapping two structures can be a very expensive 
operation, because the structures are potentially large. If this is the case, a 
practical solution is to have the input array contain pointers to the structures. 
We sort by comparing the keys the pointers point to, swapping pointers when 
necessary. This means that all the data movement is essentially the same as if we 
were sorting integers. This is known as indirect sorting; we can use this 
technique for most of the data structures we have described. This justifies our 
assumption that complex structures can be handled without tremendous loss 
efficiency.  

7.9. A General Lower Bound for Sorting 

Although we have O(n log n) algorithms for sorting, it is not clear that this is 
as good as we can do. In this section, we prove that any algorithm for sorting 

that uses only comparisons requires (n log n) comparisons (and hence time) in 
the worst case, so that mergesort and heapsort are optimal to within a constant 

factor. The proof can be extended to show that (n log n) comparisons are 
required, even on average, for any sorting algorithm that uses only comparisons, 
which means that quicksort is optimal on average to within a constant factor.  

Specifically, we will prove the following result: Any sorting algorithm that uses 

only comparisons requires log n!  comparisons in the worst case and log n! 
comparisons on average. We will assume that all n elements are distinct, since 
any sorting algorithm must work for this case.  

7.9.1 Decision Trees  

7.9.1 Decision Trees 

A decision tree is an abstraction used to prove lower bounds. In our context, a 
decision tree is a binary tree. Each node represents a set of possible orderings, 
consistent with comparisons that have been made, among the elements. The results 
of the comparisons are the tree edges.  
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Figure 7.17 A decision tree for three-element insertion sort 

The decision tree in Figure 7.17 represents an algorithm that sorts the three 
elements a, b, and c. The initial state of the algorithm is at the root. (We will 
use the terms state and node interchangeably.) No comparisons have been done, so 
all orderings are legal. The first comparison that this particular algorithm 
performs compares a and b. The two results lead to two possible states. If a < b, 
then only three possibilities remain. If the algorithm reaches node 2, then it 
will compare a and c. Other algorithms might do different things; a different 
algorithm would have a different decision tree. If a > c, the algorithm enters 
state 5. Since there is only one ordering that is consistent, the algorithm can 
terminate and report that it has completed the sort. If a < c, the algorithm 
cannot do this, because there are two possible orderings and it cannot possibly 
be sure which is correct. In this case, the algorithm will require one more 
comparison.  

Every algorithm that sorts by using only comparisons can be represented by a 
decision tree. Of course, it is only feasible to draw the tree for extremely 
small input sizes. The number of comparisons used by the sorting algorithm is 
equal to the depth of the deepest leaf. In our case, this algorithm uses three 
comparisons in the worst case. The average number of comparisons used is equal to 
the average depth of the leaves. Since a decision tree is large, it follows that 
there must be some long paths. To prove the lower bounds, all that needs to be 
shown are some basic tree properties.  

LEMMA 7.1.  

Let T be a binary tree of depth d. Then T has at most 2d leaves. 

 

PROOF:  
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The proof is by induction. If d = 0, then there is at most one leaf, so the basis 
is true. Otherwise, we have a root, which cannot be a leaf, and a left and right 
subtree, each of depth at most d - 1. By the induction hypothesis, they can each 

have at most 2d-1 leaves, giving a total of at most 2d leaves. This proves the 
lemma.  

LEMMA 7.2.  

A binary tree with L leaves must have depth at least log L .  

PROOF:  

Immediate from the preceding lemma.  

THEOREM 7.5.  

Any sorting algorithm that uses only comparisons between elements requires at 

least log n!  comparisons in the worst case.  

PROOF:  

A decision tree to sort n elements must have n! leaves. The theorem follows from 
the preceding lemma.  

THEOREM 7.6.  

Any sorting algorithm that uses only comparisons between elements requires (n 
log n) comparisons.  

PROOF:  

From the previous theorem, log n! comparisons are required.  

  

This type of lower-bound argument, when used to prove a worst-case result, is 
sometimes known as an information-theoretic lower bound. The general theorem says 
that if there are P different possible cases to distinguish, and the questions 

are of the form YES/NO, then log P  questions are always required in some 
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case by any algorithm to solve the problem. It is possible to prove a similar 
result for the average-case running time of any comparison-based sorting 
algorithm. This result is implied by the following lemma, which is left as an 
exercise: Any binary tree with L leaves has an average depth of at least log L.  

7.10. Bucket Sort 

Although we proved in the previous section that any general sorting algorithm 

that uses only comparisons requires (n log n) time in the worst case, recall 
that it is still possible to sort in linear time in some special cases.  

A simple example is bucket sort. For bucket sort to work, extra information must 
be available. The input a1, a2, . . . , an must consist of only positive integers 

smaller than m. (Obviously extensions to this are possible.) If this is the case, 
then the algorithm is simple: Keep an array called count, of size m, which is 
initialized to all 0s. Thus, count has m cells, or buckets, which are initially 
empty. When ai is read, increment count[ai] by 1. After all the input is read, 

scan the count array, printing out a representation of the sorted list. This 
algorithm takes O(m + n); the proof is left as an exercise. If m is O(n), then 
the total is O(n).  

Although this algorithm seems to violate the lower bound, it turns out that it 
does not because it uses a more powerful operation than simple comparisons. By 
incrementing the appropriate bucket, the algorithm essentially performs an m-way 
comparison in unit time. This is similar to the strategy used in extendible 
hashing (Section 5.6). This is clearly not in the model for which the lower bound 
was proven.  

This algorithm does, however, question the validity of the model used in proving 
the lower bound. The model actually is a strong model, because a general-purpose 
sorting algorithm cannot make assumptions about the type of input it can expect 
to see, but must make decisions based on ordering information only. Naturally, if 
there is extra information available, we should expect to find a more efficient 
algorithm, since otherwise the extra information would be wasted.  

Although bucket sort seems like much too trivial an algorithm to be useful, it 
turns out that there are many cases where the input is only small integers, so 
that using a method like quicksort is really overkill.  

7.11. External Sorting 

So far, all the algorithms we have examined require that the input fit into main 
memory. There are, however, applications where the input is much too large to fit 
into memory. This section will discuss external sorting algorithms, which are 
designed to handle very large inputs.  

7.11.1. Why We Need New Algorithms 

Most of the internal sorting algorithms take advantage of the fact that memory is 
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directly addressable. Shellsort compares elements a[i] and a[i - hk] in one time 

unit. Heapsort compares elements a[i] and a[i * 2] in one time unit. Quicksort, 
with median-of-three partitioning, requires comparing a[left], a[center], and a
[right] in a constant number of time units. If the input is on a tape, then all 
these operations lose their efficiency, since elements on a tape can only be 
accessed sequentially. Even if the data is on a disk, there is still a practical 
loss of efficiency because of the delay required to spin the disk and move the 
disk head.  

To see how slow external accesses really are, create a random file that is large, 
but not too big to fit in main memory. Read the file in and sort it using an 
efficient algorithm. The time it takes to sort the input is certain to be 
insignificant compared to the time to read the input, even though sorting is an O
(n log n) operation and reading the input is only O(n).  

7.11.2. Model for External Sorting 

The wide variety of mass storage devices makes external sorting much more device-
dependent than internal sorting. The algorithms that we will consider work on 
tapes, which are probably the most restrictive storage medium. Since access to an 
element on tape is done by winding the tape to the correct location, tapes can be 
efficiently accessed only in sequential order (in either direction).  

We will assume that we have at least three tape drives to perform the sorting. We 
need two drives to do an efficient sort; the third drive simplifies matters. If 
only one tape drive is present, then we are in trouble: any algorithm will 

require (n2) tape accesses. 
 

7.11.3. The Simple Algorithm 

The basic external sorting algorithm uses the merge routine from mergesort. 
Suppose we have four tapes, Ta1, Ta2, Tb1, Tb2, which are two input and two output 

tapes. Depending on the point in the algorithm, the a and b tapes are either 
input tapes or output tapes. Suppose the data is initially on Ta1. Suppose 

further that the internal memory can hold (and sort) m records at a time. A 
natural first step is to read m records at a time from the input tape, sort the 
records internally, and then write the sorted records alternately to Tb1 and Tb2. 

We will call each set of sorted records a run. When this is done, we rewind all 
the tapes. Suppose we have the same input as our example for Shellsort.  

  

If m = 3, then after the runs are constructed, the tapes will contain the data 
indicated in the following figure.  
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Now Tb1 and Tb2 contain a group of runs. We take the first run from each tape and 

merge them, writing the result, which is a run twice as long, onto Ta1. Then we 

take the next run from each tape, merge these, and write the result to Ta2. We 

continue this process, alternating between Ta1 and Ta2, until either Tb1 or Tb2 is 

empty. At this point either both are empty or there is one run left. In the 
latter case, we copy this run to the appropriate tape. We rewind all four tapes, 
and repeat the same steps, this time using the a tapes as input and the b tapes 
as output. This will give runs of 4m. We continue the process until we get one 
run of length n.  

This algorithm will require log(n/m)  passes, plus the initial run-
constructing pass. For instance, if we have 10 million records of 128 bytes each, 
and four megabytes of internal memory, then the first pass will create 320 runs. 
We would then need nine more passes to complete the sort. Our example requires 

log 13/3  = 3 more passes, which are shown in the following figure.  

  

  

  

7.11.4. Multiway Merge 

If we have extra tapes, then we can expect to reduce the number of passes 
required to sort our input. We do this by extending the basic (two-way) merge to 
a k-way merge.  

Merging two runs is done by winding each input tape to the beginning of each run. 
Then the smaller element is found, placed on an output tape, and the appropriate 
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input tape is advanced. If there are k input tapes, this strategy works the same 
way, the only difference being that it is slightly more complicated to find the 
smallest of the k elements. We can find the smallest of these elements by using a 
priority queue. To obtain the next element to write on the output tape, we 
perform a delete_min operation. The appropriate input tape is advanced, and if 
the run on the input tape is not yet completed, we insert the new element into 
the priority queue. Using the same example as before, we distribute the input 
onto the three tapes.  

  

We then need two more passes of three-way merging to complete the sort.  

  

  

After the initial run construction phase, the number of passes required using k-

way merging is logk(n/m) , because the runs get k times as large in each 

pass. For the example above, the formula is verified, since log3 13/3  = 2. 

If we have 10 tapes, then k = 5, and our large example from the previous section 

would require log5 320  = 4 passes. 
 

7.11.5. Polyphase Merge 

The k-way merging strategy developed in the last section requires the use of 2k 
tapes. This could be prohibitive for some applications. It is possible to get by 
with only k + 1 tapes. As an example, we will show how to perform two-way merging 
using only three tapes.  

页码，39/49Structures, Algorithm Analysis: CHAPTER 7: SORTING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



Suppose we have three tapes, T1, T2, and T3, and an input file on T1 that will 

produce 34 runs. One option is to put 17 runs on each of T2 and T3. We could then 

merge this result onto T1, obtaining one tape with 17 runs. The problem is that 

since all the runs are on one tape, we must now put some of these runs on T2 to 

perform another merge. The logical way to do this is to copy the first eight runs 
from T1 onto T2 and then perform the merge. This has the effect of adding an 

extra half pass for every pass we do.  

An alternative method is to split the original 34 runs unevenly. Suppose we put 
21 runs on T2 and 13 runs on T3. We would then merge 13 runs onto T1 before T3 was 

empty. At this point, we could rewind T1 and T3, and merge T1, with 13 runs, and 

T2, which has 8 runs, onto T3. We could then merge 8 runs until T2 was empty, 

which would leave 5 runs left on T1 and 8 runs on T3. We could then merge T1 and 

T3, and so on. The following table below shows the number of runs on each tape 

after each pass.  

     Run     After    After   After    After    After    After    After 

    Const.  T3 + T2  T1 + T2  T1 + T3  T2 + T3  T1 + T2  T1 + T3  T2 + T3

 

-------------------------------------------------------------------------

 

T1    0       13        5        0       3        1        0        1

 

T2   21        8        0        5       2        0        1        0

 

T3   13        0        8        3       0        2        1        0

 

The original distribution of runs makes a great deal of difference. For instance, if 22 runs are 

placed on T2, with 12 on T3, then after the first merge, we obtain 12 runs on T1 and 10 runs on 

T2. Afte another merge, there are 10 runs on T1 and 2 runs on T3. At this point the going gets 

slow, because we can only merge two sets of runs before T3 is exhausted. Then T1 has 8 runs and 

T2 has 2 runs. Again, we can only merge two sets of runs, obtaining T1 with 6 runs and T3 with 2 

runs. After three more passes, T2 has two runs and the other tapes are empty. We must copy one 

run to another tape, and then we can finish the merge. 

It turns out that the first distribution we gave is optimal. If the number of runs is a Fibonacci 
number Fn, then the best way to distribute them is to split them into two Fibonacci numbers Fn-1 
and Fn-2. Otherwise, it is necessary to pad the tape with dummy runs in order to get the number 

of runs up to a Fibonacci number. We leave the details of how to place the initial set of runs on 
the tapes as an exercise.  

We can extend this to a k-way merge, in which case we need kth order Fibonacci numbers for the 

distribution, where the kth order Fibonacci number is defined as F(k)(n) = F(k)(n - 1) + F(k)(n -

2) +    + F(k)(n - k), with the appropriate initial conditions F(k)(n) = 0, 0  n
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 k - 2, F(k)(k - 1) =1. 

 

7.11.6. Replacement Selection

 

The last item we will consider is construction of the runs. The strategy we have used so far is 
the simplest possible: We read as many records as possible and sort them, writing the result to 
some tape. This seems like the best approach possible, until one realizes that as soon as the 
first record is written to an output tape, the memory it used becomes available for another 
record. If the next record on the input tape is larger than the record we have just output, then 
it can be included in the run.  

Using this observation, we can give an algorithm for producing runs. This technique is commonly 
referred to as replacement selection. Initially, m records are read into memory and placed in a 
priority queue. We perform a delete_min, writing the smallest record to the output tape. We read 
the next record from the input tape. If it is larger than the record we have just written, we can 
add it to the priority queue. Otherwise, it cannot go into the current run. Since the priority 
queue is smaller by one element, we can store this new element in the dead space of the priority 
queue until the run is completed and use the element for the next run. Storing an element in the 
dead space is similar to what is done in heapsort. We continue doing this until the size of the 
priority queue is zero, at which point the run is over. We start a new run by building a new 
priority queue, using all the elements in the dead space. 

Figure 7.18 shows the run construction 
for the small example we have been using, with m = 3. Dead elements are indicated by an asterisk. 

In this example, replacement selection produces only three runs, compared with the five runs 
obtained by sorting. Because of this, a three-way merge finishes in one pass instead of two. If 
the input is randomly distributed, replacement selection can be shown to produce runs of average 
length 2m. For our large example, we would expect 160 runs instead of 320 runs, so a five-way 
merge would require four passes. In this case, we have not saved a pass, although we might if we 
get lucky and have 125 runs or less. Since external sorts take so long, every pass saved can make 
a significant difference in the running time.  

       3 Elements In Heap Array    Output     Next Element Read

 

        H[1]   H[2]     H[3]

 

---------------------------------------------------------------

 

Run 1    11     94       81          11             96

 

         81     94       96          81             12*

 

         94     96       12*         94             35*

 

         96     35*      12*         96             17*

 

         17*    35*      12*       End of Run.  Rebuild Heap

 

---------------------------------------------------------------

 

Run 2    12     35       17          12             99

 

         17     35       99          17             28

 

         28     99       35          28             58

 

         35     99       58          35             41

 

         41     99       58          41             75*

 

         58     99       75*         58         end of tape
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         99              75*         99 

                         75*       End of Run.  Rebuild Heap

 

---------------------------------------------------------------

 

Run 3    75                          75

 

Figure 7.18 Example of run construction

 

As we have seen, it is possible for replacement selection to do no better than the standard 
algorithm. However, the input is frequently sorted or nearly sorted to start with, in which case 
replacement selection produces only a few very long runs. This kind of input is common for 
external sorts and makes replacement selection extremely valuable.  

Summary
 

For most general internal sorting applications, either insertion sort, Shellsort, or quicksort 
will be the method of choice, and the decision of which to use will depend mostly on the size of 
the input. Figure 7.19 shows the running time obtained for each algorithm on various file sizes. 

The data was chosen to be random permutations of n integers, and the times given include only the 
actual time to sort. The code given in Figure 7.2 was used for insertion sort. Shellsort used the 
code in Section 7.4 modified to run with Sedgewick's increments. Based on literally millions of 
sorts, ranging in size from 100 to 25 million, the expected running time of Shellsort with these 

increments is conjectured to be O(n7/6). The heapsort routine is the same as in Section 7.5. Two 
versions of quicksort are given. The first uses a simple pivoting strategy and does not do a 
cutoff. Fortunately, the input files were random. The second uses median-of-three partitioning 
and a cutoff of ten. Further optimizations were possible. We could have coded the median-of-three 
routine in-line instead of using a function, and we could have written quicksort nonrecursively. 
There are some other optimizations to the code that are fairly tricky to implement, and of course 
we could have used an assembly language. We have made an honest attempt to code all routines 
efficiently, but of course the performance can vary somewhat from machine to machine.  

The highly optimized version of quicksort is as fast as Shellsort even for very small input 

sizes. The improved version of quicksort still has an O(n2) worst case (one exercise asks you to 
construct a small example), but the chances of this worst case appearing are so negligible as to 
not be a factor. If you need to sort large files, quicksort is the method of choice. But never, 
ever, take the easy way out and use the first element as pivot. It is just not safe to assume 
that the input will be random. If you do not want to worry about this, use Shellsort. Shellsort 
will give a small performance penalty but could also be acceptable, especially if simplicity is 

required. Its worst case is only O(n4/3); the chance of that worst case occuring is likewise 
negligible.  

Heapsort, although an O (n log n) algorithm with an apparently tight inner loop, is slower than 
Shellsort. A close examination of the algorithm reveals that in order to move data, heapsort does 
two comparisons. Carlsson has analyzed an improvement suggested by Floyd that moves data with 
essentially only one comparison, but implementing this improvement makes the code somewhat 
longer. We leave it to the reader to decide whether the extra coding effort is worth the 
increased speed (Exercise 7.39).  

         Insertion Sort  Shellsort  Heapsort    Quicksort   Quicksort(opt.)

 

    n        O(n2)        O(n7/6)    O(n log n)  O(n log n)   O(n log n)

 

---------------------------------------------------------------------------

 

     10    0.00044        0.00041     0.00057     0.00052      .00046
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    100    0.00675        0.00171     0.00420     0.00284      .00244 

   1000    0.59564        0.02927     0.05565     0.03153      .02587

 

  10000   58.864          0.42998     0.71650     0.36765      .31532

 

 100000      NA           5.7298      8.8591      4.2298      3.5882

 

1000000      NA          71.164     104.68       47.065      41.282

 

Figure 7.19 Comparison of different sorting algorithms (all times are in seconds)

 

Insertion sort is useful only for small files or very nearly sorted files. We have not included 
mergesort, because its performance is not as good as quicksort for main memory sorts and it is 
not any simpler to code. We have seen, however, that merging is the central idea of external 
sorts.  

Exercises
 

7.1 Sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using insertion sort. 

 

7.2 What is the running time of insertion sort if all keys are equal? 

 

7.3 Suppose we exchange elements a[i] and a[i + k], which were originally out of order. Prove 
that at least 1 and at most 2k - 1 inversions are removed.  

7.4 Show the result of running Shellsort on the input 9, 8, 7, 6, 5, 4, 3, 2, 1 using the 
increments { 1, 3, 7 }.  

7.5 What is the running time of Shellsort using the two-increment sequence 1, 2 }? 

 

7.6 *a. Prove that the running time of Shellsort is (n2) using increments of the form 1, c, 

c2, ..., ci for any integer c.  

**b. Prove that for these increments, the average running time is (n3/2). 

 

*7.7 Prove that if a k-sorted file is then h-sorted, it remains k-sorted. 

 

**7.8 Prove that the running time of Shellsort, using the increment sequence suggested by 

Hibbard, is (n3/2) in the worst case. Hint: You can prove the bound by considering the 
special case of what Shellsort does when all elements are either 0 or 1. Set input_data[i] = 1 if 

i is expressible as a linear combination of ht, ht-1, ..., h t/2 +1 and 0 otherwise. 

 

7.9 Determine the running time of Shellsort for 

 

a. sorted input 

 

*b. reverse-ordered input 
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7.10 Show how heapsort processes the input 142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 
102.  

7.11 a. What is the running time of heapsort for presorted input? 

 

**b. Is there any input for which heapsort runs in o(n log n) (in other words, are there any 
particularly good inputs for heapsort)?  

7.12 Sort 3, 1, 4, 1, 5, 9, 2, 6 using mergesort. 

 

7.13 How would you implement mergesort without using recursion? 

 

7.14 Determine the running time of mergesort for 

 

a. sorted input 

 

b. reverse-ordered input 

 

c. random input 

 

7.15 In the analysis of mergesort, constants have been disregarded. Prove that the number of 

comparisons used in the worst case by mergesort is n log n  - 2 log n  + 1. 

 

7.16 Sort 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 using quicksort with median-of-three partitioning and a 
cutoff of 3.  

7.17 Using the quicksort implementation in this chapter, determine the running time of quicksort 
for  

a. sorted input 

 

b. reverse-ordered input 

 

c. random input 

 

7.18 Repeat Exercise 7.17 when the pivot is chosen as 

 

a. the first element 

 

b. the largest of the first two nondistinct keys 

 

c. a random element 

 

*d. the average of all keys in the set 

 

7.19 a. for the quicksort implementation in this chapter, what is the running time when all keys 
are equal?  

b. Suppose we change the partitioning strategy so that neither i nor j stops when an element with 
the same key as the pivot is found. What fixes need to be made in the code to guarantee that 
quicksort works, and what is the running time, when all keys are equal?  
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c. Suppose we change the partitioning strategy so that i stops at an element with the same key as 
the pivot, but j does not stop in a similar case. What fixes need to be made in the code to 
guarantee that quicksort works, and when all keys are equal, what is the running time of 
quicksort?  

7.20 Suppose we choose the middle key as pivot. Does this make it unlikely that quicksort will 
require quadratic time?  

7.21 Construct a permutation of 20 elements that is as bad as possible for quicksort using 
median-of-three partitioning and a cutoff of 3.  

7.22 Write a program to implement the selection algorithm. 

 

7.23 Solve the following recurrence: . 

 

7.24 A sorting algorithm is stable if elements with equal keys are left in the same order as they 
occur in the input. Which of the sorting algorithms in this chapter are stable and which are not? 
Why?  

7.25 Suppose you are given a sorted list of n elements followed by â(n) randomly ordered 
elements. How would you sort the entire list if  

a. â(n) =O(1)? 
 

b. â(n) =O(log n)? 
 

 

 

*d. How large can â(n) be for the entire list still to be sortable in O(n) time? 
 

7.26 Prove that any algorithm that finds an element x in a sorted list of n elements requires 

(log n ) comparisons. 

 

7.27 Using Stirling's formula, , give a precise estimate for log n !. 

 

7.28 *a. In how many ways can two sorted arrays of n elements be merged? 

 

*b. Give a nontrivial lower bound on the number of comparisons required to merge two sorted lists 
of n elements.  

7.29 Prove that sorting n elements with integer keys in the range 1  key  m takes O(m + 
n) time using bucket sort.  

7.30 Suppose you have an array of n elements containing only two distinct keys, true and false. 
Give an O(n) algorithm to rearrange the list so that all false elements precede the true 
elements. You may use only constant extra space.  

7.31 Suppose you have an array of n elements, containing three distinct keys, true, false, and 
maybe. Give an O(n) algorithm to rearrange the list so that all false elements precede maybe 
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elements, which in turn precede true elements. You may use only constant extra space.  

7.32 a. Prove that any comparison-based algorithm to sort 4 elements requires 5 comparisons. 

 

b. Give an algorithm to sort 4 elements in 5 comparisons. 

 

7.33 a. Prove that 7 comparisons are required to sort 5 elements using any comparison-based 
algorithm.  

*b. Give an algorithm to sort 5 elements with 7 comparisons. 

 

7.34 Write an efficient version of Shellsort and compare performance when the following increment 
sequences are used:  

a. Shell's original sequence 

 

b. Hibbard's increments 

 

 

 

 

 

e. Sedgewick's increments. 

 

7.35 Implement an optimized version of quicksort and experiment with combinations of the 
following:  

a. Pivot: first element, middle element, random element, median of three, median of five. 

 

b. Cutoff values from 0 to 20. 

 

7.36 Write a routine that reads in two alphabetized files and merges them together, forming a 
third, alphabetized, file.  

7.37 Suppose we implement the median of three routine as follows: Find the median of a[left], a
[center], a[right], and swap it with a[right]. Proceed with the normal partitioning step starting 
i at left and j at right - 1 (instead of left + 1 and right - 2). Assume that a [0] = MIN_DATA, 
so that sentinels are present.  

a. Suppose the input is 2,3,4, ...,n -1, n, 1. What is the running time of this version of 
quicksort?  

b. Suppose the input is in reverse order. What is the running time of this version of quicksort? 

7.38 Prove that any comparison-based sorting algorithm requires (n log n) comparisons on 
average.  

7.39 Consider the following strategy for percolate_down. We have a hole at node X. The normal 
routine is to compare X's children and then move the child up to X if it is larger (in the case 
of a (max)heap) than the element we are trying to place, thereby pushing the hole down; we stop 
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when it is safe to place the new element in the hole. The alternate strategy is to move elements 
up and the hole down as far as possible, without testing whether the new cell can be inserted. 
This would place the new cell in a leaf and probably violate the heap order; to fix the heap 
order, percolate the new cell up in the normal manner. Write a routine to include this idea, and 
compare the running time with a standard implementation of heapsort.  

7.40 Propose an algorithm to sort a large file using only two tapes. 
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CHAPTER 8: 
THE DISJOINT SET ADT 

In this chapter, we describe an efficient data structure to solve the equivalence 
problem. The data structure is simple to implement. Each routine requires only a 
few lines of code, and a simple array can be used. The implementation is also 
extremely fast, requiring constant average time per operation. This data 
structure is also very interesting from a theoretical point of view, because its 
analysis is extremely difficult; the functional form of the worst case is unlike 
any we have yet seen. For the disjoint set ADT, we will  

 Show how it can be implemented with minimal coding effort.  

 Greatly increase its speed, using just two simple observations.  

 Analyze the running time of a fast implementation.  

 See a simple application.  

8.1. Equivalence Relations 

A relation R is defined on a set S if for every pair of elements (a, b), a, b 

 S, a R b is either true or false. If a R b is true, then we say that a is 
related to b.  

An equivalence relation is a relation R that satisfies three properties:  

1. (Reflexive) a R a, for all a  S.  

2. (Symmetric) a R b if and only if b R a.  

3. (Transitive) a R b and b R c implies that a R c.  

We'll consider several examples.  

The  relationship is not an equivalence relationship. Although it is 

reflexive, since a  a, and transitive, since a  b and b  c implies a 

 c, it is not symmetric, since a  b does not imply b  a.  

Electrical connectivity, where all connections are by metal wires, is an 
equivalence relation. The relation is clearly reflexive, as any component is 

Next ChapterReturn to Table of ContentsPrevious Chapter
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connected to itself. If a is electrically connected to b, then b must be 
electrically connected to a, so the relation is symmetric. Finally, if a is 
connected to b and b is connected to c, then a is connected to c. Thus electrical 
connectivity is an equivalence relation.  

Two cities are related if they are in the same country. It is easily verified 
that this is an equivalence relation. Suppose town a is related to b if it is 
possible to travel from a to b by taking roads. This relation is an equivalence 
relation if all the roads are two-way.  

8.2. The Dynamic Equivalence Problem 

Given an equivalence relation ~, the natural problem is to decide, for any a and 
b, if a ~ b. If the relation is stored as a two-dimensional array of booleans, 
then, of course, this can be done in constant time. The problem is that the 
relation is usually not explicitly, but rather implicitly, defined.  

As an example, suppose the equivalence relation is defined over the five-element 
set {a1, a2, a3, a4, a5}. Then there are 25 pairs of elements, each of which is 

either related or not. However, the information a1 ~ a2, a3 ~ a4, a5 ~ a1, a4 ~ a2
implies that all pairs are related. We would like to be able to infer this 
quickly.  

The equivalence class of an element a  S is the subset of S that contains all 
the elements that are related to a. Notice that the equivalence classes form a 
partition of S: Every member of S appears in exactly one equivalence class. To 
decide if a ~ b, we need only to check whether a and b are in the same 
equivalence class. This provides our strategy to solve the equivalence problem.  

The input is initially a collection of n sets, each with one element. This 
initial representation is that all relations (except reflexive relations) are 

false. Each set has a different element, so that Si  Sj = ; this makes the 

sets disjoint.  

There are two permissible operations. The first is find, which returns the name 
of the set (that is, the equivalence class) containing a given element. The 
second operation adds relations. If we want to add the relation a ~ b, then we 
first see if a and b are already related. This is done by performing finds on 
both a and b and checking whether they are in the same equivalence class. If they 
are not, then we apply union. This operation merges the two equivalence classes 
containing a and b into a new equivalence class. From a set point of view, the 

result of  is to create a new set Sk = Si  Sj, destroying the originals 

and preserving the disjointness of all the sets. The algorithm to do this is 
frequently known as the disjoint set union/find algorithm for this reason.  

This algorithm is dynamic because, during the course of the algorithm, the sets 
can change via the union operation. The algorithm must also operate on-line: When 
a find is performed, it must give an answer before continuing. Another 
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possibility would be an off-line algorithm. Such an algorithm would be allowed to 
see the entire sequence of unions and finds. The answer it provides for each find
must still be consistent with all the unions that were performed up until the 
find, but the algorithm can give all its answers after it has seen all the 
questions. The difference is similar to taking a written exam (which is generally 
off-line--you only have to give the answers before time expires), and an oral 
exam (which is on-line, because you must answer the current question before 
proceeding to the next question).  

Notice that we do not perform any operations comparing the relative values of 
elements, but merely require knowledge of their location. For this reason, we can 
assume that all the elements have been numbered sequentially from 1 to n and that 
the numbering can be determined easily by some hashing scheme. Thus, initially we 
have Si = {i} for i = 1 through n.  

Our second observation is that the name of the set returned by find is actually 

fairly abitrary. All that really matters is that find(x) = find( ) if and only 

if x and  are in the same set.  

These operations are important in many graph theory problems and also in 
compilers which process equivalence (or type) declarations. We will see an 
application later.  

There are two strategies to solve this problem. One ensures that the find 
instruction can be executed in constant worst-case time, and the other ensures 
that the union instruction can be executed in constant worst-case time. It has 
recently been shown that both cannot be done simultaneously in constant worst-
case time.  

We will now briefly discuss the first approach. For the find operation to be 
fast, we could maintain, in an array, the name of the equivalence class for each 
element. Then find is just a simple O(1) lookup. Suppose we want to perform union
(a, b). Suppose that a is in equivalence class i and b is in equivalence class j. 
Then we scan down the array, changing all is to j. Unfortunately, this scan takes 

(n). Thus, a sequence of n - 1 unions (the maximum, since then everything is 

in one set), would take (n2) time. If there are (n2) find operations, this 
performance is fine, since the total running time would then amount to O(1) for 
each union or find operation over the course of the algorithm. If there are fewer 
finds, this bound is not acceptable.  

One idea is to keep all the elements that are in the same equivalence class in a 
linked list. This saves time when updating, because we do not have to search 
through the entire array. This by itself does not reduce the asymptotic running 

time, because it is still possible to perform (n2) equivalence class updates 
over the course of the algorithm.  

If we also keep track of the size of each equivalence class, and when performing 
unions we change the name of the smaller equivalence class to the larger, then 

页码，3/23Structures, Algorithm Analysis: CHAPTER 8: THE DISJOINT SET ADT

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



the total time spent for n - 1 merges isO (n log n). The reason for this is that 
each element can have its equivalence class changed at most log n times, since 
every time its class is changed, its new equivalence class is at least twice as 
large as its old. Using this strategy, any sequence of m finds and up to n - 1 
unions takes at most O(m + n log n) time.  

In the remainder of this chapter, we will examine a solution to the union/find 
problem that makes unions easy but finds hard. Even so, the running time for any 
sequences of at most m finds and up to n - 1 unions will be only a little more 
than O(m + n).  

8.3. Basic Data Structure 

Recall that the problem does not require that a find operation return any 
specific name, just that finds on two elements return the same answer if and only 
if they are in the same set. One idea might be to use a tree to represent each 
set, since each element in a tree has the same root. Thus, the root can be used 
to name the set. We will represent each set by a tree. (Recall that a collection 
of trees is known as a forest.) Initially, each set contains one element. The 
trees we will use are not necessarily binary trees, but their representation is 
easy, because the only information we will need is a parent pointer. The name of 
a set is given by the node at the root. Since only the name of the parent is 
required, we can assume that this tree is stored implicitly in an array: each 
entry p[i] in the array represents the parent of element i. If i is a root, then 

p[i] = 0. In the forest in Figure 8.1, p[i] = 0 for 1  i  8. As with heaps, 
we will draw the trees explicitly, with the understanding that an array is being 
used. Figure 8.1 shows the explicit representation. We will draw the root's 
parent pointer vertically for convenience.  

To perform a union of two sets, we merge the two trees by making the root of one 
tree point to the root of the other. It should be clear that this operation takes 
constant time. Figures 8.2, 8.3, and 8.4 represent the forest after each of union
(5,6) union(7,8), union(5,7), where we have adopted the convention that the new 
root after the union(x,y) is x. The implicit representation of the last forest is 
shown in Figure 8.5.  

A find(x) on element x is performed by returning the root of the tree containing 
x. The time to perform this operation is proportional to the depth of the node 
representing x, assuming, of course, that we can find the node representing x in 
constant time. Using the strategy above, it is possible to create a tree of depth 
n - 1, so the worst-case running time of a find is O(n). Typically, the running 
time is computed for a sequence of m intermixed instructions. In this case, m 
consecutive operations could take O(mn) time in the worst case.  

The code in Figures 8.6 through 8.9 represents an implementation of the basic 
algorithm, assuming that error checks have already been performed. In our 
routine, unions are performed on the roots of the trees. Sometimes the operation 
is performed by passing any two elements, and having the union perform two finds 
to determine the roots.  

The average-case analysis is quite hard to do. The least of the problems is that 
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the answer depends on how to define average (with respect to the union 
operation). For instance, in the forest in Figure 8.4, we could say that since 

there are five trees, there are 5  4 = 20 equally likely results of the next 
union (as any two different trees can be unioned). Of course, the implication of 

this model is that there is only a  chance that the next union will involve the 
large tree. Another model might say that all unions between any two elements in 
different trees are equally likely, so a larger tree is more likely to be 
involved in the next union than a smaller tree. In the example above, there is an 

 chance that the large tree is involved in the next union, since (ignoring 
symmetries) there are 6 ways in which to merge two elements in {1, 2, 3, 4}, and 
16 ways to merge an element in {5, 6, 7, 8} with an element in {1, 2, 3, 4}. 
There are still more models and no general agreement on which is the best. The 

average running time depends on the model; (m), (m log n), and (mn) 
bounds have actually been shown for three different models, although the latter 
bound is thought to be more realistic.  

  

Figure 8.1 Eight elements, initially in different sets 

  

Figure 8.2 After union (5, 6) 

  

Figure 8.3 After union (7, 8) 
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Figure 8.4 After union (5, 7) 

  

Figure 8.5 Implicit representation of previous tree 

typedef int DISJ_SET[ NUM_SETS+1 ]; 

typedef unsigned int set_type; 

typedef unsigned int element_type; 

Figure 8.6 Disjoint set type declaration 

void 

initialize( DISJ_SET S ) 

{ 

int i; 

for( i = NUN_SETS; i > 0; i-- ) 

S[i] = 0; 

} 

Figure 8.7 Disjoint set initialization routine 

/* Assumes root1 and root2 are roots. */

 

/* union is a C keyword, so this routine is named set_union. */

 

void 

set_union( DISJ_SET S, set_type root1, set_type root2 ) 

{ 

S[root2] = root1; 
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} 

Figure 8.8 Union (not the best way) 

set_type 

find( element_type x, DISJ_SET S ) 

{ 

if( S[x] <= 0 ) 

return x; 

else 

return( find( S[x], S ) ); 

} 

Figure 8.9 A simple disjoint set find algorithm 

Quadratic running time for a sequence of operations is generally unacceptable. 
Fortunately, there are several ways of easily ensuring that this running time 
does not occur.  

8.4. Smart Union Algorithms 

The unions above were performed rather arbitrarily, by making the second tree a 
subtree of the first. A simple improvement is always to make the smaller tree a 
subtree of the larger, breaking ties by any method; we call this approach union-
by-size. The three unions in the preceding example were all ties, and so we can 
consider that they were performed by size. If the next operation were union (4, 
5), then the forest in Figure 8.10 would form. Had the size heuristic not been 
used, a deeper forest would have been formed (Fig. 8.11).  

  

Figure 8.10 Result of union-by-size 
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Figure 8.11 Result of an arbitrary union 

  

Figure 8.12 Worst-case tree for n = 16 

We can prove that if unions are done by size, the depth of any node is never more 
than log n. To see this, note that a node is initially at depth 0. When its depth 
increases as a result of a union, it is placed in a tree that is at least twice 
as large as before. Thus, its depth can be increased at most log n times. (We 
used this argument in the quick-find algorithm at the end of Section 8.2.) This 
implies that the running time for a find operation is O(log n), and a sequence of 
m operations takes O(m log n). The tree in Figure 8.12 shows the worst tree 
possible after 16 unions and is obtained if all unions are between equal-sized 
trees (the worst-case trees are binomial trees, discussed in Chapter 6).  

To implement this strategy, we need to keep track of the size of each tree. Since 
we are really just using an array, we can have the array entry of each root 
contain the negative of the size of its tree. Thus, initially the array 
representation of the tree is all -1s (and Fig 8.7 needs to be changed 
accordingly). When a union is performed, check the sizes; the new size is the sum 
of the old. Thus, union-by-size is not at all difficult to implement and requires 
no extra space. It is also fast, on average. For virtually all reasonable models, 
it has been shown that a sequence of m operations requires O(m) average time if 
union-by-size is used. This is because when random unions are performed, 
generally very small (usually one-element) sets are merged with large sets 
throughout the algorithm.  

An alternative implementation, which also guarantees that all the trees will have 
depth at most O(log n), is union-by-height. We keep track of the height, instead 
of the size, of each tree and perform unions by making the shallow tree a subtree 
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of the deeper tree. This is an easy algorithm, since the height of a tree 
increases only when two equally deep trees are joined (and then the height goes 
up by one). Thus, union-by-height is a trivial modification of union-by-size.  

The following figures show a tree and its implicit representation for both union-
by-size and union-by-height. The code in Figure 8.13 implements union-by-height. 

  

8.5. Path Compression 

The union/find algorithm, as described so far, is quite acceptable for most 
cases. It is very simple and linear on average for a sequence of m instructions 
(under all models). However, the worst case of O(m log n ) can occur fairly 
easily and naturally.  

/* assume root1 and root2 are roots */

 

/* union is a C keyword, so this routine is named set_union */

 

void 

set_union (DISJ_SET S, set_type root1, set_type root2 ) 

{ 

if( S[root2] < S[root1] )  /* root2 is deeper set */

 

S[root1] = root2;     /* make root2 new root */ 

else 

{ 

if( S[root2] == S[root1] ) /* same height, so update */
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S[root1]--; 

S[root2] = root1; /* make root1 new root */

 

} 

} 

Figure 8.13 Code for union-by-height (rank) 

For instance, if we put all the sets on a queue and repeatedly dequeue the first 
two sets and enqueue the union, the worst case occurs. If there are many more 
finds than unions, this running time is worse than that of the quick-find 
algorithm. Moreover, it should be clear that there are probably no more 
improvements possible for the union algorithm. This is based on the observation 
that any method to perform the unions will yield the same worst-case trees, since 
it must break ties arbitrarily. Therefore, the only way to speed the algorithm 
up, without reworking the data structure entirely, is to do something clever on 
the find operation.  

The clever operation is known as path compression. Path compression is performed 
during a find operation and is independent of the strategy used to perform 
unions. Suppose the operation is find(x). Then the effect of path compression is 
that every node on the path from x to the root has its parent changed to the 
root. Figure 8.14 shows the effect of path compression after find (15) on the 
generic worst tree of Figure 8.12.  

The effect of path compression is that with an extra two pointer moves, nodes 13 
and 14 are now one position closer to the root and nodes 15 and 16 are now two 
positions closer. Thus, the fast future accesses on these nodes will pay (we 
hope) for the extra work to do the path compression.  

As the code in Figure 8.15 shows, path compression is a trivial change to the 
basic find algorithm. The only change to the find routine is that S[x] is made 
equal to the value returned by find; thus after the root of the set is found 
recursively, x is made to point directly to it. This occurs recursively to every 
node on the path to the root, so this implements path compression. As we stated 
when we implemented stacks and queues, modifying a parameter to a function called 
is not necessarily in line with current software engineering rules. Some 
languages will not allow this, so this code may well need changes.  
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Figure 8.14 An example of path compression 

set_type 

find( element_type x, DISJ_SET S ) 

{ 

if( S[x] <= 0 ) 

return x; 

else 

return( S[x] = find( S[x], S ) ); 

} 

Figure 8.15 Code for disjoint set find with path compression 

When unions are done arbitrarily, path compression is a good idea, because there 
is an abundance of deep nodes and these are brought near the root by path 
compression. It has been proven that when path compression is done in this case, 
a sequence of m operations requires at most O(m log n) time. It is still an open 
problem to determine what the average-case behavior is in this situation.  

Path compression is perfectly compatible with union-by-size, and thus both 
routines can be implemented at the same time. Since doing union-by-size by itself 
is expected to execute a sequence of m operations in linear time, it is not clear 
that the extra pass involved in path compression is worthwhile on average. 
Indeed, this problem is still open. However, as we shall see later, the 
combination of path compression and a smart union rule guarantees a very 
efficient algorithm in all cases.  

Path compression is not entirely compatible with union-by-height, because path 
compression can change the heights of the trees. It is not at all clear how to 
re-compute them efficiently. The answer is do not!! Then the heights stored for 
each tree become estimated heights (sometimes known as ranks), but it turns out 
that union-by-rank (which is what this has now become) is just as efficient in 
theory as union-by-size. Furthermore, heights are updated less often than sizes. 
As with union-by-size, it is not clear whether path compression is worthwhile on 
average. What we will show in the next section is that with either union 
heuristic, path compression significantly reduces the worst-case running time.  

8.6. Worst Case for Union-by-Rank and 
Path Compression 

When both heuristics are used, the algorithm is almost linear in the worst case. 

Specifically, the time required in the worst case is (m (m, n)) (provided m

 n), where (m, n) is a functional inverse of Ackerman's function, which is 
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defined below:*  

A(1, j) = 2j for j  1

 

A(i, 1) = A(i - 1, 2) for i  2 

A(i, j) = A(i - 1,A(i, j - 1)) for i, j  2 

*Ackerman's function is frequently defined with A(1, j) = j + 1 for j  1. the form in this text 
grows faster; thus, the inverse grows more slowly.  

From this, we define  

(m, n) = min{i  1|A(i, m/ n ) > log n} 

You may want to compute some values, but for all practical purposes, (m, n) 

 4, which is all that is really important here. The single-variable inverse 
Ackerman function, sometimes written as log*n, is the number of times the 

logarithm of n needs to be applied until n  1. Thus, log* 65536 = 4, because 

log log log log 65536 = 1. log* 265536 = 5, but keep in mind that 265536 is a 

20,000-digit number. (m, n) actually grows even slower then log* n. However, 

(m, n) is not a constant, so the running time is not linear.  

In the remainder of this section, we will prove a slightly weaker result. We will 

show that any sequence of m = (n) union/find operations takes a total of O(m 
log* n) running time. The same bound holds if union-by-rank is replaced with 
union-by-size. This analysis is probably the most complex in the book and one of 
the first truly complex worst-case analyses ever performed for an algorithm that 
is essentially trivial to implement.  

8.6.1 Analysis of the Union/Find Algorithm  

8.6.1 Analysis of the Union/Find Algorithm 

In this section we establish a fairly tight bound on the running time of a 

sequence of m = (n) union/find operations. The unions and finds may occur in 
any order, but unions are done by rank and finds are done with path compression. 

We begin by establishing some lemmas concerning the number of nodes of rank r. 
Intuitively, because of the union-by-rank rule, there are many more nodes of 
small rank than large rank. In particular, there can be at most one node of rank 
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log n. What we would like to do is to produce as precise a bound as possible on 
the number of nodes of any particular rank r. Since ranks only change when unions
are performed (and then only when the two trees have the same rank), we can prove 
this bound by ignoring the path compression.  

LEMMA 8.1.  

When executing a sequence of union instructions, a node of rank r must have 2r 
descendants (including itself).  

PROOF:  

By induction. the basis, r = 0, is clearly true. Let T be the tree of rank r with 
the fewest number of descendants and let x be T's root. Suppose the last union x 
was involved in was between T1 and T2. Suppose T1's root was x. If T1 had rank r, 

then T1 would be a tree of height r with fewer descendants than T, which 

contradicts the assumption that T is the tree with the smallest number of 

descendants. Hence the rank of T1  r - 1. The rank of T2  rank of T1. 

Since T has rank r and the rank could only increase because of T2, it follows 

that the rank of T2 = r - 1. Then the rank of T1 = r - 1. By the induction 

hypothesis, each tree has at least 2r-1 descendants, giving a total of 2r and 
establishing the lemma.  

Lemma 8.1 tells us that if no path compression is performed, then any node of 

rank r must have at least 2r descendants. Path compression can change this, of 
course, since it can remove descendants from a node. However, when unions are 
performed, even with path compression, we are using the ranks, which are 
estimated heights. These ranks behave as though there is no path compression. 
Thus, when bounding the number of nodes of rank r, path compression can be 
ignored.  

Thus, the next lemma is valid with or without path compression.  

LEMMA 8.2.  

The number of nodes of rank r is at most n/2r. 
 

PROOF: 

 

Without path compression, each node of rank r is the root of a subtree of at least 2r nodes. No 
node in the subtree can have rank r. Thus all subtrees of nodes of rank r are disjoint. 

Therefore, there are at most n/2r disjoint subtrees and hence n/2r nodes of rank r.  

The next lemma seems somewhat obvious, but is crucial in the analysis. 

 

LEMMA 8.3. 

 

At any point in the union/find algorithm, the ranks of the nodes on a path from the left to a 
root increase monotonically.  
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PROOF:  

The lemma is obvious if there is no path compression (see the example). If, after path 
compression, some node v is a descendant of w, then clearly v must have been a descendant of w 
when only unions were considered. Hence the rank of v is less than the rank of w.  

Let us summarize the preliminary results. Lemma 8.2 tells us how many nodes can be assigned rank 

r. Because ranks are assigned only by unions, which have no idea of path compression, Lemma 8.2 
is valid at any stage of the union/find algorithm--even in the midst of path compression. Figure 
8.16 shows that while there are many nodes of ranks 0 and 1, there are fewer nodes of rank r as r
gets larger.  

Lemma 8.2 is tight, in the sense that it is possible for there to be n/2r nodes for any rank r. 
It is slightly loose, because it is not possible for the bound to hold for all ranks r 
simultaneously. While Lemma 8.2 describes the number of nodes in a rank r, Lemma 8.3 tells us 
their distribution. As one would expect, the rank of nodes is strictly increasing along the path 
from a leaf to the root.  

We are now ready to prove the main theorem. Our basic idea is as follows: A find on any node v 
costs time proportional to the number of nodes on the path from v to the root. Let us, then, 
charge one unit of cost for every node on the path from v to the root for each find. To help us 
count the charges, we will deposit an imaginary penny into each node on the path. This is 
strictly an accounting gimmick, which is not part of the program. When the algorithm is over, we 
collect all the coins that have been deposited; this is the total cost.  

As a further accounting gimmick, we deposit both American and Canadian pennies. We will show that 
during the execution of the algorithm, we can deposit only a certain number of American pennies 
during each find. We will also show that we can deposit only a certain number of Canadian pennies 
to each node. Adding these two totals gives us a bound on the total number of pennies that can be 
deposited.  

We now sketch our accounting scheme in a little more detail. We will divide the nodes by their 
ranks. We then divide the ranks into rank groups. On each find, we will deposit some American 
coins into the general kitty and some Canadian coins into specific vertices. To compute the total 
number of Canadian coins deposited, we will compute the deposits per node. By adding up all the 
deposits for each node in rank r, we will get the total deposits per rank r. Then we will add up 
all the deposits for each rank r in group g and thereby obtain the total deposits for each rank 
group g. Finally, we add up all the deposits for each rank group g to obtain the total number of 
Canadian coins deposited in the forest. Adding this to the number of American coins in the kitty 
gives us the answer.  

We will partition ranks into groups. Ranks r goes into group G(r), and G will be determined 

later. The largest rank in any rank group g is F(g), where F = G-1 is the inverse of G. The 
number of ranks in any rank group, g > 0, is thus F(g) - F(g - 1). Clearly G(n) is a very loose 
upper bound on the largest rank group. As an example, suppose that we partitioned the ranks as in 

Figure 8.7. In this case, . The largest rank in group g is F(g) = g2, and observe 
that group g > 0 contains ranks F(g - 1) + 1 through F(g) inclusive. This formula does not apply 
for rank group 0, so for convenience we will ensure that rank group 0 contains only elements of 
rank 0. Notice that the groups are made of consecutive ranks.  
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Figure 8.16 A large disjoint set tree (numbers below nodes are ranks)

 

As mentioned before, each union instruction takes constant time, as long as each root keeps track 
of how big its subtrees are. Thus, unions are essentially free, as far as this proof goes.  

Each find(i) takes time proportional to the number of vertices on the path from the vertex 
representing i to the root. We will thus deposit one penny for each vertex on the path. If this 
is all we do, however, we cannot expect much of a bound, because we are not taking advantage of 
path compression. Thus, we need to take advantage of path compression in our analysis. We will 
use fancy accounting.  

For each vertex, v, on the path from the vertex representing i to the root, we deposit one penny 
under one of two accounts:  

1. If v is the root, or if the parent of v is the root, or if the parent of v is in a different 
rank group from v, then charge one unit under this rule. This deposits an American penny into the 
kitty.  

2. Otherwise deposit a Canadian penny into the vertex. 

 

LEMMA 8.4. 

 

For any find (v), the total number of pennies deposited, either into the kitty or into a vertex, 
is exactly equal to the number of nodes on the path from v to the root.  

PROOF: 

 

Obvious. 

 

Thus all we need to do is to sum all the American pennies deposited under rule 1 with all the 
Canadian pennies deposited under rule 2.  

We are doing at most m finds. We need to bound the number of pennies that can be deposited into 
the kitty during a find.  

LEMMA 8.5 

 

Over the entire algorithm, the total deposits of American pennies under rule 1 amount to m(G(n) + 
2).  

Group           Rank

 

------------------------------
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  0               0 

  1               1

 

  2             2,3,4

 

  3          5 through 9

 

  4         10 through 16

 

  i      (i-1)2 + 1 through i2

 

Figure 8.17 Possible partitioning of ranks into groups

 

PROOF: 

 

This is easy. For any find, two American pennies are deposited, because of the root and its 
child. By Lemma 8.3, the vertices going up the path are monotonically increasing in rank, and 

since there are at most G(n) rank groups, only G(n) other vertices on the path can qualify as a 
rule 1 deposit for any particular find. Thus, during any one find, at most G(n) + 2 American 
pennies can be placed in the kitty. Thus, at most m(G(n) + 2) American pennies can be deposited 
under rule 1 for a sequence of m finds.  

To get a good estimate for all the Canadian deposits under rule 2, we will add up the deposits by 
vertices instead of by find instructions. If a coin is deposited into vertex v under rule 2, v 
will be moved by path compression and get a new parent of higher rank than its old parent. (This 
is where we are using the fact that path compression is being done.) Thus, a vertex v in rank 
group g > 0 can be moved at most F(g) - F(g - 1) times before its parent gets pushed out of rank 

group g, since that is the size of the rank group.* After this happens, all future charges to v 
will go under rule 1.  

*This can be reduced by 1. We do not for the sake of clarity; the bound is not improved by being more careful here. 

 

LEMMA 8.6. 

 

The number of vertices, N(g), in rank group g > 0 is at most n/2F(g - 1). 

 

PROOF: 

 

By Lemma 8.2, there are at most n/2r vertices of rank r. Summing over the ranks in group g, we 

obtain  
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LEMMA 8.7. 

 

The number of Canadian pennies deposited into all vertices in rank group g is at most nF(g)/2F(g 

- 1).  

PROOF: 

 

Each vertex in the rank group can receive at most F(g) - F(g - 1)  F(g) Canadian pennies 
while its parent stays in its rank group, and Lemma 8.6 tells how many such vertices there are. 

The result is obtained by a simple multiplication.  

LEMMA 8.8. 

 

The total deposit under rule 2 is at most n  Canadian pennies. 

 

PROOF: 

 

Because rank group 0 contains only elements of rank 0, it cannot contribute to rule 2 charges (it 
cannot have a parent in the same rank group). The bound is obtained by summing the other rank 
groups.  

Thus we have the deposits under rules 1 and 2. The total is 

 

 

 

(8.1)
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We still have not specified G(n) or its inverse F(n). Obviously, we are free to choose virtually 

anything we want, but it makes sense to choose G(n) to minimize the bound above. However, if G(n) 
is too small, then F(n) will be large, hurting the bound. An apparently good choice is to choose 

F(i) to be the function recursively defined by F(0) = 0 and F(i) = 2F(i - 1). This gives G(n) = 1 
+[log* n]. Figure 8.18 shows how this partitions the ranks. Notice that group 0 contains only 
rank 0, which we required in the previous lemma. F is very similar to the single-variable 
Ackerman function, which differs only in the definition of the base case (F(0) = 1).  

THEOREM 8.1. 

 

The running time of m unions and finds is O(m log* n). 

 

Group         Rank

 

---------------------------

 

  0               0

 

  1               1

 

  2               2

 

  3              3,4

 

  4         5 through 16

 

  5        17 through 216

 

  6      65537 through 265536

 

  7        truly huge ranks

 

Figure 8.18 Actual partitioning of ranks into groups used in the proof

 

PROOF: 

 

Plug in the definitions of F and G into Equation (8.1). The total number of American pennies is O

(mG(n)) = O(m log* n). The total number of Canadian pennies is 

. Since m = (n), the bound follows. 

What the analysis shows is that there are few nodes that could be moved frequently by path 
compression, and thus the total time spent is relatively small.  

8.7. An Application
 

As an example of how this data structure might be used, consider the following problem. We have a 
network of computers and a list of bidirectional connections; each of these connections allows a 
file transfer from one computer to another. Is it possible to send a file from any computer on 
the network to any other? An extra restriction is that the problem must be solved on-line. Thus, 
the list of connections is presented one at a time, and the algorithm must be prepared to give an 
answer at any point.  
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An algorithm to solve this problem can initially put every computer in its own set. Our invariant 
is that two computers can transfer files if and only if they are in the same set. We can see that 
the ability to transfer files forms an equivalence relation. We then read connections one at a 
time. When we read some connection, say (u, v), we test to see whether u and v are in the same 
set and do nothing if they are. If they are in different sets, we merge their sets. At the end of 
the algorithm, the graph is connected if and only if there is exactly one set. If there are m 
connections and n computers, the space requirement is O(n). Using union-by-size and path 

compression, we obtain a worst-case running time of O(m (m, n)), since there are 2m finds and 
at most n - 1 unions. This running time is linear for all practical purposes.  

We will see a much better application in the next chapter. 

 

Summary
 

We have seen a very simple data structure to maintain disjoint sets. When the union operation is 
performed, it does not matter, as far as correctness is concerned, which set retains its name. A 
valuable lesson that should be learned here is that it can be very important to consider the 
alternatives when a particular step is not totally specified. The union step is flexible; by 
taking advantage of this, we are able to get a much more efficient algorithm.  

Path compression is one of the earliest forms of self-adjustment, which we have seen elsewhere 
(splay trees, skew heaps). Its use is extremely interesting, especially from a theoretical point 
of view, because it was one of the first examples of a simple algorithm with a not-so-simple 
worst-case analysis.  

Exercises
 

8.1 Show the result of the following sequence of instructions: union(1, 2), union(3, 4), union(3, 

5), union(1, 7), union(3, 6), union(8, 9), union(1, 8), union(3, 10), union(3, 11), union(3, 12), 
union(3, 13), union(14, 15), union(16, 17), union(14, 16), union(1, 3), union(1, 14), when the 
unions are  

a. performed arbitrarily 

 

b. performed by height 

 

c. performed by size 

 

8.2 For each of the trees in the previous exercise, perform a find with path compression on the 

deepest node.  

8.3 Write a program to determine the effects of path compression and the various unioning 

strategies. Your program should process a long sequence of equivalence operations using all six 
of the possible strategies.  

8.4 Show that if unions are performed by height, then the depth of any tree is O(log n) . 
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8.5 a. Show that if m = n2, then the running time of m union/find operations is O(m).  

b. Show that if m = n log n, then the running time of m union/find operations is O(m) . 

 

*c. Suppose m = (n log log n). What is the running time of m union/find operations? 

 

*d. Suppose m = (n log* n). What is the running time of m union/find operations? 

 

8.6 Show the operation of the program in Section 8.7 on the following graph: (1,2), (3,4), (3,6), 

(5,7), (4,6), (2,4), (8,9), (5,8). What are the connected components?  

8.7 Write a program to implement the algorithm in Section 8.7. 

 

*8.8 Suppose we want to add an extra operation, deunion, which undoes the last union operation 

that has not been already undone.  

a. Show that if we do union-by-height and finds without path compression, then deunion is easy 
and a sequence of m union, find, and deunion operations take O(m log n) time.  

b. Why does path compression make deunion hard? 

 

**c. Show how to implement all three operations so that the sequence of m operations takes O(m 
log n/log log n) time.  

* 8.9 Suppose we want to add an extra operation, remove(x), which removes x from its current set 
and places it in its own. Show how to modify the union/find algorithm so that the running time of 

a sequence of m union, find, and remove operations is O(m (m, n)). 

 

**8.10 Give an algorithm that takes as input an n-vertex tree and a list of n pairs of vertices 

and determines for each pair (v, w) the closest common ancestor of v and w. Your algorithm should 
run in O(n log* n).  

*8.11 Show that if all of the unions precede the finds, then the disjoint set algorithm with path 

compression requires linear time, even if the unions are done arbitrarily.  

**8.12 Prove that if unions are done arbitrarily, but path compression is performed on the finds,

then the worst-case running time is (m log n). 
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8.13 Prove that if unions are done by size and path compression is performed, the worst-case 

running time is O(m log* n).  

8.14 Suppose we implement partial path compression on find(i) by making every other node on the 

path from i to the root point to its grandparent (where this makes sense). This is known as path 
halving.  

a. Write a procedure to do this. 

 

b. Prove that if path halving is performed on the finds and either union-by-height or union-by-
size is used, the worst-case running time is O(m log* n).  
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CHAPTER 9: 
GRAPH ALGORITHMS 

In this chapter we discuss several common problems in graph theory. Not only are 
these algorithms useful in practice, they are interesting because in many real-
life applications they are too slow unless careful attention is paid to the 
choice of data structures. We will  

 Show several real-life problems, which can be converted to problems on 
graphs.  

 Give algorithms to solve several common graph problems.  

 Show how the proper choice of data structures can drastically reduce the 
running time of these algorithms.  

 See an important technique, known as depth-first search, and show how it can 
be used to solve several seemingly nontrivial problems in linear time.  

9.1 Definitions 

A graph G = (V, E) consists of a set of vertices, V, and a set of edges, E. Each 

edge is a pair (v,w), where v,w  V. Edges are sometimes referred to as arcs. 
If the pair is ordered, then the graph is directed. Directed graphs are sometimes 

referred to as digraphs. Vertex w is adjacent to v if and only if (v,w)  E. 
In an undirected graph with edge (v,w), and hence (w,v), w is adjacent to v and v
is adjacent to w. Sometimes an edge has a third component, known as either a 
weight or a cost.  

A path in a graph is a sequence of verices w1, w2, w3, . . . , wn such that (wi, 

wi+i)  E for 1  i < n. The length of such a path is the number of edges on 

the path, which is equal to n - 1. We allow a path from a vertex to itself; if 
this path contains no edges, then the path lenght is 0. This is a convenient way 
to define an otherwise special case. If the graph contains an edge (v,v) from a 
vertex to itself, then the path v, v is sometimes referred to as a loop. The 
graphs we will consider will generally be loopless. A simple path is a path such 
that all vertices are distinct, except that the first and last could be the same. 

A cycle in a directed graph is a path of length at least 1 such that w1 = wn; 

this cycle is simple if the path is simple. For undirected graphs, we require 
that the edges be distinct. The logic of these requirements is that the path u, 
v, u in an undirected graph should not be considered a cycle, because (u, v) and 
(v, u) are the same edge. In a directed graph, these are different edges, so it 

Next ChapterReturn to Table of ContentsPrevious Chapter
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makes sense to call this a cycle. A directed graph is acyclic if it has no 
cycles. A directed acyclic graph is sometimes referred to by its abbreviation, 
DAG.  

An undirected graph is connected if there is a path from every vertex to every 
other vertex. A directed graph with this property is called strongly connected. 
If a directed graph is not strongly connected, but the underlying graph (without 
direction to the arcs) is connected, then the graph is said to be weakly 
connected. A complete graph is a graph in which there is an edge between every 
pair of vertices.  

An example of a real-life situation that can be modeled by a graph is the airport 
system. Each airport is a vertex, and two vertices are connected by an edge if 
there is a nonstop flight from the airports that are represented by the vertices. 
The edge could have a weight, representing the time, distance, or cost of the 
flight. It is reasonable to assume that such a graph is directed, since it might 
take longer or cost more (depending on local taxes, for example) to fly in 
different directions. We would probably like to make sure that the airport system 
is strongly connected, so that it is always possible to fly from any airport to 
any other airport. We might also like to quickly determine the best flight 
between any two airports. "Best" could mean the path with the fewest number of 
edges or could be taken with respect to one, or all, of the weight measures.  

Traffic flow can be modeled by a graph. Each street intersection represents a 
vertex, and each street is an edge. The edge costs could represent, among other 
things, a speed limit or a capacity (number of lanes). We could then ask for the 
shortest route or use this information to find the most likely location for 
bottlenecks.  

In the remainder of this chapter, we will see several more applications of 
graphs. Many of these graphs can be quite large, so it is important that the 
algorithms we use be efficient.  

9.1.1. Representation of Graphs 

We will consider directed graphs (undirected graphs are similarly represented).  

Suppose, for now, that we can number the vertices, starting at 1. The graph shown 
in Figure 9.1 represents 7 vertices and 12 edges.  

One simple way to represent a graph is to use a two-dimensional array. This is 
known as an adjacency matrix representation. For each edge (u, v), we set a[u][v] 
= 1; otherwise the entry in the array is 0. If the edge has a weight associated 
with it, then we can set a[u][v] equal to the weight and use either a very large 
or a very small weight as a sentinel to indicate nonexistent edges. For instance, 
if we were looking for the cheapest airplane route, we could represent 

nonexistent flights with a cost of . If we were looking, for some strange 

reason, for the most expensive airplane route, we could use -  (or perhaps 0) 
to represent nonexistent edges.  
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Although this has the merit of extreme simplicity, the space requirement is 

(|V|2), which can be prohibitive if the graph does not have very many edges. An 
adjacency matrix is an appropriate representation if the graph is dense: |E| = 

(|V|2). In most of the applications that we shall see, this is not true. For 
instance, suppose the graph represents a street map. Assume a Manhattan-like 
orientation, where almost all the streets run either north-south or east-west. 
Therefore, any intersection is attached to roughly four streets, so if the graph 

is directed and all streets are two-way, then |E|  4|V|. If there are 3,000 
intersections, then we have a 3,000-vertex graph with 12,000 edge entries, which 
would require an array of size nine million. Most of these entries would contain 
zero. This is intuitively bad, because we want our data structures to represent 
the data that is actually there and not the data that is not present.  

  

Figure 9.1 A directed graph 

If the graph is not dense, in other words, if the graph is sparse, a better 
solution is an adjacency list representation. For each vertex, we keep a list of 
all adjacent vertices. The space requirement is then O|E| + |V|). The leftmost 
structure in Figure 9.2 is merely an array of header cells. The representation 
should be clear from Figure 9.2. If the edges have weights, then this additional 
information is also stored in the cells.  

Adjacency lists are the standard way to represent graphs. Undirected graphs can 
be similarly represented; each edge (u, v) appears in two lists, so the space 
usage essentially doubles. A common requirement in graph algorithms is to find 
all vertices adjacent to some given vertex v, and this can be done, in time 
proportional to the number of such vertices found, by a simple scan down the 
appropriate adjacency list.  

In most real-life applications, the vertices have names, which are unknown at 
compile time, instead of numbers. Since we cannot index an array by an unknown 
name, we must provide a mapping of names to numbers. The easiest way to do this 
is to use a hash table, in which we store a name and an internal number ranging 
from 1 to |V| for each vertex. The numbers are assigned as the graph is read. The 
first number assigned is 1. As each edge is input, we check whether each of the 
two vertices has been assigned a number, by seeing if it is in the hash table. If 
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so, we use the internal number. Otherwise, we assign to the vertex the next 
available number and insert the vertex name and number into the hash table.  

With this transformation, all the graph algorithms will use only the internal 
numbers. Since eventually we will need to output the real vertex names and not 
the internal numbers, we must also record, for each internal number, the 
corresponding vertex name. One way is to use an array of strings. If the vertex 
names are long, this can cost considerable space, because the vertex names are 
stored twice. An alternative is to keep an array of pointers into the hash table. 
The price of this alternative is a slight loss of the sanctity of the hash table 
ADT.  

  

Figure 9.2 An adjacency list representation of a graph 

The code that we present in this chapter will be pseudocode using ADTS as much 
as possible. We will do this to save space and, of course, to make the 
algorithmic presentation of the algorithms much clearer.  

9.2. Topological Sort 

A topological sort is an ordering of vertices in a directed acyclic graph, such 
that if there is a path from vi to vj, then vj appears after vi in the ordering. 

The graph in Figure 9.3 represents the course prerequisite structure at a state 
university in Miami. A directed edge (v,w) indicates that course v must be 
completed before course w may be attempted. A topological ordering of these 
courses is any course sequence that does not violate the prerequisite 
requirement.  

It is clear that a topological ordering is not possible if the graph has a cycle, 
since for two vertices v and w on the cycle, v precedes w and w precedes v. 
Furthermore, the ordering is not necessarily unique; any legal ordering will do. 
In the graph in Figure 9.4, v1, v2, v5, v4, v3, v7, v6 and v1, v2, v5, v4, v7, v3, 
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v6 are both topological orderings.  

A simple algorithm to find a topological ordering is first to find any vertex 
with no incoming edges. We can then print this vertex, and remove it, along with 
its edges, from the graph. Then we apply this same strategy to the rest of the 
graph.  

  

Figure 9.3 An acyclic graph representing course prerequisite structure 

  

Figure 9.4 An acyclic graph 

To formalize this, we define the indegree of a vertex v as the number of edges 
(u,v). We compute the indegrees of all vertices in the graph. Assuming that the 
indegree array is initialized and that the graph is read into an adjacency list, 
we can then apply the algorithm in Figure 9.5 to generate a topological ordering. 

The function find_new_vertex_of_indegree_zero scans the indegree array looking 
for a vertex with indegree 0 that has not already been assigned a topological 
number. It returns NOT_A_VERTEX if no such vertex exists; this indicates that the 
graph has a cycle.  
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void 

topsort( graph G ) 

{ 

unsigned int counter; 

vertex v, w; 

for( counter =  0; counter < NUM_VERTEX; counter++ ) 

{ 

v = find_new_vertex_of_indegree_zero( ); 

if( v = NOT_A_VERTEX ) 

{ 

error("Graph has a cycle"); 

break; 

} 

top_num[v] = counter; 

for each w adjacent to v 

indegree[w]--; 

} 

} 

Figure 9.5 Simple topological sort pseudocode 

Because find_new_vertex_of_indegree_zero is a simple sequential scan of the 
indegree array, each call to it takes O(|V|) time. Since there are |V| such 

calls, the running time of the algorithm is O(|V|2).  

By paying more careful attention to the data structures, it is possible to do 
better. The cause of the poor running time is the sequential scan through the 
indegree array. If the graph is sparse, we would expect that only a few vertices 
have their indegrees updated during each iteration. However, in the search for a 
vertex of indegree 0, we look at (potentially) all the vertices, even though only 
a few have changed.  

We can remove this inefficiency by keeping all the (unassigned) vertices of 
indegree 0 in a special box. The find_new_vertex_of_indegree_zero function then 
returns (and removes) any vertex in the box. When we decrement the indegrees of 
the adjacent vertices, we check each vertex and place it in the box if its 
indegree falls to 0.  
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To implement the box, we can use either a stack or a queue. First, the indegree 
is computed for every vertex. Then all vertices of indegree 0 are placed on an 
initially empty queue. While the queue is not empty, a vertex v is removed, and 
all edges adjacent to v have their indegrees decremented. A vertex is put on the 
queue as soon as its indegree falls to 0. The topological ordering then is the 
order in which the vertices dequeue. Figure 9.6 shows the status after each 
phase.  

A pseudocode implementation of this algorithm is given in Figure 9.7. As before, 
we will assume that the graph is already read into an adjacency list and that the 
indegrees are computed and placed in an array. A convenient way of doing this in 
practice would be to place the indegree of each vertex in the header cell. We 
also assume an array top_num, in which to place the topological numbering.  

       Indegree Before Dequeue # 

  Vertex    1   2   3   4   5   6   7 

-------------------------------------- 

    v1      0   0   0   0   0   0   0

 

    v2      1   0   0   0   0   0   0

 

    v3      2   1   1   1   0   0   0

 

    v4      3   2   1   0   0   0   0

 

    v5      1   1   0   0   0   0   0

 

    v6      3   3   3   3   2   1   0

 

    v7      2   2   2   1   0   0   0

 

-------------------------------------- 

  enqueue  v1  v2  v5  v4  v3  v7  v6

 

--------------------------------------

 

  dequeue  v1  v2  v5  v4  v3  v7  v6

 

Figure 9.6 Result of applying topological sort to the graph in Figure 9.4

 

void

 

topsort( graph G )

 

{

 

QUEUE Q;

 

unsigned int counter;

 

vertex v, w;
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/*1*/        Q = create_queue( NUM_VERTEX ); make_null( Q ); counter =  0; 

/*2*/        for each vertex v

 

/*3*/             if( indegree[v] =   0 )

 

/*4*/                  enqueue( v, Q );

 

/*5*/        while( !is_empty( Q ) )

 

{

 

/*6*/             v = dequeue( Q );

 

/*7*/             top_num[v] = ++counter; /* assign next number */

 

/*8*/             for each w adjacent to v

 

/*9*/                  if( --indegree[w] =  0 )

 

/*10*/                      enqueue( w, Q );

 

}

 

/*11*/       if( counter != NUM_VERTEX )

 

/*12*/            error("Graph has a cycle");

 

/*13*/       dispose_queue( Q ); /* free the memory */

 

}

 

Figure 9.7 Pseudocode to perform topological sort

 

The time to perform this algorithm is O(|E| + |V|) if adjacency lists are used. This is apparent 
when one realizes that the body of the for loop at line 8 is executed at most once per edge. The 
queue operations are done at most once per vertex, and the initialization steps also take time 
proportional to the size of the graph.  

9.3. Shortest-Path Algorithms
 

In this section we examine various shortest-path problems. The input is a weighted graph: 
associated with each edge (vi, vj) is a cost ci,j to traverse the arc. The cost of a path 

v1v2 ... vn is  This is referred to as the weighted path length. The unweighted path 

length is merely the number of edges on the path, namely, n - 1.  

SINGLE-SOURCE SHORTEST-PATH PROBLEM: 

 

Given as input a weighted graph, G = (V, E), and a distinguished vertex, s , find the shortest 
weighted path from s to every other vertex in G.  

For example, in the graph in 
Figure 9.8, the shortest weighted path from v1 to v6 has a cost of 6 

and goes from v1 to v4 to v7 to v6. The shortest unweighted path between these vertices is 2. 

Generally, when it is not specified whether we are referring to a weighted or an unweighted path, 
the path is weighted if the graph is. Notice also that in this graph there is no path from v6 to 
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v1.  

The graph in the preceding example has no edges of negative cost. The graph in Figure 9.9 shows 
the problems that negative edges can cause. The path from v5 to v4 has cost 1, but a shorter path 

exists by following the loop v5, v4, v2, v5, v4, which has cost -5. This path is still not the 

shortest, because we could stay in the loop arbitrarily long. Thus, the shortest path between 
these two points is undefined. Similarly, the shortest path from v1 to v6 is undefined, because 

we can get into the same loop. This loop is known as a negative-cost cycle; when one is present 
in the graph, the shortest paths are not defined. Negative-cost edges are not necessarily bad, as 
the cycles are, but their presence seems to make the problem harder. For convenience, in the 
absence of a negative-cost cycle, the shortest path from s to s is zero.  

 

 

Figure 9.8 A directed graph G

 

 

 

Figure 9.9 A graph with a negative-cost cycle

 

There are many examples where we might want to solve the shortest-path problem. If the vertices 
represent computers; the edges represent a link between computers; and the costs represent 
communication costs (phone bill per 1,000 bytes of data), delay costs (number of seconds required 
to transmit 1,000 bytes), or a combination of these and other factors, then we can use the 
shortest-path algorithm to find the cheapest way to send electronic news from one computer to a 
set of other computers.  

We can model airplane or other mass transit routes by graphs and use a shortest-path algorithm to 
compute the best route between two points. In this and many practical applications, we might want 
to find the shortest path from one vertex, s, to only one other vertex, t. Currently there are no 
algorithms in which finding the path from s to one vertex is any faster (by more than a constant 
factor) than finding the path from s to all vertices.  

We will examine algorithms to solve four versions of this problem. First, we will consider the 
unweighted shortest-path problem and show how to solve it in O(|E| + |V|). Next, we will show how 
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to solve the weighted shortest-path problem if we assume that there are no negative edges. The 
running time for this algorithm is O (|E| log |V|) when implemented with reasonable data 
structures.  

If the graph has negative edges, we will provide a simple solution, which unfortunately has a 

poor time bound of O (|E|  |V|). Finally, we will solve the weighted problem for the special 
case of acyclic graphs in linear time.  

9.3.1. Unweighted Shortest Paths

 

Figure 9.10 shows an unweighted graph, G. Using some vertex, s, which is an input parameter, we 
would like to find the shortest path from s to all other vertices. We are only interested in the 
number of edges contained on the path, so there are no weights on the edges. This is clearly a 
special case of the weighted shortest-path problem, since we could assign all edges a weight of 
1.  

For now, suppose we are interested only in the length of the shortest paths, not in the actual 
paths themselves. Keeping track of the actual paths will turn out to be a matter of simple 
bookkeeping.  

 

 

Figure 9.10 An unweighted directed graph G

 

Suppose we choose s to be v3. Immediately, we can tell that the shortest path from s to v3 is 

then a path of length 0. We can mark this information, obtaining the graph in 
Figure 9.11. 

 

Now we can start looking for all vertices that are a distance 1 away from s. These can be found 
by looking at the vertices that are adjacent to s. If we do this, we see that v1 and v6 are one 

edge from s. This is shown in Figure 9.12.  
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Figure 9.11 Graph after marking the start node as reachable in zero edges 

 

 

Figure 9.12 Graph after finding all vertices whose path length from s is 1

 

 

 

Figure 9.13 Graph after finding all vertices whose shortest path is 2

 

We can now find vertices whose shortest path from s is exactly 2, by finding all the vertices 
adjacent to v1 and v6 (the vertices at distance 1), whose shortest paths are not already known. 

This search tells us that the shortest path to v2 and v4 is 2. 
Figure 9.13 shows the progress 

that has been made so far.  

Finally we can find, by examining vertices adjacent to the recently evaluated v2 and v4, that v5 

and v7 have a shortest path of three edges. All vertices have now been calculated, and so Figure 

9.14 shows the final result of the algorithm.  

This strategy for searching a graph is known as breadth-first search. It operates by processing 
vertices in layers: the vertices closest to the start are evaluated first, and the most distant 
vertices are evaluated last. This is much the same as a level-order traversal for trees.  

Given this strategy, we must translate it into code. 
Figure 9.15 shows the initial configuration 

of the table that our algorithm will use to keep track of its progress.  

For each vertex, we will keep track of three pieces of information. First, we will keep its 
distance from s in the entry dv. Initially all vertices are unreachable except for s, whose path 

length is 0. The entry in pv is the bookkeeping variable, which will allow us to print the actual 

paths. The entry known is set to 1 after a vertex is processed. Initially, all entries are 
unknown, including the start vertex.  
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Figure 9.14 Final shortest paths

 

  v   Known  dv  pv

 

------------------

 

  v1    0       0

 

  v2    0       0

 

  v3    0    0   0

 

  v4    0       0

 

  v5    0       0

 

  v6    0       0

 

  v7    0       0

 

Figure 9.15 Initial configuration of table used in unweighted shortest-path computation

 

When a vertex is known, we have a guarantee that no cheaper path will ever be found, and so 
processing for that vertex is essentially complete.  

The basic algorithm can be described in 

Figure 9.16. The algorithm in Figure 9.16 mimics the 
diagrams by declaring as known the vertices at distance d = 0, then d = 1, then d = 2, and so on, 

and setting all the adjacent vertices w that still have dw =  to a distance dw = d + 1. 
 

By tracing back through the pv variable, the actual path can be printed. We will see how when we 

discuss the weighted case.  
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The running time of the algorithm is O(|V|2), because of the doubly nested for loops. An obvious 
inefficiency is that the outside loop continues until NUM_VERTEX -1, even if all the vertices 
become known much earlier. Although an extra test could be made to avoid this, it does not affect 
the worst-case running time, as can be seen by generalizing what happens when the input is the 
graph in Figure 9.17 with start vertex v9.  

void

 

unweighted( TABLE T )   /* assume T is initialized */

 

{

 

unsigned int curr_dist;

 

vertex v, w;

 

/*1*/        for( curr_dist = 0; curr_dist < NUM_VERTEX; curr_dist++)

 

/*2*/             for each vertex v

 

/*3*/                  if( ( !T[v].known ) && ( T[v].dist = curr_dist ) )

 

{

 

/*4*/                       T[v].known = TRUE;

 

/*5*/                       for each w adjacent to v

 

/*6*/                            if( T[w].dist = INT_MAX )

 

{

 

/*7*/                                 T[w].dist = curr_dist + 1;

 

/*8*/                                 T[w].path = v;

 

}

 

}

 

}

 

Figure 9.16 Pseudocode for unweighted shortest-path algorithm

 

 

 

Figure 9.17 A bad case for unweighted shortest-path algorithm without data structures

 

We can remove the inefficiency in much the same way as was done for topological sort. At any 

point in time, there are only two types of unknown vertices that have dv  . Some have dv 
= curr_dist, and the rest have dv = curr_dist + 1. Because of this extra structure, it is very 

wasteful to search through the entire table to find a proper vertex at lines 2 and 3.  

A very simple but abstract solution is to keep two boxes. Box #1 will have the unknown vertices 
with dv = curr_dist, and box #2 will have dv = curr_dist + 1. The test at lines 2 and 3 can be 
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replaced by finding any vertex in box #1. After line 8 (inside the if block), we can add w to box 
#2. After the outside for loop terminates, box #1 is empty, and box #2 can be transferred to box 
#1 for the next pass of the for loop.  

We can refine this idea even further by using just one queue. At the start of the pass, the queue 
contains only vertices of distance curr_dist. When we add adjacent vertices of distance curr_dist
+ 1, since they enqueue at the rear, we are guaranteed that they will not be processed until 
after all the vertices of distance curr_dist have been processed. After the last vertex at 
distance curr_dist dequeues and is processed, the queue only contains vertices of distance 
curr_dist + 1, so this process perpetuates. We merely need to begin the process by placing the 
start node on the queue by itself.  

The refined algorithm is shown in 

Figure 9.18. In the pseudocode, we have assumed that the start 
vertex, s, is known somehow and T[s].dist is 0. A C routine might pass s as an argument. Also, it 
is possible that the queue might empty prematurely, if some vertices are unreachable from the 
start node. In this case, a distance of INT_MAX will be reported for these nodes, which is 
perfectly reasonable. Finally, the known field is not used; once a vertex is processed it can 
never enter the queue again, so the fact that it need not be reprocessed is implicitly marked. 
Thus, the known field can be discarded. Figure 9.19 shows how the values on the graph we have 
been using are changed during the algorithm. We keep the known field to make the table easier to 
follow, and for consistency with the rest of this section.  

Using the same analysis as was performed for topological sort, we see that the running time is O
(|E| + |V|), as long as adjacency lists are used.  

9.3.2. Dijkstra's Algorithm
 

If the graph is weighted, the problem (apparently) becomes harder, but we can still use the ideas 
from the unweighted case.  

We keep all of the same information as before. Thus, each vertex is marked as either known or 
unknown. A tentative distance dv is kept for each vertex, as before. This distance turns out to 

be the shortest path length from s to v using only known vertices as intermediates. As before, we 
record pv, which is the last vertex to cause a change to dv.  

void

 

unweighted( TABLE T )   /* assume T is initialized (Fig 9.30) */

 

{

 

QUEUE Q;

 

vertex v, w;

 

/*1*/        Q = create_queue( NUM_VERTEX ); make_null( Q );

 

/* enqueue the start vertex s, determined elsewhere */

 

/*2*/        enqueue( s, Q );

 

/*3*/        while( !is empty( Q ) )

 

{

 

/*4*/             v = dequeue( Q );
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/*5*/             T[v].known = TRUE; /* not really needed anymore */ 

/*6*/             for each w adjacent to v

 

/*7*/                  if( T[w].dist = INT_MAX )

 

{

 

/*8*/                       T[w].dist = T[v].dist + 1;

 

/*9*/                       T[w].path = v;

 

/*10*/                      enqueue( w, Q );

 

}

 

}

 

/*11*/       dispose_queue( Q ); /* free the memory */

 

}

 

Figure 9.18 Pseudocode for unweighted shortest-path algorithm

 

The general method to solve the single-source shortest-path problem is known as Dijkstra's 
algorithm. This thirty-year-old solution is a prime example of a greedy algorithm. Greedy 
algorithms generally solve a problem in stages by doing what appears to be the best thing at each 
stage. For example, to make change in U.S. currency, most people count out the quarters first, 
then the dimes, nickels, and pennies. This greedy algorithm gives change using the minimum number 
of coins. The main problem with greedy algorithms is that they do not always work. The addition 
of a 12-cent piece breaks the coin-changing algorithm, because the answer it gives (one 12-cent 
piece and three pennies) is not optimal (one dime and one nickel).  

Dijkstra's algorithm proceeds in stages, just like the unweighted shortest-path algorithm. At 
each stage, Dijkstra's algorithm selects a vertex v, which has the smallest dv among all the 

unknown vertices, and declares that the shortest path from s to v is known. The remainder of a 
stage consists of updating the values of dw.  

     Initial State    v3 Dequeued    v1 Dequeued    v6 Dequeued

 

     -------------  --------------  -------------  -------------

 

  v  Known  dv  pv   Known  dv  pv   Known  dv  pv  Known  dv  pv

 

----------------------------------------------------------------

 

  v1   0       0      0    1   v3    1    1   v3    1    1   v3

 

  v2   0       0      0       0     0    2   v1    0    2   v1

 

  v3   0    0   0      1    0   0     1    0   0     1    0   0
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  v4   0       0      0       0     0    2   v1    0    2   v1    

 

  v5   0       0      0       0     0       0     0       0

 

  v6   0       0      0    1   v3    0    1   v3    1    1   v3    

 

  v7   0       0      0       0     0       0     0       0

 

----------------------------------------------------------------

 

  Q:      v3            v1,v6          v6,v2,v4         v2,v4

 

      v2 Dequeued    v4 Dequeued    v5 Dequeued    v7 Dequeued

 

     -------------  --------------  -------------  -------------

 

  v   Known  dv  pv  Known  dv  pv  Known  dv  pv  Known  dv  pv

 

----------------------------------------------------------------

 

  v1    1    1   v3    1    1   v3    1    1   v3    1    1  v3    

 

  v2    1    2   v1    1    2   v1    1    2   v1    1    2  v1    

 

  v3    1    0   0     1    0   0     1    0   0     1    0  0

 

  v4    0    2   v1    1    2   v1    1    2   v1    1    2  v1    

 

  v5    0    3   v2    0    3   v2    1    3   v2    1    3  v2    

 

  v6    1    1   v3    1    1   v3    1    1   v3    1    1  v3    

 

  v7    0       0     0    3   v4    0    3   v4    1    3  v4    

 

----------------------------------------------------------------

 

  Q:     v4,v5          v5,v7           v7              empty    

 

Figure 9.19 How the data structure changes during the unweighted shortest-path algorithm

 

In the unweighted case, we set dw = dv + 1 if dw = . Thus, we essentially lowered the value 

of dw if vertex v offered a shorter path. If we apply the same logic to the weighted case, then 

we should set dw = dv + cv,w if this new value for dw would be an improvement. Put simply, the 

algorithm decides whether or not it is a good idea to use v on the path to w. The original cost, 
dw, is the cost without using v; the cost calculated above is the cheapest path using v (and only 

known vertices).  
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The graph in 

Figure 9.20 is our example. Figure 9.21 represents the initial configuration, 
assuming that the start node, s, is v1. The first vertex selected is v1, with path length 0. This 

vertex is marked known. Now that v1 is known, some entries need to be adjusted. The vertices 

adjacent to v1 are v2 and v4. Both these vertices get their entries adjusted, as indicated in 

Figure 9.22.  

Next, v4 is selected and marked known. Vertices v3, v5, v6, and v7 are adjacent, and it turns out 

that all require adjusting, as shown in Figure 9.23.  

Next, v2 is selected. v4 is adjacent but already known, so no work is performed on it. v5 is 

adjacent but not adjusted, because the cost of going through v2 is 2 + 10 = 12 and a path of 

length 3 is already known. Figure 9.24 shows the table after these vertices are selected.  

 

 

Figure 9.20 The directed graph G(again)

 

  v   Known  dv  pv    

 

-------------------

 

  v1     0    0   0

 

  v2     0       0

 

  v3     0       0

 

  v4     0       0

 

  v5     0       0

 

  v6     0       0

 

  v7     0       0
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Figure 9.21 Initial configuration of table used in Dijkstra's algorithm

 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     0    2   v1    

 

  v3     0       0

 

  v4     0    1   v1    

 

  v5     0       0

 

  v6     0       0

 

  v7     0       0

 

Figure 9.22 After v1 is declared known

 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0    

 

  v2     0    2   v1    

 

  v3     0    3   v4    

 

  v4     1    1   v1    

 

  v5     0    3   v4    

 

  v6     0    9   v4    

 

  v7     0    5   v4    

 

Figure 9.23 After v4 is declared known

 

  v   Known  dv  pv    
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-------------------- 

  v1     1    0   0

 

  v2     1    2   v1    

 

  v3     0    3   v4    

 

  v4     1    1   v1    

 

  v5     0    3   v4    

 

  v6     0    9   v4    

 

  v7     0    5   v4    

 

Figure 9.24 After v2 is declared known

 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     1    2   v1    

 

  v3     1    3   v4    

 

  v4     1    1   v1    

 

  v5     1    3   v4    

 

  v6     0    8   v3    

 

  v7     0    5   v4    

 

Figure 9.25 After v5 and then v3 are declared known

 

  v  Known  dv  pv

 

-------------------

 

  v1    1    0   0

 

  v2    1    2   v1

 

  v3    1    3   v4

 

  v4    1    1   v1

 

  v5    1    3   v4
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  v6    0    6   v7 

  v7    1    5   v4

 

Figure 9.26 After v7 is declared known

 

The next vertex selected is v5 at cost 3. v7 is the only adjacent vertex, but it is not adjusted, 

because 3 + 6 > 5. Then v3 is selected, and the distance for v6 is adjusted down to 3 + 5 = 8. 

The resulting table is depicted in Figure 9.25. 

Next v7 is selected; v6 gets updated down to 5 + 1 = 6. The resulting table is Figure 9.26. 

 

Finally, v6 is selected. The final table is shown in Figure 9.27. Figure 9.28 graphically shows 

how edges are marked known and vertices updated during Dijkstra's algorithm.  

  v  Known  dv  pv    

 

-------------------

 

  v1    1    0   0

 

  v2    1    2   v1    

 

  v3    1    3   v4    

 

  v4    1    1   v1    

 

  v5    1    3   v4    

 

  v6    1    6   v7    

 

  v7    1    5   v4    

 

Figure 9.27 After v6 is declared known and algorithm terminates
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Figure 9.28 Stages of Dijkstra's algorithm

 

To print out the actual path from a start vertex to some vertex v, we can write a recursive 
routine to follow the trail left in the p array.  

We now give pseudocode to implement Dijkstra's algorithm. We will assume that the vertices are 
numbered from 0 to NUM_VERTEX for convenience (see 

Fig. 9.29), and that the graph can be read 
into an adjacency list by the routine read_graph.  

In the routine in Figure 9.30, the start vertex is passed to the initialization routine. This is 
the only place in the code where the start vertex needs to be known.  
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The path can be printed out using the recursive routine in Figure 9.31. The routine recursively 
prints the path all the way up to the vertex before v on the path, and then just prints v. This 
works because the path is simple.  

typedef int vertex;

 

struct table_entry

 

{

 

LIST header;        /* Adjacency list header */

 

int known;

 

dist_type dist;

 

vertex path;

 

};

 

/* Vertices are numbered from 1 */

 

#define NOT_A_VERTEX 0

 

typedef struct table_entry TABLE[NUM_VERTEX+1];

 

Figure 9.29 Declarations for Dijkstra's algorithm

 

void

 

init_table( vertex start, graph G, TABLE T )

 

{

 

int i;

 

/*1*/        read graph( G, T ); /* read graph somehow */

 

/*2*/        for( i=NUM_VERTEX; i>0; i-- )

 

{

 

/*3*/             T[i].known = FALSE;

 

/*4*/             T[i].dist = INT_MAX;

 

/*5*/             T[i].path = NOT_A_VERTEX;

 

}

 

/*6*/        T[start].dist = 0;

 

}

 

Figure 9.30 Table initialization routine

 

/* print shortest path to v after dijkstra has run */

 

/* assume that the path exists */
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void 

print_path( vertex v, TABLE T )

 

{

 

if( T[v].path != NOT_A_VERTEX )

 

{

 

print_path( T[v].path, T );

 

printf(" to ");

 

}

 

printf("%v", v ); /* %v is a pseudocode option for printf */

 

}

 

Figure 9.31 Routine to print the actual shortest path

 

Figure 9.32 shows the main algorithm, which is just a for loop to fill up the table using the 
greedy selection rule.  

A proof by contradiction will show that this algorithm always works as long as no edge has a 
negative cost. If any edge has negative cost, the algorithm could produce the wrong answer (see 
Exercise 9.7a). The running time depends on how the table is manipulated, which we have yet to 
consider. If we use the obvious algorithm of scanning down the table to find the minimum dv, each 

phase will take O(|V|) time to find the minimum, and thus O(|V|2) time will be spent finding the 
minimum over the course of the algorithm. The time for updating dw is constant per update, and 

there is at most one update per edge for a total of O(|E|). Thus, the total running time is O(|E| 

+ |V|2) = O(|V|2). If the graph is dense, with |E| = (|V|2), this algorithm is not only 
simple but essentially optimal, since it runs in time linear in the number of edges.  

If the graph is sparse, with |E| = (|V|), this algorithm is too slow. In this case, the 
distances would need to be kept in a priority queue. There are actually two ways to do this; both 
are similar.  

Lines 2 and 5 combine to form a delete_min operation, since once the unknown minimum vertex is 
found, it is no longer unknown and must be removed from future consideration. The update at line 
9 can be implemented two ways.  

One way treats the update as a decrease_key operation. The time to find the minimum is then O(log 
|V|), as is the time to perform updates, which amount to decrease_key operations. This gives a 
running time of O(|E| log |V| + |V| log |V|) = O(|E| log |V|), an improvement over the previous 
bound for sparse graphs. Since priority queues do not efficiently support the find operation, the 
location in the priority queue of each value of di will need to be maintained and updated 

whenever di changes in the priority queue. This is not typical of the priority queue ADT and 

thus is considered ugly.  
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The alternate method is to insert w and the new value dw into the priority queue every time line 

9 is executed. Thus, there may be more than one representative for each vertex in the priority 
queue. When the delete_min operation removes the smallest vertex from the priority queue, it must 
be checked to make sure that it is not already known. Thus, line 2 becomes a loop performing 
delete_mins until an unknown vertex emerges. Although this method is superior from a software 
point of view, and is certainly much easier to code, the size of the priority queue could get to 

be as big as |E|. This does not affect the asymptotic time bounds, since |E|  |V|2 implies 

that log|E|  2 log |V|. Thus, we still get an O(|E| log |V|) algorithm. However, the space 
requirement does increase, and this could be important in some applications. Moreover, because 
this method requires |E| delete_mins instead of only |V|, it is likely to be slower in practice. 

void

 

dijkstra( TABLE T )

 

{

 

vertex v, w;

 

/*1*/        for( ; ; )

 

{

 

/*2*/        v = smallest unknown distance vertex;

 

 

/*4*/             break;

 

/*5*/        T[v].known = TRUE;

 

/*6*/        for each w adjacent to v

 

/*7*/             if( !T[w].known )

 

/*8*/                  if( T[v].dist + cv,w < T[w].dist )

 

{ /* update w */

 

/*9*/                       decrease( T[w].dist to

 

T[v].dist + cv,w );

 

/*10*/                      T[w].path = v;

 

}

 

}

 

}

 

页码，24/75Structures, Algorithm Analysis: CHAPTER 9: GRAPH ALGORITHMS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



Figure 9.32 Pseudocode for Dijkstra's algorithm

 

Notice that for the typical problems, such as computer mail and mass transit commutes, the graphs 
are typically very sparse because most vertices have only a couple of edges, so it is important 
in many applications to use a priority queue to solve this problem.  

There are better time bounds possible using Dijkstra's algorithm if different data structures are 
used. In Chapter 11, we will see another priority queue data structure called the Fibonacci heap. 
When this is used, the running time is O(|E| + |V| log |V|). Fibonacci heaps have good 
theoretical time bounds but a fair amount of overhead, so it is not dear whether using Fibonacci 
heaps is actually better in practice than Dijkstra's algorithm with binary heaps. Needless to 
say, there are no average-case results for this problem, since it is not even obvious how to 
model a random graph.  

void                 /* assume T is initialized as in Fig 9.18 */

 

weighted_negative( TABLE T )

 

{

 

QUEUE Q;

 

vertex v, w;

 

/*1*/        Q = create_queue( NUM_VERTEX ); make_null( Q );

 

/*2*/        enqueue( s, Q ); /* enqueue the start vertex s */

 

/*3*/        while( !is_empty( Q ) )

 

{

 

/*4*/             v = dequeue( Q );

 

/*5*/             for each w adjacent to v

 

/*6*/                  if( T[v].dist + cv,w < T[w].dist )

 

{ /*update w */

 

/*7*/                       T[w].dist = T[v].dist + cv,w ;

 

/*8*/                       T[w].path = v;

 

/*9*/                       if( w is not already in Q )

 

/*10*/                           enqueue( w, Q );

 

}

 

}

 

/*11*/       dispose_queue( Q );

 

}
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Figure 9.33 Pseudocode for weighted shortest-path algorithm with negative edge costs 

9.3.3. Graphs with Negative Edge Costs

 

If the graph has negative edge costs, then Dijkstra's algorithm does not work. The problem is 
that once a vertex u is declared known, it is possible that from some other, unknown vertex v 
there is a path back to u that is very negative. In such a case, taking a path from s to v back 
to u is better than going from s to u without using v.  

A combination of the weighted and unweighted algorithms will solve the problem, but at the cost 
of a drastic increase in running time. We forget about the concept of known vertices, since our 
algorithm needs to be able to change its mind. We begin by placing s on a queue. Then, at each 
stage, we dequeue a vertex v. We find all vertices w adjacent to v such that dw > dv + cv,w. We 

update dw and pw, and place w on a queue if it is not already there. A bit can be set for each 

vertex to indicate presence in the queue. We repeat the process until the queue is empty. 

Figure 
9.33 (almost) implements this algorithm.  

Although the algorithm works if there are no negative-cost cycles, it is no longer true that the 
code in lines 6 through 10 is executed once per edge. Each vertex can dequeue at most |V| times, 

so the running time is O(|E|  |V|) if adjacency lists are used (Exercise 9.7b). This is quite 
an increase from Dijkstra's algorithm, so it is fortunate that, in practice, edge costs are 
nonnegative. If negative-cost cycles are present, then the algorithm as written will loop 
indefinitely. By stopping the algorithm after any vertex has dequeued |V| + 1 times, we can 
guarantee termination.  

9.3.4. Acyclic Graphs
 

If the graph is known to be acyclic, we can improve Dijkstra's algorithm by changing the order in 
which vertices are declared known, otherwise known as the vertex selection rule. The new rule is 
to select vertices in topological order. The algorithm can be done in one pass, since the 
selections and updates can take place as the topological sort is being performed.  

This selection rule works because when a vertex v is selected, its distance, dv, can no longer be 

lowered, since by the topological ordering rule it has no incoming edges emanating from unknown 
nodes.  

There is no need for a priority queue with this selection rule; the running time is O(|E| + |V|), 
since the selection takes constant time.  

An acyclic graph could model some downhill skiing problem -- we want to get from point a to b, 
but can only go downhill, so clearly there are no cycles. Another possible application might be 
the modeling of (nonreversible) chemical reactions. We could have each vertex represent a 
particular state of an experiment. Edges would represent a transition from one state to another, 
and the edge weights might represent the energy released. If only transitions from a higher 
energy state to a lower are allowed, the graph is acyclic.  
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A more important use of acyclic graphs is critical path analysis. The graph in Figure 9.34 will 
serve as our example. Each node represents an activity that must be performed, along with the 
time it takes to complete the activity. This graph is thus known as an activity-node graph. The 
edges represent precedence relationships: An edge (v, w) means that activity v must be completed 
before activity w may begin. Of course, this implies that the graph must be acyclic. We assume 
that any activities that do not depend (either directly or indirectly) on each other can be 
performed in parallel by different servers.  

 

 

Figure 9.34 Activity-node graph

 

This type of a graph could be (and frequently is) used to model construction projects. In this 
case, there are several important questions which would be of interest to answer. First, what is 
the earliest completion time for the project? We can see from the graph that 10 time units are 
required along the path A, C, F, H. Another important question is to determine which activities 
can be delayed, and by how long, without affecting the minimum completion time. For instance, 
delaying any of A, C, F, or H would push the completion time past 10 units. On the other hand, 
activity B is less critical and can be delayed up to two time units without affecting the final 
completion time.  

To perform these calculations, we convert the activity-node graph to an event-node graph. Each 
event corresponds to the completion of an activity and all its dependent activities. Events 
reachable from a node v in the event-node graph may not commence until after the event v is 
completed. This graph can be constructed automatically or by hand. Dummy edges and nodes may need 
to be inserted in the case where an activity depends on several others. This is necessary in 
order to avoid introducing false dependencies (or false lack of dependencies). The event node 
graph corresponding to the graph in 

Figure 9.34 is shown in Figure 9.35. 

 

To find the earliest completion time of the project, we merely need to find the length of the 
longest path from the first event to the last event. For general graphs, the longest-path problem 
generally does not make sense, because of the possibility of positive-cost cycles. These are the 
equivalent of negative-cost cycles in shortest-path problems. If positive-cost cycles are 
present, we could ask for the longest simple path, but no satisfactory solution is known for this 
problem. Since the event-node graph is acyclic, we need not worry about cycles. In this case, it 
is easy to adapt the shortest-path algorithm to compute the earliest completion time for all 
nodes in the graph. If E Ci is the earliest completion time for node i, then the applicable rules 

are  

EC1 = 0
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Figure 9.36 shows the earliest completion time for each event in our example event-node graph. 

 

We can also compute the latest time, LCi, that each event can finish without affecting the final 

completion time. The formulas to do this are  

LCn = ECn    

 

 

 

These values can be computed in linear time by maintaining, for each vertex, a list of all 
adjacent and preceding vertices. The earliest completion times are computed for vertices by their 
topological order, and the latest completion times are computed by reverse topological order. The 
latest completion times are shown in Figure 9.37.  

The slack time for each edge in the event-node graph represents the amount of time that the 
completion of the corresponding activity can be delayed without delaying the overall completion. 
It is easy to see that  

Slack(v,w) = LCw - ECv - cv,w    

 

 

 

Figure 9.35 Event-node graph

 

 

 

Figure 9.36 Earliest completion times
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Figure 9.38 shows the slack (as the third entry) for each activity in the event-node graph. For 
each node, the top number is the earliest completion time and the bottom entry is the latest 
completion time.  

 

 

Figure 9.37 Latest completion times

 

 

 

Figure 9.38 Earliest completion time, latest completion time, and slack

 

Some activities have zero slack. These are critical activities, which must finish on schedule. 
There is at least one path consisting entirely of zero-slack edges; such a path is a critical 
path.  

9.3.5. All-Pairs Shortest Path

 

Sometimes it is important to find the shortest paths between all pairs of vertices in the graph. 
Although we could just run the appropriate single-source algorithm |V| times, we might expect a 
somewhat faster solution, especially on a dense graph, if we compute all the information at once. 

In 

Chapter 10, we will see an O(|V|3) algorithm to solve this problem for weighted graphs. 
Although, for dense graphs, this is the same bound as running a simple (non-priority queue) 
Dijkstra's algorithm |V| times, the loops are so tight that the specialized all-pairs algorithm 
is likely to be faster in practice. On sparse graphs, of course, it is faster to run |V| 
Dijkstra's algorithms coded with priority queues.  
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9.4. Network Flow Problems 

Suppose we are given a directed graph G = (V, E) with edge capacities cv,w. These capacities 

could represent the amount of water that could flow through a pipe or the amount of traffic that 
could flow on a street between two intersections. We have two vertices: s, which we call the 
source, and t, which is the sink. Through any edge, (v, w), at most cv,w units of "flow" may 

pass. At any vertex, v, that is not either s or t, the total flow coming in must equal the total 
flow going out. The maximum flow problem is to determine the maximum amount of flow that can pass 
from s to t. As an example, for the graph in Figure 9.39 on the left the maximum flow is 5, as 
indicated by the graph on the right.  

 

 

Figure 9.39 A graph (left) and its maximum flow

 

As required by the problem statement, no edge carries more flow than its capacity. Vertex a has 
three units of flow coming in, which it distributes to c and d. Vertex d takes three units of 
flow from a and b and combines this, sending the result to t. A vertex can combine and distribute 
flow in any manner that it likes, as long as edge capacities are not violated and as long as flow 
conservation is maintained (what goes in must come out).  

9.4.1. A Simple Maximum-Flow Algorithm 

 

9.4.1. A Simple Maximum-Flow Algorithm
 

A first attempt to solve the problem proceeds in stages. We start with our graph, G, and 
construct a flow graph Gf. Gf tells the flow that has been attained at any stage in the 

algorithm. Initially all edges in Gf have no flow, and we hope that when the algorithm 

terminates, Gf contains a maximum flow. We also construct a graph, Gr, called the residual graph. 

Gr tells, for each edge, how much more flow can be added. We can calculate this by subtracting 

the current flow from the capacity for each edge. An edge in Gr is known as a residual edge.  

At each stage, we find a path in Gr from s to t. This path is known as an augmenting path. The 

minimum edge on this path is the amount of flow that can be added to every edge on the path. We 
do this by adjusting Gf and recomputing Gr. When we find no path from s to t in Gr, we terminate. 
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This algorithm is nondeterministic, in that we are free to choose any path from s to t; obviously 
some choices are better than others, and we will address this issue later. We will run this 
algorithm on our example. The graphs below are G, Gf, Gr respectively. Keep in mind that there is 

a slight flaw in this algorithm. The initial configuration is in 

Figure 9.40. 

 

There are many paths from s to t in the residual graph. Suppose we select s, b, d, t. Then we can 
send two units of flow through every edge on this path. We will adopt the convention that once we 
have filled (saturated) an edge, it is removed from the residual graph. We then obtain Figure 
9.41.  

Next, we might select the path s, a, c, t, which also allows two units of flow. Making the 
required adjustments gives the graphs in Figure 9.42.  

 

 

Figure 9.40 Initial stages of the graph, flow graph, and residual graph

 

 

 

Figure 9.41 G, Gf, Gr after two units of flow added along s, b, d, t
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Figure 9.42 G, Gf, Gr after two units of flow added along s, a, c, t

 

The only path left to select is s, a, d, t, which allows one unit of flow. The resulting graphs 
are shown in 

Figure 9.43. 

 

The algorithm terminates at this point, because t is unreachable from s. The resulting flow of 5 
happens to be the maximum. To see what the problem is, suppose that with our initial graph, we 
chose the path s, a, d, t. This path allows 3 units of flow and thus seems to be a good choice. 
The result of this choice, however, is that there is now no longer any path from s to t in the 
residual graph, and thus, our algorithm has failed to find an optimal solution. This is an 
example of a greedy algorithm that does not work. Figure 9.44 shows why the algorithm fails.  

In order to make this algorithm work, we need to allow the algorithm to change its mind. To do 
this, for every edge (v, w) with flow fv,w in the flow graph, we will add an edge in the residual 

graph (w, v) of capacity fv,w. In effect, we are allowing the algorithm to undo its decisions by 

sending flow back in the opposite direction. This is best seen by example. Starting from our 
original graph and selecting the augmenting path s, a, d, t, we obtain the graphs in Figure 9.45. 

Notice that in the residual graph, there are edges in both directions between a and d. Either one 
more unit of flow can be pushed from a to d, or up to three units can be pushed back -- we can 
undo flow. Now the algorithm finds the augmenting path s, b, d, a, c, t, of flow 2. By pushing 
two units of flow from d to a, the algorithm takes two units of flow away from the edge (a, d) 
and is essentially changing its mind. Figure 9.46 shows the new graphs.  
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Figure 9.43 G, Gf, Gr after one unit of flow added along s, a, d, t -- algorithm terminates 

 

 

Figure 9.44 G, Gf, Gr if initial action is to add three units of flow along s, a, d, t -- 

algorithm terminates with suboptimal solution 

 

 

Figure 9.45 Graphs after three units of flow added along s, a, d, t using correct algorithm

 

There is no augmenting path in this graph, so the algorithm terminates. Surprisingly, it can be 
shown that if the edge capacities are rational numbers, this algorithm always terminates with a 
maximum flow. This proof is somewhat difficult and is beyond the scope of this text. Although the 
example happened to be acyclic, this is not a requirement for the algorithm to work. We have used 
acyclic graphs merely to keep things simple.  

If the capacities are all integers and the maximum flow is f, then, since each augmenting path 

increases the flow value by at least 1, f stages suffice, and the total running time is O(f  
|E|), since an augmenting path can be found in O(|E|) time by an unweighted shortest-path 
algorithm. The classic example of why this is a bad running time is shown by the graph in 

Figure 
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9.47.  

 

 

Figure 9.46 Graphs after two units of flow added along s, b, d, a, c, t using correct algorithm

 

 

 

Figure 9.47 The classic bad case for augmenting

 

The maximum flow is seen by inspection to be 2,000,000 by sending 1,000,000 down each side. 
Random augmentations could continually augment along a path that includes the edge connected by a
and b. If this were to occur repeatedly, 2,000,000 augmentations would be required, when we could 
get by with only 2.  

A simple method to get around this problem is always to choose the augmenting path that allows 
the largest increase in flow. Finding such a path is similar to solving a weighted shortest-path 
problem and a single-line modification to Dijkstra's algorithm will do the trick. If capmax is 

the maximum edge capacity, then one can show that O(|E| log capmax) augmentations will suffice to 

find the maximum flow. In this case, since O(|E| log |V|) time is used for each calculation of an 

augmenting path, a total bound of O(|E|2 log |V| log capmax) is obtained. If the capacities are 
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all small integers, this reduces to O(|E|2 log |V|).  

Another way to choose augmenting paths is always to take the path with the least number of edges, 
with the plausible expectation that by choosing a path in this manner, it is less likely that a 
small, flow-restricting edge will turn up on the path. Using this rule, it can be shown that O

(|E|  |V|) augmenting steps are required. Each step takes O(|E|), again using an unweighted 

shortest-path algorithm, yielding a O(|E|2|V|) bound on the running time.  

Further data structure improvements are possible to this algorithm, and there are several, more 
complicated, algorithms. A long history of improved bounds has lowered the current best-known 

bound for this problem to O(|E||V| log(|V|2/ |E|)) (see the references). There are also a host of 

very good bounds for special cases. For instance, O(|E||V|1/2) time finds a maximum flow in a 
graph, having the property that all vertices except the source and sink have either a single 
incoming edge of capacity 1 or a single outgoing edge of capacity 1. These graphs occur in many 
applications.  

The analyses required to produce these bounds are rather intricate, and it is not clear how the 
worst-case results relate to the running times encountered in practice. A related, even more 
difficult problem is the min-cost flow problem. Each edge has not only a capacity but a cost per 
unit of flow. The problem is to find, among all maximum flows, the one flow of minimum cost. Both 
of these problems are being actively researched.  

9.5. Minimum Spanning Tree

 

The next problem we will consider is that of finding a minimum spanning tree in an undirected 
graph. The problem makes sense for directed graphs but appears to be more difficult. Informally, 
a minimum spanning tree of an undirected graph G is a tree formed from graph edges that connects 
all the vertices of G at lowest total cost. A minimum spanning tree exists if and only if G is 
connected. Although a robust algorithm should report the case that G is unconnected, we will 
assume that G is connected, and leave the issue of robustness as an exercise for the reader.  

In 

Figure 9.48 the second graph is a minimum spanning tree of the first (it happens to be unique, 
but this is unusual). Notice that the number of edges in the minimum spanning tree is |V| - 1. 
The minimum spanning tree is a tree because it is acyclic, it is spanning because it covers every 
edge, and it is minimum for the obvious reason. If we need to wire a house with a minimum of 
cable, then a minimum spanning tree problem needs to be solved. There are two basic algorithms to 
solve this problem; both are greedy. We now describe them.  
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Figure 9.48 A graph G and its minimum spanning tree

 

9.5.1. Prim's Algorithm 

 

9.5.2. Kruskal's Algorithm 

 

9.5.1. Prim's Algorithm
 

One way to compute a minimum spanning tree is to grow the tree in successive stages. In each 
stage, one node is picked as the root, and we add an edge, and thus an associated vertex, to the 
tree.  

At any point in the algorithm, we can see that we have a set of vertices that have already been 
included in the tree; the rest of the vertices have not. The algorithm then finds, at each stage, 
a new vertex to add to the tree by choosing the edge (u, v) such that the cost of (u, v) is the 
smallest among all edges where u is in the tree and v is not. 

Figure 9.49 shows how this 
algorithm would build the minimum spanning tree, starting from v1. Initially, v1 is in the tree 

as a root with no edges. Each step adds one edge and one vertex to the tree.  

We can see that Prim's algorithm is essentially identical to Dijkstra's algorithm for shortest 
paths. As before, for each vertex we keep values dv and pv and an indication of whether it is 

known or unknown. dv is the weight of the shortest arc connecting v to a known vertex, and pv, as 

before, is the last vertex to cause a change in dv. The rest of the algorithm is exactly the 
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same, with the exception that since the definition of dv is different, so is the update rule. For 

this problem, the update rule is even simpler than before: After a vertex v is selected, for each 
unknown w adjacent to v, dv = min(dw, cw,v).  

 

 

Figure 9.49 Prim's algorithm after each stage

 

The initial configuration of the table is shown in Figure 9.50. v1 is selected, and v2, v3, and 

v4 are updated. The table resulting from this is shown in Figure 9.51. The next vertex selected 

is v4. Every vertex is adjacent to v4. v1 is not examined, because it is known. v2 is unchanged, 

because it has dv = 2 and the edge cost from v4 to v2 is 3; all the rest are updated. Figure 9.52

shows the resulting table. The next vertex chosen is v2 (arbitrarily breaking a tie). This does 

not affect any distances. Then v3 is chosen, which affects the distance in v6, producing Figure 

9.53. Figure 9.54 results from the selection of v7, which forces v6 and v5 to be adjusted. v6 and 

then v5 are selected, completing the algorithm.  

The final table is shown in Figure 9.55. The edges in the spanning tree can be read from the 
table: (v2, v1), (v3, v4), (v4, v1), (v5, v7), (v6, v7), (v7, v4). The total cost is 16.  

The entire implementation of this algorithm is virtually identical to that of Dijkstra's 
algorithm, and everything that was said about the analysis of Dijkstra's algorithm applies here. 
Be aware that Prim's algorithm runs on undirected graphs, so when coding it, remember to put 

every edge in two adjacency lists. The running time is O (|V|2) without heaps, which is optimal 
for dense graphs, and O (|E| log |V|) using binary heaps, which is good for sparse graphs.  

9.5.2. Kruskal's Algorithm
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A second greedy strategy is continually to select the edges in order of smallest weight and 
accept an edge if it does not cause a cycle. The action of the algorithm on the graph in the 
preceding example is shown in Figure 9.56.  

  v   Known  dv  pv    

 

--------------------

 

  v1     0    0   0

 

  v2     0       0

 

  v3     0       0

 

  v4     0       0

 

  v5     0       0

 

  v6     0       0

 

  v7     0       0

 

Figure 9.50 Initial configuration of table used in Prim's algorithm

 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     0    2   v1    

 

  v3     0    4   v1    

 

  v4     0    1   v1    

 

  v5     0       0

 

  v6     0       0

 

  v7     0       0
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Figure 9.51 The table after v1 is declared known

 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     0    2   v1    

 

  v3     0    2   v4    

 

  v4     1    1   v1    

 

  v5     0    7   v4    

 

  v6     0    8   v4    

 

  v7     0    4   v4    

 

Figure 9.52 The table after v4 is declared known

 

Formally, Kruskal's algorithm maintains a forest -- a collection of trees. Initially, there are 
|V| single-node trees. Adding an edge merges two trees into one. When the algorithm terminates, 
there is only one tree, and this is the minimum spanning tree. Figure 9.57 shows the order in 
which edges are added to the forest.  

The algorithm terminates when enough edges are accepted. It turns out to be simple to decide 
whether edge (u,v) should be accepted or rejected. The appropriate data structure is the 
union/find algorithm of the previous chapter.  

The invariant we will use is that at any point in the process, two vertices belong to the same 
set if and only if they are connected in the current spanning forest. Thus, each vertex is 
initially in its own set. If u and v are in the same set, the edge is rejected, because since 
they are already connected, adding (u, v) would form a cycle. Otherwise, the edge is accepted, 
and a union is performed on the two sets containing u and v. It is easy to see that this 
maintains the set invariant, because once the edge (u, v) is added to the spanning forest, if w 
was connected to u and x was connected to v, then x and w must now be connected, and thus belong 
in the same set.  

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     1    2   v1    
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  v3     1    2   v4     

  v4     1    1   v1    

 

  v5     0    7   v4    

 

  v6     0    5   v3    

 

  v7     0    4   v4    

 

Figure 9.53 The table after v2 and then v3 are declared known
 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     1    2   v1    

 

  v3     1    2   v4    

 

  v4     1    1   v1    

 

  v5     0    6   v7    

 

  v6     0    1   v7    

 

  v7     1    4   v4    

 

Figure 9.54 The table after v7 is declared known

 

  v   Known  dv  pv    

 

--------------------

 

  v1     1    0   0

 

  v2     1    2   v1    

 

  v3     1    2   v4    

 

  v4     1    1   v1    

 

  v5     1    6   v7    

 

  v6     1    1   v7    

 

  v7     1    4   v4    
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Figure 9.55 The table after v6 and v5 are selected (Prim's algorithm terminates)

 

The edges could be sorted to facilitate the selection, but building a heap in linear time is a 
much better idea. Then delete_mins give the edges to be tested in order. Typically, only a small 
fraction of the edges needs to be tested before the algorithm can terminate, although it is 
always possible that all the edges must be tried. For instance, if there was an extra vertex v8 

and edge (v5, v8) of cost 100, all the edges would have to be examined. Procedure kruskal in 

Figure 9.58 finds a minimum spanning tree. Because an edge consists of three pieces of data, on 
some machines it is more efficient to implement the priority queue as an array of pointers to 
edges, rather than as an array of edges. The effect of this implementation is that, to rearrange 
the heap, only pointers, not large records, need to be moved.  

  Edge     Weight    Action

 

----------------------------

 

  (v1,v4)    1     Accepted

 

  (v6,v7)    1     Accepted

 

  (v1,v2)    2     Accepted

 

  (v3,v4)    2     Accepted

 

  (v2,v4)    3     Rejected

 

  (v1,v3)    4     Rejected

 

  (v4,v7)    4     Accepted

 

  (v3,v6)    5     Rejected

 

  (v5,v7)    6     Accepted

 

Figure 9.56 Action of Kruskal's algorithm on G
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Figure 9.57 Kruskal's algorithm after each stage

 

The worst-case running time of this algorithm is O(|E| log |E|), which is dominated by the heap 

operations. Notice that since |E| = O(|V|2), this running time is actually O(|E| log |V|). In 
practice, the algorithm is much faster than this time bound would indicate.  

void

 

kruskal( graph G )

 

{

 

unsigned int edges_accepted;

 

DISJ_SET S;

 

PRIORITY_QUEUE H;

 

vertex u, v;

 

set_type u_set, v_set;

 

edge e;

 

/*1*/        initialize( S );

 

/*2*/        read_graph_into_heap_array( G, H );

 

/*3*/        build_heap( H );

 

/*4*/        edges_accepted = 0;

 

/*5*/        while( edges_accepted < NUM_VERTEX-1 )

 

{

 

/*6*/             e = delete_min( H );  /* e = (u, v) */
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/*7*/             u_set = find( u, S ); 

/*8*/             v_set = find( v, S );

 

/*9*/             if( u_set != v_set )

 

{

 

/*10*/                 /* accept the edge */

 

/*11*/                 edges_accepted++;

 

/*12*/                 set_union( S, u_set, v_set );

 

}

 

}

 

}

 

Figure 9.58 Pseudocode for Kruskal's algorithm

 

9.6. Applications of Depth-First Search

 

Depth-first search is a generalization of preorder traversal. Starting at some vertex, v, we 
process v and then recursively traverse all vertices adjacent to v. If this process is performed 
on a tree, then all tree vertices are systematically visited in a total of O(|E|) time, since |E| 

= (|V|). If we perform this process on an arbitrary graph, we need to be careful to avoid 
cycles. To do this, when we visit a vertex v, we mark it visited, since now we have been there, 
and recursively call depth-first search on all adjacent vertices that are not already marked. We 
implicitly assume that for undirected graphs every edge (v, w) appears twice in the adjacency 
lists: once as (v, w) and once as (w, v). The procedure in Figure 9.59 performs a depth-first 
search (and does absolutely nothing else) and is a template for the general style.  

void

 

dfs( vertex v )

 

{

 

visited[v] = TRUE;

 

for each w adjacent to v

 

if( !visited[w] )

 

dfs( w );

 

}

 

Figure 9.59 Template for depth-first search
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The (global) boolean array visited[ ] is initialized to FALSE. By recursively calling the 
procedures only on nodes that have not been visited, we guarantee that we do not loop 
indefinitely. If the graph is undirected and not connected, or directed and not strongly 
connected, this strategy might fail to visit some nodes. We then search for an unmarked node, 
apply a depth-first traversal there, and continue this process until there are no unmarked 
nodes.* Because this strategy guarantees that each edge is encountered only once, the total time 
to perform the traversal is O(|E| + |V|), as long as adjacency lists are used.  

* An efficient way of implementing this is to begin the depth-first search at v1. If we need to 

restart the depth-first search, we examine the sequence vk, vk + 1, . . . for an unmarked vertex, 

where vk - 1 is the vertex where the last depth-first search was started. This guarantees that 

throughout the algorithm, only O(|V|) is spent looking for vertices where new depth-first search 
trees can be started.  

9.6.1 Undirected Graphs

 

An undirected graph is connected if and only if a depth-first search starting from any node 
visits every node. Because this test is so easy to apply, we will assume that the graphs we deal 
with are connected. If they are not, then we can find all the connected components and apply our 
algorithm on each of these in turn.  

As an example of depth-first search, suppose in the graph of 

Figure 9.60 we start at vertex A. 
Then we mark A as visited and call dfs(B) recursively. dfs(B) marks B as visited and calls dfs(C) 
recursively. dfs(C) marks C as visited and calls dfs(D) recursively. dfs(D) sees both A and B, 
but both these are marked, so no recursive calls are made. dfs(D) also sees that C is adjacent 
but marked, so no recursive call is made there, and dfs(D) returns back to dfs(C). dfs(C) sees B 
adjacent, ignores it, finds a previously unseen vertex E adjacent, and thus calls dfs(E). dfs(E) 
marks E, ignores A and C, and returns to dfs(C). dfs(C) returns to dfs(B). dfs(B) ignores both A 
and D and returns. dfs(A) ignores both D and E and returns. (We have actually touched every edge 
twice, once as (v, w) and again as (w, v), but this is really once per adjacency list entry.)  

 

 

Figure 9.60 An undirected graph
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We graphically illustrate these steps with a depth-first spanning tree. The root of the tree is 
A, the first vertex visited. Each edge (v, w) in the graph is present in the tree. If, when we 
process (v, w), we find that w is unmarked, or if, when we process (w, v), we find that v is 
unmarked, we indicate this with a tree edge. If when we process (v, w), we find that w is already 
marked, and when processing (w, v), we find that v is already marked, we draw a dashed line, 
which we will call a back edge, to indicate that this "edge" is not really part of the tree. The 
depth-first search of the graph in 

Figure 9.60 is shown in Figure 9.61. 

 

The tree will simulate the traversal we performed. A preorder numbering of the tree, using only 
tree edges, tells us the order in which the vertices were marked. If the graph is not connected, 
then processing all nodes (and edges) requires several calls to dfs, and each generates a tree. 
This entire collection is a depth-first spanning forest, which is so named for obvious reasons.  

9.6.2. Biconnectivity

 

A connected undirected graph is biconnected if there are no vertices whose removal disconnects 
the rest of the graph. The graph in the example above is biconnected. If the nodes are computers 
and the edges are links, then if any computer goes down, network mail is unaffected, except, of 
course, at the down computer. Similarly, if a mass transit system is biconnected, users always 
have an alternate route should some terminal be disrupted.  

 

 

Figure 9.61 Depth-first search of previous graph

 

If a graph is not biconnected, the vertices whose removal would disconnect the graph are known as 
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articulation points. These nodes are critical in many applications. The graph in Figure 9.62 is 
not biconnected: C and D are articulation points. The removal of C would disconnect G, and the 
removal of D would disconnect E and F, from the rest of the graph.  

Depth-first search provides a linear-time algorithm to find all articulation points in a 
connected graph. First, starting at any vertex, we perform a depth-first search and number the 
nodes as they are visited. For each vertex v, we call this preorder number num(v). Then, for 
every vertex v in the depth-first search spanning tree, we compute the lowest-numbered vertex, 
which we call low(v), that is reachable from v by taking zero or more tree edges and then 
possibly one back edge (in that order). The depth-first search tree in Figure 9.63 shows the 
preorder number first, and then the lowest-numbered vertex reachable under the rule described 
above.  

The lowest-numbered vertex reachable by A, B, and C is vertex 1 (A), because they can all take 
tree edges to D and then one back edge back to A. We can efficiently compute low by performing a 
postorder traversal of the depth-first spanning tree. By the definition of low, low(v) is the 
minimum of  

1. num(v) 

 

2. the lowest num(w) among all back edges (v, w) 

 

3. the lowest low(w) among all tree edges (v, w) 

 

The first condition is the option of taking no edges, the second way is to choose no tree edges 
and a back edge, and the third way is to choose some tree edges and possibly a back edge. This 
third method is succinctly described with a recursive call. Since we need to evaluate low for all 
the children of v before we can evaluate low(v), this is a postorder traversal. For any edge (v, 
w), we can tell whether it is a tree edge or a back edge merely by checking num(v) and num(w). 
Thus, it is easy to compute low(v): we merely scan down v's adjacency list, apply the proper 
rule, and keep track of the minimum. Doing all the computation takes O(|E| +|V|) time.  

All that is left to do is to use this information to find articulation points. The root is an 
articulation point if and only if it has more than one child, because if it has two children, 
removing the root disconnects nodes in different subtrees, and if it has only one child, removing 
the root merely disconnects the root. Any other vertex v is an articulation point if and only if 

v has some child w such that low(w)  num(v). Notice that this condition is always satisfied 
at the root; hence the need for a special test.  

The if part of the proof is clear when we examine the articulation points that the algorithm 

determines, namely C and D. D has a child E, and low(E)  num(D), since both are 4. Thus, 
there is only one way for E to get to any node above D, and that is by going through D. 

Similarly, C is an articulation point, because low (G)  num (C). To prove that this algorithm 
is correct, one must show that the only if part of the assertion is true (that is, this finds all
articulation points). We leave this as an exercise. As a second example, we show (Fig. 9.64) the 
result of applying this algorithm on the same graph, starting the depth-first search at C.  
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Figure 9.62 A graph with articulation points C and D

 

 

 

Figure 9.63 Depth-first tree for previous graph, with num and low

 

We close by giving pseudocode to implement this algorithm. We will assume that the arrays visited
[] (initialized to FALSE), num[], low[], and parent[] are global to keep the code simple. We will 
also keep a global variable called counter, which is initialized to 1 to assign the preorder 
traversal numbers, num[]. This is not normally good programming practice, but including all the 
declarations and passing the extra parameters would cloud the logic. We also leave out the easily 
implemented test for the root.  

As we have already stated, this algorithm can be implemented by performing a preorder traversal 
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to compute num and then a postorder traversal to compute low. A third traversal can be used to 
check which vertices satisfy the articulation point criteria. Performing three traversals, 
however, would be a waste. The first pass is shown in 

Figure 9.65. 

 

The second and third passes, which are postorder traversals, can be implemented by the code in 
Figure 9.66. Line 8 handles a special case. If w is adjacent to v, then the recursive call to w 
will find v adjacent to w. This is not a back edge, only an edge that has already been considered 
and needs to be ignored. Otherwise, the procedure computes the minimum of the various low[] and 
num[] entries, as specified by the algorithm.  

There is no rule that a traversal must be either preorder or postorder. It is possible to do 
processing both before and after the recursive calls. The procedure in Figure 9.67 combines the 
two routines assign_num and assign_low in a straightforward manner to produce the procedure 
find_art.  

9.6.3. Euler Circuits
 

Consider the three figures in Figure 9.68. A popular puzzle is to reconstruct these figures using 
a pen, drawing each line exactly once. The pen may not be lifted from the paper while the drawing 
is being performed. As an extra challenge, make the pen finish at the same point at which it 
started. This puzzle has a surprisingly simple solution. Stop reading if you would like to try to 
solve it.  

 

 

Figure 9.64 Depth-first tree that results if depth-first search starts at C

 

/* assign num and compute parents */

 

void

 

assign_num( vertex v )

 

{

 

vertex w;
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/*1*/       num[v] = counter++; 

/*2*/       visited[v] = TRUE;

 

/*3*/       for each w adjacent to v

 

/*4*/            if( !visited[w] )

 

{

 

/*5*/                 parent[w] = v;

 

/*6*/                 assign_num( w );

 

}

 

}

 

Figure 9.65 Routine to assign num to vertices (pseudocode)

 

/* assign low. Also check for articulation points */

 

void

 

assign_low( vertex v )

 

{

 

vertex w;

 

/*1*/       low[v] = num[v];             /* Rule 1 */

 

/*2*/       for each w adjacent to v

 

{

 

/*3*/            if( num[w] > num[v] )   /* forward edge */

 

{

 

/*4*/                  assign_low( w );

 

/*5*/                  if( low[w] >= num[v] )

 

/*6*/                       printf( "%v is an articulation point\n", v );

 

/*7*/                  low[v] = min( low[v], low[w] ); /* Rule 3 */

 

}

 

else

 

/*8*/            if( parent[v] != w )      /* back edge */

 

/*9*/                 low[v] = min( low[v], num[w] );  /* Rule 2 */
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} 

}

 

Figure 9.66 Pseudocode to compute low and to test for articulation points (test for the root is 
omitted) 

void

 

find_art( vertex v )

 

{

 

vertex w;

 

/*1*/        visited[v] = TRUE;

 

/*2*/        low[v] = num[v] = counter++; /* Rule 1 */

 

/*3*/        for each w adjacent to v

 

{

 

/*4*/             if( !visited[w] ) /* forward edge */

 

{

 

/*5*/                  parent[w] = v;

 

/*6*/                  find_art( w );

 

/*7*/                  if( low[w] >= num[v] )

 

/*8*/                       printf ( "%v is an articulation point\n", v );

 

/*9*/                  low[v] = min( low[v], low[w] ); /* Rule  */

 

}

 

else

 

/*10*/            if( parent[v] != w ) /* back edge */

 

/*11*/                 low[v] = min( low[v], num[w] ); /* Rule 2 */

 

}

 

}

 

Figure 9.67 Testing for articulation points in one depth-first search (test for the root is 
omitted) (pseudocode) 
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Figure 9.68 Three drawings

 

The first figure can be drawn only if the starting point is the lower left- or right-hand corner, 
and it is not possible to finish at the starting point. The second figure is easily drawn with 
the finishing point the same as the starting point, but the third figure cannot be drawn at all 
within the parameters of the puzzle.  

We can convert this problem to a graph theory problem by assigning a vertex to each intersection. 
Then the edges can be assigned in the natural manner, as in 

Figure 9.69. 

 

After this conversion is performed, we must find a path in the graph that visits every edge 
exactly once. If we are to solve the "extra challenge," then we must find a cycle that visits 
every edge exactly once. This graph problem was solved in 1736 by Euler and marked the beginning 
of graph theory. The problem is thus commonly referred to as an Euler path (sometimes Euler tour) 
or Euler circuit problem, depending on the specific problem statement. The Euler tour and Euler 
circuit problems, though slightly different, have the same basic solution. Thus, we will consider 
the Euler circuit problem in this section.  

The first observation that can be made is that an Euler circuit, which must end on its starting 
vertex, is possible only if the graph is connected and each vertex has an even degree (number of 
edges). This is because, on the Euler circuit, a vertex is entered and then left. If any vertex v
has odd degree, then eventually we will reach the point where only one edge into v is unvisited, 
and taking it will strand us at v. If exactly two vertices have odd degree, an Euler tour, which 
must visit every edge but need not return to its starting vertex, is still possible if we start 
at one of the odd-degree vertices and finish at the other. If more than two vertices have odd 
degree, then an Euler tour is not possible.  

The observations of the preceding paragraph provide us with a necessary condition for the 
existence of an Euler circuit. It does not, however, tell us that all connected graphs that 
satisfy this property must have an Euler circuit, nor does it give us guidance on how to find 
one. It turns out that the necessary condition is also sufficient. That is, any connected graph, 
all of whose vertices have even degree, must have an Euler circuit. Furthermore, a circuit can be 
found in linear time.  

We can assume that we know that an Euler circuit exists, since we can test the necessary and 
sufficient condition in linear time. Then the basic algorithm is to perform a depth-first search. 
There is a surprisingly large number of "obvious" solutions that do not work. Some of these are 
presented in the exercises.  

The main problem is that we might visit a portion of the graph and return to the starting point 
prematurely. If all the edges coming out of the start vertex have been used up, then part of the 
graph is untraversed. The easiest way to fix this is to find the first vertex on this path that 
has an untraversed edge, and perform another depth-first search. This will give another circuit, 
which can be spliced into the original. This is continued until all edges have been traversed.  
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Figure 9.69 Conversion of puzzle to graph

 

As an example, consider the graph in 

Figure 9.70. It is easily seen that this graph has an Euler 
circuit. Suppose we start at vertex 5, and traverse the circuit 5, 4, 10, 5. Then we are stuck, 
and most of the graph is still untraversed. The situation is shown in Figure 9.71.  

We then continue from vertex 4, which still has unexplored edges. A depth-first search might come 
up with the path 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4. If we splice this path into the previous path 
of 5, 4, 10, 5, then we get a new path of 5, 4, 1, 3, 7 ,4, 11, 10, 7, 9, 3, 4, 10, 5.  

The graph that remains after this is shown in Figure 9.72. Notice that in this graph all the 
vertices must have even degree, so we are guaranteed to find a cycle to add. The remaining graph 
might not be connected, but this is not important. The next vertex on the path that has 
untraversed edges is vertex 3. A possible circuit would then be 3, 2, 8, 9, 6, 3. When spliced 
in, this gives the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5.  

 

 

Figure 9.70 Graph for Euler circuit problem

 

 

 

Figure 9.71 Graph remaining after 5, 4, 10, 5
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Figure 9.72 Graph after the path 5, 4, 1, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5

 

The graph that remains is in 

Figure 9.73. On this path, the next vertex with an untraversed edge 
is 9, and the algorithm finds the circuit 9, 12, 10, 9. When this is added to the current path, a 
circuit of 5, 4, 1, 3, 2, 8, 9, 12, 10, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 10, 5 is obtained. As 
all the edges are traversed, the algorithm terminates with an Euler circuit.  

To make this algorithm efficient, we must use appropriate data structures. We will sketch some of 
the ideas, leaving the implementation as an exercise. To make splicing simple, the path should be 
maintained as a linked list. To avoid repetitious scanning of adjacency lists, we must maintain, 
for each adjacency list, a pointer to the last edge scanned. When a path is spliced in, the 
search for a new vertex from which to perform the next dfs must begin at the start of the splice 
point. This guarantees that the total work performed on the vertex search phase is O(|E|) during 
the entire life of the algorithm. With the appropriate data structures, the running time of the 
algorithm is O(|E| + |V|).  

A very similar problem is to find a simple cycle, in an undirected graph, that visits every 
vertex. This is known as the Hamiltonian cycle problem. Although it seems almost identical to the 
Euler circuit problem, no efficient algorithm for it is known. We shall see this problem again in 
Section 9.7.  

9.6.4. Directed Graphs
 

Using the same strategy as with undirected graphs, directed graphs can be traversed in linear 
time, using depth-first search. If the graph is not strongly connected, a depth-first search 
starting at some node might not visit all nodes. In this case we repeatedly perform depth-first 
searches, starting at some unmarked node, until all vertices have been visited. As an example, 
consider the directed graph in Figure 9.74.  

We arbitrarily start the depth-first search at vertex B. This visits vertices B, C, A, D, E, and 
F. We then restart at some unvisited vertex. Arbitrarily, we start at H, which visits I and J. 
Finally, we start at G, which is the last vertex that needs to be visited. The corresponding 
depth-first search tree is shown in Figure 9.75.  
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Figure 9.73 Graph remaining after the path 5, 4, 1, 3, 2, 8, 9, 6, 3, 7, 4, 11, 10, 7, 9, 3, 4, 
10, 5 

 

 

Figure 9.74 A directed graph

 

 

 

Figure 9.75 Depth-first search of previous graph
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The dashed arrows in the depth-first spanning forest are edges (v, w) for which w was already 
marked at the time of consideration. In undirected graphs, these are always back edges, but, as 
we can see, there are three types of edges that do not lead to new vertices. First, there are 
back edges, such as (A, B) and (I, H). There are also forward edges, such as (C, D) and (C, E), 
that lead from a tree node to a descendant. Finally, there are cross edges, such as (F, C) and 
(G, F), which connect two tree nodes that are not directly related. Depth-first search forests 
are generally drawn with children and new trees added to the forest from left to right. In a 
depth- first search of a directed graph drawn in this manner, cross edges always go from right to 
left.  

Some algorithms that use depth-first search need to distinguish between the three types of 
nontree edges. This is easy to check as the depth-first search is being performed, and it is left 
as an exercise.  

One use of depth-first search is to test whether or not a directed graph is acyclic. The rule is 
that a directed graph is acyclic if and only if it has no back edges. (The graph above has back 
edges, and thus is not acyclic.) The alert reader may remember that a topological sort can also 
be used to determine whether a graph is acyclic. Another way to perform topological sorting is to 
assign the vertices topological numbers n, n - 1, . . . ,1 by postorder traversal of the depth-
first spanning forest. As long as the graph is acyclic, this ordering will be consistent.  

9.6.5. Finding Strong Components

 

By performing two depth-first searches, we can test whether a directed graph is strongly 
connected, and if it is not, we can actually produce the subsets of vertices that are strongly 
connected to themselves. This can also be done in only one depth-first search, but the method 
used here is much simpler to understand.  

First, a depth-first search is performed on the input graph G. The vertices of G are numbered by 
a postorder traversal of the depth-first spanning forest, and then all edges in G are reversed, 
forming Gr. The graph in 

Figure 9.76 represents Gr for the graph G shown in Figure 9.74; the 

vertices are shown with their numbers.  

The algorithm is completed by performing a depth-first search on Gr, always starting a new depth-

first search at the highest-numbered vertex. Thus, we begin the depth-first search of Gr at 

vertex G, which is numbered 10. This leads nowhere, so the next search is started at H. This call 
visits I and J. The next call starts at B and visits A, C, and F. The next calls after this are 
dfs(D) and finally dfs(E). The resulting depth-first spanning forest is shown in Figure 9.77.  

Each of the trees (this is easier to see if you completely ignore all nontree edges) in this 
depth-first spanning forest forms a strongly connected component. Thus, for our example, the 
strongly connected components are {G}, {H, I, J}, {B, A, C, F}, {D}, and {E}.  

To see why this algorithm works, first note that if two vertices v and w are in the same strongly 
connected component, then there are paths from v to w and from w to v in the original graph G, 
and hence also in Gr. Now, if two vertices v and w are not in the same depth-first spanning tree 
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of Gr, clearly they cannot be in the same strongly connected component.  

To prove that this algorithm works, we must show that if two vertices v and w are in the same 
depth-first spanning tree of Gr, there must be paths from v to w and from w to v. Equivalently, 

we can show that if x is the root of the depth-first spanning tree of Gr containing v, then there 

is a path from x to v and from v to x. Applying the same logic to w would then give a path from x
to w and from w to x. These paths would imply paths from v to w and w to v (going through x).  

Since v is a descendant of x in Gr's depth-first spanning tree, there is a path from x to v in Gr
and thus a path from v to x in G. Furthermore, since x is the root, x has the higher postorder 
number from the first depth-first search. Therefore, during the first depth-first search, all the 
work processing v was completed before the work at x was completed. Since there is a path from v 
to x, it follows that v must be a descendant of x in the spanning tree for G -- otherwise v would 
finish after x. This implies a path from x to v in G and completes the proof.  

 

 

Figure 9.76 Gr numbered by postorder traversal of G

 

 

 

Figure 9.77 Depth-first search of Gr -- strong components are {G}, {H, I, J}, {B, A, C, F}, {D}, 

{E} 
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9.7. Introduction to NP-Completeness

 

In this chapter, we have seen solutions to a wide variety of graph theory problems. All these 
problems have polynomial running times, and with the exception of the network flow problem, the 
running time is either linear or only slightly more than linear (O(|E| log |E|)). We have also 
mentioned, in passing, that for some problems certain variations seem harder than the original.  

Recall that the Euler circuit problem, which finds a path that touches every edge exactly once, 
is solvable in linear time. The Hamiltonian cycle problem asks for a simple cycle that contains 
every vertex. No linear algorithm is known for this problem.  

The single-source unweighted shortest-path problem for directed graphs is also solvable in linear 
time. No linear-time algorithm is known for the corresponding longest-simple-path problem.  

The situation for these problem variations is actually much worse than we have described. Not 
only are no linear algorithms known for these variations, but there are no known algorithms that 
are guaranteed to run in polynomial time. The best known algorithms for these problems could take 
exponential time on some inputs.  

In this section we will take a brief look at this problem. This topic is rather complex, so we 
will only take a quick and informal look at it. Because of this, the discussion may be 
(necessarily) somewhat imprecise in places.  

We will see that there are a host of important problems that are roughly equivalent in 
complexity. These problems form a class called the NP-complete problems. The exact complexity of 
these NP-complete problems has yet to be determined and remains the foremost open problem in 
theoretical computer science. Either all these problems have polynomial-time solutions or none of 
them do.  

9.7.1. Easy vs. Hard 

 

9.7.2. The Class NP 

 

9.7.3. NP-Complete Problems 

 

9.7.1. Easy vs. Hard
 

When classifying problems, the first step is to examine the boundaries. We have already seen that 
many problems can be solved in linear time. We have also seen some O(log n) running times, but 
these either assume some preprocessing (such as input already being read or a data structure 
already being built) or occur on arithmetic examples. For instance, the gcd algorithm, when 
applied on two numbers m and n, takes O(log n) time. Since the numbers consist of log m and log n
bits respectively, the gcd algorithm is really taking time that is linear in the amount or size 
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of input. Thus, when we measure running time, we will be concerned with the running time as a 
function of the amount of input. Generally, we cannot expect better than linear running time.  

At the other end of the spectrum lie some truly hard problems. These problems are so hard that 
they are impossible. This does not mean the typical exasperated moan, which means that it would 
take a genius to solve the problem. Just as real numbers are not sufficient to express a solution 

to x2 < 0, one can prove that computers cannot solve every problem that happens to come along. 
These "impossible" problems are called undecidable problems.  

One particular undecidable problem is the halting problem. Is it possible to have your C compiler 
have an extra feature that not only detects syntax errors but also infinite loops? This seems 
like a hard problem, but one might expect that if some very clever programmers spent enough time 
on it, they could produce this enhancement.  

The intuitive reason that this problem is undecidable is that such a program might have a hard 
time checking itself. For this reason, these problems are sometimes called recursively 
undecidable.  

If an infinite loop-checking program could be written, surely it could be used to check itself. 
We could then produce a program called LOOP. LOOP takes as input a program P and runs P on 
itself. It prints out the phrase YES if P loops when run on itself. If P terminates when run on 
itself, a natural thing to do would be to print out NO. Instead of doing that, we will have LOOP 
go into an infinite loop.  

What happens when LOOP is given itself as input? Either LOOP halts, or it does not halt. The 
problem is that both these possibilities lead to contradictions, in much the same way as does the 
phrase "This sentence is a lie."  

By our definition, LOOP(P) goes into an infinite loop if P(P) terminates. Suppose that when P = 
LOOP, P(P) terminates. Then, according to the LOOP program, LOOP(P) is obligated to go into an 
infinite loop. Thus, we must have LOOP(LOOP) terminating and entering an infinite loop, which is 
clearly not possible. On the other hand, suppose that when P = LOOP, P(P) enters an infinite 
loop. Then LOOP(P) must terminate, and we arrive at the same set of contradictions. Thus, we see 
that the program LOOP cannot possibly exist.  

9.7.2. The Class NP

 

A few steps down from the horrors of undecidable problems lies the class NP. NP stands for 
nondeterministic polynomial-time. A deterministic machine, at each point in time, is executing an 
instruction. Depending on the instruction, it then goes to some next instruction, which is 
unique. A nondeterministic machine has a choice of next steps. It is free to choose any that it 
wishes, and if one of these steps leads to a solution, it will always choose the correct one. A 
nondeterministic machine thus has the power of extremely good (optimal) guessing. This probably 
seems like a ridiculous model, since nobody could possibly build a nondeterministic computer, and 
because it would seem to be an incredible upgrade to your standard computer (every problem might 
now seem trivial). We will see that nondeterminism is a very useful theoretical construct. 
Furthermore, nondeterminism is not as powerful as one might think. For instance, undecidable 
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problems are still undecidable, even if nondeterminism is allowed.  

A simple way to check if a problem is in NP is to phrase the problem as a yes/no question. The 
problem is in NP if, in polynomial time, we can prove that any "yes" instance is correct. We do 
not have to worry about "no" instances, since the program always makes the right choice. Thus, 
for the Hamiltonian cycle problem, a "yes" instance would be any simple circuit in the graph that 
includes all the vertices. This is in NP, since, given the path, it is a simple matter to check 
that it is really a Hamiltonian cycle. Appropriately phrased questions, such as "Is there a 
simple path of length > K?" can also easily be checked and are in NP. Any path that satisfies 
this property can be checked trivially.  

The class NP includes all problems that have polynomial-time solutions, since obviously the 
solution provides a check. One would expect that since it is so much easier to check an answer 
than to come up with one from scratch, there would be problems in NP that do not have polynomial-
time solutions. To date no such problem has been found, so it is entirely possible, though not 
considered likely by experts, that nondeterminism is not such an important improvement. The 
problem is that proving exponential lower bounds is an extremely difficult task. The information 

theory bound technique, which we used to show that sorting requires (n log n) comparisons, 
does not seem to be adequate for the task, because the decision trees are not nearly large 
enough.  

Notice also that not all decidable problems are in NP. Consider the problem of determining 
whether a graph does not have a Hamiltonian cycle. To prove that a graph has a Hamiltonian cycle 
is a relatively simple matter-we just need to exhibit one. Nobody knows how to show, in 
polynomial time, that a graph does not have a Hamiltonian cycle. It seems that one must enumerate 
all the cycles and check them one by one. Thus the Non-Hamiltonian cycle problem is not known to 
be in NP.  

9.7.3. NP-Complete Problems

 

Among all the problems known to be in NP, there is a subset, known as the NP-complete problems, 
which contains the hardest. An NP-complete problem has the property that any problem in NP can be 
polynomially reduced to it.  

A problem P1 can be reduced to P2 as follows: Provide a mapping so that any instance of P1 can be 

transformed to an instance of P2. Solve P2, and then map the answer back to the original. As an 

example, numbers are entered into a pocket calculator in decimal. The decimal numbers are 
converted to binary, and all calculations are performed in binary. Then the final answer is 
converted back to decimal for display. For P1 to be polynomially reducible to P2, all the work 

associated with the transformations must be performed in polynomial time.  

The reason that NP-complete problems are the hardest NP problems is that a problem that is NP-
complete can essentially be used as a subroutine for any problem in NP, with only a polynomial 
amount of overhead. Thus, if any NP-complete problem has a polynomial-time solution, then every 
problem in NP must have a polynomial-time solution. This makes the NP-complete problems the 
hardest of all NP problems.  
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Suppose we have an NP-complete problem P1. Suppose P2 is known to be in NP. Suppose further that 

P1 polynomially reduces to P2, so that we can solve P1 by using P2 with only a polynomial time 

penalty. Since P1 is NP-complete, every problem in NP polynomially reduces to P1. By applying the 

closure property of polynomials, we see that every problem in NP is polynomially reducible to P2: 

We reduce the problem to P1 and then reduce P1 to P2. Thus, P2 is NP-complete.  

As an example, suppose that we already know that the Hamiltonian cycle problem is NP-complete. 
The traveling salesman problem is as follows.  

TRAVELING SALESMAN PROBLEM: 

 

Given a complete graph G = (V, E), with edge costs, and an integer K, is there a simple cycle 

that visits all vertices and has total cost  K? 

 

The problem is different from the Hamiltonian cycle problem, because all |V|(|V| - 1)/2 edges are 
present and the graph is weighted. This problem has many important applications. For instance, 
printed circuit boards need to have holes punched so that chips, resistors, and other electronic 
components can be placed. This is done mechanically. Punching the hole is a quick operation; the 
time-consuming step is positioning the hole puncher. The time required for positioning depends on 
the distance traveled from hole to hole. Since we would like to punch every hole (and then return 
to the start for the next board), and minimize the total amount of time spent traveling, what we 
have is a traveling salesman problem.  

The traveling salesman problem is NP-complete. It is easy to see that a solution can be checked 
in polynomial time, so it is certainly in NP. To show that it is NP-complete, we polynomially 
reduce the Hamiltonian cycle problem to it. To do this we construct a new graph G'. G' has the 

same vertices as G. For G', each edge (v, w) has a weight of 1 if (v, w)  G, and 2 otherwise. 
We choose K = |V|. See 

Figure 9.78. 

 

It is easy to verify that G has a Hamiltonian cycle problem if and only if G' has a Traveling 
Salesman tour of total weight |V|.  

There is now a long list of problems known to be NP-complete. To prove that some new problem is 
NP-complete, it must be shown to be in NP, and then an appropriate NP-complete problem must be 
transformed into it. Although the transformation to a traveling salesman problem was rather 
straightforward, most transformations are actually quite involved and require some tricky 
constructions. Generally, several different NP-complete problems are considered before the 
problem that actually provides the reduction. As we are only interested in the general ideas, we 
will not show any more transformations; the interested reader can consult the references.  

The alert reader may be wondering how the first NP-complete problem was actually proven to be NP-
complete. Since proving that a problem is NP-complete requires transforming it from another NP-
complete problem, there must be some NP-complete problem for which this strategy will not work. 
The first problem that was proven to be NP-complete was the satisfiability problem. The 
satisfiability problem takes as input a boolean expression and asks whether the expression has an 
assignment to the variables that gives a value of 1.  
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Figure 9.78 Hamiltonian cycle problem transformed to traveling salesman problem

 

Satisfiability is certainly in NP, since it is easy to evaluate a boolean expression and check 
whether the result is 1. In 1971, Cook showed that satisfiability was NP-complete by directly 
proving that all problems that are in NP could be transformed to satisfiability. To do this, he 
used the one known fact about every problem in NP: Every problem in NP can be solved in 
polynomial time by a nondeterministic computer. The formal model for a computer is known as a 
Turing machine. Cook showed how the actions of this machine could be simulated by an extremely 
complicated and long, but still polynomial, boolean formula. This boolean formula would be true 
if and only if the program which was being run by the Turing machine produced a "yes" answer for 
its input.  

Once satisfiability was shown to be NP-complete, a host of new NP-complete problems, including 
some of the most classic problems, were also shown to be NP-complete.  

In addition to the satisfiability, Hamiltonian circuit, traveling salesman, and longest-path 
problems, which we have already examined, some of the more well-known NP-complete problems which 
we have not discussed are bin packing, knapsack, graph coloring, and clique. The list is quite 
extensive and includes problems from operating systems (scheduling and security), database 
systems, operations research, logic, and especially graph theory.  

Summary
 

In this chapter we have seen how graphs can be used to model many real-life problems. Many of the 
graphs that occur are typically very sparse, so it is important to pay attention to the data 
structures that are used to implement them.  

We have also seen a class of problems that do not seem to have efficient solutions. In 

Chapter 
10, some techniques for dealing with these problems will be discussed.  

Exercises
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9.1 Find a topological ordering for the graph in Figure 9.79. 

 

9.2 If a stack is used instead of a queue for the topological sort algorithm in Section 9.1, does 
a different ordering result? Why might one data structure give a "better" answer?  

9.3 Write a program to perform a topological sort on a graph. 

 

9.4 An adjacency matrix requires O( V 2) merely to initialize using a standard double 
loop. Propose a method that stores a graph in an adjacency matrix (so that testing for the 
existence of an edge is O(1)) but avoids the quadratic running time.  

9.5 a. Find the shortest path from A to all other vertices for the graph in Figure 9.80. 

 

b. Find the shortest unweighed path from B to all other vertices for the graph in 

Figure 9.80. 

 

 

 

Figure 9.79

 

9.6 What is the worst-case running time of Dijkstra's algorithm when implemented with d-heaps 
(Section 6.5)?  
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9.7 a. Give an example where Dijkstra's algorithm gives the wrong answer in the presence of a 
negative edge but no negative-cost cycle.  

**b. Show that the weighted shortest-path algorithm suggested in 

Section 9.3.3 works if there are 
negative-weight edges, but no negative-cost cycles, and that the running time of this algorithm 

is O(|E| |V|). 

 

*9.8 Suppose all the edge weights in a graph are integers between 1 and E . How fast can 
Dijkstra's algorithm be implemented?  

9.9 Write a program to solve the single-source shortest-path problem. 

 

9.10 a. Explain how to modify Dijkstra's algorithm to produce a count of the number of different 
minimum paths from v to w.  

b. Explain how to modify Dijkstra's algorithm so that if there is more than one minimum path from 
v to w, a path with the fewest number of edges is chosen.  

 

 

Figure 9.80

 

9.11 Find the maximum flow in the network of Figure 9.79. 
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9.12 Suppose that G = (V, E) is a tree, s is the root, and we add a vertex t and edges of 
infinite capacity from all leaves in G to t. Give a linear-time algorithm to find a maximum flow 
from s to t.  

9.13 A bipartite graph, G = (V, E), is a graph such that V can be partitioned into two subsets V1
and V2 and no edge has both its vertices in the same subset.  

a. Give a linear algorithm to determine whether a graph is bipartite. 

 

b. The bipartite matching problem is to find the largest subset E' of E such that no vertex is 
included in more than one edge. A matching of four edges (indicated by dashed edges) is shown in 
Figure 9.81. There is a matching of five edges, which is maximum.  

Show how the bipartite matching problem can be used to solve the following problem: We have a set 
of instructors, a set of courses, and a list of courses that each instructor is qualified to 
teach. If no instructor is required to teach more than one course, and only one instructor may 
teach a given course, what is the maximum number of courses that can be offered?  

c. Show that the network flow problem can be used to solve the bipartite matching problem. 

 

d. What is the time complexity of your solution to part (b)? 

 

9.14 Give an algorithm to find an augmenting path that permits the maximum flow. 

 

9.15 a. Find a minimum spanning tree for the graph in Figure 9.82 using both Prim's and Kruskal's 
algorithms.  

b. Is this minimum spanning tree unique? Why? 

 

9.16 Does either Prim's or Kruskal's algorithm work if there are negative edge weights? 

 

9.17 Show that a graph of V vertices can have VV_2 minimum spanning trees. 

 

9.18 Write a program to implement Kruskal's algorithm. 
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9.19 If all of the edges in a graph have weights between 1 and E , how fast can the 
minimum spanning tree be computed?  

 

 

Figure 9.81 A bipartite graph

 

 

 

Figure 9.82

 

9.20 Give an algorithm to find a maximum spanning tree. Is this harder than finding a minimum 
spanning tree?  

9.21 Find all the articulation points in the graph in Figure 9.83. Show the depth-first spanning 
tree and the values of num and low for each vertex.  

9.22 Prove that the algorithm to find articulation points works. 
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9.23 a. Give an algorithm to find the minimum number of edges that need to be removed from an 
undirected graph so that the resulting graph is acyclic.  

*b. Show that this problem is NP-complete for directed graphs. 

 

9.24 Prove that in a depth-first spanning forest of a directed graph, all cross edges go from 
right to left.  

9.25 Give an algorithm to decide whether an edge (v, w) in a depth-first spanning forest of a 
directed graph is a tree, back, cross, or forward edge.  

9.26 Find the strongly connected components in the graph of Figure 9.84. 

 

9.27 Write a program to find the strongly connected components in a digraph. 

 

 

 

Figure 9.83

 

页码，66/75Structures, Algorithm Analysis: CHAPTER 9: GRAPH ALGORITHMS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



 

 

Figure 9.84

 

*9.28 Give an algorithm that finds the strongly connected components in only one depth-first 
search. Use an algorithm similar to the biconnectivity algorithm.  

9.29 The biconnected components of a graph G is a partition of the edges into sets such that the 
graph formed by each set of edges is biconnected. Modify the algorithm in Figure 9.67 to find the 
biconnected components instead of the articulation points.  

9.30 Suppose we perform a breadth-first search of an undirected graph and build a breadth-first 
spanning tree. Show that all edges in the tree are either tree edges or cross edges.  

9.31 Give an algorithm to find in an undirected (connected) graph a path that goes through every 
edge exactly once in each direction.  

9.32 a. Write a program to find an Euler circuit in a graph if one exists. 

 

b. Write a program to find an Euler tour in a graph if one exists. 

 

9.33 An Euler circuit in a directed graph is a cycle in which every edge is visited exactly once.

*a. Prove that a directed graph has an Euler circuit if and only if it is strongly connected and 
every vertex has equal indegree and outdegree.  
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*b. Give a linear-time algorithm to find an Euler circuit in a directed graph where one exists.  

9.34 a. Consider the following solution to the Euler circuit problem: Assume that the graph is 
biconnected. Perform a depth-first search, taking back edges only as a last resort. If the graph 
is not biconnected, apply the algorithm recursively on the biconnected components. Does this 
algorithm work?  

b. Suppose that when taking back edges, we take the back edge to the nearest ancestor. Does the 
algorithm work?  

9.35 A planar graph is a graph that can be drawn in a plane without any two edges intersecting. 

 

*a. Show that neither of the graphs in 

Figure 9.85 is planar. 

 

b. Show that in a planar graph, there must exist some vertex which is connected to no more than 
five nodes.  

**c. Show that in a planar graph, E   3 V  - 6. 

 

 

 

Figure 9.85

 

9.36 A multigraph is a graph in which multiple edges are allowed between pairs of vertices. Which 
of the algorithms in this chapter work without modification for multigraphs? What modifications 
need to be done for the others?  

*9.37 Let G = (V, E) be an undirected graph. Use depth-first search to design a linear algorithm 
to convert each edge in G to a directed edge such that the resulting graph is strongly connected, 
or determine that this is not possible.  
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9.38 You are given a set of n sticks, which are laying on top of each other in some 
configuration. Each stick is specified by its two endpoints; each endpoint is an ordered triple 
giving its x, y, and z coordinates; no stick is vertical. A stick may be picked up only if there 
is no stick on top of it.  

a. Explain how to write a routine that takes two sticks a and b and reports whether a is above, 
below, or unrelated to b. (This has nothing to do with graph theory.)  

b. Give an algorithm that determines whether it is possible to pick up all the sticks, and if so, 
provides a sequence of stick pickups that accomplishes this.  

9.39 The clique problem can be stated as follows: Given an undirected graph G = (V, E) and an 
integer K, does G contain a complete subgraph of at least K vertices?  

The vertex cover problem can be stated as follows: Given an undirected graph G = (V, E) and an 

integer K, does G contain a subset V'  V such that V'   K and every edge in G has 
a vertex in V'? Show that the clique problem is polynomially reducible to vertex cover.  

9.40 Assume that the Hamiltonian cycle problem is NP-complete for undirected graphs. 

 

a. Prove that the Hamiltonian cycle problem is NP-complete for directed graphs. 

 

b. Prove that the unweighted simple longest-path problem is NP-complete for directed graphs. 

 

9.41 The baseball card collector problem is as follows: Given packets P1, P2, . . . , Pm, each of 

which contains a subset of the year's baseball cards, and an integer K, is it possible to collect 

all the baseball cards by choosing  K packets? Show that the baseball card collector problem 
is NP-complete.  
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CHAPTER 10: 
ALGORITHM DESIGN TECHNIQUES 

So far, we have been concerned with the efficient implementation of algorithms. 
We have seen that when an algorithm is given, the actual data structures need not 
be specified. It is up to the programmer to choose the approriate data structure 
in order to make the running time as small as possible.  

In this chapter, we switch our attention from the implementation of algorithms to 
the design of algorithms. Most of the algorithms that we have seen so far are 
straightforward and simple. Chapter 9 contains some algorithms that are much more 
subtle, and some require an argument (in some cases lengthy) to show that they 
are indeed correct. In this chapter, we will focus on five of the common types of 
algorithms used to solve problems. For many problems, it is quite likely that at 
least one of these methods will work. Specifically, for each type of algorithm we 
will  

 See the general approach.  

 Look at several examples (the exercises at the end of the chapter provide 
many more examples).  

 Discuss, in general terms, the time and space complexity, where appropriate. 

10.1. Greedy Algorithms 

The first type of algorithm we will examine is the greedy algorithm. We have 
already seen three greedy algorithms in Chapter 9: Dijkstra's, Prim's, and 
Kruskal's algorithms. Greedy algorithms work in phases. In each phase, a decision 
is made that appears to be good, without regard for future consequences. 
Generally, this means that some local optimum is chosen. This "take what you can 
get now" strategy is the source of the name for this class of algorithms. When 
the algorithm terminates, we hope that the local optimum is equal to the global 
optimum. If this is the case, then the algorithm is correct; otherwise, the 
algorithm has produced a suboptimal solution. If the absolute best answer is not 
required, then simple greedy algorithms are sometimes used to generate 
approximate answers, rather than using the more complicated algorithms generally 
required to generate an exact answer.  

There are several real-life examples of greedy algorithms. The most obvious is 
the coin-changing problem. To make change in U.S. currency, we repeatedly 
dispense the largest denomination. Thus, to give out seventeen dollars and sixty-
one cents in change, we give out a ten-dollar bill, a five-dollar bill, two one-
dollar bills, two quarters, one dime, and one penny. By doing this, we are 
guaranteed to minimize the number of bills and coins. This algorithm does not 
work in all monetary systems, but fortunately, we can prove that it does work in 
the American monetary system. Indeed, it works even if two-dollar bills and 

Next ChapterReturn to Table of ContentsPrevious Chapter
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fifty-cent pieces are allowed.  

Traffic problems provide an example where making locally optimal choices does not 
always work. For example, during certain rush hour times in Miami, it is best to 
stay off the prime streets even if they look empty, because traffic will come to 
a standstill a mile down the road, and you will be stuck. Even more shocking, it 
is better in some cases to make a temporary detour in the direction opposite your 
destination in order to avoid all traffic bottlenecks.  

In the remainder of this section, we will look at several applications that use 
greedy algorithms. The first application is a simple scheduling problem. 
Virtually all scheduling problems are either NP-complete (or of similar difficult 
complexity) or are solvable by a greedy algorithm. The second application deals 
with file compression and is one of the earliest results in computer science. 
Finally, we will look at an example of a greedy approximation algorithm.  

10.1.1. A Simple Scheduling Problem 

We are given jobs j1, j2, . . . , jn, all with known running times t1, t2, . . . 

, tn, respectively. We have a single processor. What is the best way to schedule 

these jobs in order to minimize the average completion time? In this entire 
section, we will assume nonpreemptive scheduling: Once a job is started, it must 
run to completion.  

As an example, suppose we have the four jobs and associated running times shown 
in Figure 10.1. One possible schedule is shown in Figure 10.2. Because j1 

finishes in 15 (time units), j2 in 23, j3 in 26, and j4 in 36, the average 

completion time is 25. A better schedule, which yields a mean completion time of 
17.75, is shown in Figure 10.3.  

The schedule given in Figure 10.3 is arranged by shortest job first. We can show 
that this will always yield an optimal schedule. Let the jobs in the schedule be 
ji1, ji2, . . . , jin. The first job finishes in time ti1. The second job finishes 

after ti1 + ti2, and the third job finishes after ti1 + ti2 + ti3. From this, we 

see that the total cost, C, of the schedule is  

  

(10.1) 

  

(10.2) 

Job  Time 
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--------- 

 j1    15    

 

 j2     8    

 

 j3     3    

 

 j4    10    

 

Figure 10.1 Jobs and times 

  

Figure 10.2 Schedule #1 

  

Figure 10.3 Schedule #2 (optimal) 

Notice that in Equation (10.2), the first sum is independent of the job ordering, 
so only the second sum affects the total cost. Suppose that in an ordering there 
exists some x > y such that tix < tiy. Then a calculation shows that by swapping 

jix and jiy, the second sum increases, decreasing the total cost. Thus, any 

schedule of jobs in which the times are not monotonically nonincreasing must be 
suboptimal. The only schedules left are those in which the jobs are arranged by 
smallest running time first, breaking ties arbitrarily.  

This result indicates the reason the operating system scheduler generally gives 
precedence to shorter jobs.  

The Multiprocessor Case 

We can extend this problem to the case of several processors. Again we have jobs 
j1, j2, . . . , jn, with associated running times t1, t2, . . . , tn, and a number 

P of processors. We will assume without loss of generality that the jobs are 
ordered, shortest running time first. As an example, suppose P = 3, and the jobs 
are as shown in Figure 10.4.  

Figure 10.5 shows an optimal arrangement to minimize mean completion time. Jobs 
j1, j4, and j7 are run on Processor 1. Processor 2 handles j2, j5, and j8, and 

Processor 3 runs the remaining jobs. The total time to completion is 165, for an 
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average of .  

The algorithm to solve the multiprocessor case is to start jobs in order, cycling 
through processors. It is not hard to show that no other ordering can do better, 
although if the number of processors P evenly divides the number of jobs n, there 

are many optimal orderings. This is obtained by, for each 0  i <n/P, placing 
each of the jobs jiP+1 through j(i+1)P on a different processor. In our case, 

Figure 10.6 shows a second optimal solution.  

Job  Time 

--------- 

 j1     3

 

 j2     5

 

 j3     6

 

 j4    10

 

 j5    11

 

 j6    14

 

 j7    15

 

 j8    18

 

 j9    20

 

Figure 10.4 Jobs and times 

  

Figure 10.5 An optimal solution for the multiprocessor case 

Even if P does not divide n exactly, there can still be many optimal solutions, 
even if all the job times are distinct. We leave further investigation of this as 
an exercise.  
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Minimizing the Final Completion Time 

We close this section by considering a very similar problem. Suppose we are only 
concerned with when the last job finishes. In our two examples above, these 
completion times are 40 and 38, respectively. Figure 10.7 shows that the minimum 
final completion time is 34, and this clearly cannot be improved, because every 
processor is always busy.  

Although this schedule does not have minimum mean completion time, it has merit 
in that the completion time of the entire sequence is earlier. If the same user 
owns all these jobs, then this is the preferable method of scheduling. Although 
these problems are very similar, this new problem turns out to be NP-complete; it 
is just another way of phrasing the knapsack or bin-packing problems, which we 
will encounter later in this section. Thus, minimizing the final completion time 
is apparently much harder than minimizing the mean completion time.  

  

Figure 10.6 A second optimal solution for the multiprocessor case 

  

Figure 10.7 Minimizing the final completion time 

10.1.2. Huffman Codes 

In this section, we consider a second application of greedy algorithms, known as 
file compression.  

The normal ASCII character set consists of roughly 100 "printable" characters. 

In order to distinguish these characters, log 100  = 7 bits are required. 

页码，5/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECHNIQUE

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



Seven bits allow the representation of 128 characters, so the ASCII character 
set adds some other "nonprintable" characters. An eighth bit is added as a parity 
check. The important point, however, is that if the size of the character set is 

C, then log C  bits are needed in a standard encoding.  

Suppose we have a file that contains only the characters a, e, i, s, t, plus 
blank spaces and newlines. Suppose further, that the file has ten a's, fifteen 
e's, twelve i's, three s's, four t's, thirteen blanks, and one newline. As the 
table in Figure 10.8 shows, this file requires 174 bits to represent, since there 
are 58 characters and each character requires three bits.  

Character  Code  Frequency  Total Bits 

-------------------------------------- 

   a        000     10          30 

   e        001     15          45 

   i        010     12          36 

   s        011      3           9 

   t        100      4          12 

 space      101      3          39 

newline     110      1           3 

-------------------------------------- 

 Total                         174 

Figure 10.8 Using a standard coding scheme 

In real life, files can be quite large. Many of the very large files are output 
of some program and there is usually a big disparity between the most frequent 
and least frequent characters. For instance, many large data files have an 
inordinately large amount of digits, blanks, and newlines, but few q's and x's. 
We might be interested in reducing the file size in the case where we are 
transmitting it over a slow phone line. Also, since on virtually every machine 
disk space is precious, one might wonder if it would be possible to provide a 
better code and reduce the total number of bits required.  

The answer is that this is possible, and a simple strategy achieves 25 percent 
savings on typical large files and as much as 50 to 60 percent savings on many 
large data files. The general strategy is to allow the code length to vary from 
character to character and to ensure that the frequently occurring characters 
have short codes. Notice that if all the characters occur with the same 
frequency, then there are not likely to be any savings.  

The binary code that represents the alphabet can be represented by the binary 
tree shown in Figure 10.9.  
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The tree in Figure 10.9 has data only at the leaves. The representation of each 
character can be found by starting at the root and recording the path, using a 0 
to indicate the left branch and a 1 to indicate the right branch. For instance, s 
is reached by going left, then right, and finally right. This is encoded as 011. 
This data structure is sometimes referred to as a trie. If character ci is at 

depth di and occurs fi times, then the cost of the code is equal to  di fi. 
 

  

Figure 10.9 Representation of the original code in a tree 

  

Figure 10.10 A slightly better tree 

A better code than the one given in Figure 10.9 can be obtained by noticing that 
the newline is an only child. By placing the newline symbol one level higher at 
its parent, we obtain the new tree in Figure 10.9. This new tree has cost of 173, 
but is still far from optimal.  

Notice that the tree in Figure 10.10 is a full tree: All nodes either are leaves 
or have two children. An optimal code will always have this property, since 
otherwise, as we have already seen, nodes with only one child could move up a 
level.  

If the characters are placed only at the leaves, any sequence of bits can always 
be decoded unambiguously. For instance, suppose the encoded string is 
0100111100010110001000111. 0 is not a character code, 01 is not a character code, 
but 010 represents i, so the first character is i. Then 011 follows, giving a t. 
Then 11 follows, which is a newline. The remainder of the code is a, space, t, i, 
e, and newline. Thus, it does not matter if the character codes are different 
lengths, as long as no character code is a prefix of another character code. Such 
an encoding is known as a prefix code. Conversely, if a character is contained in 
a nonleaf node, it is no longer possible to guarantee that the decoding will be 
unambiguous.  

Putting these facts together, we see that our basic problem is to find the full 
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binary tree of minimum total cost (as defined above), where all characters are 
contained in the leaves. The tree in Figure 10.11 shows the optimal tree for our 
sample alphabet. As can be seen in Figure 10.12, this code uses only 146 bits.  

  

Figure 10.11 Optimal prefix code 

Character   Code  Frequency  Total Bits 

------------------------=-------------- 

   a         001     10          30 

   e          01     15          30 

   i          10     12          24 

   s       00000      3          15 

   t        0001      4          16 

 space        11     13          26 

newline    00001      1           5 

--------------------------------------- 

 Total                          146 

Figure 10.12 Optimal prefix code 

Notice that there are many optimal codes. These can be obtained by swapping 
children in the encoding tree. The main unresolved question, then, is how the 
coding tree is constructed. The algorithm to do this was given by Huffman in 
1952. Thus, this coding system is commonly referred to as a Huffman code.  

Huffman's Algorithm  

Huffman's Algorithm 

Throughout this section we will assume that the number of characters is C. 
Huffman's algorithm can be described as follows: We maintain a forest of trees. 
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The weight of a tree is equal to the sum of the frequencies of its leaves. C - 1 
times, select the two trees, T1 and T2, of smallest weight, breaking ties 

arbitrarily, and form a new tree with subtrees Tl and T2. At the beginning of the 

algorithm, there are C single-node trees-one for each character. At the end of 
the algorithm there is one tree, and this is the optimal Huffman coding tree.  

A worked example will make the operation of the algorithm clear. Figure 10.13 
shows the initial forest; the weight of each tree is shown in small type at the 
root. The two trees of lowest weight are merged together, creating the forest 
shown in Figure 10.14. We will name the new root T1, so that future merges can be 
stated unambiguously. We have made s the left child arbitrarily; any tiebreaking 
procedure can be used. The total weight of the new tree is just the sum of the 
weights of the old trees, and can thus be easily computed. It is also a simple 
matter to create the new tree, since we merely need to get a new node, set the 
left and right pointers, and record the weight.  

  

Figure 10.13 Initial stage of Huffman's algorithm 

  

Figure 10.14 Huffman's algorithm after the first merge 

  

Figure 10.15 Huffman's algorithm after the second merge 

  

Figure 10.16 Huffman's algorithm after the third merge 

Now there are six trees, and we again select the two trees of smallest weight. 
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These happen to be T1 and t, which are then merged into a new tree with root T2 
and weight 8. This is shown in Figure 10.15. The third step merges T2 and a, 
creating T3, with weight 10 + 8 = 18. Figure 10.16 shows the result of this 
operation.  

After the third merge is completed, the two trees of lowest weight are the 
single-node trees representing i and the blank space. Figure 10.17 shows how 
these trees are merged into the new tree with root T4. The fifth step is to merge 
the trees with roots e and T3, since these trees have the two smallest weights. 
The result of this step is shown in Figure 10.18.  

Finally, the optimal tree, which was shown in Figure 10.11, is obtained by 
merging the two remaining trees. Figure 10.19 shows this optimal tree, with root 
T6.  

  

Figure 10.17 Huffman's algorithm after the fourth merge 

  

Figure 10.18 Huffman's algorithm after the fifth merge 
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Figure 10.19 Huffman's algorithm after the final merge 

We will sketch the ideas involved in proving that Huffman's algorithm yields an 
optimal code; we will leave the details as an exercise. First, it is not hard to 
show by contradiction that the tree must be full, since we have already seen how 
a tree that is not full is improved.  

Next, we must show that the two least frequent characters  and  must be 
the two deepest nodes (although other nodes may be as deep). Again, this is easy 

to show by contradiction, since if either  or is not a deepest node, then 

there must be some  that is (recall that the tree is full). If  is less 

frequent than , then we can improve the cost by swapping them in the tree.  

We can then argue that the characters in any two nodes at the same depth can be 
swapped without affecting optimality. This shows that an optimal tree can always 
be found that contains the two least frequent symbols as siblings; thus the first 
step is not a mistake.  

The proof can be completed by using an induction argument. As trees are merged, 
we consider the new character set to be the characters in the roots. Thus, in our 
example, after four merges, we can view the character set as consisting of e and 
the metacharacters T3 and T4. This is probably the trickiest part of the proof; 
you are urged to fill in all of the details.  

The reason that this is a greedy algorithm is that at each stage we perform a 
merge without regard to global considerations. We merely select the two smallest 
trees.  

If we maintain the trees in a priority queue, ordered by weight, then the running 
time is O(C log C), since there will be one build_heap, 2C - 2 delete_mins, and C
- 2 inserts, on a priority queue that never has more than C elements. A simple 

implementation of the priority queue, using a linked list, would give an O (C2) 
algorithm. The choice of priority queue implementation depends on how large C is. 
In the typical case of an ASCII character set, C is small enough that the 
quadratic running time is acceptable. In such an application, virtually all the 
running time will be spent on the disk I/O required to read the input file and 
write out the compressed version.  

There are two details that must be considered. First, the encoding information 
must be transmitted at the start of the compressed file, since otherwise it will 
be impossible to decode. There are several ways of doing this; see Exercise 10.4. 
For small files, the cost of transmitting this table will override any possible 
savings in compression, and the result will probably be file expansion. Of 
course, this can be detected and the original left intact. For large files, the 
size of the table is not significant.  

The second problem is that as described, this is a two-pass algorithm. The first 
pass collects the frequency data and the second pass does the encoding. This is 
obviously not a desirable property for a program dealing with large files. Some 
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alternatives are described in the references.  

10.1.3. Approximate Bin Packing 

In this section, we will consider some algorithms to solve the bin packing 
problem. These algorithms will run quickly but will not necessarily produce 
optimal solutions. We will prove, however, that the solutions that are produced 
are not too far from optimal.  

We are given n items of sizes s1, s2, . . . , sn. All sizes satisfy 0 < si 1. 

The problem is to pack these items in the fewest number of bins, given that each 
bin has unit capacity. As an example, Figure 10.20 shows an optimal packing for 
an item list with sizes 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8.  

  

Figure 10.20 Optimal packing for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

There are two versions of the bin packing problem. The first version is on-line 
bin packing. In this version, each item must be placed in a bin before the next 
item can be processed. The second version is the off-line bin packing problem. In 
an off-line algorithm, we do not need to do anything until all the input has been 
read. The distinction between on-line and off-line algorithms was discussed in 
Section 8.2.  

On-line Algorithms 

The first issue to consider is whether or not an on-line algorithm can actually 
always give an optimal answer, even if it is allowed unlimited computation. 
Remember that even though unlimited computation is allowed, an on-line algorithm 
must place an item before processing the next item and cannot change its 
decision.  

To show that an on-line algorithm cannot always give an optimal solution, we will 
give it particularly difficult data to work on. Consider an input sequence I1 of 

m small items of weight  followed by m large items of weight , 0 <  
< 0.01. It is clear that these items can be packed in m bins if we place one 
small item and one large item in each bin. Suppose there were an optimal on-line 
algorithm A that could perform this packing. Consider the operation of algorithm 

A on the sequence I2, consisting of only m small items of weight . I2 can be 
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packed in [m/2] bins. However, A will place each item in a separate bin, since A 
must yield the same results on I2 as it does for the first half of I1, since the 

first half of I1 is exactly the same input as I2. This means that A will use 

twice as many bins as is optimal for I2. What we have proven is that there is no 

optimal algorithm for on-line bin packing.  

What the argument above shows is that an on-line algorithm never knows when the 
input might end, so any performance guarantees it provides must hold at every 
instant throughout the algorithm. If we follow the foregoing strategy, we can 
prove the following.  

THEOREM 10.1.  

There are inputs that force any on-line bin-packing algorithm to use at least 
the optimal number of bins.  

PROOF:  

Suppose otherwise, and suppose for simplicity that m is even. Consider any on-
line algorithm A running on the input sequence I1, above. Recall that this 

sequence consists of m small items followed by m large items. Let us consider 
what the algorithm A has done after processing the mth item. Suppose A has 
already used b bins. At this point in the algorithm, the optimal number of bins 
is m/2, because we can place two elements in each bin. Thus we know that 

, by our assumption of a  performance guarantee.  

Now consider the performance of algorithm A after all items have been packed. All 
bins created after the bth bin must contain exactly one item, since all small 
items are placed in the first b bins, and two large items will not fit in a bin. 
Since the first b bins can have at most two items each, and the remaining bins 
have one item each, we see that packing 2m items will require at least 2m - b 
bins. Since the 2m items can be optimally packed using m bins, our performance 

guarantee assures us that .  

  

Figure 10.21 Next fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

The first inequality implies that , and the second inequality implies 
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that , which is a contradiction. Thus, no on-line algorithm can 

guarantee that it will produce a packing with less than the optimal number of 
bins.  

There are three simple algorithms that guarantee that the number of bins used is 
no more than twice optimal. There are also quite a few more complicated 
algorithms with better guarantees.  

Next Fit 

Probably the simplest algorithm is next fit. When processing any item, we check 
to see whether it fits in the same bin as the last item. If it does, it is placed 
there; otherwise, a new bin is created. This algorithm is incredibly simple to 
implement and runs in linear time. Figure 10.21 shows the packing produced for 
the same input as Figure 10.20.  

Not only is next fit simple to program, its worst-case behavior is also easy to 
analyze.  

THEOREM 10.2.  

Let m be the optimal number of bins required to pack a list I of items. Then next 
fit never uses more than 2m bins. There exist sequences such that next fit uses 
2m - 2 bins.  

PROOF:  

Consider any adjacent bins Bj and Bj + 1. The sum of the sizes of all items in Bj 

and Bj + 1 must be larger than 1, since otherwise all of these items would have 

been placed in Bj. If we apply this result to all pairs of adjacent bins, we see 

that at most half of the space is wasted. Thus next fit uses at most twice the 
number of bins.  

To see that this bound is tight, suppose that the n items have size si = 0.5 if i

is odd and si = 2/n if i is even. Assume n is divisible by 4. The optimal 

packing, shown in Figure 10.22, consists of n/4 bins, each containing 2 elements 
of size 0.5, and one bin containing the n/2 elements of size 2/n, for a total of 
(n/4) + 1. Figure 10.23 shows that next fit uses n/2 bins. Thus, next fit can be 
forced to use almost twice as many bins as optimal.  
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Figure 10.22 Optimal packing for 0.5, 2/n, 0.5, 2/n, 0.5, 2/n, . . . 

  

Figure 10.23 Next fit packing for 0.5, 2/n, 0.5, 2/n, 0.5, 2/n, . . . 

First Fit 

Although next fit has a reasonable performance guarantee, it performs poorly in 
practice, because it creates new bins when it does not need to. In the sample 
run, it could have placed the item of size 0.3 in either B1 or B2, rather than 

create a new bin.  

The first fit strategy is to scan the bins in order and place the new item in the 
first bin that is large enough to hold it. Thus, a new bin is created only when 
the results of previous placements have left no other alternative. Figure 10.24 
shows the packing that results from first fit on our standard input.  

A simple method of implementing first fit would process each item by scanning 

down the list of bins sequentially. This would take O(n2). It is possible to 
implement first fit to run in O(n log n); we leave this as an exercise.  

A moment's thought will convince you that at any point, at most one bin can be 
more than half empty, since if a second bin were also half empty, its contents 
would fit into the first bin. Thus, we can immediately conclude that first fit 
guarantees a solution with at most twice the optimal number of bins.  
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Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

On the other hand, the bad case that we used in the proof of next fit's 
performance bound does not apply for first fit. Thus, one might wonder if a 
better bound can be proven. The answer is yes, but the proof is complicated.  

THEOREM 10.3.  

Let m be the optimal number of bins required to pack a list I of items. Then 

first fit never uses more than bins. There exist sequences such that first 

fit uses  bins.  

PROOF:  

See the references at the end of the chapter.  

An example where first fit does almost as poorly as the previous theorem would 

indicate is shown in Figure 10.25. The input consists of 6m items of size , 

followed by 6m items of size  , followed by 6m items of size . One 
simple packing places one item of each size in a bin and requires 6m bins. First 
fit requires 10m bins.  

When first fit is run on a large number of items with sizes uniformly distributed 
between 0 and 1, empirical results show that first fit uses roughly 2 percent 
more bins than optimal. In many cases, this is quite acceptable.  
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Figure 10.25 A case where first fit uses 10m bins instead of 6m 

  

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

First Fit 

Although next fit has a reasonable performance guarantee, it performs poorly in 
practice, because it creates new bins when it does not need to. In the sample 
run, it could have placed the item of size 0.3 in either B1 or B2, rather than 

create a new bin.  

The first fit strategy is to scan the bins in order and place the new item in the 
first bin that is large enough to hold it. Thus, a new bin is created only when 
the results of previous placements have left no other alternative. Figure 10.24 
shows the packing that results from first fit on our standard input.  

A simple method of implementing first fit would process each item by scanning 

down the list of bins sequentially. This would take O(n2). It is possible to 
implement first fit to run in O(n log n); we leave this as an exercise.  

A moment's thought will convince you that at any point, at most one bin can be 
more than half empty, since if a second bin were also half empty, its contents 
would fit into the first bin. Thus, we can immediately conclude that first fit 
guarantees a solution with at most twice the optimal number of bins.  

  

Figure 10.24 First fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 

On the other hand, the bad case that we used in the proof of next fit's 
performance bound does not apply for first fit. Thus, one might wonder if a 
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better bound can be proven. The answer is yes, but the proof is complicated.  

THEOREM 10.3.  

Let m be the optimal number of bins required to pack a list I of items. Then 

first fit never uses more than bins. There exist sequences such that first 

fit uses  bins.  

PROOF:  

See the references at the end of the chapter.  

An example where first fit does almost as poorly as the previous theorem would 

indicate is shown in Figure 10.25. The input consists of 6m items of size , 

followed by 6m items of size  , followed by 6m items of size . One 
simple packing places one item of each size in a bin and requires 6m bins. First 
fit requires 10m bins.  

When first fit is run on a large number of items with sizes uniformly distributed 
between 0 and 1, empirical results show that first fit uses roughly 2 percent 
more bins than optimal. In many cases, this is quite acceptable.  

  

Figure 10.25 A case where first fit uses 10m bins instead of 6m 

  

Figure 10.26 Best fit for 0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8 
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10.2. Divide and Conquer 

Another common technique used to design algorithms is divide and conquer. Divide 
and conquer algorithms consist of two parts:  

Divide: Smaller problems are solved recursively (except, of course, base cases). 

Conquer: The solution to the original problem is then formed from the solutions 
to the subproblems.  

Traditionally, routines in which the text contains at least two recursive calls 
are called divide and conquer algorithms, while routines whose text contains only 
one recursive call are not. We generally insist that the subproblems be disjoint 
(that is, essentially nonoverlapping). Let us review some of the recursive 
algorithms that have been covered in this text.  

We have already seen several divide and conquer algorithms. In Section 2.4.3, we 
saw an O (n log n) solution to the maximum subsequence sum problem. In Chapter 4, 
we saw linear-time tree traversal strategies. In Chapter 7, we saw the classic 
examples of divide and conquer, namely mergesort and quicksort, which have O (n 
log n) worst-case and average-case bounds, respectively.  

We have also seen several examples of recursive algorithms that probably do not 
classify as divide and conquer, but merely reduce to a single simpler case. In 
Section 1.3, we saw a simple routine to print a number. In Chapter 2, we used 
recursion to perform efficient exponentiation. In Chapter 4, we examined simple 
search routines for binary search trees. In Section 6.6, we saw simple recursion 
used to merge leftist heaps. In Section 7.7, an algorithm was given for selection 
that takes linear average time. The disjoint set find operation was written 
recursively in Chapter 8. Chapter 9 showed routines to recover the shortest path 
in Dijkstra's algorithm and other procedures to perform depth-first search in 
graphs. None of these algorithms are really divide and conquer algorithms, 
because only one recursive call is performed.  

We have also seen, in Section 2.4, a very bad recursive routine to compute the 
Fibonacci numbers. This could be called a divide and conquer algorithm, but it is 
terribly inefficient, because the problem really is not divided at all.  

In this section, we will see more examples of the divide and conquer paradigm. 
Our first application is a problem in computational geometry. Given n points in a 
plane, we will show that the closest pair of points can be found in O(n log n) 
time. The exercises describe some other problems in computational geometry which 
can be solved by divide and conquer. The remainder of the section shows some 
extremely interesting, but mostly theoretical, results. We provide an algorithm 
which solves the selection problem in O(n) worst-case time. We also show that 2 

n-bit numbers can be multiplied in o(n2) operations and that two n x n matrices 

can be multiplied in o(n3) operations. Unfortunately, even though these 
algorithms have better worst-case bounds than the conventional algorithms, none 
are practical except for very large inputs.  

10.2.1. Running Time of Divide and Conquer Algorithms  
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10.2.1. Running Time of Divide and Conquer Algorithms 

All the efficient divide and conquer algorithms we will see divide the problems 
into subproblems, each of which is some fraction of the original problem, and 
then perform some additional work to compute the final answer. As an example, we 
have seen that mergesort operates on two problems, each of which is half the size 
of the original, and then uses O(n) additional work. This yields the running time 
equation (with appropriate initial conditions)  

T(n) = 2T(n/2) + O(n) 

We saw in Chapter 7 that the solution to this equation is O(n log n). The 
following theorem can be used to determine the running time of most divide and 
conquer algorithms.  

THEOREM 10.6.  

The solution to the equation T(n) = aT(n/b) + (nk), where a  1 and b > 1, 
is  

  

PROOF:  

Following the analysis of mergesort in Chapter 7, we will assume that n is a 

power of b; thus, let n = bm. Then n/b = bm-l and nk = (bm)k = bmk = bkm = (bk)m. 

Let us assume T(1) = 1, and ignore the constant factor in (nk). Then we have 

T(bm) = aT(bm-l)+(bk)m
 

If we divide through by am, we obtain the equation 

 

 

 

(10.3)

 

We can apply this equation for other values of m, obtaining 

 

 

 

(10.4)
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(10.5)

 

 

 

(10.6)

 

We use our standard trick of adding up the telescoping equations (10.3) through (10.6). Virtually 

all the terms on the left cancel the leading terms on the right, yielding  

 

 

(10.7)

 

 

 

(10.8)

 

Thus 

 

 

 

(10.9)

 

If a > bk, then the sum is a geometric series with ratio smaller than 1. Since the sum of 
infinite series would converge to a constant, this finite sum is also bounded by a constant, and 
thus Equation (10.10) applies:  

T(n) = O(am) = O(alogb 
n) O = O(nlogb a) 

 

(10.10)

 

If a = bk, then each term in the sum is 1. Since the sum contains 1 + logb n terms and a = b
k 

implies that logb a = k,  

T(n) = O(am logb n) = O(n
log

b
a
 logb n) = O(n

k logb n) 

 

= O (nk log n) 
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(10.11) 

Finally, if a < bk, then the terms in the geometric series are larger than 1, and the second 
formula in Section 1.2.3 applies. We obtain  

 

 

(10.12)

 

proving the last case of the theorem. 

 

As an example, mergesort has a = b = 2 and k = 1. The second case applies, giving the answer O(n 
log n). If we solve three problems, each of which is half the original size, and combine the 
solutions with O(n) additional work, then a = 3, b = 2 and k = 1. Case 1 applies here, giving a 

bound of O(nlog2
3) = O(n1.59). An algorithm that solved three half-sized problems, but required O

(n2) work to merge the solution, would have an O(n2) running time, since the third case would 
apply.  

There are two important cases that are not covered by Theorem 10.6. We state two more theorems, 

leaving the proofs as exercises. Theorem 10.7 generalizes the previous theorem.  

THEOREM 10.7. 

 

The solution to the equation T(n) = aT(n/b) + (nk logp n), where a  1, b > 1, and p 
0 is  

 

 

THEOREM 10.8. 

 

, then the solution to the equation  is T(n) = O(n). 

 

10.2.2. Closest-Points Problem
 

The input to our first problem is a list P of points in a plane. If pl = (x1, y1) and p2 = (x2, 

y2), then the Euclidean distance between pl and p2 is [(x1 - x2)
2 + (yl - y2)

2]l/2. We are 

required to find the closest pair of points. It is possible that two points have the same 
position; in that case that pair is the closest, with distance zero.  

If there are n points, then there are n (n - 1)/2 pairs of distances. We can check all of these, 

obtaining a very short program, but at the expense of an O(n2) algorithm. Since this approach is 
just an exhaustive search, we should expect to do better.  

Let us assume that the points have been sorted by x coordinate. At worst, this adds O(n log n) to 
the final time bound. Since we will show an O(n log n) bound for the entire algorithm, this sort 
is essentially free, from a complexity standpoint.  
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Figure 10.29 shows a small sample point set P. Since the points are sorted by x coordinate, we 

can draw an imaginary vertical line that partitions the points set into two halves, Pl and Pr. 

This is certainly simple to do. Now we have almost exactly the same situation as we saw in the 
maximum subsequence sum problem in Section 2.4.3. Either the closest points are both in Pl, or 

they are both in Pr, or one is in Pl and the other is in Pr. Let us call these distances dl, dr, 

and dc. Figure 10.30 shows the partition of the point set and these three distances.  

We can compute dl and dr recursively. The problem, then, is to compute dc. Since we would like 

an O(n log n) solution, we must be able to compute dc with only O(n) additional work. We have 

already seen that if a procedure consists of two half-sized recursive calls and O(n) additional 
work, then the total time will be O(n log n).  

Let  = min(dl, dr). The first observation is that we only need to compute dc if dc improves 

on . If dc is such a distance, then the two points that define dc must be within of the 

dividing line; we will refer to this area as a strip. As shown in Figure 10.31, this observation 

limits the number of points that need to be considered (in our case,  = dr). 

 

There are two strategies that can be tried to compute dc. For large point sets that are uniformly 

distributed, the number of points that are expected to be in the strip is very small. Indeed, it 

is easy to argue that only  points are in the strip on average. Thus, we could perform a 
brute force calculation on these points in O(n) time. The pseudocode in Figure 10.32 implements 
this strategy, assuming the C convention that the points are indexed starting at 0.  

 

 

Figure 10.29 A small point set
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Figure 10.30 P partitioned into P1 and P2; shortest distances are shown
 

 

 

Figure 10.31 Two-lane strip, containing all points considered for dc strip
 

/* Points are all in the strip */

 

for( i=0; i<NUM_POINTS_IN_STRIP; i++ )

 

for( j=i+1; j<NUM_POINTS_IN_STRIP; j++ )

 

if( dist( pi,pj ) < )

 

 = dist( pi,pj );

 

Figure 10.32 Brute force calculation of min( , dc)

 

/* Points are all in the strip and sorted by y coordinate */

 

for( i=0; i<NUM_POINTS_IN_STRIP; i++ )
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for( j=i+1; j<NUM_POINTS_IN_STRIP; j++ ) 

if ( pi and pj 's coordinates differ by more than  )

 

break;     /* goto next pi */

 

else

 

if( dist( pi, pj) < )

 

 = dist( pi, pj);

 

Figure 10.33 Refined calculation of min( , dc)

 

In the worst case, all the points could be in the strip, so this strategy does not always work in 
linear time. We can improve this algorithm with the following observation: The y coordinates of 

the two points that define dc can differ by at most . Otherwise, dc > . Suppose that the 

points in the strip are sorted by their y coordinates. Therefore, if pi and pj's y coordinates 

differ by more than , then we can proceed to pi + l. This simple modification is implemented 

in Figure 10.33.  

This extra test has a significant effect on the running time, because for each pi only a few 

points pj are examined before pi's and pj's y coordinates differ by more than  and force an 

exit from the inner for loop. Figure 10.34 shows, for instance, that for point p3, only the two 

points p4 and p5 lie in the strip within  vertical distance. 

 

 

 

Figure 10.34 Only p4 and p5 are considered in the second for loop
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Figure 10.35 At most eight points fit in the rectangle; there are two coordinates shared by two 

points each 

In the worst case, for any point pi, at most 7 points pj are considered. This is because these 

points must lie either in the  by  square in the left half of the strip or in the  

by  square in the right half of the strip. On the other hand, all the points in each by 

 square are separated by at least . In the worst case, each square contains four points, 
one at each corner. One of these points is pi, leaving at most seven points to be considered. 

This worst-case situation is shown in Figure 10.35. Notice that even though pl2 and pr1 have the 

same coordinates, they could be different points. For the actual analysis, it is only important 

that the number of points in the  by 2  rectangle be O(1), and this much is certainly 
clear.  

Because at most seven points are considered for each pi, the time to compute a dc that is better 

than  is O(n). Thus, we appear to have an O(n log n) solution to the closest-points problem, 
based on the two half-sized recursive calls plus the linear extra work to combine the two 
results. However, we do not quite have an O (n log n) solution yet.  

The problem is that we have assumed that a list of points sorted by y coordinate is available. If 
we perform this sort for each recursive call, then we have O(n log n) extra work: this gives an O

(n log2 n) algorithm. This is not all that bad, especially when compared to the brute force O

(n2). However, it is not hard to reduce the work for each recursive call to O(n), thus ensuring 
an O(n log n) algorithm.  

We will maintain two lists. One is the point list sorted by x coordinate, and the other is the 
point list sorted by y coordinate. We will call these lists P and Q, respectively. These can be 
obtained by a preprocessing sorting step at cost O(n log n) and thus does not affect the time 
bound. Pl and Ql are the lists passed to the left-half recursive call, and Pr and Qr are the 

lists passed to the right-half recursive call. We have already seen that P is easily split in the 
middle. Once the dividing line is known, we step through Q sequentially, placing each element in 
Ql or Qr, as appropriate. It is easy to see that Ql and Qr will be automatically sorted by y 

coordinate. When the recursive calls return, we scan through the Q list and discard all the 
points whose x coordinates are not within the strip. Then Q contains only points in the strip, 
and these points are guaranteed to be sorted by their y coordinates.  
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This strategy ensures that the entire algorithm is O (n log n), because only O (n) extra work is 
performed.  

10.2.3. The Selection Problem
 

The selection problem requires us to find the kth smallest element in a list S of n elements. Of 

particular interest is the special case of finding the median. This occurs when k = n/2 . 

In Chapters 1, 6, 7 we have seen several solutions to the selection problem. The solution in 

Chapter 7 uses a variation of quicksort and runs in O(n) average time. Indeed, it is described in 
Hoare's original paper on quicksort.  

Although this algorithm runs in linear average time, it has a worst case of O (n2). Selection can 
easily be solved in O(n log n) worst-case time by sorting the elements, but for a long time it 
was unknown whether or not selection could be accomplished in O(n) worst-case time. The 
quickselect algorithm outlined in Section 7.7.6 is quite efficient in practice, so this was 
mostly a question of theoretical interest.  

Recall that the basic algorithm is a simple recursive strategy. Assuming that n is larger than 
the cutoff point where elements are simply sorted, an element v, known as the pivot, is chosen. 
The remaining elements are placed into two sets, S1 and S2. S1 contains elements that are 

guaranteed to be no larger than v, and S2 contains elements that are no smaller than v. Finally, 

if k  |S1|, then the kth smallest element in S can be found by recursively computing the kth 

smallest element in S1. If k = |S1| + 1, then the pivot is the kth smallest element. Otherwise, 

the kth smallest element in S is the (k - |S1| -1 )st smallest element in S2. The main difference 

between this algorithm and quicksort is that there is only one subproblem to solve instead of 
two.  

In order to obtain a linear algorithm, we must ensure that the subproblem is only a fraction of 
the original and not merely only a few elements smaller than the original. Of course, we can 
always find such an element if we are willing to spend some time to do so. The difficult problem 
is that we cannot spend too much time finding the pivot.  

For quicksort, we saw that a good choice for pivot was to pick three elements and use their 
median. This gives some expectation that the pivot is not too bad, but does not provide a 
guarantee. We could choose 21 elements at random, sort them in constant time, use the 11th 
largest as pivot, and get a pivot that is even more likely to be good. However, if these 21 
elements were the 21 largest, then the pivot would still be poor. Extending this, we could use up 
to O (n / log n) elements, sort them using heapsort in O(n) total time, and be almost certain, 
from a statistical point of view, of obtaining a good pivot. In the worst case, however, this 
does not work because we might select the O (n / log n) largest elements, and then the pivot 
would be the [n - O(n / log n)]th largest element, which is not a constant fraction of n.  

The basic idea is still useful. Indeed, we will see that we can use it to improve the expected 
number of comparisons that quickselect makes. To get a good worst case, however, the key idea is 
to use one more level of indirection. Instead of finding the median from a sample of random 
elements, we will find the median from a sample of medians.  

The basic pivot selection algorithm is as follows: 

 

1. Arrange the n elements into n/5  groups of 5 elements, ignoring the (at most four) 
extra elements.  
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2. Find the median of each group. This gives a list M of n/5  medians. 

 

3. Find the median of M. Return this as the pivot, v. 

 

We will use the term median-of-median-of-five partitioning to describe the quickselect algorithm 
that uses the pivot selection rule given above. We will now show that median-of-median-of-five 
partitioning guarantees that each recursive subproblem is at most roughly 70 percent as large as 
the original. We will also show that the pivot can be computed quickly enough to guarantee an O 
(n) running time for the entire selection algorithm.  

Let us assume for the moment that n is divisible by 5, so there are no extra elements. Suppose 
also that n/5 is odd, so that the set M contains an odd number of elements. This provides some 
symmetry, as we shall see. We are thus assuming, for convenience, that n is of the form 10k + 5. 
We will also assume that all the elements are distinct. The actual algorithm must make sure to 
handle the case where this is not true. Figure 10.36 shows how the pivot might be chosen when n = 
45.  

In Figure 10.36, v represents the element which is selected by the algorithm as pivot. Since v is 
the median of nine elements, and we are assuming that all elements are distinct, there must be 
four medians that are larger than v and four that are smaller. We denote these by L and S, 
respectively. Consider a group of five elements with a large median (type L). The median of the 
group is smaller than two elements in the group and larger than two elements in the group. We 
will let H represent the huge elements. These are elements that are known to be larger than a 
large median. Similarly, T represents the tiny elements, which are smaller than a small median. 
There are 10 elements of type H: Two are in each of the groups with an L type median, and two 
elements are in the same group as v. Similarly, there are 10 elements of type T.  

 

 

Figure 10.36 How the pivot is chosen

 

Elements of type L or H are guaranteed to be larger than v, and elements of type S or T are 

guaranteed to be smaller than v. There are thus guaranteed to be 14 large and 14 small elements 
in our problem. Therefore, a recursive call could be on at most 45 - 14 - 1 = 30 elements.  

Let us extend this analysis to general n of the form 10k + 5. In this case, there are k elements 
of type L and k elements of type S . There are 2k + 2 elements of type H, and also 2k + 2 
elements of type T. Thus, there are 3k + 2 elements that are guaranteed to be larger than v and 
3k + 2 elements that are guaranteed to be smaller. Thus, in this case, the recursive call can 
contain at most 7k + 2 < 0.7n elements. If n is not of the form 10k + 5, similar arguments can be 
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made without affecting the basic result.  

It remains to bound the running time to obtain the pivot element. There are two basic steps. We 
can find the median of five elements in constant time. For instance, it is not hard to sort five 

elements in eight comparisons. We must do this n/5  times, so this step takes O(n) time. 

We must then compute the median of a group of n/5  elements. The obvious way to do this 

is to sort the group and return the element in the middle. But this takes O( n/5  log 

n/5 ) = O(n log n) time, so this does not work. The solution is to call the selection 

algorithm recursively on the n/5 elements. 

 

This completes the description of the basic algorithm. There are still some details that need to 
be filled in if an actual implementation is desired. For instance, duplicates must be handled 
correctly, and the algorithm needs a cutoff large enough to ensure that the recursive calls make 
progress. There is quite a large amount of overhead involved, and this algorithm is not practical 
at all, so we will not describe any more of the details that need to be considered. Even so, from 
a theoretical standpoint, the algorithm is a major breakthrough, because, as the following 
theorem shows, the running time is linear in the worst case.  

THEOREM 10.9. 

 

The running time of quickselect using median-of-median-of-five partitioning is O(n). 

 

PROOF: 

 

The algorithm consists of two recursive calls of size 0.7n and 0.2n, plus linear extra work. By 

Theorem 10.8, the running time is linear.  

Reducing the Average Number of Comparisons 

 

Reducing the Average Number of Comparisons
 

Divide and conquer can also be used to reduce the expected number of comparisons required by the 
selection algorithm. Let us look at a concrete example. Suppose we have a group S of 1,000 
numbers and are looking for the 100th smallest number, which we will call x. We choose a subset 
S' of S consisting of 100 numbers. We would expect that the value of x is similar in size to the 
10th smallest number in S'. More specifically, the fifth smallest number in S' is almost 
certainly less than x, and the 15th smallest number in S' is almost certainly greater than x.  

More generally, a sample S' of s elements is chosen from the n elements. Let  be some number, 
which we will choose later so as to minimize the average number of comparisons used by the 

procedure. We find the (v1 = ks/n - )th and (v2 = ks/n + )th smallest elements in S'. 

Almost certainly, the kth smallest element in S will fall between v1 and v2, so we are left with 

a selection problem on 2  elements. With low probability, the kth smallest element does not 
fall in this range, and we have considerable work to do. However, with a good choice of s and 

, we can ensure, by the laws of probability, that the second case does not adversely affect 
the total work.  
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If an analysis is performed, we find that if s = n2/3 log1/3 n and  = n1/3 log2/3 n, then the 

expected number of comparisons is n + k + O(n2/3 log1/3 n), which is optimal except for the low-
order term. (If k > n/2, we can consider the symmetric problem of finding the (n - k)th largest 
element.)  

Most of the analysis is easy to do. The last term represents the cost of performing the two 
selections to determine v1 and v2. The average cost of the partitioning, assuming a reasonably 

clever strategy, is equal to n plus the expected rank of v2 in S, which is n + k + O(n /s). If 

the kth element winds up in S', the cost of finishing the algorithm is equal to the cost of 
selection on S', namely O(s). If the kth smallest element doesn't wind up in S', the cost is O

(n). However, s and  have been chosen to guarantee that this happens with very low 
probability o(1/n), so the expected cost of this possibility is o(1), which is a term that goes 
to zero as n gets large. An exact calculation is left as Exercise 10.21.  

This analysis shows that finding the median requires about 1.5n comparisons on average. Of 
course, this algorithm requires some floating-point arithmetic to compute s, which can slow down 
the algorithm on some machines. Even so, experiments have shown that if correctly implemented, 
this algorithm compares favorably with the quickselect implementation in Chapter 7.  

10.2.4. Theoretical Improvements for Arithmetic Problems
 

In this section we describe a divide and conquer algorithm that multiplies two n-digit numbers. 

Our previous model of computation assumed that multiplication was done in constant time, because 
the numbers were small. For large numbers, this assumption is no longer valid. If we measure 
multiplication in terms of the size of numbers being multiplied, then the natural multiplication 
algorithm takes quadratic time. The divide and conquer algorithm runs in subquadratic time. We 
also present the classic divide and conquer algorithm that multiplies two n by n matrices in 
subcubic time.  

Multiplying Integers 

 

Matrix Multiplication 

 

Multiplying Integers
 

Suppose we want to multiply two n-digit numbers x and y. If exactly one of x and y is negative, 
then the answer is negative; otherwise it is positive. Thus, we can perform this check and then 

assume that x, y  0. The algorithm that almost everyone uses when multiplying by hand 

requires (n2) operations, because each digit in x is multiplied by each digit in y. 

 

If x = 61,438,521 and y = 94,736,407, xy = 5,820,464,730,934,047. Let us break x and y into two 
halves, consisting of the most significant and least significant digits, respectively. Then xl = 

6,143, xr = 8,521, yl = 9,473, and yr = 6,407. We also have x = xl10
4 + xr and y = yl10

4 + yr. It 

follows that  

xy = xlyl10
8 + (xlyr + xryl)10

4 + xryr

 

Notice that this equation consists of four multiplications, xlyl, xlyr, xryl, and xryr, which are 

each half the size of the original problem (n/2 digits). The multiplications by 108 and 104 
amount to the placing of zeros. This and the subsequent additions add only O(n) additional work. 
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If we perform these four multiplications recursively using this algorithm, stopping at an 
appropriate base case, then we obtain the recurrence  

T(n) = 4T(n/2) + O(n)

 

From Theorem 10.6, we see that T(n) = O(n2), so, unfortunately, we have not improved the 

algorithm. To achieve a subquadratic algorithm, we must use less than four recursive calls. The 
key observation is that  

xlyr + xryl = (xl - xr)(yr - yl) + xlyl + xryr

 

Thus, instead of using two multiplications to compute the coefficient of 104, we can use one 
multiplication, plus the result of two multiplications that have already been performed. Figure 
10.37 shows how only three recursive subproblems need to be solved.  

It is easy to see that now the recurrence equation satisfies 

 

T(n) = 3T(n/2) + O(n),

 

and so we obtain T(n) = O(nlog23) = O(n1.59). To complete the algorithm, we must have a base 
case, which can be solved without recursion.  

 

 

Figure 10.37 The divide and conquer algorithm in action

 

When both numbers are one-digit, we can do the multiplication by table lookup. If one number has 
zero digits, then we return zero. In practice, if we were to use this algorithm, we would choose 
the base case to be that which is most convenient for the machine.  

Although this algorithm has better asymptotic performance than the standard quadratic algorithm, 
it is rarely used, because for small n the overhead is significant, and for larger n there are 
even better algorithms. These algorithms also make extensive use of divide and conquer.  
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Matrix Multiplication 

A fundamental numerical problem is the multiplication of two matrices. Figure 10.38 gives a 

simple O(n3) algorithm to compute C = AB, where A, B, and C are n  n matrices. The algorithm 
follows directly from the definition of matrix multiplication. To compute Ci,j, we compute the 

dot product of the ith row in A with the jth column in B. As usual, arrays begin at index 0.  

For a long time it was assumed that (n3) was required for matrix multiplication. However, in 

the late sixties Strassen showed how to break the (n3) barrier. The basic idea of Strassen's 
algorithm is to divide each matrix into four quadrants, as shown in Figure 10.39. Then it is easy 
to show that  

C1,1 = A1,1B1,1 + A1,2B2,1

 

C1,2 = A1,1B1,2 + A1,2B2,2

 

C2,1 = A2,1B1,1 + A2,2B2,1

 

C2,2 = A2,1B1,2 + A2,2B2,2

 

/* Standard matrix multiplication. Arrays start at 0 */

 

void

 

matrix_multiply( matrix A, matrix B, matrix C, unsigned int n )

 

{

 

int i, j, k;

 

for( i=0; i<n; i++ )     /* Initialization */

 

for( j=O; j<n; j++ )

 

C[i][j] = 0.0;

 

for( i=0; i<n; i++ )

 

for( j=0; j<n; j++ )

 

for( k=0; k<n; k++ )

 

C[i][j] += A[i][k] * B[k][j];

 

}

 

Figure 10.38 Simple O(n3) matrix multiplication

 

 

 

Figure 10.39 Decomposing AB = C into four quadrants

 

As an example, to perform the multiplication AB 
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we define the following eight n/2 by n/2 matrices: 

 

 

 

We could then perform eight n/2 by n/2 matrix multiplications and four n/2 by n/2 matrix 

additions. The matrix additions take O(n2) time. If the matrix multiplications are done 
recursively, then the running time satisfies  

T(n) = 8T(n/2) + O(n2).

 

From Theorem 10.6, we see that T(n) = O(n3), so we do not have an improvement. As we saw with 

integer multiplication, we must reduce the number of subproblems below 8. Strassen used a 
strategy similar to the integer multiplication divide and conquer algorithm and showed how to use 
only seven recursive calls by carefully arranging the computations. The seven multiplications are 

M1 = (A1,2 - A2,2)(B2,1 + B2,2)

 

M2 = (A1,1 + A2,2)(B1,1 + B2,2)

 

M3 = (A1,1 - A2,1)(B1,1 + B1,2)

 

M4 = (A1,1 + A1,2)B2,2

 

M5 = A1,1(B1,2 - B2,2)

 

M6 = A2,2(B2,1 - B1,1)

 

M7 = (A2,1 + A2,2)B1,1

 

Once the multiplications are performed, the final answer can be obtained with eight more 
additions.  

C1,1 = M1 + M2 - M4 + M6

 

C1,2 = M4 + M5

 

C1,3 = M6 + M7

 

C1,4 = M2 - M3 + M5 - M7

 

It is straightforward to verify that this tricky ordering produces the desired values. The 
running time now satisfies the recurrence  

T(n) = 7T(n/2) + O(n2).
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The solution of this recurrence is T(n) = O(nlog27) = O(n2.81).  

As usual, there are details to consider, such as the case when n is not a power of two, but these 
are basically minor nuisances. Strassen's algorithm is worse than the straightforward algorithm 
until n is fairly large. It does not generalize for the case where the matrices are sparse 
(contain many zero entries), and it does not easily parallelize. When run with floating-point 
entries, it is less stable numerically than the classic algorithm. Thus, it is has only limited 
applicability. Nevertheless, it represents an important theoretical milestone and certainly shows 
that in computer science, as in many other fields, even though a problem seems to have an 
intrinsic complexity, nothing is certain until proven.  

10.3. Dynamic Programming
 

In the previous section, we have seen that a problem that can be mathematically expressed 

recursively can also be expressed as a recursive algorithm, in many cases yielding a significant 
performance improvement over a more naïve exhaustive search.  

Any recursive mathematical formula could be directly translated to a recursive algorithm, but the 
underlying reality is that often the compiler will not do justice to the recursive algorithm, and 
an inefficient program results. When we suspect that this is likely to be the case, we must 
provide a little more help to the compiler, by rewriting the recursive algorithm as a 
nonrecursive algorithm that systematically records the answers to the subproblems in a table. One 
technique that makes use of this approach is known as dynamic programming.  

10.3.1. Using a Table Instead of Recursion
 

In Chapter 2, we saw that the natural recursive program to compute the Fibonacci numbers is very 

inefficient. Recall that the program shown in Figure 10.40 has a running time T(n) that satisfies 

T(n)  T(n - 1) + T(n - 2). Since T(n) satisfies the same recurrence relation as the Fibonacci 
numbers and has the same initial conditions, T(n) in fact grows at the same rate as the Fibonacci 
numbers, and is thus exponential.  

On the other hand, since to compute Fn, all that is needed is Fn-1 and Fn-2, we only need to 

record the two most recently computed Fibonacci numbers. This yields the O(n) algorithm in Figure 
10.41  

The reason that the recursive algorithm is so slow is because of the algorithm used to simulate 
recursion. To compute Fn, there is one call to Fn-1 and Fn-2. However, since Fn-1 recursively 

makes a call to Fn-2 and Fn-3, there are actually two separate calls to compute Fn-2. If one 

traces out the entire algorithm, then we can see that Fn-3 is computed three times, Fn-4 is 

computed five times, Fn-5 is computed eight times, and so on. As Figure 10.42 shows, the growth 

of redundant calculations is explosive. If the compiler's recursion simulation algorithm were 
able to keep a list of all precomputed values and not make a recursive call for an already solved 
subproblem, then this exponential explosion would be avoided. This is why the program in Figure 
10.41 is so much more efficient. calculations is explosive. If the compiler's recursion 
simulation algorithm were able to keep a list of all precomputed values and not make a recursive 
call for an already solved subproblem, then this exponential explosion would be avoided. This is 
why the program in Figure 10.41 is so much more efficient.  

/* Compute Fibonacci numbers as described in Chapter 1 */

 

unsigned int

 

fib( unsigned int n )

 

{
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if( n <= 1 ) 

return 1;

 

else

 

return( fib( n-1 ) + fib( n-2 ) );

 

}

 

Figure 10.40 Inefficient algorithm to compute Fibonacci numbers

 

unsigned int

 

fibonacci( unsigned int n )

 

{

 

unsigned int i, last, next_to_last, answer;

 

if( n <= 1 )

 

return 1;

 

last = next_to_last = 1;

 

for( i = 2; i <= n; i++ )

 

{

 

answer = last + next_to_last;

 

next_to_last = last;

 

last = answer;

 

}

 

return answer;

 

}

 

Figure 10.41 Linear algorithm to compute Fibonacci numbers

 

 

 

Figure 10.42 Trace of the recursive calculation of Fibonacci numbers

 

double

 

eval( unsigned int n )

 

{
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int i; 

double sum;

 

if( n == 0 )

 

return 1.0;

 

else

 

{

 

sum = 0.0;

 

for( i=0; i<n; i++ )

 

sum += eval(i);

 

return( 2.0 * sum / n + n );

 

}

 

}

 

Figure 10.43 Recursive program to evaluate 

 

As a second example, we saw in 
Chapter 7 how to solve the recurrence  

with C(0) = 1. Suppose that we want to check, numerically, whether the solution we obtained is 
correct. We could then write the simple program in Figure 10.43 to evaluate the recursion.  

Once again, the recursive calls duplicate work. In this case, the running time T(n) satisfies 

 because, as shown in Figure 10.44, there is one (direct) recursive call of 
each size from 0 to n -1, plus O(n) additional work (where else have we seen the tree shown in 
Figure 10.44?). Solving for T(n), we find that it grows exponentially. By using a table, we 
obtain the program in Figure 10.45. This program avoids the redundant recursive calls and runs in 

O(n2). It is not a perfect program; as an exercise, you should make the simple change that 
reduces its running time to O(n).  

 

 

Figure 10.44 Trace of the recursive calculation in eval

 

double

 

eval( unsigned int n )
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{ 

int i,j;

 

double sum, answer;

 

double *c;

 

c = (double*) malloc( sizeof (double)*(n+1) );

 

if( c == NULL )

 

fatal_error("Out of space!!!");

 

c[0] = 1.0;

 

for( i=1; i<=n; i++ )    /* Evaluate Ci, 1  i  n */

 

{

 

sum = 0.0;

 

                       /*          i-1     */

 

for( j=0; j<i; j++ )   /* Evaluate    Cj  */

 

                       /*          j=0     */

 

sum += c[j];

 

c[i] = 2.0 * sum/i + i;

 

}

 

answer = c[n];

 

free( c );

 

return answer;

 

}

 

Figure 10.45 Evaluating  with a table

 

10.3.2. Ordering Matrix Multiplications
 

Suppose we are given four matrices, A, B, C, and D, of dimensions A = 50 X 10, B = 10 X 40, C = 

40 X 30, and D = 30 X 5. Although matrix multiplication is not commutative, it is associative, 
which means that the matrix product ABCD can be parenthesized, and thus evaluated, in any order. 
The obvious way to multiply two matrices of dimensions p X q and q X r, respectively, uses pqr 
scalar multiplications. (Using a theoretically superior algorithm such as Strassen''s algorithm 
does not significantly alter the problem we will consider, so we will assume this performance 
bound.) What is the best way to perform the three matrix multiplications required to compute 
ABCD?  

In the case of four matrices, it is simple to solve the problem by exhaustive search, since there 
are only five ways to order the multiplications. We evaluate each case below:  
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 (A((BC)D)): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications. Evaluating (BC)D 
requires the 12,000 multiplications to compute BC, plus an additional 10 X 30 X 5 = 1,500 
multiplications, for a total of 13,500. Evaluating (A((BC)D) requires 13,500 multiplications for 
(BC)D, plus an additional 50 X 10 X 5 = 2,500 multiplications, for a grand total of 16,000 
multiplications.  

 (A(B(CD))): Evaluating CD requires 40 X 30 X 5 = 6,000 multiplications. Evaluating B(CD) 
requires 6,000 multiplications to compute CD, plus an additional 10 X 40 X 5 = 2,000 
multiplications, for a total of 8,000. Evaluating (A(B(CD)) requires 8,000 multiplications for B
(CD), plus an additional 50 X 10 X 5 = 2,500 multiplications, for a grand total of 10,500 
multiplications.  

 ((AB)(CD)): Evaluating CD requires 40 X 30 X 5 = 6,000 multiplications. Evaluating AB 
requires 50 X 10 X 40 = 20,000 multiplications. Evaluating ((AB)(CD)) requires 6,000 
multiplications for CD, 20,000 multiplications for AB, plus an additional 50 X 40 X 5 = 10,000 
multiplications for a grand total of 36,000 multiplications.  

 (((AB)C)D): Evaluating AB requires 50 X 10 X 40 = 20,000 multiplications. Evaluating (AB)C 
requires the 20,000 multiplications to compute AB, plus an additional 50 X 40 X 30 = 60,000 
multiplications, for a total of 80,000. Evaluating (((AB)C)D) requires 80,000 multiplications for 
(AB)C, plus an additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 87,500 
multiplications.  

 ((A(BC))D): Evaluating BC requires 10 X 40 X 30 = 12,000 multiplications. Evaluating A(BC) 
requires the 12,000 multiplications to compute BC, plus an additional 50 X 10 X 30 = 15,000 
multiplications, for a total of 27,000. Evaluating ((A(BC))D) requires 27,000 multiplications for 
A(BC), plus an additional 50 X 30 X 5 = 7,500 multiplications, for a grand total of 34,500 
multiplications.  

The calculations show that the best ordering uses roughly one-ninth the number of multiplications 
as the worst ordering. Thus, it might be worthwhile to perform a few calculations to determine 
the optimal ordering. Unfortunately, none of the obvious greedy strategies seems to work. 
Moreover, the number of possible orderings grows quickly. Suppose we define T(n) to be this 
number. Then T(1) = T(2) = 1, T(3) = 2, and T(4) = 5, as we have seen. In general,  

 

 

To see this, suppose that the matrices are A1, A2, . . . , An, and the last multiplication 

performed is (A1A2. . . Ai)(Ai+1Ai+2 . . . An). Then there are T(i) ways to compute (A1A2  

  Ai) and T(n - i) ways to compute (Ai+1Ai+2    An). Thus, there are T(i)T(n 

- i) ways to compute (A1A2    Ai) (Ai+1Ai+2    An) for each possible i. 

The solution of this recurrence is the well-known Catalan numbers, which grow exponentially. 

Thus, for large n, an exhaustive search through all possible orderings is useless. Nevertheless, 
this counting argument provides a basis for a solution that is substantially better than 

exponential. Let ci be the number of columns in matrix Ai for 1  i  n. Then Ai has ci-1 
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rows, since otherwise the multiplications are not valid. We will define c0 to be the number of 

rows in the first matrix, A1.  

Suppose mLeft,Right is the number of multiplications required to multiply ALeftALeft+1  

 ARight-1ARight. For consistency, mLeft,Left = 0. Suppose the last multiplication is 

(ALeft...Ai)(Ai+1    ARight), where Left  i  Right. Then the number of 

multiplications used is mLeft,i + mi+1,Right + cLeft-1cicRight. These three terms represent the 

multiplications required to compute (ALeft    Ai),(Ai+1   ARight), and 

their product, respectively.  

If we define MLeft,Right to be the number of multiplications required in an optimal ordering, 

then, if Left < Right,  

 

 

This equation implies that if we have an optimal multiplication arrangement of ALeft   

 ARight, the subproblems ALeft    Ai and Ai+1    ARight cannot be 

performed suboptimally. This should be clear, since otherwise we could improve the entire result 
by replacing the suboptimal computation by an optimal computation.  

The formula translates directly to a recursive program, but, as we have seen in the last section, 

such a program would be blatantly inefficient. However, since there are only approximately n2/2 
values of MLeft,Right that ever need to be computed, it is clear that a table can be used to 

store these values. Further examination shows that if Right - Left = k, then the only values Mx,y
that are needed in the computation of MLeft,Right satisfy y - x < k. This tells us the order in 

which we need to compute the table.  

If we want to print out the actual ordering of the multiplications in addition to the final 
answer M1,n, then we can use the ideas from the shortest-path algorithms in Chapter 9. Whenever 

we make a change to MLeft,Right, we record the value of i that is responsible. This gives the 

simple program shown in Figure 10.46.  

Although the emphasis of this chapter is not coding, it is worth noting that many programmers 
tend to shorten variable names to a single letter. c, i, and k are used as single-letter 
variables because this agrees with the names we have used in the description of the algorithm, 
which is very mathematical. However, it is generally best to avoid l as a variable name, because 
"l" looks too much like 1 and can make for very difficult debugging if you make a transcription 
error.  

Returning to the algorithmic issues, this program contains a triply nested loop and is easily 

seen to run in O(n3) time. The references describe a faster algorithm, but since the time to 
perform the actual matrix multiplication is still likely to be much larger than the time to 
compute the optimal ordering, this algorithm is still quite practical.  

/* Compute optimal ordering of matrix multiplication */
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/* c contains number of columns for each of the n matrices */ 

/* c[0] is the number of rows in matrix 1 */

 

/* Minimum number of multiplications is left in M[1][n] */

 

/* Actual ordering can be computed via */

 

/* another procedure using last_change */

 

/* M and last_change are indexed starting at 1, instead of zero */

 

void

 

opt_matrix( int c[], unsigned int n, two_d_array M,

 

two_d_array last_change)

 

{

 

int i, k, Left, Right, this_M;

 

for( Left = 1; Left <= n; Left++ )

 

M[Left][Left] = 0;

 

for( k = 1; k < n; k++) /* k is Right-Left */

 

for( Left = 1; Left <= n-k; Left++ )

 

{   /* for each position */

 

Right = Left + k;

 

M[Left][Right] = INT_MAX;

 

for( i = Left; i < Right; i++ )

 

{

 

this_M = M[Left][i] + M[i+1][Right]

 

+ c[Left-1] * c[i] * c[Right];

 

if( this_M < M[Left][Right] ) /* Update min */

 

{

 

M[Left][Right] = this_M;

 

last_change[Left][Right] = i;

 

}

 

}

 

}

 

}

 

Figure 10.46 Program to find optimal ordering of Matrix Multiplications

 

10.3.3. Optimal Binary Search Tree
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Our second dynamic programming example considers the following input: We are given a list of 

words, w1, w2,..., wn, and fixed probabilities p1, p2, . . . , pn of their occurrence. The 

problem is to arrange these words in a binary search tree in a way that minimizes the expected 
total access time. In a binary search tree, the number of comparisons needed to access an element 

at depth d is d + 1, so if wi is placed at depth di, then we want to minimize . 
 

As an example, Figure 10.47 shows seven words along with their probability of occurrence in some 

context. Figure 10.48 shows three possible binary search trees. Their searching costs are shown 
in Figure 10.49.  

The first tree was formed using a greedy strategy. The word with the highest probability of being 
accessed was placed at the root. The left and right subtrees were then formed recursively. The 
second tree is the perfectly balanced search tree. Neither of these trees is optimal, as 
demonstrated by the existence of the third tree. From this we can see that neither of the obvious 
solutions works.  

This is initially surprising, since the problem appears to be very similar to the construction of 
a Huffman encoding tree, which, as we have already seen, can be solved by a greedy algorithm. 
Construction of an optimal binary search tree is harder, because the data is not constrained to 
appear only at the leaves, and also because the tree must satisfy the binary search tree 
property.  

A dynamic programming solution follows from two observations. Once again, suppose we are trying 
to place the (sorted) words wLeft, wLeft+1, . . . , wRight-1, wRight into a binary search tree. 

Suppose the optimal binary search tree has wi as the root, where Left  i  Right. Then 

the left subtree must contain wLeft, . . . ,wi-1, and the right subtree must contain wi+1 . . . 

,wRight (by the binary search tree property). Further, both of these subtrees must also be 

optimal, since otherwise they could be replaced by optimal subtrees, which would give a better 
solution for wLeft . . . , wRight. Thus, we can write a formula for the cost CLeft,Right of an 

optimal binary search tree. Figure 10.50 may be helpful.  

If Left > Right, then the cost of the tree is 0; this is the NULL case, which we always have for 
binary search trees. Otherwise, the root costs pi. The left subtree has a cost of CLeft,i-1, 

relative to its root, and the right subtree has a cost of Ci+l,Right relative to its root. As 

Figure 10.50 shows, each node in these subtrees is one level deeper from wi than from their 

respective roots, so we must add . This gives the formula 

 

 

 

From this equation, it is straightforward to write a program to compute the cost of the optimal 
binary search tree. As usual, the actual search tree can be maintained by saving the value of i 
that minimizes CLeft,Right. The standard recursive routine can be used to print the actual tree. 

Word  Probability
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----------------- 

  a      0.22

 

 am      0.18

 

and      0.20

 

egg      0.05

 

 if      0.25

 

the      0.02

 

two      0.08

 

Figure 10.47 Sample input for optimal binary search tree problem

 

 

 

Figure 10.48 Three possible binary search trees for data in previous table

 

    Input              Tree #1         Tree #2          Tree #3

 

-----------------------------------------------------------------

 

Word  Probability    Access Cost     Access Cost      Access Cost

 

 wi       pi       Once  Sequence  Once  Sequence  Once  Sequence

 

-----------------------------------------------------------------

 

  a      0.22       2      0.44      3     0.66     2      0.44

 

 am      0.18       4      0.72      2     0.36     3      0.54

 

and      0.20       3      0.60      3     0.60     1      0.20

 

egg      0.05       4      0.20      1     0.05     3      0.15

 

 if      0.25       1      0.25      3     0.75     2      0.50

 

the      0.02       3      0.06      2     0.04     4      0.08

 

two      0.08       2      0.16      3     0.24     3      0.24

 

-----------------------------------------------------------------

 

Totals   1.00              2.43            2.70            2.15

 

Figure 10.49 Comparison of the three binary search trees
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Figure 10.50 Structure of an optimal binary search tree

 

Figure 10.51 shows the table that will be produced by the algorithm. For each subrange of words, 

the cost and root of the optimal binary search tree are maintained. The bottommost entry, of 
course, computes the optimal binary search tree for the entire set of words in the input. The 
optimal tree is the third tree shown in Fig. 10.48.  

The precise computation for the optimal binary search tree for a particular subrange, namely 
am..if, is shown in Figure 10.52. It is obtained by computing the minimum-cost tree obtained by 
placing am, and, egg, and if at the root. For instance, when and is placed at the root, the left 
subtree contains am..am (of cost 0.18, via previous calculation), the right subtree contains 

egg..if (of cost 0.35), and , for a total cost of 1.21. 
 

 

 

Figure 10.51 Computation of the optimal binary search tree for sample input
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Figure 10.52 Computation of table entry (1.21, and) for am..if

 

The running time of this algorithm is O(n3), because when it is implemented, we obtain a triple 

loop. An O(n2) algorithm for the problem is sketched in the exercises.  

10.3.4. All-Pairs Shortest Path
 

Our third and final dynamic programming application is an algorithm to compute shortest weighted 

paths between every pair of points in a directed graph G = (V, E). In Chapter 9, we saw an 
algorithm for the single-source shortest-path problem, which finds the shortest path from some 

arbitrary vertex s to all others. That algorithm (Dijkstra's) runs in O( V 2) time on 
dense graphs, but substantially faster on sparse graphs. We will give a short algorithm to solve 

the all-pairs problem for dense graphs. The running time of the algorithm is O( V 3), 

which is not an asymptotic improvement over V  iterations of Dijkstra's algorithm but 
could be faster on a very dense graph, because its loops are tighter. The algorithm also performs 
correctly if there are negative edge costs, but no negative-cost cycles; Dijkstra's algorithm 
fails in this case.  

Let us recall the important details of Dijkstra's algorithm (the reader may wish to review 
Section 9.3). Dijkstra's algorithm starts at a vertex s and works in stages. Each vertex in the 
graph is eventually selected as an intermediate vertex. If the current selected vertex is v, then 

for each w  V, we set dw = min(dw, dv + cv,w). This formula says that the best distance to w 

(from s) is either the previously known distance to w from s, or the result of going from s to v 
(optimally) and then directly from v to w.  

Dijkstra's algorithm provides the idea for the dynamic programming algorithm: we select the 
vertices in sequential order. We will define Dk,i,j to be the weight of the shortest path from vi
to vj that uses only v1, v2, . . . ,vk as intermediates. By this definition, D0,i,j = ci,j, where 

ci,j is  if (vi, vj) is not an edge in the graph. Also, by definition, D|V|,i,j is the 
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shortest path from vi to vj in the graph.  

/* Compute All-Shortest Paths */

 

/* A[] contains the adjacency matrix */

 

/* with A[i][i] presumed to be zero */

 

/* D[] contains the values of shortest path */

 

/* |V | is the number of vertices */

 

/* A negative cycle exists iff */

 

/* d[i][j] is set to a negative value at line 9 */

 

/* Actual Path can be computed via another procedure using path */

 

/* All arrays are indexed starting at 0 */

 

void

 

all_pairs( two_d_array A, two_d_array D, two_d_array path )

 

{

 

int i, j, k;

 

/*1*/        for( i = 0; i < |V |; i++ ) /* Initialize D and path */

 

/*2*/               for( j = 0; j < |V |; j++ )

 

{

 

/*3*/                  D[i][j] = A[i][j];

 

/*4*/                  path[i][j] = NOT_A_VERTEX;

 

}

 

/*5*/        for( k = 0; k < |v |; k++ )

 

/* Consider each vertex as an intermediate */

 

/*6*/        for( i = 0; i < |V |; i++ )

 

/*7*/                  for( j = 0; j < |V |; j++ )

 

/*8*/                       if( d[i][k] + d[k][j] < d[i][j] )

 

/*update min */

 

{

 

/*9*/                            d[i][j] = d[i][k] + d[k][j];

 

/*10*/                           path[i][j] = k;

 

}

 

}

 

Figure 10.53 All-pairs shortest path
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As Figure 10.53 shows, when k > 0 we can write a simple formula for Dk,i,j. The shortest path 

from vi to vj that uses only v1, v2, . . . ,vk as intermediates is the shortest path that either 

does not use vk as an intermediate at all, or consists of the merging of the two paths vi vk 

and vk  vj, each of which uses only the first k - 1 vertices as intermediates. This leads to 

the formula  

Dk,i,j = min{Dk - 1,i,j, Dk - 1,i,k + Dk - 1,k,j}

 

The time requirement is once again O(|V|3). Unlike the two previous dynamic programming examples, 
this time bound has not been substantially lowered by another approach. Because the kth stage 
depends only on the (k - 1)st stage, it appears that only two |V| X |V| matrices need to be 
maintained.  

However, using k as an intermediate vertex on a path that starts or finishes with k does not 
improve the result unless there is a negative cycle. Thus, only one matrix is necessary, because 
Dk-1,i,k = Dk,i,k and Dk-1,k,j = Dk,k,j, which implies that none of the terms on the right change 

values and need to be saved. This observation leads to the simple program in Figure 10.53, which 
numbers vertices starting at zero to conform with C's conventions.  

On a complete graph, where every pair of vertices is connected (in both directions), this 
algorithm is almost certain to be faster than |V| iterations of Dijkstra's algorithm, because the 
loops are so tight. Lines 1 through 4 can be executed in parallel, as can lines 6 through 10. 
Thus, this algorithm seems to be well-suited for parallel computation.  

Dynamic programming is a powerful algorithm design technique, which provides a starting point for 
a solution. It is essentially the divide and conquer paradigm of solving simpler problems first, 
with the important difference being that the simpler problems are not a clear division of the 
original. Because subproblems are repeatedly solved, it is important to record their solutions in 
a table rather than recompute them. In some cases, the solution can be improved (although it is 
certainly not always obvious and frequently difficult), and in other cases, the dynamic 
programming technique is the best approach known.  

In some sense, if you have seen one dynamic programming problem, you have seen them all. More 
examples of dynamic programming can be found in the exercises and references.  

10.4. Randomized Algorithms
 

Suppose you are a professor who is giving weekly programming assignments. You want to make sure 

that the students are doing their own programs or, at the very least, understand the code they 
are submitting. One solution is to give a quiz on the day that each program is due. On the other 
hand, these quizzes take time out of class, so it might only be practical to do this for roughly 
half of the programs. Your problem is to decide when to give the quizzes.  

Of course, if the quizzes are announced in advance, that could be interpreted as an implicit 
license to cheat for the 50 percent of the programs that will not get a quiz. One could adopt the 
unannounced strategy of giving quizzes on alternate programs, but students would figure out the 
strategy before too long. Another possibility is to give quizzes on what seems like the important 
programs, but this would likely lead to similar quiz patterns from semester to semester. Student 
grapevines being what they are, this strategy would probably be worthless after a semester.  

One method that seems to eliminate these problems is to use a coin. A quiz is made for every 
program (making quizzes is not nearly as time-consuming as grading them), and at the start of 
class, the professor will flip a coin to decide whether the quiz is to be given. This way, it is 
impossible to know before class whether or not the quiz will occur, and these patterns do not 
repeat from semester to semester. Thus, the students will have to expect that a quiz will occur 
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with 50 percent probability, regardless of previous quiz patterns. The disadvantage is that it is 
possible that there is no quiz for an entire semester. This is not a likely occurrence, unless 
the coin is suspect. Each semester, the expected number of quizzes is half the number of 
programs, and with high probability, the number of quizzes will not deviate much from this.  

This example illustrates what we call randomized algorithms. At least once during the algorithm, 
a random number is used to make a decision. The running time of the algorithm depends not only on 
the particular input, but also on the random numbers that occur.  

The worst-case running time of a randomized algorithm is almost always the same as the worst-case 
running time of the nonrandomized algorithm. The important difference is that a good randomized 
algorithm has no bad inputs, but only bad random numbers (relative to the particular input). This 
may seem like only a philosophical difference, but actually it is quite important, as the 
following example shows.  

Consider two variants of quicksort. Variant A uses the first element as pivot, while variant B 

uses a randomly chosen element as pivot. In both cases, the worst-case running time is (n2), 
because it is possible at each step that the largest element is chosen as pivot. The difference 
between these worst cases is that there is a particular input that can always be presented to 

variant A to cause the bad running time. Variant A will run in (n2) time every single time it 
is given an already sorted list. If variant B is presented with the same input twice, it will 
have two different running times, depending on what random numbers occur.  

Throughout the text, in our calculations of running times, we have assumed that all inputs are 
equally likely. This is not true, because nearly sorted input, for instance, occurs much more 
often than is statistically expected, and this causes problems, particularly for quicksort and 
binary search trees. By using a randomized algorithm, the particular input is no longer 
important. The random numbers are important, and we can get an expected running time, where we 
now average over all possible random numbers instead of over all possible inputs. Using quicksort 
with a random pivot gives an O(n log n)-expected-time algorithm. This means that for any input, 
including already-sorted input, the running time is expected to be O(n log n), based on the 
statistics of random numbers. An expected running time bound is somewhat stronger than an 
average-case bound but, of course, is weaker than the corresponding worst-case bound. On the 
other hand, as we saw in the selection problem, solutions that obtain the worst-case bound are 
frequently not as practical as their average-case counterparts. Randomized algorithms usually 
are.  

In this section we will examine two uses of randomization. First, we will see a novel scheme for 
supporting the binary search tree operations in O(log n) expected time. Once again, this means 
that there are no bad inputs, just bad random numbers. From a theoretical point of view, this is 
not terribly exciting, since balanced search trees achieve this bound in the worst case. 
Nevertheless, the use of randomization leads to relatively simple algorithms for searching, 
inserting, and especially deleting.  

Our second application is a randomized algorithm to test the primality of large numbers. No 
efficient polynomial-time nonrandomized algorithms are known for this problem. The algorithm we 
present runs quickly but occasionally makes an error. The probability of error can, however, be 
made negligibly small.  

10.4.1. Random Number Generators
 

Since our algorithms require random numbers, we must have a method to generate them. Actually, 

true randomness is virtually impossible to do on a computer, since these numbers will depend on 
the algorithm, and thus cannot possibly be random. Generally, it suffices to produce pseudorandom
numbers, which are numbers that appear to be random. Random numbers have many known statistical 
properties; pseudorandom numbers satisfy most of these properties. Surprisingly, this too is much 
easier said than done.  
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Suppose we only need to flip a coin; thus, we must generate a 0 or 1 randomly. One way to do this 
is to examine the system clock. The clock might record time as an integer that counts the number 

of seconds since January 1, 1970.* We could then use the lowest bit. The problem is that this 
does not work well if a sequence of random numbers is needed. One second is a long time, and the 
clock might not change at all while the program is running. Even if the time were recorded in 
units of microseconds, if the program were running by itself the sequence of numbers that would 
be generated would be far from random, since the time between calls to the generator would be 
essentially identical on every program invocation. We see, then, that what is really needed is a 

sequence of random numbers.ç These numbers should appear independent. If a coin is flipped and 
heads appears, the next coin flip should still be equally likely to come up heads or tails.  

*UNIX does this. 

 

çWe will use random in place of pseudorandom in the rest of this section. 

 

The standard method to generate random numbers is the linear congruential generator, which was 

first described by Lehmer in 1951. Numbers x1, x2, . . . are generated satisfying  

xi + 1 = axi mod m.

 

To start the sequence, some value of x0 must be given. This value is known as the seed. If x0 = 

0, then the sequence is far from random, but if a and m are correctly chosen, then any other 1 

 x0 < m is equally valid. If m is prime, then xi is never 0. As an example, if m = 11, a = 7, 

and x0 = 1, then the numbers generated are  

7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, . . .

 

Notice that after m - 1 = 10 numbers, the sequence repeats. Thus, this sequence has a period of m
-1, which is as large as possible (by the pigeonhole principle). If m is prime, there are always 
choices of a that give a full period of m - 1. Some choices of a do not; if a = 5 and x0 = 1, the 

sequence has a short period of 5.  

5, 3, 4, 9, 1, 5, 3, 4, . . .

 

Obviously, if m is chosen to be a large, 31-bit prime, the period should be significantly large 

for most applications. Lehmer suggested the use of the 31-bit prime m = 231 - 1 = 2,147,483,647. 

For this prime, a = 75 = 16,807 is one of the many values that gives a full-period generator. Its 
use has been well studied and is recommended by experts in the field. We will see later that with 
random number generators, tinkering usually means breaking, so one is well advised to stick with 
this formula until told otherwise.  

This seems like a simple routine to implement. Generally, a global variable is used to hold the 
current value in the sequence of x's. This is the rare case where a global variable is useful. 
This global variable is initialized by some routine. When debugging a program that uses random 
numbers, it is probably best to set x0 = 1, so that the same random sequence occurs all the time. 

When the program seems to work, either the system clock can be used or the user can be asked to 
input a value for the seed.  

It is also common to return a random real number in the open interval (0, 1) (0 and 1 are not 
possible values); this can be done by dividing by m. From this, a random number in any closed 
interval [a, b] can be computed by normalizing. This yields the "obvious" routine in Figure 10.54

which, unfortunately, works on few machines.  

The problem with this routine is that the multiplication could overflow; although this is not an 
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error, it affects the result and thus the pseudo-randomness. Schrage gave a procedure in which 
all of the calculations can be done on a 32-bit machine without overflow. We compute the quotient 
and remainder of m/a and define these as q and r, respectively. In our case, q = 127,773, r = 
2,836, and r < q. We have  

 

 

unsigned int seed;        /* global variable */

 

#define a     16807            /* 7^5 */

 

#define m     2147483647       /* 2^31 - 1 */

 

double

 

random( void )

 

{

 

seed = ( a * seed ) % m;

 

return( ( (double) seed ) / m );

 

}

 

Figure 10.54 Random number generator that does not work

 

Since , we can replace the leading axi and obtain 

 

 

 

Since m = aq + r, it follows that aq - m = -r. Thus, we obtain 

 

 

 

The term  is either 0 or 1, because both terms are integers and their 
difference lies between 0 and 1. Thus, we have  
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A quick check shows that because r < q, all the remaining terms can be calculated without 

overflow (this is one of the reasons for chosing a = 75). Furthermore, (xi) = 1 only if the 

remaining terms evaluate to less than zero. Thus (xi) does not need to be explicitly computed 

but can be determined by a simple test. This leads to the program in Figure 10.55.  

This program works as long as INT_MAX  231 - 1. One might be tempted to assume that all 
machines have a random number generator at least as good as the one in Figure 10.55 in their 
standard library. Sadly, this is not true. Many libraries have generators based on the function  

xi+1 = (axi + c) mod 2
b

 

where b is chosen to match the number of bits in the machine's integer, and c is odd. These 
libraries also return xi, instead of a value between 0 and 1. Unfortunately, these generators 

always produce values of xi that alternate between even and odd--hardly a desirable property. 

Indeed, the lower k bits cycle with period 2k (at best). Many other random number generators have 
much smaller cycles than the one provided in Figure 10.55. These are not suitable for the case 
where long sequences of random numbers are needed. Finally, it may seem that we can get a better 
random number generator by adding a constant to the equation. For instance, it seems that  

xi+1 = (16807xi + 1) mod (2
31 - 1)

 

would somehow be even more random. This illustrates how fragile these generators are. 

 

[16807(1319592028) + 1] mod (231-1) = 1319592028,

 

so if the seed is 1,319,592,028, the generator gets stuck in a cycle of period 1. 

 

unsigned int seed;      /* global variable */

 

#define a      16807          /* 7^5 */

 

#define m      2147483647     /* 2^31 - 1*/

 

#define q      127773         /* m/a */

 

#define r      2836           /* m%a */

 

double

 

random( void )

 

{

 

int tmp_seed;

 

tmp_seed = a * ( seed % q ) - r * (seed / q );

 

if( tmp_seed >= 0)

 

seed = tmp_seed;
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else 

seed = tmp_seed + m;

 

return( ( (double) seed ) / m );

 

}

 

Figure 10.55 Random number generator that works on 32 bit machines

 

10.4.2. Skip Lists
 

Our first use of randomization is a data structure that supports both searching and insertion in 

O(log n) expected time. As mentioned in the introduction to this section, this means that the 
running time for each operation on any input sequence has expected value O(log n), where the 
expectation is based on the random number generator. It is possible to add deletion and all the 
operations that involve ordering and obtain expected time bounds that match the average time 
bounds of binary search trees.  

The simplest possible data structure to support searching is the linked list. Figure 10.56 shows 

a simple linked list. The time to perform a search is proportional to the number of nodes that 
have to be examined, which is at most n.  

Figure 10.57 shows a linked list in which every other node has an additional pointer to the node 

two ahead of it in the list. Because of this, at most n/2  + 1 nodes are examined in the 
worst case.  

We can extend this idea and obtain Figure 10.58. Here, every fourth node has a pointer to the 

node four ahead. Only n/4  + 2 nodes are examined. 

 

The limiting case of this argument is shown in Figure 10.59. Every 2ith node has a pointer to the 

node 2i ahead of it. The total number of pointers has only doubled, but now at most log n

 nodes are examined during a search. It is not hard to see that the total time spent for a 
search is O(log n), because the search consists of either advancing to a new node or dropping to 
a lower pointer in the same node. Each of these steps consumes at most O(log n) total time during 
a search. Notice that the search in this data structure is essentially a binary search.  

 

 

Figure 10.56 Simple linked list

 

 

 

Figure 10.57 Linked list with pointers to two cells ahead
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Figure 10.58 Linked list with pointers to four cells ahead

 

 

 

Figure 10.59 Linked list with pointers to 2i cells ahead

 

 

 

Figure 10.60 A skip list

 

The problem with this data structure is that it is much too rigid to allow efficient insertion. 
The key to making this data structure usable is to relax the structure conditions slightly. We 
define a level k node to be a node that has k pointers. As Figure 10.59 shows, the ith pointer in 

any level k node (k  i) points to the next node with at least i levels. This is an easy 
property to maintain; however, Figure 10.59 shows a more restrictive property than this. We thus 

drop the restriction that the ith pointer points to the node 2i ahead, and we replace it with the 
less restrictive condition above.  

When it comes time to insert a new element, we allocate a new node for it. We must at this point 
decide what level the node should be. Examining Figure 10.59, we find that roughly half the nodes 

are level 1 nodes, roughly a quarter are level 2, and, in general, approximately 1/2i nodes are 
level i. We choose the level of the node randomly, in accordance with this probability 
distribution. The easiest way to do this is to flip a coin until a head occurs and use the total 
number of flips as the node level. Figure 10.60 shows a typical skip list.  

Given this, the skip list algorithms are simple to describe. To perform a find, we start at the 
highest pointer at the header. We traverse along this level until we find that the next node is 
larger than the one we are looking for (or ). When this occurs, we go to the next lower level and 
continue the strategy. When progress is stopped at level 1, either we are in front of the node we 
are looking for, or it is not in the list. To perform an insert, we proceed as in a find, and 
keep track of each point where we switch to a lower level. The new node, whose level is 
determined randomly, is then spliced into the list. This operation is shown in Figure 10.61.  

A cursory analysis shows that since the expected number of nodes at each level is unchanged from 
the original (nonrandomized) algorithm, the total amount of work that is expected to be performed 
traversing to nodes on the same level is unchanged. This tells us that these operations have O
(log n) expected costs. Of course, a more formal proof is required, but it is not much different 
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from this.  

Skip lists are similar to hash tables, in that they require an estimate of the number of elements 
that will be in the list (so that the number of levels can be determined). If an estimate is not 
available, we can assume a large number or use a technique similar to rehashing. Experiments have 
shown that skip lists are as efficient as many balanced search tree implementations and are 
certainly much simpler to implement in many languages.  

10.4.3. Primality Testing
 

In this section we examine the problem of determining whether or not a large number is prime. As 

was mentioned at the end of Chapter 2, some cryptography schemes depend on the difficulty of 
factoring a large, 200-digit number into two 100-digit primes. In order to implement this scheme, 
we need a method of generating these two primes. The problem is of major theoretical interest, 
because nobody now knows how to test whether a d-digit number n is prime in time polynomial in d. 

For instance, the obvious method of testing for the divisibility by odd numbers from 3 to  

requires roughly  divisions, which is about 2d/2. On the other hand, this problem is not 
thought to be NP-complete; thus, it is one of the few problems on the fringe--its complexity is 
unknown at the time of this writing.  

 

 

Figure 10.61 Before and after an insertion

 

In this chapter, we will give a polynomial-time algorithm that can test for primality. If the 

algorithm declares that the number is not prime, we can be certain that the number is not prime. 
If the algorithm declares that the number is prime, then, with high probability but not 100 
percent certainty, the number is prime. The error probability does not depend on the particular 
number that is being tested but instead depends on random choices made by the algorithm. Thus, 
this algorithm occasionally makes a mistake, but we will see that the error ratio can be made 
arbitrarily negligible.  

The key to the algorithm is a well-known theorem due to Fermat. 

 

THEOREM 10.10. 

 

Fermat's Lesser Theorem: If p is prime, and 0 < a < p, then ap-1  1(mod p). 

 

PROOF: 

 

A proof of this theorem can be found in any textbook on number theory. 
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For instance, since 67 is prime, 266  1(mod 67). This suggests an algorithm to test whether a 

number n is prime. Merely check whether 2n-1  1(mod n). If  (mod n), then we can be 
certain that n is not prime. On the other hand, if the equality holds, then n is probably prime. 

For instance, the smallest n that satisfies 2n-1  1(mod n) but is not prime is n = 341. 

 

This algorithm will occasionally make errors, but the problem is that it will always make the 
same errors. Put another way, there is a fixed set of n for which it does not work. We can 

attempt to randomize the algorithm as follows: Pick 1 < a < n - 1 at random. If an-1  1(mod 
n), declare that n is probably prime, otherwise declare that n is definitely not prime. If n = 

341, and a = 3, we find that 3340  56(mod 341). Thus, if the algorithm happens to choose a = 
3, it will get the correct answer for n = 341.  

Although this seems to work, there are numbers that fool even this algorithm for most choices of 

a. One such set of numbers is known as the Carmichael numbers. These are not prime but satisfy 

an-1  1(mod n) for all 0 < a < n that are relatively prime to n. The smallest such number is 
561. Thus, we need an additional test to improve the chances of not making an error.  

In Chapter 7, we proved a theorem related to quadratic probing. A special case of this theorem is 

the following:  

THEOREM 10.11. 

 

If p is prime and 0 < x < p, the only solutions to x2  1(mod p) are x = 1, p - 1. 

 

PROOF: 

 

x2  1(mod p) implies that x2 -1  0(mod p). This implies (x - 1)(x + 1)  0(mod p). 

Since p is prime, 0  x < p, and p must divide either (x - 1) or (x + 1), the theorem follows. 

Therefore, if at any point in the computation of an-1mod n we discover a violation of this 
theorem, we can conclude that n is definitely not prime. If we use power, from Section 2.4.4, we 

see that there will be several opportunities to apply this test. We modify this routine to 
perform operations mod n, and apply the test of Theorem 10.11. This strategy is implemented in 
Figure 10.62. Because power needs to return two pieces of information, we pass the address of 
these items ( result and what_n_is ) by pointers.  

Recall that if test_prime returns DEFINITELY_COMPOSITE, it has proven that n cannot be prime. The 
proof is nonconstructive, because it gives no method of actually finding the factors. It has been 
shown that for any (sufficiently large) n, at most (n - 9)/4 values of a fool this algorithm. 
Thus, if a is chosen at random, and the algorithm answers PROBABLY_PRIME, then the algorithm is 
correct at least 75 percent of the time. Suppose test_prime is run 50 times. The probability that 
the algorithm is fooled once is at most 1/4. Thus, the probability that 50 independent random 

trials fool the algorithm is never more than 1/450 = 2-100. This is actually a very conservative 
estimate, which holds for only a few choices of n. Even so, one is more likely to see a hardware 
error than an incorrect claim of primality.  
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10.5. Backtracking Algorithms 

The last algorithm design technique we will examine is backtracking. In many cases, a 

backtracking algorithm amounts to a clever implementation of exhaustive search, with generally 
unfavorable performance. This is not always the case, however, and even so, in some cases, the 
savings over a brute force exhaustive search can be significant. Performance is, of course, 

relative: An O(n2) algorithm for sorting is pretty bad, but an O(n5) algorithm for the traveling 
salesman (or any NP-complete) problem would be a landmark result.  

A practical example of a backtracking algorithm is the problem of arranging furniture in a new 

house. There are many possibilities to try, but typically only a few are actually considered. 
Starting with no arrangement, each piece of furniture is placed in some part of the room. If all 
the furniture is placed and the owner is happy, then the algorithm terminates. If we reach a 
point where all subsequent placement of furniture is undesirable, we have to undo the last step 
and try an alternative. Of course, this might force another undo, and so forth. If we find that 
we undo all possible first steps, then there is no placement of furniture that is satisfactory. 
Otherwise, we eventually terminate with a satisfactory arrangement. Notice that although this 
algorithm is essentially brute force, it does not try all possibilities directly. For instance, 
arrangements that consider placing the sofa in the kitchen are never tried. Many other bad 
arrangements are discarded early, because an undesirable subset of the arrangement is detected. 
The elimination of a large group of possibilities in one step is known as pruning.  

We will see two examples of backtracking algorithms. The first is a problem in computational 

geometry. Our second example shows how computers select moves in games, such as chess and 
checkers.  

10.5.1. The Turnpike Reconstruction Problem
 

Suppose we are given n points, p1, p2, . . . , pn, located on the x-axis. xi is the x coordinate 

of pi. Let us further assume that x1 = 0 and the points are given from left to right. These n 

points determine n(n - 1)/2 (not necessarily unique) distances d1, d2, . . . , dn between every 

pair of points of the form | xi - xj | (i  j ). It is clear that if we are given the set of 

points, it is easy to construct the set of distances in O(n2) time. This set will not be sorted, 

but if we are willing to settle for an O(n2 log n) time bound, the distances can be sorted, too. 
The turnpike reconstruction problem is to reconstruct a point set from the distances. This finds 
applications in physics and molecular biology (see the references for pointers to more specific 
information). The name derives from the analogy of points to turnpike exits on East Coast 
highways. Just as factoring seems harder than multiplication, the reconstruction problem seems 
harder than the construction problem. Nobody has been able to give an algorithm that is 

guaranteed to work in polynomial time. The algorithm that we will present seems to run in O(n2log 
n); no counterexample to this conjecture is known, but it is still just that - a conjecture.  

enum test_result { PROBABLY_PRIME, DEFINITELY_COMPOSITE };

 

typedef enum test_result test_result;

 

/* Compute result = ap mod n. */

 

/* If at any point x2  1(mod n) is detected with x  1, x  n - 1, */
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/* then set what_n_is to DEFINITELY_COMPOSITE */ 

/* We are assuming very large integers, so this is pseudocode. */

 

void

 

power( unsigned int a, unsigned int p, unsigned int n,

 

unsigned int *result, test_result *what_n_is )

 

{

 

unsigned int x;

 

/*1*/       if( p = 0 )         /* Base case */

 

/*2*/            *result = 1;

 

else

 

{

 

/*3*/            power( a, p/2, n, &x, what_n_is );

 

/*4*/            *result = (x * x) % n;

 

/* Check whether x2  1(mod n), x  1, x  n - 1 */

 

/*5*/            if( (*result = 1) && (x != 1) && (x != n-1) )

 

/*6*/                 *what_n_is = DEFINITELY_COMPOSITE;

 

/* If p is odd, we need one more a */

 

/*7*/            if( (p % 2) = 1 )

 

/*8*/                 *result = (*result * a) % n;

 

}

 

}

 

/* test_prime: Test whether n  3 is prime using one value of a */

 

/* repeat this procedure as many times as needed */

 

/* for desired error rate */

 

test_result

 

test_prime( unsigned int n )

 

{

 

unsigned int a, result;

 

test_result what_n_is;

 

/*9*/       a = rand_int( 2, n-2 ); /* choose a randomly from 2..n-2 */

 

/*10*/      what_n_is = PROBABLY_PRIME;
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/* Compute an-1 mod n */ 

/*11*/      power( a, n-1, n, &result, &what_n_is );

 

/*12*/      if( ( result != 1) | | (what_n_is = DEFINITELY_COMPOSITE) )

 

/*13*/           return DEFINITELY_COMPOSITE;

 

else

 

/*14*/           return PROBABLY_PRIME;

 

}

 

Figure 10.62 A probabilistic primality testing algorithm

 

Of course, given one solution to the problem, an infinite number of others can be constructed by 
adding an offset to all the points. This is why we insist that the first point is anchored at 0 
and that the point set that constitutes a solution is output in nondecreasing order.  

Let D be the set of distances, and assume that | D | = m = n(n - 1)/2. As an example, suppose 
that  

D = {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10}

 

Since | D | = 15, we know that n = 6. We start the algorithm by setting x1 = 0. Clearly, x6 = 10, 

since 10 is the largest element in D. We remove 10 from D. The points that we have placed and the 
remaining distances are as shown in the following figure.  

 

 

The largest remaining distance is 8, which means that either x2 = 2 or x5 = 8. By symmetry, we 

can conclude that the choice is unimportant, since either both choices lead to a solution (which 
are mirror images of each other), or neither do, so we can set x5 = 8 without affecting the 

solution. We then remove the distances x6 - x5 = 2 and x5 - x1 = 8 from D, obtaining  

 

 

The next step is not obvious. Since 7 is the largest value in D, either x4 = 7 or x2 = 3. If x4 = 

7, then the distances x6 - 7 = 3 and x5 - 7 = 1 must also be present in D. A quick check shows 

that indeed they are. On the other hand, if we set x2 = 3, then 3 - x1 = 3 and x5 - 3 = 5 must be 

present in D. These distances are also in D, so we have no guidance on which choice to make. 
Thus, we try one and see if it leads to a solution. If it turns out that it does not, we can come 
back and try the other. Trying the first choice, we set x4 = 7, which leaves  
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At this point, we have x1 = 0, x4 = 7, x5 = 8, and x6 = 10. Now the largest distance is 6, so 

either x3 = 6 or x2 = 4. But if x3 = 6, then x4 - x3 = 1, which is impossible, since 1 is no 

longer in D. On the other hand, if x2 = 4 then x2 - x0 = 4, and x5 - x2 = 4. This is also 

impossible, since 4 only appears once in D. Thus, this line of reasoning leaves no solution, so 
we backtrack.  

Since x4 = 7 failed to produce a solution, we try x2 = 3. If this also fails, we give up and 

report no solution. We now have  

 

 

Once again, we have to choose between x4 = 6 and x3 = 4. x3 = 4 is impossible, because D only has 

one occurrence of 4, and two would be implied by this choice. x4 = 6 is possible, so we obtaining 

 

 

The only remaining choice is to assign x3 = 5; this works because it leaves D empty, and so we 

have a solution.  

 

 

Figure 10.63 shows a decision tree representing the actions taken to arrive at the solution. 

Instead of labeling the branches, we have placed the labels in the branches' destination nodes. A 
node with an asterisk indicates that the points chosen are inconsistent with the given distances; 
nodes with two asterisks have only impossible nodes as children, and thus represent an incorrect 
path.  
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Figure 10.63 Decision tree for the worked turnpike reconstruction example

 

int

 

turnpike(int x [], dist_set D , unsigned int n)

 

{

 

/*1*/       x[1] = 0;

 

/*2*/       x[n ] = delete_max(D );

 

/*3*/       x[n - 1] = delete_max(D );

 

/*4*/       if(x[n ]-x[n - 1]  D )

 

{

 

/*5*/             delete( x[n ]-x[n - 1],D );

 

/*6*/             return place( x, D, n, 2,n - 2); }

 

else

 

/*7*/             return FALSE;

 

}

 

Figure 10.64 Turnpike reconstruction algorithm: driver routine (pseudocode)

 

The pseudocode to implement this algorithm is mostly straightforward. The driving routine, 
turnpike, is shown in Figure 10.64. It receives the point array x (which need not be 

initialized), the distance array D, and n.* If a solution is discovered, then TRUE will be 
returned, the answer will be placed in x, and D will be empty. Otherwise, FALSE will be returned, 
x will be undefined, and the distance array D will be untouched. The routine sets x1, xn-1, and 

xn, as described above, alters D, and calls the backtracking algorithm place to place the other 

points. We presume that a check has already been made to ensure that | D | = n(n -1)/2.  

页码，59/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



*We have used one-letter variable names, which is generally poor style, for consistency with the worked example. We 
also, for simplicity, do not give the type of variables.  

The more difficult part is the backtracking algorithm, which is shown in Figure 10.65. Like most 
backtracking algorithms, the most convenient implementation is recursive. We pass the same 
arguments plus the boundaries Left and Right; xLeft, . . . , xRight are the x coordinates of 

points that we are trying to place. If D is empty (or Left > Right ), then a solution has been 
found, and we can return. Otherwise, we first try to place xRight = Dmax. If all the appropriate 

distances are present (in the correct quantity), then we tentatively place this point, remove 
these distances, and try to fill from Left to Right- 1. If the distances are not present, or the 
attempt to fill Left to Right- 1 fails, then we try setting xLeft = xn - dmax, using a similar 

strategy. If this does not work, then there is no solution; otherwise a solution has been found, 
and this information is eventually passed back to turnpike by the return statement and x array.  

The analysis of the algorithm involves two factors. Suppose lines 9 through 11 and 18 through 20 
are never executed. We can maintain D as a balanced binary search (or splay) tree (this would 

require a code modification, of course). If we never backtrack, there are at most O(n2) 
operations involving D, such as deletion and the finds implied at lines 4 and 12 to 13. This 

claim is obvious for deletions, since D has O(n2) elements and no element is ever reinserted. 
Each call to place uses at most 2n finds, and since place never backtracks in this analysis, 

there can be at most 2n2 finds. Thus, if there is no backtracking, the running time is O(n2 log 

n).  

Of course, backtracking happens, and if it happens repeatedly, then the performance of the 
algorithm is affected. No polynomial bound on the amount of backtracking is known, but on the 
other hand, there are no pathological examples that show that backtracking must occur more than O

(1) times. Thus, it is entirely possible that this algorithm is O(n2 log n). Experiments have 
shown that if the points have integer coordinates distributed uniformly and randomly from [0, 

Dmax], where Dmax = (n2), then, almost certainly, at most one backtrack is performed during 

the entire algorithm.  

10.5.2. Games
 

As our last application, we will consider the strategy that a computer might use to play a 

strategic game, such as checkers or chess. We will use, as an example, the much simpler game of 
tic-tac-toe, because it makes the points easier to illustrate.  

Tic-tac-toe is, of course, a draw if both sides play optimally. By performing a careful case-by-
case analysis, it is not a difficult matter to construct an algorithm that never loses and always 
wins when presented the opportunity. This can be done, because certain positions are known traps 
and can be handled by a lookup table. Other strategies, such as taking the center square when it 
is available, make the analysis simpler. If this is done, then by using a table we can always 
choose a move based only on the current position. Of course, this strategy requires the 
programmer, and not the computer, to do most of the thinking.  

/* Backtracking algorithm to place the points */

 

/* x[left]...x[right]. */

 

/* x[1]...[left-1] and x[right+1]...x[n]

 

/* are already tentatively placed * /

 

/* If place returns true,
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/* then x[left]...x[right] will have value. */ 

int

 

place( int x[ ], dist_set D , unsigned int n, int Left, int Right )

 

{

 

int d_max, found = FALSE;

 

/*1*/       if D is empty then

 

/*2*/            return TRUE;

 

/*3*/       d_max = find_max( D );

 

/* Check if setting x[Right] = d_max is feasible. */

 

/*4*/       if( |x[ j ]-d_max|  D for all 1  j < Left and Right < j  n )

 

{

 

/*5*/            x[Right] = d_max; /* Try x[Right] = d_max */

 

/*6*/            for( 1  j < Left, Right < j  n )

 

/*7*/                 delete( |x[j ]-d_max|, D );

 

/*8*/            found = place( x, D, n, Left, Right-1 );

 

/*9*/            if( !found ) /* Backtrack */

 

/*10*/                for( 1  j < Left, Right < j  n) / Undo the deletion */

 

/*11*/                     insert( |x[j ]-d_max:| D );

 

}

 

/* If first attempt failed, try to see if setting */

 

/* x[Left]=x[n]-d_max is feasible */

 

/*12*/      if( !found && (|x[n]-d_max-x[j ]|  D

 

/*13*/           for all 1  j < Left and Right < j  n) )

 

{

 

/*14*/           x[Left] = x [n] -d_max;      / * Same logic as before */

 

/*15*/           for( 1  j < Left, Right < j  n )
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/*16*/                delete( |x[n]-d_max -x [j ] |, D ); 

/*17*/           found = place( x, D, n, Left + 1, Right );

 

/*18*/      if( !found )     /* Backtrack; undo the deletion */

 

/*19*/           for( 1  j < Left, Right < j  n )

 

/*20*/                insert( |x[n]-d_max-x[j ]|, D );

 

}

 

/*21*/      return found;

 

}

 

Figure 10.65 Turnpike reconstruction algorithm: backtracking steps (pseudocode)

 

Minimax Strategy
 

The general strategy is to use an evaluation function to quantify the "goodness" of a position. A 

position that is a win for a computer might get the value of +1; a draw could get 0; and a 
position that the computer has lost would get a - 1. A position for which this assignment can be 
determined by examining the board is known as a terminal position.  

If a position is not terminal, the value of the position is determined by recursively assuming 
optimal play by both sides. This is known as a minimax strategy, because one player (the human) 
is trying to minimize the value of the position, while the other player (the computer) is trying 
to maximize it.  

A successor position of P is any position Ps that is reachable from P by playing one move. If the 

computer is to move when in some position P, it recursively evaluates the value of all the 
successor positions. The computer chooses the move with the largest value; this is the value of 
P. To evaluate any successor position Ps, all of Ps's successors are recursively evaluated, and 

the smallest value is chosen. This smallest value represents the most favorable reply for the 
human player.  

The code in Figure 10.66 makes the computer's strategy more clear. Lines 1 through 4 evaluate 

immediate wins or draws. If neither of these cases apply, then the position is nonterminal. 
Recalling that value should contain the maximum of all possible successor positions, line 5 
initializes it to the smallest possible value, and the loop in lines 6 through 13 searches for 
improvements. Each successor position is recursively evaluated in turn by lines 8 through 10. 
This is recursive, because, as we will see, the procedure find_human_move calls find_comp_move. 
If the human's response to a move leaves the computer with a more favorable position than that 
obtained with the previously best computer move, then the value and best_move are updated. Figure 
10.67 shows the procedure for the human's move selection. The logic is virtually identical, 
except that the human player chooses the move that leads to the lowest-valued position. Indeed, 
it is not difficult to combine these two procedures into one by passing an extra variable, which 
indicates whose turn it is to move. This does make the code somewhat less readable, so we have 
stayed with separate routines.  

Since these routines must pass back both the value of the position and the best move, we pass the 
address of two variables that will get this information, by using pointers. The last two 
parameters now answer the question "WHERE?" instead of "WHAT? "  
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/* Recursive procedure to find best move for computer */ 

/* best_move points to a number from 1-9 indicating square. */

 

/* Possible evaluations satisfy COMP_LOSS < DRAW < COMP_WIN */

 

/* Complementary procedure find_human_move is below */

 

/* board_type is an array; thus board can be changed by place ( ) */

 

void

 

find_comp_move( board_type board, int *best_move, int *value )

 

{

 

int dc, i, response; /* dc means don't care */

 

/*1*/       if( full_board( board ) )

 

/*2*/            *value = DRAW;

 

else

 

/*3*/       if( immediate_comp_win( board, best_move ) )

 

/*4*/       *value = COMP_WIN;

 

else

 

{

 

/*5*/            *value = COMP_LOSS;

 

/*6*/            for( i=1; i<=9; i++ )    /* try each square */

 

{

 

/*7*/                 if( is_empty( board, i ) )

 

{

 

/*8*/                     place( board, i, COMP );

 

/*9*/                     find_human_move( board, &dc, &response );

 

/*10*/                    unplace( board, i ); /* Restore board */

 

/*11*/                    if( response >* value ) /* Update best move */

 

{

 

/*12*/                         *value = response;

 

/*13*/                         *best_move = i;

 

}

 

}
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} 

}

 

}

 

Figure 10.66 Minimax tic-tac-toe algorithm: computer selection

 

void

 

find_human_move( board_type board, int *best_move, int *value )

 

{

 

int dc, i, response; /* dc means don't care */

 

/*1*/       if( full_board( board ) )

 

/*2*/            *value = DRAW;

 

else

 

/*3*/       if( immediate_human_win( board, best_move ) )

 

/*4*/            *value = COMP_LOSS;

 

else

 

{

 

/*5*/            *value = COMP_WIN;

 

/*6*/            for( i=1; i<=9; i++ ) /* try each square */

 

{

 

/*7*/                 if( is_empty( board, i ) )

 

{

 

/*8*/                      place( board, i, HUMAN );

 

/*9*/                      find_comp_move( board, &dc, &response );

 

/*10*/                     unplace( board, i ); /* Restore board */

 

/*11*/                     if( response < * value ) /* Update best move */

 

{

 

/*12*/                          *value = response;

 

/*13*/                          *best_move = i;

 

}

 

}

 

}
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} 

}

 

Figure 10.67 Min-max tic-tac-toe algorithm: human selection

 

As an example, in Figure 10.66, best_move contains the address where the best move can be placed. 

find_comp_move can examine or alter the data at that address by accessing *best_move. Line 9 
shows how the calling routine should behave. Since the caller has two integers prepared to store 
the data, and find_human_move only wants the addresses of these two integers, the address 
operator (&) is used.  

If the & operator is not used at line 9, and both dc and response are zero (which would be 
typical of uninitialized data), the find_human_move will try to place its best move and position 
value in memory location zero. Of course, this is not what was intended, and will almost 
certainly result in a program crash (try it!). This is the most common error when using the scanf
family of library routines.  

We leave supporting routines as an exercise. The most costly computation is the case where the 
computer is asked to pick the opening move. Since at this stage the game is a forced draw, the 
computer selects square 1.* A total of 97,162 positions were examined, and the calculation took 
2.5 seconds on a VAX 8800. No attempt was made to optimize the code. When the computer moves 
second, the number of positions examined is 5,185 if the human selects the center square, 9,761 
when a corner square is selected, and 13,233 when a noncorner edge square is selected.  

*We numbered the squares starting from the top left and moving right. However, this is only important for the supporting 
routines.  

For more complex games, such as checkers and chess, it is obviously infeasible to search all the 
way to the terminal nodes.ç In this case, we have to stop the search after a certain depth of 
recursion is reached. The nodes where the recursion is stopped become terminal nodes. These 
terminal nodes are evaluated with a function that estimates the value of the position. For 
instance, in a chess program, the evaluation function measures such variables as the relative 
amount and strength of pieces and positional factors. The evaluation function is crucial for 
success, because the computer's move selection is based on maximizing this function. The best 
computer chess programs have surprisingly sophisticated evaluation functions.  

çIt is estimated that if this search were conducted for chess, at least 10100 positions would be examined for the first 
move. Even if the improvements described later in this section were incorporated, this number could not be reduced to a 
practical level.  

Nevertheless, for computer chess, the single most important factor seems to be number of moves of 
look-ahead the program is capable of. This is sometimes known as ply; it is equal to the depth of 
the recursion. To implement this, an extra parameter is given to the search routines.  

The basic method to increase the look-ahead factor in game programs is to come up with methods 
that evaluate fewer nodes without losing any information. One method which we have already seen 
is to use a table to keep track of all positions that have been evaluated. For instance, in the 
course of searching for the first move, the program will examine the positions in Figure 10.68. 
If the values of the positions are saved, the second occurrence of a position need not be 
recomputed; it essentially becomes a terminal position. The data structure that records this is 
known as a transposition table; it is almost always implemented by hashing. In many cases, this 
can save considerable computation. For instance, in a chess endgame, where there are relatively 
few pieces, the time savings can allow a search to go several levels deeper.  

-  Pruning
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Probably the most significant improvement one can obtain in general is known as -  
pruning. Figure 10.69 shows the trace of the recursive calls used to evaluate some hypothetical 
position in a hypothetical game. This is commonly referred to as a game tree. (We have avoided 
the use of this term until now, because it is somewhat misleading: no tree is actually 
constructed by the algorithm. The game tree is just an abstract concept.) The value of the game 
tree is 44.  

 

 

Figure 10.68 Two searches that arrive at identical position

 

Figure 10.70 shows the evaluation of the same game tree, with several unevaluated nodes. Almost 

half of the terminal nodes have not been checked. We show that evaluating them would not change 
the value at the root.  

First, consider node D. Figure 10.71 shows the information that has been gathered when it is time 
to evaluate D. At this point, we are still in find_human_move and are contemplating a call to 
find_comp_move on D. However, we already know that find_human_move will return at most 40, since 
it is a min node. On the other hand, its max node parent has already found a sequence that 
guarantees 44. Nothing that D does can possibly increase this value. Therefore, D does not need 

to be evaluated. This pruning of the tree is known as pruning. An identical situation occurs 

at node B. To implement  pruning, get_comp_move passes its tentative maximum ( ) to 
get_human_move. If the tentative minimum of get_human_move falls below this value, then 
get_human_move returns immediately.  

A similar thing happens at nodes A and C. This time, we are in the middle of a find_comp_move and 
are about to make a call to find_human_move to evaluate C. Figure 10.72 shows the situation that 
is encountered at node C. However, the sfind_human_move, at the min level, which has called 
find_comp_move, has already determined that it can force a value of at most 44 (recall that low 
values are good for the human side). Since find_comp_move has a tentative maximum of 68, nothing 
that C does will affect the result at the min level. Therefore, C should not be evaluated. This 

type of pruning is known as  pruning; it is the symmetric version of  pruning. When both 

techniques are combined, we have -  pruning. 
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Figure 10.69 A hypothetical game tree

 

 

 

Figure 10.70 A pruned game tree

 

 

 

Figure 10.71 The node marked ? is unimportant
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Figure 10.72 The node marked ? is unimportant 

Implementing -  pruning requires surprisingly little code. It is not as difficult as one 
might think, although many programmers have a very hard time doing it without looking at a 
reference book. 

Figure 10.73 shows half of the -  pruning scheme (minus type 

declarations); you should have no trouble coding the other half.  

/* Same as before, but perform  -  pruning.  */

 

/* The main routine should make the call with  = COMP_LOSS,

 

      = COMP_WIN. */

 

void

 

find_comp_move( board_type board, int *best_move, int *value,

 

int , int  )

 

{

 

int dc, i, response; /* dc means don't care */

 

/*1*/       if( full_board( board ) )

 

/*2*/            *value = DRAW;

 

else

 

/*3*/       if( immediate-comp_win( board, best_move ) )

 

/*4*/            *value = COMP_WIN;

 

else

 

{

 

/*5*/            *value =  ;

 

/*6*/            for( i=1; (i<=9) && (*value< ); i++)     /* try each square */

 

{

 

/*7*/                 if( is_empty( board, i ) )

 

{

 

/*8*/                      place( board, i, COMP );
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/*9*/                      find_human_move( board, &dc, &response, *value,  );

 

/*10*/                     unplace( board, i ); /* Restore board */

 

/*11*/                     if( response >* value ) /* Update best move */

 

{

 

/*12*/                          *value = response;

 

/*13*/                          *best_move = i;

 

}

 

}

 

}

 

}

 

}

 

Figure 10.73 Min-max tic-tac-toe algorithm with -  pruning: Computer selection.

 

To take full advantage of -  pruning, game programs usually try to apply the evaluation 
function to nonterminal nodes in an attempt to place the best moves early in the search. The 
result is even more pruning than one would expect from a random ordering of the nodes. Other 
techniques, such as searching deeper in more active lines of play, are also employed.  

In practice, -  pruning limits the searching to only  nodes, where n is the size 

of the full game tree. This a huge saving and means that searches using -  pruning can go 
twice as deep as compared to an unpruned tree. Our tic-tac-toe example is not ideal, because 
there are so many identical values, but even so, the initial search of 97,162 nodes is reduced to 
4,493 nodes. (These counts include nonterminal nodes).  

In many games, computers are among the best players in the world. The techniques used are very 
interesting, and can be applied to more serious problems. More details can be found in the 
references.  

Summary
 

This chapter illustrates five of the most common techniques found in algorithm design. When 
confronted with a problem, it is worthwhile to see if any of these methods apply. A proper choice 
of algorithm, combined with judicious use of data structures, can often lead quickly to efficient 
solutions.  

Exercises
 

10.1 Show that the greedy algorithm to minimize the mean completion time for multiprocessor job 

scheduling works.  
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10.2 The input is a set of jobs j1, j2, . . . , jn, each of which takes one time unit to 

complete. Each job ji erans di dollars if it is completed by the time limit ti, but no money if 

completed after the time limit.  

(a) Give an O(n2) greedy algorithm to solve the problem. 

 

**(b) Modify your algorithm to obtain an O(n log n) time bound. Hint: The time bound is due 
entirely to sorting the jobs by money. The rest of the algorithm can be implemented, using the 
disjoint set data structure, in o(n log n).  

10.3 A file contains only colons, spaces, newline, commas, and digits in the following frequency: 

colon (100), space (605), newline (100), commas (705), 0 (431), 1 (242), 2 (176), 3 (59), 4 
(185), 5 (250), 6 (174), 7 (199), 8 (205), 9 (217). Construct the Huffman code.  

10.4 Part of the encoded file must be a header indicating the Huffman code. Give a method for 

constructing the header of size at most O(n) (in addition to the symbols), where n is the number 
of symbols.  

10.5 Complete the proof that Huffman's algorithm generates an optimal prefix code. 

 

10.6 Show that if the symbols are sorted by frequency, Huffman's algorithm can be implemented in 

linear time.  

10.7 Write a program to implement file compression (and uncompression) using Huffman's algorithm.

*10.8 Show that any on-line bin-packing algorithm can be forced to use at least  the optimal 

number of bins, by considering the following sequence of items: n items of size , n items 

of size , n items of size . 

 

10.9 Explain how to implement first fit and best fit in O(n log n) time. 

 

10.10 Show the operation of all of the bin-packing strategies discussed in Section 10.1.3 on the 

input 0.42, 0.25, 0.27, 0.07, 0.72, 0.86, 0.09, 0.44, 0.50, 0.68, 0.73, 0.31, 0.78, 0.17, 0.79, 
0.37, 0.73, 0.23, 0.30.  

10.11 Write a program that compares the performance (both in time and number of bins used) of the 

various bin packing heuristics.  

10.12 Prove Theorem 10.7. 

 

10.13 Prove Theorem 10.8. 

 

*10.14 n points are placed in a unit square. Show that the distance between the closest pair is O
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(n-1/2).  

*10.15 Argue that for the closest-points algorithm, the average number of points in the strip is 

( . Hint: Use the result of the previous exercise. 
 

10.16 Write a program to implement the closest-pair algorithm. 

 

10.17 What is the asymptotic running time of quickselect, using a median-of-median-of-three 

partitioning strategy?  

10.18 Show that quickselect with median-of-median-of-seven partitioning is linear. Why is median-

of-median-of-seven partitioning not used in the proof?  

10.19 Implement the quickselect algorithm in Chapter 7, quickselect using median-of-median-of-

five patitioning, and the sampling algorithm at the end of Section 10.2.3. Compare the running 
times.  

10.20 Much of the information used to compute the median-of-median-of-five is thrown away. Show 

how the number of comparisons can be reduced by more careful use of the information.  

*10.21 Complete the analysis of the sampling algorithm described at the end of Section 10.2.3, 

and explain how the values of  and s are chosen. 

 

10.22 Show how the recursive multiplication algorithm computes xy, where x = 1234 and y = 4321. 

Include all recursive computations.  

10.23 Show how to multiply two complex numbers x = a + bi and y = c + di using only three 

multiplications.  

10.24 (a) Show that 

 

xlyr + xryl = (xl + xr)(yl + yr) - xlyl - xryr

 

(b) This gives an O(n1.59) algorithm to multiply n-bit numbers. Compare this method to the 
solution in the text.  

10.25 * (a) Show how to multiply two numbers by solving five problems that are roughly one-third 

of the original size.  

**(b) Generalize this problem to obtain an O(n1+ ) algorithm for any constant  > 0. 

 

(c) Is the algorithm in part (b) better than O(n log n)? 

 

10.26 Why is it important that Strassen's algorithm does not use commutativity in the 

multiplication of 2 X 2 matrices?  
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10.27 Two 70 X 70 matrices can be multiplied using 143,640 multiplications. Show how this can be 

used to improve the bound given by Strassen's algorithm.  

10.28 What is the optimal way to compute A1A2A3A4A5A6, where the dimensions of the matrices are: 

Al: 10 X 20, A2: 20 X 1, A3: 1 X 40, A4: 40 X 5, A5: 5 X 30, A6: 30 X 15?  

10.29 Show that none of the following greedy algorithms for chained matrix multiplication work. 

At each step  

(a) Compute the cheapest multiplication. 

 

(b) Compute the most expensive multiplication. 

 

(c) Compute the multiplication between the two matrices Mi and Mi+1, such that the number of 

columns in Mi is minimized (breaking ties by one of the rules above).  

10.30 Write a program to compute the best ordering of matrix multiplication. Include the routine 

to print out the actual ordering.  

10.31 Show the optimal binary search tree for the following words, where the frequency of 

occurrence is in parentheses: a (0.18), and (0.19), I (0.23), it (0.21) , or (0.19).  

*10.32 Extend the optimal binary search tree algorithm to allow for unsuccessful searches. In 

this case, qj, for 1  j < n, is the probability that a search is performed for any word W 

satisfying wj < W < wj+1. q0 is the probability of performing a search for W < w1, and qn is the 

probability of performing a search for W > wn. Notice that . 
 

*10.33 Suppose Ci,i = 0 and that otherwise 

 

 

 

Suppose that W satisfies the quadrangle inequality, namely, for all i  i'  j  j', 

 

Wi, j + Wi',j'  Wi',j + Wi, j'

 

Suppose further, that W is monotone: If i  i' and j'  j', then Wi,j  Wi',,j'. 

 

(a) Prove that C satisfies the quadrangle inequality. 

 

(b) Let Ri, j be the largest k that achieves the minimum Ci,k-1 + Ck,j. (That is, in case of 

ties, choose the largest k). Prove that  
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Ri, j  Ri, j+1  Ri+1,j+1

 

(c) Show that R is nondecreasing along each row and column. 

 

(d) Use this to show that all entries in C can be computed in O(n2) time. 

 

(e) Which of the dynamic programming algorithms can be solved in O(n2) using these techniques? 

 

10.34 Write a routine to reconstruct the shortest paths from the algorithm in Section 10.3.4. 

 

10.35 Examine the random number generator on your system. How random is it? 

 

10.36 Write the routines to perform insertion, deletion, and searching in skip lists. 

 

10.37 Give a formal proof that the expected time for the skip list operations is O(log n). 

 

10.38 Figure 10.74 shows a routine to flip a coin, assuming that random returns an integer (which 

is prevalent in many systems). What is the expected performance of the skip list algorithms if 

the random number generator uses a modulus of the form m = 2b (which is unfortunately prevalent 
on many systems)?  

10.39 (a) Use the exponentiation algorithm to prove that 2340  1(mod 341). 

 

(b) Show how the randomized primality test works for n = 561 with several choices of a. 

 

10.40 Implement the turnpike reconstruction algorithm. 

 

10.41 Two point sets are homometric if they yield the same distance set and are not rotations of 

each other. The following distance set gives two distinct point sets: 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 16, 17 . Find the two point sets.  

enum coin_side { heads, tails };

 

typedef enum coin_side coin_side;

 

coin_side

 

flip( void )

 

{

 

if( ( rand() % 2 ) == 0 )

 

return heads;

 

else

 

return tails;

 

}

 

页码，73/83Structures, Algorithm Analysis: CHAPTER 10: ALGORITHM DESIGN TECH...

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



Figure 10.74 Questionable coin flipper 

 

 

Figure 10.75 Game tree, which can be pruned

 

10.42 Extend the reconstruction algorithm to find all homometric point sets given a distance set.

10.43 Show the result of -  pruning the tree in Figure 10.75. 

 

10.44 (a) Does the code in Figure 10.73 implement  pruning or  pruning? 

 

(b) Implement the complementary routine. 

 

10.45 Write the remaining procedures for tic-tac-toe. 

 

10.46 The one-dimensional circle packing problem is as follows: You have n circles of radii r1, 

r2, . . . , rn. These circles are packed in a box such that each circle is tangent to the bottom 

of the box, and are arranged in the original order. The problem is to find the width of the 
minimum-sized box.  

Figure 10.76 shows an example with circles of radii 2, 1, 2 respectively. The minimum-sized box 

has width  
 

*10.47 Suppose that the edges in an undirected graph G satisfy the triangle inequality: cu,v + 

cv,w  cu,w. Show how to compute a traveling salesman tour of cost at most twice optimal. 

Hint: Construct a minimum spanning tree.  

*10.48 You are a tournament director and need to arrange a round robin tournament among n = 2k 

players. In this tournament, everyone plays exactly one game each day; after n - 1 days, a match 
has occurred between every pair of players. Give an algorithm to do this.  
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Figure 10.76 Sample for circle packing problem

 

10.49 (a) Prove that in a round robin tournament it is always possible to arrange the players in 

an order pi1, p2, pin such that for all 1  j < n, pij has won the match against pij + 1. 
 

(b) Gve an O(n log n) algorithm to find one such arrangement. Your algorithm may serve as a proof 
for part (a).  

*10.50 We are given a set P = p1, p2, . . . , pn of n points in a plane. A Voronoi diagram is a 

partition of the plane into n regions Ri such that all points in Ri are closer to pi than any 

other point in P. Figure 10.77 shows a sample Voronoi diagram for seven (nicely arranged) points. 
Give an O(n log n) algorithm to construct the Voronoi diagram.  

*10.51 A convex polygon is a polygon with the property that any line segment whose endpoints are 
on the polygon lies entirely within the polygon. The convex hull problem consists of finding the 
smallest (area) convex polygon which encloses a set of points in the plane. Figure 10.78 shows 

the convex hull for a set of 40 points. Give an O(n log n) algorithm to find the convex hull.  

 

 

Figure 10.77 Voronoi diagram
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Figure 10.78 Example of a convex hull

 

*10.52 Consider the problem of right-justifying a paragraph. The paragraph contains a sequence of 

words w1, w2, . . . ,wn of length a1, a2, . . . , an, which we wish to break into lines of length 

L. Words are separated by blanks whose ideal length is b (millimeters), but blanks can stretch or 
shrink as necessary (but must be >0), so that a line wi wi+1. . . wj has length exactly L. 

However, for each blank b' we charge |b' - b ugliness points. The exception to this is the last 
line, for which we charge only if b' < b (in other words, we charge only for shrinking), since 
the last line does not need to be justified. Thus, if bi is the length of the blank between ai 

and ai+1, then the ugliness of setting any line (but the last) wiwi+1 . . . wj for j > i is 

, where b' is the average size of a blank on this line. This is 
true of the last line only if b' < b, otherwise the last line is not ugly at all.  

(a) Give a dynamic programming algorithm to find the least ugly setting of w1, w2, . . ., wn into 

lines of length L. Hint: For i = n, n - 1, . . . , 1, compute the best way to set wj, wi+1, . . . 

, wn  

(b) Give the time and space complexities for your algorithm (as a function of the number of 
words, n).  

(c) Consider the special case where we are using a line printer instead of a laser printer, and 
assume the optimal value of b is 1 (space). In this case, no shrinking of blanks is allowed, 
since the next smallest blank space would be 0. Give a linear-time algorithm to generate the 
least ugly setting on a line printer.  

*10.53 The longest increasing subsequence problem is as follows: Given numbers a1, a2, . . ., an, 

find the maximum value of k such that ai1 < ai2 <    < aik, and i1 < i2 <   

 < ik. As an example, if the input is 3, 1, 4, 1, 5, 9, 2, 6, 5, the maximum increasing 

subsequence has length four ( 1, 4, 5, 9 among others ). Give an O(n2) algorithm to solve the 
longest increasing subsequence problem.  

*10.54 The longest common subsequence problem is as follows: Given two sequences A = a1, a2, . . 

. , am, and B = b1, b2, . . . , bn, find the length, k, of the longest sequence C = c1, c2, . . . 

, ck such that C is a subsequence of both A and B. As an example, if  

A = d, y, n, a, m, i, c
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and  

B = p, r, o, g, r, a, m, m, i, n, g,

 

then the longest common subsequence is a,m and has length 2. Give an algorithm to solve the 
longest common subsequence problem. Your algorithm should run in O(mn) time.  

*10.55 The pattern matching problem is as follows: Given a string S of text, and a pattern P, 

find the first occurrence of P in S. Approximate pattern matching allows k mismatches of three 
types:  

1. A character can be in S that is not in P. 

 

2. A character can be in P that is not in S. 

 

3. P and S can differ in a position. 

 

As an example, if we are searching for the pattern "textbook" with at most three mismatches in 
the string "data structures txtborkk", we find a match (insert an e, change an r to an o, delete 
a k). Give an O(mn) algorithm to solve the approximate string matching problem, where m = |P| and 
n = |S|.  

*10.56 One form of the knapsack problem is as follows: We are given a set of integers A = a1, a2, 

. . . , an and an integer K. Is there a subset of A whose sum is exactly K?  

(a) Give an algorithm that solves the knapsack problem in O(nK) time. 

 

(b) Why does this not show that P = NP? 

 

*10.57 You are given a currency system with coins of (decreasing) value c1, c2, . . . , cn cents.

(a) Give an algorithm that computes the minimum number of coins required to give K cents in 
change.  

(b) Give an algorithm that computes the number of different ways to give K cents in change. 

 

*10.58 Consider the problem of placing eight queens on an (eight by eight) chess board. Two 

queens are said to attack each other if they are on the same row, column, or (not necessarily 
main) diagonal.  

(a) Give a randomized algorithm to place eight nonattacking queens on the board. 

 

(b) Give a backtracking algorithm to solve the same problem. 

 

(c) Implement both algorithms and compare the running time. 

 

distance

 

shortest( s, t, G )

 

{

 

distance dt,tmp;
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if( s == t ) 

return 0;

 

dt = ;

 

for each vertex v adjacent to s

 

{

 

tmp = shortest( v, t, G );

 

if( cs,v + tmp < dt )

 

dt = cs,v + tmp;

 

}

 

return dt

 

}

 

Figure 10.79 Recursive shortest path algorithm

 

*10.59 In the game of chess, a knight in row r and column c may move to row 1  r'  B and 

column 1  c'  B (where B is the size of the board) provided that either 

 

|r - r'| = 2 and |c - c'| = 1

 

or 

 

|r - r'| = 1 and |c - c'| = 2

 

A knight's tour is a sequence of moves that visits all squares exactly once before returning to 
the starting point.  

(a) If B is odd, show that a knight's tour cannot exist. 

 

(b) Give a backtracking algorithm to find a knight's tour. 

 

10.60 Consider the recursive algorithm in Figure 10.79 for finding the shortest weighted path in 

an acyclic graph, from s to t.  

(a) Why does this algorithm not work for general graphs? 

 

(b) Prove that this algorithm terminates for acyclic graphs. 

 

(c) What is the worst-case running time of the algorithm? 
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CHAPTER 11: 
AMORTIZED ANALYSIS 

In this chapter, we will analyze the running time for several of the advanced 
data structures that have been presented in Chapters 4 and 6. In particular, we 
will consider the worst-case running time for any sequence of m operations. This 
contrasts with the more typical analysis, in which a worst-case bound is given 
for any single operation.  

As an example, we have seen that AVL trees support the standard tree operations 
in O(log n) worst-case time per operation. AVL trees are somewhat complicated to 
implement, not only because there are a host of cases, but also because height 
balance information must be maintained and updated correctly. The reason that 

AVL trees are used is that a sequence of (n) operations on an unbalanced 

search tree could require (n2) time, which would be expensive. For search 
trees, the O(n) worst-case running time of an operation is not the real problem. 
The major problem is that this could happen repeatedly. Splay trees offer a 

pleasant alternative. Although any operation can still require (n) time, this 
degenerate behavior cannot occur repeatedly, and we can prove that any sequence 
of m operations takes O(m log n) worst-case time (total). Thus, in the long run 
this data structure behaves as though each operation takes O(log n). We call this 
an amortized time bound.  

Amortized bounds are weaker than the corresponding worst-case bounds, because 
there is no guarantee for any single operation. Since this is generally not 
important, we are willing to sacrifice the bound on a single operation, if we can 
retain the same bound for the sequence of operations and at the same time 
simplify the data structure. Amortized bounds are stronger than the equivalent 
average-case bound. For instance, binary search trees have O (log n) average time 
per operation, but it is still possible for a sequence of m operations to take O 
(mn) time.  

Because deriving an amortized bound requires us to look at an entire sequence of 
operations instead of just one, we expect that the analysis will be more tricky. 
We will see that this expectation is generally realized.  

In this chapter we shall  

 Analyze the binomial queue operations.  

 Analyze skew heaps.  

 Introduce and analyze the Fibonacci heap.  

Return to Table of ContentsPrevious Chapter

页码，1/25Structures, Algorithm Analysis: CHAPTER 11: AMORTIZED ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



 Analyze splay trees.  

11.1. An Unrelated Puzzle 

Consider the following puzzle: Two kittens are placed on opposite ends of a 
football field, 100 yards apart. They walk towards each other at the speed of ten 
yards per minute. At the same time, their mother is at one end of the field. She 
can run at 100 yards per minute. The mother runs from one kitten to the other, 
making turns with no loss of speed, until the kittens (and thus the mother) meet 
at midfield. How far does the mother run?  

It is not hard to solve this puzzle with a brute force calculation. We leave the 
details to you, but one expects that this calculation will involve computing the 
sum of an infinite geometric series. Although this straightforward calculation 
will lead to an answer, it turns out that a much simpler solution can be arrived 
at by introducing an extra variable, namely, time.  

Because the kittens are 100 yards apart and approach each other at a combined 
velocity of 20 yards per minute, it takes them five minutes to get to midfield. 
Since the mother runs 100 yards per minute, her total is 500 yards.  

This puzzle illustrates the point that sometimes it is easier to solve a problem 
indirectly than directly. The amortized analyses that we will perform will use 
this idea. We will introduce an extra variable, known as the potential, to allow 
us to prove results that seem very difficult to establish otherwise.  

11.2. Binomial Queues 

The first data structure we will look at is the binomial queue of Chapter 6, 
which we now review briefly. Recall that a binomial tree B0 is a one-node tree, 

and for k > 0, the binomial tree Bk is built by melding two binomial trees Bk-1 

together. Binomial trees B0 through B4 are shown in Figure 11.1.  

  

Figure 11.1 Binomial trees B0, B1, B2, B3, and B4

 

页码，2/25Structures, Algorithm Analysis: CHAPTER 11: AMORTIZED ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



 

 

Figure 11.2 Two binomial queues H1 and H2

 

The rank of a node in a binomial tree is equal to the number of children; in particular, the rank 
of the root of Bk is k. A binomial queue is a collection of heap-ordered binomial trees, in which 

there can be at most one binomial tree Bk for any k. Two binomial queues, H1 and H2, are shown in 

Figure 11.2.  

The most important operation is merge. To merge two binomial queues, an operation similar to 
addition of binary integers is performed: At any stage we may have zero, one, two, or possibly 
three Bk trees, depending on whether or not the two priority queues contain a Bk tree and whether 

or not a Bk tree is carried over from the previous step. If there is zero or one Bk tree, it is 

placed as a tree in the resultant binomial queue. If there are two Bk trees, they are melded into 

a Bk+1 tree and carried over; if there are three Bk trees, one is placed as a tree in the 

binomial queue and the other two are melded and carried over. The result of merging H1 and H2 is 

shown in Figure 11.3.  

Insertion is performed by creating a one-node binomial queue and performing a merge. The time to 
do this is m + 1, where m represents the smallest type of binomial tree Bm not present in the 

binomial queue. Thus, insertion into a binomial queue that has a B0 tree but no B1 tree requires 

two steps. Deletion of the minimum is accomplished by removing the minimum and splitting the 
original binomial queue into two binomial queues, which are then merged. A less terse explanation 
of these operations is given in Chapter 6.  

We consider a very simple problem first. Suppose we want to build a binomial queue of n elements. 
We know that building a binary heap of n elements can be done in O (n), so we expect a similar 
bound for binomial queues.  

 

 

Figure 11.3 Binomial queue H3: the result of merging H1 and H2 

 

CLAIM: 

 

A binomial queue of n elements can be built by n successive insertions in O(n) time. 

 

The claim, if true, would give an extremely simple algorithm. Since the worst-case time for each 
insertion is O (log n), it is not obvious that the claim is true. Recall that if this algorithm 
were applied to binary heaps, the running time would be O(n log n).  

To prove the claim, we could do a direct calculation. To measure the running time, we define the 
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cost of each insertion to be one time unit plus an extra unit for each linking step. Summing this 
cost over all insertions gives the total running time. This total is n units plus the total 
number of linking steps. The 1st, 3rd, 5th, and all odd-numbered steps require no linking steps, 
since there is no B0 present at the time of insertion. Thus, half of the insertions require no 

linking steps. A quarter of the insertions require only one linking step (2nd, 6th, 10th, and so 
on). An eighth require two, and so on. We could add this all up and bound the number of linking 
steps by n, proving the claim. This brute force calculation will not help when we try to analyze 
a sequence of operations that include more than just insertions, so we will use another approach 
to prove this result.  

Consider the result of an insertion. If there is no B0 tree present at the time of the insertion, 

then the insertion costs a total of one unit, by using the same accounting as above. The result 
of the insertion is that there is now a B0 tree, and thus we have added one tree to the forest of 

binomial trees. If there is a B0 tree but no B1 tree, then the insertion costs two units. The new 

forest will have a B1 tree but will no longer have a B0 tree, so the number of trees in the 

forest is unchanged. An insertion that costs three units will create a B2 tree but destroy a B0 

and B1 tree, yielding a net loss of one tree in the forest. In fact, it is easy to see that, in 

general, an insertion that costs c units results in a net increase of 2 - c trees in the forest, 

because a Bc-1 tree is created but all Bi trees 0  i < c - 1 are removed. Thus, expensive 

insertions remove trees, while cheap insertions create trees.  

Let Ci be the cost of the ith insertion. Let Ti be the number of trees after the ith insertion. 

T0 = 0 is the number of trees initially. Then we have the invariant  

Ci + (Ti - Ti-1) = 2 

 

(11.1)

 

We then have 

 

     C1 + (T1 - T0) = 2

 

     C2 + (T2 - T1) = 2

 

         

 

Cn-1 + (Tn-1 - Tn-2) = 2

 

   Cn + (Tn - Tn-1) = 2

 

If we add all these equations, most of the Ti terms cancel, leaving 

 

 

 

or equivalently, 
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Recall that T0 = 0 and Tn, the number of trees after the n insertions, is certainly not negative, 

so (Tn - T0) is not negative. Thus  

 

 

which proves the claim. 

 

During the build_binomial_queue routine, each insertion had a worst-case time of O(log n), but 
since the entire routine used at most 2n units of time, the insertions behaved as though each 
used no more than 2 units each.  

This example illustrates the general technique we will use. The state of the data structure at 
any time is given by a function known as the potential. The potential function is not maintained 
by the program, but rather is an accounting device that will help with the analysis. When 
operations take less time than we have allocated for them, the unused time is "saved" in the form 
of a higher potential. In our example, the potential of the data structure is simply the number 
of trees. In the analysis above, when we have insertions that use only one unit instead of the 
two units that are allocated, the extra unit is saved for later by an increase in potential. When 
operations occur that exceed the allotted time, then the excess time is accounted for by a 
decrease in potential. One may view the potential as representing a savings account. If an 
operation uses less than its allotted time, the difference is saved for use later on by more 
expensive operations. Figure 11.4 shows the cumulative running time used by build_binomial_queue 
over a sequence of insertions. Observe that the running time never exceeds 2n and that the 
potential in the binomial queue after any insertion measures the amount of savings.  

 

 

Figure 11.4 A sequence of n inserts

 

Once a potential function is chosen, we write the main equation: 

 

Tactual + Potential = Tamortized 

 

(11.2)

 

Tactual, the actual time of an operation, represents the exact (observed) amount of time required 

to execute a particular operation. In a binary search tree, for example, the actual time to 
perform a find(x) is 1 plus the depth of the node containing x. If we sum the basic equation over 
the entire sequence, and if the final potential is at least as large as the initial potential, 
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then the amortized time is an upper bound on the actual time used during the execution of the 
sequence. Notice that while Tactual varies from operation to operation, Tamortized is stable.  

Picking a potential function that proves a meaningful bound is a very tricky task; there is no 
one method that is used. Generally, many potential functions are tried before the one that works 
is found. Nevertheless, the discussion above suggests a few rules, which tell us the properties 
that good potential functions have. The potential function should  

 Always assume its minimum at the start of the sequence. A popular method of choosing 
potential functions is to ensure that the potential function is initially 0, and always 
nonnegative. All of the examples that we will encounter use this strategy.  

 Cancel a term in the actual time. In our case, if the actual cost was c, then the potential 
change was 2 - c. When these are added, an amortized cost of 2 is obtained. This is shown in 

Figure 11.5.  

We can now perform a complete analysis of binomial queue operations. 

 

 

 

Figure 11.5 The insertion cost and potential change for each operation in a sequence

 

THEOREM 11.1. 

 

The amortized running times of insert, delete_min, and merge are O(1), O(log n), and O(log n), 
respectively, for binomial queues.  

PROOF: 

 

The potential function is the number of trees. The initial potential is 0, and the potential is 
always nonnegative, so the amortized time is an upper bound on the actual time. The analysis for 
insert follows from the argument above. For merge, assume the two trees have n1 and n2 nodes with 

T1 and T2 trees, respectively. Let n = n1 + n2. The actual time to perform the merge is O(log(n1) 

+ log(n2)) = O(log n). After the merge, there can be at most log n trees, so the potential can 

increase by at most O(log n). This gives an amortized bound of O(log n). The delete_min bound 
follows in a similar manner.  

11.3. Skew Heaps
 

The analysis of binomial queues is a fairly easy example of an amortized analysis. We now look at 
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skew heaps. As is common with many of our examples, once the right potential function is found, 
the analysis is easy. The difficult part is choosing a meaningful potential function.  

Recall that for skew heaps, the key operation is merging. To merge two skew heaps, we merge their 
right paths and make this the new left path. For each node on the new path, except the last, the 
old left subtree is attached as the right subtree. The last node on the new left path is known to 
not have a right subtree, so it is silly to give it one. The bound does not depend on this 
exception, and if the routine is coded recursively, this is what will happen naturally. Figure 
11.6 shows the result of merging two skew heaps.  

Suppose we have two heaps, H1 and H2, and there are r1 and r2 nodes on their respective right 

paths. Then the actual time to perform the merge is proportional to r1 + r2, so we will drop the 

Big-Oh notation and charge one unit of time for each node on the paths. Since the heaps have no 
structure, it is possible that all the nodes in both heaps lie on the right path, and this would 

give a (n) worst-case bound to merge the heaps (Exercise 11.3 asks you to construct an 
example). We will show that the amortized time to merge two skew heaps is O(log n).  

 

 

Figure 11.6 Merging of two skew heaps

 

What is needed is some sort of a potential function that captures the effect of skew heap 
operations. Recall that the effect of a merge is that every node on the right path is moved to 
the left path, and its old left child becomes the new right child. One idea might be to classify 
each node as a right node or left node, depending on whether or not it is a right child, and use 
the number of right nodes as a potential function. Although the potential is initially 0 and 
always nonnegative, the problem is that the potential does not decrease after a merge and thus 
does not adequately reflect the savings in the data structure. The result is that this potential 
function cannot be used to prove the desired bound.  

A similar idea is to classify nodes as either heavy or light, depending on whether or not the 
right subtree of any node has more nodes than the left subtree.  

DEFINITION: A node p is heavy if the number of descendants of p's right subtree is at least half 
of the number of descendants of p, and light otherwise. Note that the number of descendants of a 
node includes the node itself.  

As an example, 
Figure 11.7 shows a skew heap. The nodes with keys 15, 3, 6, 12, and 7 are heavy, 

and all other nodes are light.  

The potential function we will use is the number of heavy nodes in the (collection) of heaps. 
This seems like a good choice, because a long right path will contain an inordinate number of 
heavy nodes. Because nodes on this path have their children swapped, these nodes will be 
converted to light nodes as a result of the merge.  

THEOREM 11.2. 

 

The amortized time to merge two skew heaps is O(log n). 
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PROOF:  

Let H1 and H2 be the two heaps, with n1 and n2 nodes respectively. Suppose the right path of H1 

has l1 light nodes and h1 heavy nodes, for a total of l1 + h1. Likewise, H2 has l2 light and h2 

heavy nodes on its right path, for a total of l2 + h2 nodes.  

 

 

Figure 11.7 Skew heap -- heavy nodes are 3, 6, 7, 12, and 15

 

 

 

Figure 11.8 Change in heavy/light status after a merge

 

If we adopt the convention that the cost of merging two skew heaps is the total number of nodes 
on their right paths, then the actual time to perform the merge is l1 + l2 + h1 + h2. Now the 

only nodes whose heavy/light status can change are nodes that are initially on the right path 
(and wind up on the left path), since no other nodes have their subtrees altered. This is shown 
by the example in Figure 11.8.  

If a heavy node is initially on the right path, then after the merge it must become a light node. 
The other nodes that were on the right path were light and may or may not become heavy, but since 
we are proving an upper bound, we will have to assume the worst, which is that they become heavy 
and increase the potential. Then the net change in the number of heavy nodes is at most l1 + l2 -

h1 - h2. Adding the actual time and the potential change (Equation 11.2) gives an amortized bound 

of 2(l1 + l2).  

Now we must show that l1 + l2 = O(log n). Since l1 and l2 are the number of light nodes on the 

original right paths, and the right subtree of a light node is less than half the size of the 
tree rooted at the light node, it follows directly that the number of light nodes on the right 
path is at most log n1 + log n2, which is O(log n).  

The proof is completed by noting that the initial potential is 0 and that the potential is always 
nonnegative. It is important to verify this, since otherwise the amortized time does not bound 
the actual time and is meaningless.  
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Since the insert and delete_min operations are basically just merges, they also have O(log n) 
amortized bounds.  

11.4. Fibonacci Heaps
 

In Section 9.3.2, we showed how to use priority queues to improve on the naïve O(|V|2) running 
time of Dijkstra's shortest-path algorithm. The important observation was that the running time 
was dominated by|E|decrease_key operations and |V| insert and delete_min operations. These 
operations take place on a set of size at most |V|. By using a binary heap, all these operations 
take O(log |V|) time, so the resulting bound for Dijkstra's algorithm can be reduced to O(|E| log 
|V|).  

In order to lower this time bound, the time required to perform the decrease_key operation must 
be improved. d-heaps, which were described in Section 6.5, give an O(logd |V|) time bound for the 

delete_min operation as well as for insert, but an O(d logd |V|) bound for delete_min. By 

choosing d to balance the costs of |E| decrease_key operations with |V| delete_min operations, 
and remembering that d must always be at least 2, we see that a good choice for d is  

d = max(2, E / V ).

 

This improves the time bound for Dijkstra's algorithm to 

 

O( E log(2+ E / V ) V ).

 

The Fibonacci heap is a data structure that supports all the basic heap operations in O(1) 
amortized time, with the exception of delete_min and delete, which take O (log n) amortized time. 
It immediately follows that the heap operations in Dijkstra's algorithm will require a total of O
(|E| + |V| log |V|) time.  

Fibonacci heaps* generalize binomial queues by adding two new concepts: 

 

*The name comes from a property of this data structure, which we will prove later in the section. 

A different implementation of decrease_key: The method we have seen before is to percolate the 
element up toward the root. It does not seem reasonable to expect an O(1) amortized bound for 
this strategy, so a new method is needed.  

Lazy merging: Two heaps are merged only when it is required to do so. This is similar to lazy 
deletion. For lazy merging, merges are cheap, but because lazy merging does not actually combine 
trees, the delete_min operation could encounter lots of trees, making that operation expensive. 
Any one delete_min could take linear time, but it is always possible to charge the time to 
previous merge operations. In particular, an expensive delete_min must have been preceded by a 
large number of unduly cheap merges, which have been able to store up extra potential.  

11.4.1. Cutting Nodes in Leftist Heaps

 

In binary heaps, the decrease_key operation is implemented by lowering the value at a node and 
then percolating it up toward the root until heap order is established. In the worst case, this 
can take O(log n) time, which is the length of the longest path toward the root in a balanced 
tree.  

This strategy does not work if the tree that represents the priority queue does not have O(log n) 

页码，9/25Structures, Algorithm Analysis: CHAPTER 11: AMORTIZED ANALYSIS

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



depth. As an example, if this strategy is applied to leftist heaps, then the decrease_key 

operation could take (n) time, as the example in Figure 11.9 shows. 
 

We see that for leftist heaps, another strategy is needed for the decrease_key operation. Our 
example will be the leftist heap in Figure 11.10. Suppose we want to decrease the key with value 
9 down to 0. If we make the change, we find that we have created a violation of heap order, which 
is indicated by a dashed line in Figure 11.11.  

 

 

Figure 11.9 Decreasing n - 1 to 0 via percolate up would take (n) time

 

 

 

Figure 11.10 Sample leftist heap H

 

 

 

Figure 11.11 Decreasing 9 to 0 creates a heap order violation
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Figure 11.12 The two trees after the cut

 

We do not want to percolate the 0 to the root, because, as we have seen, there are cases where 
this could be expensive. The solution is to cut the heap along the dashed line, thus creating two 
trees, and then merge the two trees back into one. Let x be the node to which the decrease_key 
operation is being applied, and let p be its parent. After the cut, we have two trees, namely, H1
with root x, and T2, which is the original tree with H1 removed. The situation is shown in 

Figure 
11.12.  

If these two trees were both leftist heaps, then they could be merged in O (log n) time, and we 
would be done. It is easy to see that H1 is a leftist heap, since none of its nodes have had any 

changes in their descendants. Thus, since all of its nodes originally satisfied the leftist 
property, they still must.  

Nevertheless, it seems that this scheme will not work, because T2 is not necessarily leftist. 

However, it is easy to reinstate the leftist heap property by using two observations:  

 Only nodes on the path from p to the root of T2 can be in violation of the leftist heap 

property; these can be fixed by swapping children.  

 Since the maximum right path length has at most log(n + 1)  nodes, we only need to 

check the first log(n + 1)  nodes on the path from p to the root of T2. Figure 11.13 

shows H1 and T2 after T2 is converted to a leftist heap.  

 

 

Figure 11.13 T2 converted to the leftist heap H2
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Figure 11.14 decrease_key (H,x,9) completed by merging Hl and H2

 

Because we can convert T2 to the leftist heap H2 in O (log n) steps, and then merge H1 and H2, we 

have an O (log n) algorithm for performing the decrease_key operation in leftist heaps. The heap 
that results in our example is shown in 

Figure 11.14. 

 

11.4.2. Lazy Merging for Binomial Queues
 

The second idea that is used by Fibonacci heaps is lazy merging. We will apply this idea to 
binomial queues and show that the amortized time to perform a merge operation (as well as 
insertion, which is a special case) is O(1). The amortized time for delete_min will still be O
(log n).  

The idea is as follows: To merge two binomial queues, merely concatenate the two lists of 
binomial trees, creating a new binomial queue. This new queue may have several trees of the same 
size, so it violates the binomial queue property. We will call this a lazy binomial queue in 
order to maintain consistency. This is a fast operation, which always takes constant (worst-case) 
time. As before, an insertion is done by creating a one-node binomial queue and merging. The 
difference is that the merge is lazy.  

The delete_min operation is much more painful, because it is where we finally convert the lazy 
binomial queue back into a standard binomial queue, but, as we will show, it is still O (log n) 
amortized time-but not O(log n) worst-case time, as before. To perform a delete_min, we find (and 
eventually return) the minimum element. As before, we delete it from the queue, making each of 
its children new trees. We then merge all the trees into a binomial queue by merging two equal-
sized trees until it is no longer possible.  

As an example, Figure 11.15 shows a lazy binomial queue. In a lazy binomial queue, there can be 
more than one tree of the same size. We can tell the size of a tree by examining the root's rank 
field, which gives the number of children (and thus implicitly the type of tree). To perform the 
delete_min, we remove the smallest element, as before, and obtain the tree in Figure 11.16.  

 

 

Figure 11.15 Lazy binomial queue
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Figure 11.16 Lazy binomial queue after removing the smallest element (3)

 

We now have to merge all the trees and obtain a standard binomial queue. A standard binomial 
queue has at most one tree of each rank. In order to do this efficiently, we must be able to 
perform the merge in time proportional to the number of trees present (T) (or log n, whichever is 
larger). To do this, we form an array of lists, L0, L1, . . . , LRmax+ 1, where Rmax is the rank 
of the largest tree. Each list Lr contains all of the trees of rank r. The procedure in Figure 

11.17 is then applied.  

Each time through the loop, at lines 3 through 5, the total number of trees is reduced by 1. This 
means that this part of the code, which takes constant time per execution, can only be performed 
T - 1 times, where T is the number of trees. The for loop counters, and tests at the end of the 
while loop take O (log n) time, so the running time is O (T + log n), as required. Figure 11.18 
shows the execution of this algorithm on the previous collection of binomial trees.  

Amortized Analysis of Lazy Binomial Queues 

 

Amortized Analysis of Lazy Binomial Queues
 

To carry out the amortized analysis of lazy binomial queues, we will use the same potential 
function that was used for standard binomial queues. Thus, the potential of a lazy binomial queue 
is the number of trees.  

THEOREM 11.3. 

 

The amortized running times of merge and insert are both O(1) for lazy binomial queues. The 
amortized running time of delete_min is O(log n).  

PROOF: 

 

The potential function is the number of trees in the collection of binomial queues. The initial 
potential is 0, and the potential is always nonnegative. Thus, over a sequence of operations, the 
total amortized time is an upper bound on the total actual time.  

/*1*/  for( r = 0; r <= log n  ; r++ )

 

/*2*/  while ( |Lr|  2 )

 

{

 

/*3*/        remove two trees from Lr;

 

/*4*/        merge the two trees into a new tree;

 

/*5*/        add the new tree to Lr+1 ;
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} 

Figure 11.17 Procedure to reinstate a binomial queue

 

 

 

Figure 11.18 Combining the binomial trees into a binomial queue

 

For the merge operation, the actual time is constant, and the number of trees in the collection 
of binomial queues is unchanged, so, by 

Equation (11.2), the amortized time is O(1). 

 

For the insert operation, the actual time is constant, and the number of trees can increase by at 
most 1, so the amortized time is O(1).  

The delete_min operation is more complicated. Let r be the rank of the tree that contains the 
minimum element, and let T be the number of trees. Thus, the potential at the start of the 
delete_min operation is T. To perform a delete_min, the children of the smallest node are split 
off into separate trees. This creates T + r trees, which must be merged into a standard binomial 
queue. The actual time to perform this is T + r + log n, if we ignore the constant in the Big-Oh 

notation, by the argument above.* On the other hand, once this is done, there can be at most log 
n trees remaining, so the potential function can increase by at most (log n) - T. Adding the 
actual time and the change in potential gives an amortized bound of 2 log n + r. Since all the 

trees are binomial trees, we know that r  log n. Thus we arrive at an O(log n) amortized time 
bound for the delete_min operation.  

*We can do this because we can place the constant implied by the Big-Oh notation in the potential 
function and still get the cancellation of terms, which is needed in the proof.  

11.4.3. The Fibonacci Heap Operations
 

As we mentioned before, the Fibonacci heap combines the leftist heap decrease_key operation with 
the lazy binomial queue merge operation. Unfortunately, we cannot use both operations without a 
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slight modification. The problem is that if arbitrary cuts are made in the binomial trees, the 
resulting forest will no longer be a collection of binomial trees. Because of this, it will no 

longer be true that the rank of every tree is at most log n . Since the amortized bound 
for delete_min in lazy binomial queues was shown to be 2 log n + r, we need r = O(log n) for the 
delete_min bound to hold.  

In order to ensure that r = O(log n), we apply the following rules to all non-root nodes: 

 

 Mark a (nonroot) node the first time that it loses a child (because of a cut). 

 

 If a marked node loses another child, then cut it from its parent. This node now becomes the 
root of a separate tree and is no longer marked. This is called a cascading cut, because several 
of these could occur in one decrease_key operation.  

Figure 11.19 shows one tree in a Fibonacci heap prior to a decrease_key operation. 

 

When the node with key 39 is changed to 12, the heap order is violated. Therefore, the node is 
cut from its parent, becoming the root of a new tree. Since the node containing 33 is marked, 
this is its second lost child, and thus it is cut from its parent (10). Now 10 has lost its 
second child, so it is cut from 5. The process stops here, since 5 was unmarked. 5 is now marked. 
The result is shown in Figure 11.20.  

Notice that 10 and 33, which used to be marked nodes, are no longer marked, because they are now 
root nodes. This will be a crucial observation in our proof of the time bound.  

 

 

Figure 11.19 A tree in the Fibonacci heap prior to decreasing 39 to 12

 

 

 

Figure 11.20 The resulting segment of the Fibonacci heap after the decrease_key operation

 

11.4.4. Proof of the Time Bound

 

Recall that the reason for marking nodes is that we needed to bound the rank (number of children) 
r of any node. We will now show that any node with n descendants has rank O(log n).  
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LEMMA 11.1. 

 

Let x be any node in a Fibonacci heap. Let ci be the ith youngest child of x. Then the rank of ci
is at least i - 2.  

PROOF: 

 

At the time when ci was linked to x, x already had (older) children c1, c2, . . . , ci-1. Thus, x

had at least i - 1 children when it linked to ci. Since nodes are only linked if they have the 

same rank, it follows that at the time that ci was linked to x, ci had at least i - 1 children. 

Since that time, it could have lost at most one child, or else it would have been cut from x. 
Thus, ci has at least i - 2 children.  

From 

Lemma 11.1, it is easy to show that any node of rank r must have a lot of descendants. 

 

LEMMA 11.2. 

 

Let Fk be the Fibonacci numbers defined (in Section 1.2) by F0 = 1, F1 = 1, and Fk = Fk-1 + Fk-2. 

Any node of rank r  1 has at least Fr+1 descendants (including itself). 

 

PROOF: 

 

Let Sr be the smallest tree of rank r. Clearly, S0 = 1 and S1 = 2. By Lemma 11.1, a tree of rank 

r must have subtrees of rank at least r - 2, r - 3, . . . , 1, and 0, plus another subtree, which 
has at least one node. Along with the root of Sr itself, this gives a minimum value for Sr>1 of 

. It is easy to show that Sr = Fr+1 (Exercise 1.9a). 
 

Because it is well known that the Fibonacci numbers grow exponentially, it immediately follows 
that any node with s descendants has rank at most O(log s). Thus, we have  

LEMMA 11.3. 

 

The rank of any node in a Fibonacci heap is O(log n). 

 

PROOF: 

 

Immediate from the discussion above. 

 

If all we were concerned about was the time bounds for the merge, insert, and delete_min 
operations, then we could stop here and prove the desired amortized time bounds. Of course, the 
whole point of Fibonacci heaps is to obtain an O(1) time bound for decrease_key as well.  

The actual time required for a decrease_key operation is 1 plus the number of cascading cuts that 
are performed during the operation. Since the number of cascading cuts could be much more than O
(1), we will need to pay for this with a loss in potential. If we look at 

Figure 11.20, we see 
that the number of trees actually increases with each cascading cut, so we will have to enhance 
the potential function to include something that decreases during cascading cuts. Notice that we 
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cannot just throw out the number of trees from the potential function, since then we will not be 
able to prove the time bound for the merge operation. Looking at Figure 11.20 again, we see that 
a cascading cut causes a decrease in the number of marked nodes, because each node that is the 
victim of a cascading cut becomes an unmarked root. Since each cascading cut costs 1 unit of 
actual time and increases the tree potential by 1, we will count each marked node as two units of 
potential. This way, we have a chance of canceling out the number of cascading cuts.  

THEOREM 11.4. 

 

The amortized time bounds for Fibonacci heaps are O(1) for insert, merge, and decrease_key and O
(log n) for delete_min.  

PROOF: 

 

The potential is the number of trees in the collection of Fibonacci heaps plus twice the number 
of marked nodes. As usual, the initial potential is 0 and is always nonnegative. Thus, over a 
sequence of operations, the total amortized time is an upper bound on the total actual time.  

For the merge operation, the actual time is constant, and the number of trees and marked nodes is 
unchanged, so, by 

Equation (11.2), the amortized time is O(1). 

 

For the insert operation, the actual time is constant, the number of trees increases by 1, and 
the number of marked nodes is unchanged. Thus, the potential increases by at most 1, so the 
amortized time is O(1).  

For the delete_min operation, let r be the rank of the tree that contains the minimum element, 
and let T be the number of trees before the operation. To perform a delete_min, we once again 
split the children of a tree, creating an additional r new trees. Notice that, although this can 
remove marked nodes (by making them unmarked roots), this cannot create any additional marked 
nodes. These r new trees, along with the other T trees, must now be merged, at a cost of T + r + 
log n = T + O(log n), by Lemma 11.3. Since there can be at most O(log n) trees, and the number of 
marked nodes cannot increase, the potential change is at most O(log n) - T. Adding the actual 
time and potential change gives the O(log n) amortized bound for delete_min.  

Finally, for the decrease_key operation, let C be the number of cascading cuts. The actual cost 
of a decrease_key is C + 1, which is the total number of cuts performed. The first (noncascading) 
cut creates a new tree and thus increases the potential by 1. Each cascading cut creates a new 
tree, but converts a marked node to an unmarked (root) node, for a net loss of one unit per 
cascading cut. The last cut also can convert an unmarked node (in Figure 11.20 it is node 5) into 
a marked node, thus increasing the potential by 2. The total change in potential is thus 3 - C. 
Adding the actual time and the potential change gives a total of 4, which is O (1).  

11.5. Splay Trees
 

As a final example, we analyze the running time of splay trees. Recall, from Chapter 4, that 
after an access of some item x is performed, a splaying step moves x to the root by a series of 
three operations: zig, zig-zag, and zig-zig. These tree rotations are shown in Figure 11.21. We 
adopt the convention that if a tree rotation is being performed at node x, then prior to the 
rotation p is its parent and g is its grandparent (if x is not the child of the root).  

Recall that the time required for any tree operation on node x is proportional to the number of 
nodes on the path from the root to x. If we count each zig operation as one rotation and each 
zig-zig or zig-zag as two rotations, then the cost of any access is equal to 1 plus the number of 
rotations.  

In order to show an O(log n) amortized bound for the splaying step, we need a potential function 
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which can increase by at most O(log n) over the entire splaying step, but which will also cancel 
out the number of rotations performed during the step. It is not at all easy to find a potential 
function that satisfies these criteria. A simple first guess at a potential function might be the 
sum of the depths of all the nodes in the tree. This does not work, because the potential can 

increase by (n) during an access. A canonical example of this occurs when elements are 
inserted in sequential order.  

A potential function , which does work, is defined as 

 

 

 

S(i) represents the number of descendants of i (including i itself). The potential function is 
the sum, over all nodes i in the tree T, of the logarithm of S(i).  

 

 

Figure 11.21 zig, zig-zag, and zig-zig operations; each has a symmetric case (not shown)

 

To simplify the notation, we will define 

 

R(i) = logS(i).

 

This makes 

 

 

 

R(i) represents the rank of node i. The terminology is similar to what we used in the analysis of 
the disjoint set algorithm, binomial queues, and Fibonacci heaps. In all these data structures, 
the meaning of rank is somewhat different, but is generally meant to be on the order (magnitude) 
of the logarithm of the size of the tree. For a tree T with n nodes, the rank of the root is 
simply R(T) = log n. Using the sum of ranks as a potential function is similar to using the sum 
of heights as a potential function. The important difference is that while a rotation can change 
the heights of many nodes in the tree, only x, p, and g can have their ranks changed.  

Before proving the main theorem, we need the following lemma. 
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LEMMA 11.4. 

 

If a + b  c, and a and b are both positive integers, then 

 

log a + log b  2 log c - 2. 

 

PROOF: 

 

By the arithmetic-geometric mean inequality, 

 

 

 

Thus 

 

 

 

Squaring both sides gives 

 

ab  c2/4

 

Taking logarithms of both sides proves the lemma. 

 

With the preliminaries taken care of, we are ready to prove the main theorem. 

 

THEOREM 11.5. 

 

The amortized time to splay a tree with root T at node x is at most 3(R(T) - R(x)) + 1 = O(log 
n).  

PROOF: 

 

The potential function is the sum of the ranks of the nodes in T. 

 

If x is the root of T, then there are no rotations, so there is no potential change. The actual 
time is 1 to access the node, thus the amortized time is 1 and the theorem is true. Thus, we may 
assume that there is at least one rotation.  

For any splaying step, let Ri(x) and Si(x) be the rank and size of x before the step, and let Rf
(x) and Sf(x) be the rank and size of x immediately after the splaying step. We will show that 

the amortized time required for a zig is at most 3(Rf(x) - Ri(x)) + 1 and that the amortized time 

for either a zig-zag or zig-zig is at most 3(Rf(x) - Ri(x)). We will show that when we add over 

all steps, the sum telescopes to the desired time bound.  

Zig step: For the zig step, the actual time is 1 (for the single rotation), and the potential 
change is Rf(x) + Rf(p) - Ri(x) - Ri(p). Notice that the potential change is easy to compute, 

because only x and p's trees change size. Thus  
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ATzig = 1 + Rf(x) + Rf(p) - Ri(x) - Ri(p) 

From 

Figure 11.21 we see that Si(p)  Sf(p); thus, it follows that Ri(p)  Rf(p). Thus, 

 

ATzig  1 + Rf(x) - Ri(x).

 

Since Sf(x)  Si(x), it follows that Rf(x) - Ri(x) 0, so we may increase the right side, 

obtaining  

ATzig  1 + 3(Rf(x) - Ri(x)).

 

Zig-zag step: For the zig-zag case, the actual cost is 2, and the potential change is Rf(x) + Rf
(p) + Rf(g) - Ri(x) - Ri(p) - Ri(g). This gives an amortized time bound of  

ATzig-zag = 2 + Rf(x) + Rf(p) + Rf(g) - Ri(x) - Ri(p) - Ri(g).

 

From Figure 11.21 we see that Sf(x) = Si(g), so their ranks must be equal. Thus, we obtain 

 

ATzig-zag = 2 + Rf(p) + Rf(g) - Ri(x) - Ri(p).

 

We also see that Si(p)  Si(x). Consequently, Ri(x)  Ri(p). Making this substitution 

gives  

ATzig-zag  2 + Rf(p) + Rf(g) - 2Ri(x).

 

From Figure 11.21 we see that Sf(p) + Sf(g)  Sf(x). If we apply Lemma 11.4, we obtain 

 

log Sf(p) + log Sf(g)  2 log Sf(x) - 2.

 

By definition of rank, this becomes 

 

Rf(p) + Rf(g)  2Rf(x) - 2.

 

Substituting this we obtain 

 

ATzig-zag  2Rf(x) - 2Ri(x)

 

 2(Rf(x) - Ri(x))
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Since Rf(x)  Ri(x), we obtain 

 

ATzig-zag  3(Rf(x) - Ri(x)).

 

Zig-zig step: The third case is the zig-zig. The proof of this case is very similar to the zig-

zag case. The important inequalities are Rf(x) = Ri(g), Rf(x)  Rf(p), Ri(x)  Ri(p), and 

Si(x) + Sf(g)  Sf(x). We leave the details as Exercise 11.8. 

 

 

 

Figure 11.22 The splaying steps involved in splaying at node 2

 

The amortized cost of an entire splay is the sum of the amortized costs of each splay step. 

Figure 11.22 shows the steps which are performed in a splay at node 2. Let R1 (2), R2(2), R3(2), 

and R4(2) be the rank of node 2 in each of the four trees. The cost of the first step, which is a 

zig-zag, is at most 3(R2(2) - R1 (2)). The cost of the second step, which is a zig-zig, is 3(R3
(2) - R2(2)). The last step is a zig and has a cost no larger than 3(R4(2) - R3(2)) + 1. The 

total cost thus telescopes to 3(R4(2) - R1(2)) + 1.  

In general, by adding up the amortized costs of all the rotations, of which at most one can be a 
zig, we see that the total amortized cost to splay at node x is at most 3(Rf(x) - Ri(x)) + 1, 

where Ri(x) is the rank of x before the first splaying step and Rf(x) is the rank of x after the 

last splaying step. Since the last splaying step leaves x at the root, we obtain an amortized 
bound of 3(Rf(T) - Ri(x)) + 1, which is O(log n).  

Because every operation on a splay tree requires a splay, the amortized cost of any operation is 
within a constant factor of the amortized cost of a splay. Thus, all splay tree operations take O
(log n) amortized time. By using a more general potential function, it is possible to show that 
splay trees have several remarkable properties. This is discussed in more detail in the 
exercises.  

Summary
 

In this chapter, we have seen how an amortized analysis can be used to apportion charges among 
operations. To perform the analysis, we invent a fictitious potential function. The potential 
function measures the state of the system. A high-potential data structure is volatile, having 
been built on relatively cheap operations. When the expensive bill comes for an operation, it is 
paid for by the savings of previous operations. One can view potential as standing for potential 
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for disaster, in that very expensive operations can only occur when the data structure has a high 
potential and has used considerably less time than has been allocated.  

Low potential in a data structure means that the cost of each operation has been roughly equal to 
the amount allocated for it. Negative potential means debt-- more time has been spent than has 
been allocated, so the allocated (or amortized) time is not a meaningful bound.  

As expressed by 

Equation (11.2), the amortized time for an operation is equal to the sum of the 
actual time and potential change. Taken over an entire sequence of operations, the amortized time 
for the sequence is equal to the total sequence time plus the net change in potential. As long as 
this net change is positive, then the amortized bound provides an upper bound for the actual time 
spent and is meaningful.  

The keys to choosing a potential function are to guarantee that the minimum potential occurs at 
the beginning of the algorithm, and to have the potential increase for cheap operations and 
decrease for expensive operations. It is important that the excess or saved time be measured by 
an opposite change in potential. Unfortunately, this is sometimes easier said than done.  

Exercises
 

11.1 When do m consecutive insertions into a binomial queue take less than 2m time units? 

 

11.2 Suppose a binomial queue of n = 2k - 1 elements is built. Alternately perform m insert and 
delete_min pairs. Clearly, each operation takes O(log n) time. Why does this not contradict the 
amortized bound of O(1) for insertion?  

*11.3 Show that the amortized bound of O(log n) for the skew heap operations described in the 
text cannot be converted to a worst-case bound, by giving a sequence of operations that lead to a 

merge requiring (n) time. 

 

*11.4 Show how to merge two skew heaps with one top-down pass and reduce the merge cost to O(1) 
amortized time.  

11.5 Extend skew heaps to support the decrease_key operation in O(log n) amortized time. 

 

11.6 Implement Fibonacci heaps and compare their performance with binary heaps when used in 
Dijkstra's algorithm.  

11.7 A standard implementation of Fibonacci heaps requires four pointers per node (parent, child, 
and two siblings). Show how to reduce the number of pointers, at the cost of at most a constant 
factor in the running time.  
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11.8 Show that the amortized time of a zig-zig splay is at most 3(Rf(x) - Ri(x)). 

 

11.9 By changing the potential function, it is possible to prove different bounds for splaying. 
Let the weight function W(i) be some function assigned to each node in the tree, and let S(i) be 
the sum of the weights of all the nodes in the subtree rooted at i, including i itself. The 
special case W(i) = 1 for all nodes corresponds to the function used in the proof of the splaying 
bound. Let n be the number of nodes in the tree, and let m be the number of accesses. Prove the 
following two theorems:  

a. The total access time is O(m + (m + n)log n). 

 

*b. If qi is the number of times that item i is accessed, and qi > 0 for all i, then the total 

access time is  

 

 

11.10 a. Show how to implement the merge operation on splay trees so that a sequence of n -1 

merges starting from n single-element trees takes O(n log2 n) time.  

*b. Improve the bound to O(n log n). 

 

11.11 In Chapter 5, we described rehasing: When a table becomes more than half full, a new table 
twice as large is constructed, and the entire old table is rehashed. Give a formal amortized 
analysis, with potential function, to show that the amortized cost of an insertion is still O(1).

11.12 Show that if deletions are not allowed, then any sequence of m insertions into an n node 2-
3 tree produces O(m + n) node splits.  

11.13 A deque with heap order is a data structure consisting of a list of items, on which the 
following operations are possible:  

push(x,d): Insert item x on the front end of deque d. 

 

pop(d): Remove the front item from deque d and return it. 

 

inject(x,d): Insert item x on the rear end of deque d. 

 

eject(d): Remove the rear item from deque d and return it. 

 

find _min(d): Return the smallest item from deque d (breaking ties arbitrarily). 

 

a. Describe how to support these operations in constant amortized time per operation. 

 

**b. Describe how to support these operations in constant worst-case time per operation. 
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