Generation of polygonal meshes in compact space

Sergio Salinas-Fernández José Fuentes-Sepúlveda Nancy Hitschfeld-Kahler

SIAM International Meshing Roundtable Workshop 2023

March 7, 2023

Abstract

We will show how to encapsulate a compact data structure, for polygonal mesh representation, as the classic Half-Edge data structure.

And an application for this data structure (a polygonal mesh generator). We can get a compaction of 99% the memory usage.

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

Motivation

2 Background

3 Compact data structure encapsulation as Half-edge data structure

- 4 Data structure implementation
- 5 Mesh generation using compact data structure
- 6 Experiments
- Conclusions and future work

Motivation

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

4 / 37

Motivation

Background

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

- Pemb accept polygonal meshes with arbitrary shape polygons.
- Pemb accept polygonal meshes with holes.
- Pemb can be constructed in parallel.
- Pemb operations have a constant time complexity.

- Pemb accept polygonal meshes with arbitrary shape polygons.
- Pemb accept polygonal meshes with holes.
- Pemb can be constructed in parallel.
- Pemb operations have a constant time complexity.

- Pemb accept polygonal meshes with arbitrary shape polygons.
- Pemb accept polygonal meshes with holes.
- Pemb can be constructed in parallel.
- Pemb operations have a constant time complexity.

- Pemb accept polygonal meshes with arbitrary shape polygons.
- Pemb accept polygonal meshes with holes.
- Pemb can be constructed in parallel.
- Pemb operations have a constant time complexity.

- Pemb accept polygonal meshes with arbitrary shape polygons.
- Pemb accept polygonal meshes with holes.
- Pemb can be constructed in parallel.
- Pemb operations have a constant time complexity.

[(([[))(])(])(])(])(])(])(])))

$\left[\left(\left(\left[\left[\right)\right],\left[\right],\left[\left[\right]\right],\left[\right),\left[\right],\left[\right]\right],\left[\right],\left[\right]\right]\right)\right]$

 $\mathbf{A} = \mathbf{01100110100010110001100110}$

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

8/37

$[\begin{array}{c}1&2\\(&(\\ \end{array}[], \begin{array}{c}2\\(&(\\ \end{array}[], \begin{array}{c}3\\(&)\end{array}], \begin{array}{c}4\\(&)\\(&)\end{array}], \begin{array}{c}5\\(&)\\(&)\end{array}], \begin{array}{c}6\\(&)\\(&)\end{array}], \begin{array}{c}6\\(&)\\(&)\end{array}], \begin{array}{c}3\\(&)\\(&)\end{array}]$

$\begin{bmatrix} A & 1 & 2 & B & C \\ (& (& [& [&]) & (&] \end{bmatrix} \begin{bmatrix} A & D & E \\ (& (& [& [&]) \end{bmatrix} \begin{bmatrix} A & D & E \\ (& [&] \end{bmatrix} \begin{bmatrix} F & 5 \\ (&] \end{bmatrix} \begin{bmatrix} G & 6 \\ (&] \end{bmatrix} \end{bmatrix}$

$\begin{bmatrix} A & 1 & 2 & B & C \\ (& (& [& [&) & (&] \end{bmatrix} & 4 & D & E \\ (& (& [& [&) & (&] \end{bmatrix} & (&] & [& [&] \end{bmatrix} & [&] & (&] \end{bmatrix} \begin{bmatrix} & 6 \\ (& [&] \end{bmatrix} & (&] \end{bmatrix} \begin{bmatrix} & 6 \\ (& [&] \end{bmatrix} \end{bmatrix}$

Example of Pemb query

Return the complementary edge of 1-3

$$mate(i) = \begin{cases} A.select_0(B * .match(A.rank_0(i+1))) & \text{if } A[i] = 1\\ A.select_1(B.match(A.rank_1(i+1))) & \text{Otherwise} \end{cases}$$

Return the complementary edge of 1-3

 $mate(7) = A.select_1(B.match(A.rank_1(7)))$

Count the number of 1's in A until the position 7 = 4

Return the complementary edge of 1-3

Find the position of complementary edge to 1-3 in B=7

Return the complementary edge of 1-3

Find the position of seventh 1 in A = 15

Compact data structure encapsulation as Half-edge data structure

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

10/37

Pemb encapsulation as Half-edge

representation

Pemb representation

11/37

Pemb encapsulation as Half-edge

Half-edge queries as pemb queries

In the Half-edge DS we use 11 queries to get information of the mesh, those queries can be done in pemb by combining pemb's basic queries, for example:

• next(e):

• target(*e*):

We had to develop 2 new queries for pemb to get the same information as the half-edge DS, those are pemb::first_dual(f) and pemb::get_face(e).

Half-edge queries as pemb queries

In the Half-edge DS we use 11 queries to get information of the mesh, those queries can be done in pemb by combining pemb's basic queries, for example:

next(e): pemb::mate(pemb::prev(e))
target(e):

We had to develop 2 new queries for pemb to get the same information as the half-edge DS, those are pemb::first_dual(f) and pemb::get_face(e).

Half-edge queries as pemb queries

In the Half-edge DS we use 11 queries to get information of the mesh, those queries can be done in pemb by combining pemb's basic queries, for example:

• target(e): pemb::vertex(e)

We had to develop 2 new queries for period to get the same information as the half-edge DS, those are period. f(f) and period. f(e).
Data structure implementation

Implementation of the non-compact data structure

For the Half-edge implementation we use two array of structures (AoS).

```
struct vertex{
  double x, y;
  bool is_border;
  int incident_halfedge;
};
```

```
struct halfEdge {
    int origin, target;
    int twin;
    int next;
    bool is_border;
};
```

struct h int int int int bool	<pre>nalfEdge { origin, target; twin; next, prev; face; is_border;</pre>	<pre>struct halfEdge { int origin, target; int twin; int next, prev; int face; bool is_border;</pre>	<pre>struct halfEdge { int origin, target; int twin; int next, prev; int face; bool is_border;</pre>	•••	<pre>struct halfEdge { int origin, target; int twin; int next, prev; int face; bool is border:</pre>
};		};	};		};

• The compact half-edge (pemb) is stored in only 3 bitvectors!

- Small Extra space is used to support queries in those bitvectors.
- Coordinates of the vertices are stored in an array since they can not be compacted.

- The compact half-edge (pemb) is stored in only 3 bitvectors!
- Small Extra space is used to support queries in those bitvectors.
- Coordinates of the vertices are stored in an array since they can not be compacted.

- The compact half-edge (pemb) is stored in only 3 bitvectors!
- Small Extra space is used to support queries in those bitvectors.
- Coordinates of the vertices are stored in an array since they can not be compacted.

Mesh generation using compact data structure

Polylla mesh generator

Source: Salinas-Fernández, S., Hitschfeld-Kahler, N., Ortiz-Bernardin, A., & Si, H. (2022). POLYLLA: Polygonal meshing algorithm based on terminal-edge regions. Engineering with Computers, 38(5), 4545–4567. https://doi.org/10.1007/s00366-022-01643-4

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

Longest-edge propagation path (Lepp) 2D

Longest Edge Propagation Path 2D †

The lepp of a triangle t_0 is the ordered list of all adjacent triangles $t_0, t_1, ..., t_l$, such that t_i is the longest edge neighbor triangle of t_{i-1} by the longest-edge of t_{i-1} , for i = 1, 2, ..., l.

[†] Source Maria-Cecilia Rivara. New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. International Journal for Numerical Methods in Engineering, 40(18):3313-3324, 1997.

Terminal-edge regions

Terminal-edge region ‡

A terminal-edge region R is a region formed by the union of all triangles t_i such that Lepp (t_i) has the same terminal-edge.

‡R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervías, and L.E. Campusano. Delaunay based algorithm for finding polygonal voids in planar point sets. Astronomy and Computing, 22:48 - 62, 2018. 20

Terminal-edge regions

Terminal-edge region ‡

A terminal-edge region R is a region formed by the union of all triangles t_i such that Lepp (t_i) has the same terminal-edge.

‡R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervías, and L.E. Campusano. Delaunay based algorithm for finding polygonal voids in planar point sets. Astronomy and Computing, 22:48 - 62, 2018. 20

Frontier-edges ‡

A frontier-edge is an edge that is shared by two triangles, each one belonging to a different terminal-edge region.

‡R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervías, and L.E. Campusano. Delaunay based algorithm for finding polygonal voids in planar point sets. Astronomy and Computing, 22:48 - 62, 2018. 20

Polylla 2D algorithm

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

Polylla 2D algorithm

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

Polylla 2D algorithm

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

Experiments

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

- Polylla was implemented in C++.
- To generate the initial Delaunay triangulation, we used the CGAL library.
- The implementation of Polylla was the same for the two version of the compact half-edge.
- We use the library malloc_count to measure the memory usage.

```
Compact polylla source code
https://github.com/ssalinasfe/Compact-Polylla-Mesh
Pemb source code
https://github.com/jfuentess/sdsl-lite
```

Memory usage Experiments

Memory peak during the generation of the data structure and Polylla

Memory usage after the generation of the data structure and Polylla
- Topological information (without coords) of a polygonal mesh can be compacted by a 99% using compact half-edge.
- The compact mesh uses a 9.0% of memory of the non-compact version.
- The memory to store the compact mesh is distributed in 88.67% for the point coordinates and 11.33% for the half-edge data structure.

Memory usage after the generation of the data structure and Polylla.

Memory peak results

• Generate a polylla mesh takes 3.49x more memory using the AoS version than the compact version.

Memory peak during the generation of the data structure and Polylla

Time results

Time to generate the half-edge data structure and Polylla meshes

Polylla mesh phases times

Salinas S., Fuentes J., Hitschfeld N.

Time results

- The construction of AoS half-edge data structure is 1.95x faster than the construction of compact half-edge.
- Generation of Polylla using AoS half-edge is 42.7x faster than the generation using the compact half-edge.

Time to generate the half-edge data structure and Polylla meshes

Salinas S., Fuentes J., Hitschfeld N.

Time results

- The construction of AoS half-edge data structure is 1.95x faster than the construction of compact half-edge.
- Generation of Polylla using AoS half-edge is 42.7x faster than the generation using the compact half-edge.

Time to generate the half-edge data structure and Polylla meshes

Salinas S., Fuentes J., Hitschfeld N.

- The complexity is O(n) using both data structures.
- The growth of all the phases is the same for both data structures.

Polylla mesh phases times

Conclusions and future work

- We encapsulate a compact data structure as the well-known half-edge data structure. This is the first practical use of pemb.
- We develop new queries for pemb to support the generation of polygonal meshes.
- We can get a compaction of the 99% of the topological information of a polygonal mesh.
- We expect to expand pemb to support surface meshes.
- We expect to add edge flip and vertex insertion in the future.
- We expect to test this compact data structure in parallel.

- We encapsulate a compact data structure as the well-known half-edge data structure. This is the first practical use of pemb.
- We develop new queries for pemb to support the generation of polygonal meshes.
- We can get a compaction of the 99% of the topological information of a polygonal mesh.
- We expect to expand pemb to support surface meshes.
- We expect to add edge flip and vertex insertion in the future.
- We expect to test this compact data structure in parallel.

- We encapsulate a compact data structure as the well-known half-edge data structure. This is the first practical use of pemb.
- We develop new queries for pemb to support the generation of polygonal meshes.
- We can get a compaction of the 99% of the topological information of a polygonal mesh.
- We expect to expand pemb to support surface meshes.
- We expect to add edge flip and vertex insertion in the future.
- We expect to test this compact data structure in parallel.

- We encapsulate a compact data structure as the well-known half-edge data structure. This is the first practical use of pemb.
- We develop new queries for pemb to support the generation of polygonal meshes.
- We can get a compaction of the 99% of the topological information of a polygonal mesh.
- We expect to expand pemb to support surface meshes.
- We expect to add edge flip and vertex insertion in the future.
- We expect to test this compact data structure in parallel.

- We encapsulate a compact data structure as the well-known half-edge data structure. This is the first practical use of pemb.
- We develop new queries for pemb to support the generation of polygonal meshes.
- We can get a compaction of the 99% of the topological information of a polygonal mesh.
- We expect to expand pemb to support surface meshes.
- We expect to add edge flip and vertex insertion in the future.
- We expect to test this compact data structure in parallel.

- We encapsulate a compact data structure as the well-known half-edge data structure. This is the first practical use of pemb.
- We develop new queries for pemb to support the generation of polygonal meshes.
- We can get a compaction of the 99% of the topological information of a polygonal mesh.
- We expect to expand pemb to support surface meshes.
- We expect to add edge flip and vertex insertion in the future.
- We expect to test this compact data structure in parallel.

I'm looking for postdoctoral position or jobs!

Dropped frames

Background

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

Compression and Compaction are different concepts.

- Compression: Studies the minimum possible space necessary to store data.
 - Require decompression of the data to be used.
 - Does not useful for real-time applications.
- Compaction: Studies the minimum possible space necessary to store data **but allowing access to the information**.
 - Allows us to fit and efficiently query, navigate, and manipulate much larger datasets in main memory.
 - Uses more memory than compression.

Compression and Compaction are different concepts.

- Compression: Studies the minimum possible space necessary to store data.
 - Require decompression of the data to be used.
 - Does not useful for real-time applications.
- Compaction: Studies the minimum possible space necessary to store data **but allowing access to the information**.
 - Allows us to fit and efficiently query, navigate, and manipulate much larger datasets in main memory.
 - Uses more memory than compression.

The minimum space suffice to represent a polygonal mesh with m edges is 3.58m bits.

- Classic data structures
 - Face based 13 rpv
 - Half-edge 19 rpv
- Compact data structures
 - Catalog representation 7.64 rpv
 - Star vertex representation 7 rpv
 - Schnyder wood representation 4m bits
 - Pemb 4m bits
- Rpv = references per vertex

• Classic data structures

- Face based 13 rpv
- Half-edge 19 rpv
- Compact data structures
 - Catalog representation 7.64 rpv
 - Star vertex representation 7 rpv
 - Schnyder wood representation 4m bits
 - Pemb 4m bits
- Rpv = references per vertex

- Classic data structures
 - Face based 13 rpv
 - Half-edge 19 rpv
- Compact data structures
 - Catalog representation 7.64 rpv
 - Star vertex representation 7 rpv
 - Schnyder wood representation 4m bits
 - Pemb 4m bits
- Rpv = references per vertex

Source: ALEARDI, L. C., DEVILLERS, O., & MEBARKI, A. (2011). CATALOG-BASED REPRESENTATION OF 2D TRIANGULATIONS. International Journal of Computational Geometry & Applications, 21(04), 393–402.

- Classic data structures
 - Face based 13 rpv
 - Half-edge 19 rpv
- Compact data structures
 - Catalog representation 7.64 rpv
 - Star vertex representation 7

rpv

- Schnyder wood representation 4m bits
- Pemb 4m bits

Rpv = references per vertex

Source: Kallmann, M., & Thalmann, D. (2001). Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information. Journal of Graphics Tools, 6(1), 7–18. https://doi.org/10.1080/10867651.2001.1048753

- Classic data structures
 - Face based 13 rpv
 - Half-edge 19 rpv
- Compact data structures
 - Catalog representation 7.64 rpv
 - Star vertex representation 7 rpv
 - Schnyder wood representation 4m bits
 - Pemb 4m bits
- Rpv = references per vertexm = edges of the mesh

Source: Aleardi, L. C., & Devillers, O. (2018). Array-based compact data structures for triangulations: Practical solutions with theoretical guarantees. Journal of Computational Geometry, 9(1), Article 1. https://doi.org/10.20382/jocg.v9i1a8

- Classic data structures
 - Face based 13 rpv
 - Half-edge 19 rpv
- Compact data structures
 - Catalog representation 7.64 rpv
 - Star vertex representation 7 rpv
 - Schnyder wood representation 4m bits
 - Pemb 4m bits
- Rpv = references per vertexm = edges of the mesh

- first(v)/last(v): the first/last half-edge whose source is the node v;
- mate(i): the other half-edge corresponding to the same edge of i;
- next(i)/prev(i): the next/previous half-edge with the same source of i, in ccw order of the neighbors of v.
- vertex(i): the index of the node that is the source of half-edge i;

Pemb queries

- first(v)/last(v): the first/last half-edge whose source is the node v;
- mate(i): the other half-edge corresponding to the same edge of i;
- next(i)/prev(i): the next/previous half-edge with the same source of i, in ccw order of the neighbors of v.
- vertex(i): the index of the node that is the source of half-edge i;

- first(v)/last(v): the first/last half-edge whose source is the node v;
- mate(i): the other half-edge corresponding to the same edge of i;
- next(i)/prev(i): the next/previous half-edge with the same source of i, in ccw order of the neighbors of v.
- vertex(i): the index of the node that is the source of half-edge i;

- first(v)/last(v): the first/last half-edge whose source is the node v;
- mate(i): the other half-edge corresponding to the same edge of i;
- next(i)/prev(i): the next/previous half-edge with the same source of i, in ccw order of the neighbors of v.
- vertex(i): the index of the node that is the source of half-edge i;

- first(v)/last(v): the first/last half-edge whose source is the node v;
- mate(i): the other half-edge corresponding to the same edge of i;
- next(i)/prev(i): the next/previous half-edge with the same source of i, in ccw order of the neighbors of v.
- vertex(i): the index of the node that is the source of half-edge i;

Pemb extra queries

We implemented extra queries to simulate the behavior of the half-edge data structure.

- degree(v): return the number of edges incident to vertex v.
- **first_dual**(*f*): return the position of the first visited edge incident to face *f* during the traversal of *T*.
- get_face(e): return the id of the face incident to edge e.

Pemb extra queries

We implemented extra queries to simulate the behavior of the half-edge data structure.

- degree(v): return the number of edges incident to vertex v.
- **first_dual**(*f*): return the position of the first visited edge incident to face *f* during the traversal of *T*.
- get face(e): return the id of the face incident to edge e.

Pemb extra queries

We implemented extra queries to simulate the behavior of the half-edge data structure.

- degree(v): return the number of edges incident to vertex v.
- **first_dual**(*f*): return the position of the first visited edge incident to face *f* during the traversal of *T*.
- get_face(e): return the id of the face incident to edge e.

Given plannar graph G. Each edge $e \in E$ is split into two half-edges h_1 and h_2 with opposite orientation in both data structures.

- Edge h_i has an orientation
- Edge *h_i* has a twin edge with opposite orientation
- Edge *h_i* is accessible by random access
- All edges of face *f_j* have the same orientation

Compact data structure encapsulation as Half-edge data structure

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

9/30

Half-edge queries as pemb queries

Given plannar graph G. Each edge $e \in E$ is split into two half-edges h_1 and h_2 with opposite orientation in both data structures.

- Edge h_i has an orientation
- Edge *h_i* has a twin edge with opposite orientation
- Edge *h_i* is accessible by random access
- All edges of face *f_j* have the same orientation

Pemb encapsulation as Half-edge

representation

Pemb representation

11/30

- twin(e):
- next(e):
- prev(e):
- origin(*e*):
- target(*e*):
- face(*e*):

- twin(*e*):
- next(e):
- prev(e):
- origin(*e*):
- target(*e*):
- face(*e*):

We encapsulates the basic queries of the Half-edge data structure as:

• twin(e): pemb::mate(e)

- next(e):
- prev(*e*):
- origin(*e*):
- target(*e*):
- face(*e*):

- twin(e): pemb::mate(e)
- next(e):
- prev(e):
- origin(*e*):
- target(*e*):
- face(*e*):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- o prev(e):
- origin(e):
- target(*e*):
- face(e):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e):
- origin(*e*):
- target(*e*):
- face(*e*):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(e):
- target(*e*):
- face(*e*):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(*e*):
- target(*e*):
- face(e):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(e): pemb::vertex(pemb::mate(e))
- target(e):
- face(*e*):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(e): pemb::vertex(pemb::mate(e))
- target(e):
- face(e):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(e): pemb::vertex(pemb::mate(e))
- target(e): pemb::vertex(e)
- face(*e*):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(e): pemb::vertex(pemb::mate(e))
- target(e): pemb::vertex(e)
- face(*e*):

- twin(e): pemb::mate(e)
- next(e): pemb::mate(pemb::prev(e))
- prev(e): pemb::next(pemb::mate(e))
- origin(e): pemb::vertex(pemb::mate(e))
- target(e): pemb::vertex(e)
- face(e): pemb::get_face(e)

- CCWvertexEdge(*e*):
- CWvertexEdge(*e*):
- isBorder(*e*):
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(*e*):
- isBorder(e):
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(*e*):
- isBorder(e):
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e):
 pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e):
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(*e*):
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e):
 pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f):
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f): pemb::first_dual(f)
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f):
 pemb::first_dual(f)
- edgeOfVertex(v):
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f):
 pemb::first_dual(f)
- edgeOfVertex(v):
 pemb::mate(pemb::first(v))
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f):
 pemb::first_dual(f)
- edgeOfVertex(v): pemb::mate(pemb::first(v))
- degree(v):

- CCWvertexEdge(e): pemb::mate(pemb::next(pemb:mate(e)))
- CWvertexEdge(e): pemb::mate(pemb::prev(pemb:mate(e)))
- isBorder(e): return true if pemb::get_face(e) returns the id of the outer face. Otherwise, return false
- incidentHalfedge(f):
 pemb::first_dual(f)
- edgeOfVertex(v): pemb::mate(pemb::first(v))
- degree(v): pemb::degree(v)

Salinas S., Fuentes J., Hitschfeld N.

Compact mesh generation

March 7, 2023

14 / 30

For 1M of vertices Polylla takes:

- 1.3 seconds in the face based DS.
- 4.6 seconds in the half-edge DS.
- 137.242 seconds in the Pemb DS.

There are new numerical methods that uses polygons/polyhedrons of arbitrary shape as the Virtual Element method.

Source: H. Chi, L. Beirão da Veiga, & G.H. Paulino (2017). Some basic formulations of the virtual element method (VEM) for finite deformations. Computer Methods in Applied Mechanics and Engineering, 318, 148-192.

Polylla mesh generator

Source: Salinas-Fernández, S., Hitschfeld-Kahler, N., Ortiz-Bernardin, A., & Si, H. (2022). POLYLLA: Polygonal meshing algorithm based on terminal-edge regions. Engineering with Computers, 38(5), 4545–4567. https://doi.org/10.1007/s00366-022-01643-4

- Next()
- Prev()
- Twin()
- Origin()
- Target()
- Face()

- Next()
- Prev()
- Twin()
- Origin()
- Target()
- Face()

- Next()
- Prev()
- Twin()
- Origin()
- Target()
- Face()

- Next()
- Prev()
- Twin()
- Origin()
- Target()
- Face()

- Next()
- Prev()
- Twin()
- Origin()
- Target()
- Face()

- Next()
- Prev()
- Twin()
- Origin()
- Target()
- Face()

- CCWvertexEdge(*e*)
- CWvertexEdge(*e*)
- edgeOfVertex(v)
- incidentHalfEdge(f)
- isBorder(*e*)
- degree(v)

• CCWvertexEdge(e): twin(next(e)).

- CWvertexEdge(e): twin(prev(e)).
- incidentHalfEdge(f): Half-edge at index 3f in the array of half-edges.
- length(e): Euclidean distance of the coordinates of origin(e) and target(e).
- degree(e): Using the query CCWvertexEdge(e), iterate over the neighbors of origin(e) until reaching e.

- CCWvertexEdge(e): twin(next(e)).
- CWvertexEdge(e): twin(prev(e)).
- incidentHalfEdge(f): Half-edge at index 3f in the array of half-edges.
- length(e): Euclidean distance of the coordinates of origin(e) and target(e).
- degree(e): Using the query CCWvertexEdge(e), iterate over the neighbors of origin(e) until reaching e.

- CCWvertexEdge(e): twin(next(e)).
- CWvertexEdge(e): twin(prev(e)).
- incidentHalfEdge(f): Half-edge at index 3f in the array of half-edges.
- length(e): Euclidean distance of the coordinates of origin(e) and target(e).
- degree(e): Using the query CCWvertexEdge(e), iterate over the neighbors of origin(e) until reaching e.

- CCWvertexEdge(e): twin(next(e)).
- CWvertexEdge(e): twin(prev(e)).
- incidentHalfEdge(f): Half-edge at index 3f in the array of half-edges.
- length(e): Euclidean distance of the coordinates of origin(e) and target(e).
- degree(e): Using the query CCWvertexEdge(e), iterate over the neighbors of origin(e) until reaching e.

- CCWvertexEdge(e): twin(next(e)).
- CWvertexEdge(e): twin(prev(e)).
- incidentHalfEdge(f): Half-edge at index 3f in the array of half-edges.
- length(e): Euclidean distance of the coordinates of origin(e) and target(e).
- degree(e): Using the query CCWvertexEdge(e), iterate over the neighbors of origin(e) until reaching e.

Longest-edge propagation path (Lepp) 2D

Longest Edge Propagation Path 2D †

The lepp of a triangle t_0 is the ordered list of all adjacent triangles $t_0, t_1, ..., t_l$, such that t_i is the longest edge neighbor triangle of t_{i-1} by the longest-edge of t_{i-1} , for i = 1, 2, ..., l.

[†] Source Maria-Cecilia Rivara. New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. International Journal for Numerical Methods in Engineering, 40(18):3313-3324, 1997.

Terminal-edge regions

Terminal-edge region ‡

A terminal-edge region R is a region formed by the union of all triangles t_i such that Lepp (t_i) has the same terminal-edge.

‡R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervías, and L.E. Campusano. Delaunay based algorithm for finding polygonal voids in planar point sets. Astronomy and Computing, 22:48 - 62, 2018. 20

Terminal-edge regions

Terminal-edge region ‡

A terminal-edge region R is a region formed by the union of all triangles t_i such that Lepp (t_i) has the same terminal-edge.

‡R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervías, and L.E. Campusano. Delaunay based algorithm for finding polygonal voids in planar point sets. Astronomy and Computing, 22:48 - 62, 2018. 20

Frontier-edges ‡

A frontier-edge is an edge that is shared by two triangles, each one belonging to a different terminal-edge region.

‡R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervías, and L.E. Campusano. Delaunay based algorithm for finding polygonal voids in planar point sets. Astronomy and Computing, 22:48 - 62, 2018. 20

Old Polylla

- Triangle based data structure
- Hard to calculate edge adjacencies
- No edge iteration

New Polylla

- Edge based data structure
- Easy navigation inside mesh
- Edge and Triangle navigation
- Easy to read

Polylla 2D algorithm

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

Algorithm has three main phases

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

Label Phase

Algorithm Label phase

Require: Half-edge data structure HalfEdge Ensure: Bitvectors frontie-edge and max-edge, and vector seed-list

Label Phase

Algorithm Label phase

end for

Label Phase

Algorithm Label phase

Require: Half-edge data structure HalfEdge

Ensure: Bitvectors frontie-edge and max-edge, and vector seed-list

seed-list

for all triangle t in HalfEdge do

```
e = incidentHalfedge(t_i)
```

Label the max edge between e, next(e), prev(e)

end for

for all half-edge e in HalfEdges do

if e is terminal-edge or border terminal-edge then

Store the id of e or twin(e) in the seed list

end if

end for

Algorithm Label phase

Require: Half-edge data structure HalfEdge
Ensure: Bitvectors frontie-edge and max-edge, and vector
seed-list
for all triangle t in HalfEdge do
 e = incidentHalfedge(t_i)
 Label the max edge between e,next(e), prev(e)
end for
for all half-edge e in HalfEdges do
 if e is terminal-edge or border terminal-edge then
 Store the id of e or twin(e) in the seed list
end if
 if e and twin(e) are not in max-edge then
 Mark e in frontier-edge
else if e or twin(e) are border edges then

Mark e in frontier-edge

end if

end for

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

Algorithm has three main phases

- Label Phase
- Iraversal Phase
- Olygon reparation Phase

Algorithm Polygon construction

Require: Seed edge e of a terminal-edge region Ensure: Arbitrary shape polygon P $P \leftarrow \emptyset$ while e is not a frontier-edge do

```
e \leftarrow CWvertexEdge(e)
```

end while

 $\begin{array}{l} e_{init} \leftarrow e \\ e_{curr} \leftarrow next(e) \\ P \leftarrow P \cup origin(e) \\ \text{while } e_{init} \neq e_{curr} \text{ do} \\ \text{while } e_{curr} \text{ is not a frontier-edge do} \\ e_{curr} \leftarrow CWvertexEdge(e) \\ \text{end while} \\ e_{curr} \leftarrow next(e_{curr}) \\ P \leftarrow P \cup origin(e_{curr}) \\ end while \\ \text{end while} \end{array}$

return P

Algorithm Polygon construction

Algorithm Polygon construction

- Input: Triangulation $T(\Omega)$.
- Output: Polygon mesh

Algorithm has three main phases

- Label Phase
- 2 Traversal Phase
- Olygon reparation Phase

Repair Phase

Algorithm Non-simple polygon reparation

Require: Non-simple polygon P Ensure: Set of simple polygons S subseed list as L_p and usage bitarray as A $S \leftarrow \emptyset$ for all barrier-edge tip b in P do end for

Repair Phase

Algorithm Non-simple polygon reparation

Require: Non-simple polygon P Ensure: Set of simple polygons S subseed list as L_p and usage bitarray as A $S \leftarrow \emptyset$ for all barrier-edge tip b in P do end for
Repair Phase

Algorithm Non-simple polygon reparation

```
Require: Non-simple polygon P
Ensure: Set of simple polygons S
subseed list as L_p and usage bitarray as A
S \leftarrow \emptyset
for all barrier-edge tip b in P do
e \leftarrow edgeOfVertex(b)
while e is not a frontier-edge do
e \leftarrow CWvertexEdge(e)
end while
for 0 to (textscdegree(b) - 1)/2 do
e \leftarrow CWvertexEdge(e)
end for
end for
```

Repair Phase

Algorithm Non-simple polygon reparation

Require: Non-simple polygon P Ensure: Set of simple polygons S subseed list as Lp and usage bitarray as A $S \leftarrow \emptyset$ for all barrier-edge tip b in P do $e \leftarrow edgeOfVertex(b)$ while e is not a frontier-edge do $e \leftarrow \text{CWvertexEdge}(e)$ end while for 0 to (textscdegree(b) - 1)/2 do $e \leftarrow CWvertexEdge(e)$ end for Label e as frontier-edge Save half-edges h_1 and h_2 of e in L_p $A[h_1] \leftarrow \text{True}, A[h_2] \leftarrow \text{True}$ end for

Algorithm Non-simple polygon reparation

```
Require: Non-simple polygon P
Ensure: Set of simple polygons S
  subseed list as L_p and usage bitarray as A
  S \leftarrow \emptyset
  for all barrier-edge tip b in P do
      e \leftarrow edgeOfVertex(b)
      while e is not a frontier-edge do
           e \leftarrow \text{CWvertexEdge}(e)
      end while
      for 0 to (\text{textscdegree}(b) - 1)/2 do
           e \leftarrow CWvertexEdge(e)
      end for
      Label e as frontier-edge
      Save half-edges h_1 and h_2 of e in L_p
      A[h_1] \leftarrow \text{True}, A[h_2] \leftarrow \text{True}
  end for
  for all half-edge h in L_p do
      if A[h] is True then
           A[h] \leftarrow False
           Generate new polygon P' starting from h repeat-
  ing the Traversal phase.
           Set as False all indices of half-edges in A used to
  generate P'
      end if
      S \leftarrow S \cup P'
```

```
end for
```

return S

30 / 30

Algorithm Non-simple polygon reparation

```
Require: Non-simple polygon P
Ensure: Set of simple polygons S
  subseed list as L_p and usage bitarray as A
  S \leftarrow \emptyset
  for all barrier-edge tip b in P do
      e \leftarrow edgeOfVertex(b)
      while e is not a frontier-edge do
           e \leftarrow \text{CWvertexEdge}(e)
      end while
      for 0 to (\text{textscdegree}(b) - 1)/2 do
           e \leftarrow CWvertexEdge(e)
      end for
      Label e as frontier-edge
      Save half-edges h_1 and h_2 of e in L_n
      A[h_1] \leftarrow \text{True}, A[h_2] \leftarrow \text{True}
  end for
  for all half-edge h in L_p do
      if A[h] is True then
          A[h] \leftarrow False
           Generate new polygon P' starting from h repeat-
  ing the Traversal phase.
           Set as False all indices of half-edges in A used to
  generate P'
      end if
      S \leftarrow S \cup P'
  end for
```

```
return S
```