
How Do API Documentation and Static Typing Affect API
Usability?

Stefan Endrikat
University of Duisburg-Essen

Germany
stefan.endrikat@stud.uni-

due.de

Stefan Hanenberg
University of Duisburg-Essen

Germany
stefan.hanenberg@icb.uni-

due.de

Romain Robbes
PLEIAD @ DCC

University of Chile
Chile

rrobbes@dcc.uchile.cl

Andreas Stefik
University of Las Vegas

United States
stefika@gmail.com

ABSTRACT
When developers use Application Programming Interfaces (APIs),
they often rely on documentation to assist their tasks. In previ-
ous studies, we reported evidence indicating that static type sys-
tems acted as a form of implicit documentation, benefiting devel-
oper productivity. Such implicit documentation is easier to main-
tain, given it is enforced by the compiler, but previous experiments
tested users without any explicit documentation. In this paper, we
report on a controlled experiment and an exploratory study com-
paring the impact of using documentation and a static or dynamic
type system on a development task. Results of our study both con-
firm previous findings and show that the benefits of static typing
are strengthened with explicit documentation, but that this was not
as strongly felt with dynamically typed languages.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Experimentation, Documentation, Human Factors

Keywords
API Usability, Documentation, Static Type Systems

1. INTRODUCTION
The software engineering community has developed a renewed

interest in studies of Application Programming Interfaces (APIs)
and their documentation, although the importance of good APIs is
know for some time. In his landmark essay, Brooks states that “The
most radical possible solution for constructing software is not to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE 2014 Hyderabad, Andhra Pradesh, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

construct it at all. [3]” Brooks describes how APIs and frameworks
are promising attacks on the essential complexities of software.

While most reasonable scholars would not deny the benefits of
high quality APIs, the impact of documentation is less clear. For
example, consider several claims on the benefits of documentation
in the academic literature:

One user mentioned that the equivalent of an empty
API documentation with only the type name, (e.g., Doxy-
gen), could save him hours of source code exploration.[5]
The biggest hurdle when learning an API is the docu-
mentation. If the documentation for an API is good, it
solves 99% of your problems. [25]

While on the surface, many might consider such claims reason-
able if documentation is of truly excellent quality, studies show a
more nuanced state-of-the-practice. For example, not all develop-
ers trust documentation, preferring to investigate the source code
or to talk to colleagues. This is due in part to missing documenta-
tion or the suspicion that documentation may be out of date [26].
Further, an analysis of knowledge exchange sites (e.g., Stack Over-
flow) conducted by Parnin et al. showed that 87% of the classes in
the Android APIs are covered by questions and answers coming on
the Stack Overflow web site [20]. Indeed, the exact, quantifiable,
benefits of documentation are in need of further investigation.

Proponents of statically typed programming languages further
claim that static typing provides a form of implicit documentation
embedded in the source code. For example, Pierce states that “The
type declarations in procedure headers and module interfaces con-
stitute a form of documentation, giving useful hints about behav-
ior [22].” Similarly, Bruce claims that “[...] type annotations pro-
vide documentation on constructs that make it easier for program-
mers to determine how the constructs can or should be used [4].”

We have undertaken an empirical investigation into these and
similar claims, finding in previous work some empirical evidence
for their arguments. Specifically, controlled experiments compar-
ing static and dynamic type systems have shown that, for some
tasks, type annotations in statically typed code do lead to increases
in productivity [14, 17]. However, while previous work appeared
to support the use of static type systems, all previously reported
experiments included only the implicit documentation provided by
the type system.

Thus, to better evaluate the hypotheses presented by Pierce and
Bruce, we conducted a randomized controlled trial with a 2x2 ex-
perimental design, and an exploratory study on possible causes,

comparing developers using either static or dynamic typing and
with or without accompanying documentation. Given this setup,
we see at least two possible outcomes. First, it could be the case
that adding documentation is an equalizing factor, affording equal
or better productivity to those with dynamic typing. Second, type
annotations and static checking could benefit programmers even
further. The results of our experiment show evidence toward the
second explanation—the addition of explicit documentation affords
even greater productivity gains to developers using statically typed
languages. Those with dynamic typing did not appear benefit as
much from the addition of explicit documentation.

While the previous paragraph gives the primary finding of our
paper, to try and garner possible causes for the behavior we ob-
served, we conducted an exploratory analysis of the interaction logs
of our developers while completing the tasks. Results from this
analysis are not definitive, but hint that the number of file switches
may be a leading indicator on why such differences occur. We also
report on additional indicators from the logs.

Structure of the paper We first describe related work (Section
2): empirical studies on documentation and type systems. Then, we
describe the design of the experiment in detail (Section 3). Next,
we present the results of our experiments (Section 4). We then per-
form an exploratory study based on the interaction data we recorded
(Section 5). We close the paper with a discussion (Section 6), pos-
sible threats (Section 7), and conclude (Section 8).

2. RELATED WORK

2.1 Studies of APIs and Documentation
Controlled experiments An early experiment by Tenny [28]

compared two types of procedures (inlined or external procedures)
and the occurrence of comments. The experiment showed an effect
of comments on understandability of short programs, measured by
a questionnaire. An experiment by Tryggeseth [30] found that doc-
umentation had a positive impact on the time necessary to com-
plete a maintenance task in a C++ system; the subjects were ap-
proximately 20% faster. The solution was written in pseudocode.
Unfortunately, the experimental design was not fully documented.

An experiment by Prechelt et al. [24] found that documenting
design patterns in source code (in addition to the existing documen-
tation), had a positive effect on development time and correctness.
Entities forming a design pattern were more easily recognized and
processed as a single “chunk” of data, rather than several entities.
On the other hand, Ellis et al. [10] found conflicting evidence on
the usefulness of the Factory design pattern.

Another experiment by Bandi et al. [2] explored the impact of
three complexity metrics on maintenance time: Interaction Level,
Interface Size, and Operation Argument Complexity. All three met-
rics were found useful to predict the maintenance time taken by
several groups of students (93 students in total).

An experiment by Arisholm et al. [1] showed that there is a pos-
itive impact of UML documentation on task correctness, but not
on time. The experiment had several tasks on the same systems
and showed that subjects were more likely to succeed in later tasks
when the documentation was present. A recent pilot experiment by
Leotta et al. [15] seems to, unsurprisingly, confirm that outdated
documentation is less useful than up-to-date documentation. How-
ever, a recent study by Petre [21] showed that usage of UML in the
practice is limited, yielding the necessity to investigate additional
forms of documentation.

Dekel and Herbsleb evaluated the effectiveness of eMoose, a
“knowledge-pushing” tool, that highlights critical parts of the doc-
umentation and makes them more obvious in the IDE [6]. A con-

trolled experiment was conducted, where participants used eMoose
in a variety of tasks where significantly more likely to solve the
tasks than users from the control group (for four out of 5 tasks). A
follow up video analysis study fleshed out how the documentation
was used in more detail [7].

Exploratory studies Robillard and DeLine conducted a study
on what makes APIs hard to learn [25], based on surveys and inter-
views; they found a variety of obstacles that developers faced, and
documented the implications of them. In particular, developers pre-
fer a continuous presentation of the API, focused on its relation to
the problem domain (how a set of API elements are used together
to solve a given task), as opposed to a hyperlinked documentation
of individual API elements.

Dagenais and Robillard interviewed developers to find out what
decisions were taken by developers with respect to documenta-
tion, and the consequence it had on the project [5]. Timely update
to the documentation was found to improve code quality. Three
types of documentation were observed: task-related documenta-
tion aimed at newcomers (getting started type of documentation),
reference documentation documenting program elements, and con-
ceptual documentation.

An exploratory study by Duala-Ekoko and Robillard [9] anal-
ysed video recordings of twenty participants working on a set of
tasks for which they had to discover unknown APIs. The main
information sources where the API documentation, and the web.
They formulated a list of 20 questions the developers asked when
solving the tasks, and made additional observations about the chal-
lenges developers faced, such as discovering types with non-obvious
relationships, and difficulties related to the usage of exceptions.

Roehm et al. conducted a study of program comprehension in
industry, based on an observational study of 28 programmers from
seven companies [26]. It highlighted important facts pertaining to
documentation: source code was more trusted than documentation
due to possible mismatches, or the code not being covered; direct
communication was preferred over the documentation for similar
reasons. On the other hand, understanding the rationale behind the
code (its purpose and how to use it) was found to be very difficult
(“exhausting”) when the code is not documented.

Maalej and Robillard developed a taxonomy of the types and
patterns of knowledge commonly found in APIs [16], based on two
large APIs, the JDK and .NET. The types of knowledge found in
the APIs were: functionality, concepts, directive, purposes, non-
functional requirements, control flow, structure, patterns, examples,
environment issues, and references. They also found a surprisingly
high amount of content (40 to 50%) that brought little value.

Parnin et al. investigated the recent phenomenon of crowd docu-
mentation, as measured by the questions about API elements asked
and answered on the Stack Overflow website [20]. They found
that over 35000 developers contributed in crowd-documenting An-
droid, covering 87% of the classes. Additionally, there was a strong
correlation between usage of API elements and the amount of dis-
cussions on Stack Overflow.

2.2 Type Systems as Documentation
Several empirical studies have been completed on type systems.

We focus our discussion here on those that are related to the impact
of documentation in relation to type systems. Perhaps the earliest
known controlled study on type systems was from Gannon. This
early experiment showed an increase of reliability for subjects us-
ing a statically-typed language [11].

An experiment by Prechelt and Tichy [23] compared two ver-
sions of C, one which the types of arguments of procedure calls
are checked (ANSI C), and another (K&R C), in which the types

are not. Both programs came with documentation and type anno-
tations. One task showed differences between the two treatments,
another did not. Thus the experiment gave doubt to the idea that
type annotations are useful as documentation only.

In terms of our own work, several previous studies investigated
the impact of using static and dynamic type systems on the usage
of undocumented APIs. We investigated a variety of maintenance
tasks, including identifying classes in an undocumented API [14].
Through these studies, we observed that as the number of classes
that needed to be identified grew, the advantage of the static type
system grew as well. Other tasks related to fixing type errors and
semantic errors were investigated, with an advantage found when
fixing type errors, but none found when fixing semantic errors.

In a second experiment [17], we focused on class identification
tasks in an undocumented API. We also defined several tasks of
varying complexity, and observed a similar tendency: the larger or
more complex the types to identify were, the greater the advan-
tage was found towards the statically typed language. We com-
plemented the study with an exploratory story of the participants’
interaction log, which shed some light in our findings: as tasks
got more complex, developers using the statically typed language
tended to open less files and switched between them less often.

In a subsequent experiment [12], we investigated the usefulness
of generic types compared to raw types under similar conditions.
The experiment showed that generic types helped for using undoc-
umented APIs, but not for type error fixing tasks or extension tasks.

3. EXPERIMENT DESCRIPTION

3.1 Initial considerations
The goal of the experiment is to compare the effects of docu-

mentation and type system (and their potential interaction). Sev-
eral decisions need to be made on: the research questions, the kind
of documentation, the programming language, the programming
tasks, and the measurements. Similarly to our previous experi-
ments, we measure the effect of documentation and type system
on the time developers take to complete a programming task.

Number and type of subjects The goal was to define and exe-
cute an experiment with a relatively small number of participants:
we planned for 20 to 30 participants. Additionally, the time for each
participant should be relatively small. Unfortunately programming
tasks require on the order of hours to be completed. We settled on
a maximum duration of five hours.

The low number of partipants also means that the deviation among
participants should be as low as possible. Otherwise, there is the
danger that the measurements are hidden by confounding factors.
These constraint directly influence the choices of documentation,
programming language, programming environment and program-
ming task. This amount of participants is common in Software En-
gineering. The experiment of Pankratius [19] had 13 participants,
Dekel’s [6] had 26, and Wettel’s [32] had 42. Our previous ex-
periments on type systems all had between 20 and 30 participants.
As in most software engineering experiments, subjects are students
(see [29] for details).

Type of documentation. Obviously the type and quality of doc-
umentation chosen strongly influences the results; giving mislead-
ing or outdated documentation would negatively impact the results
[15]. Since the space of possibilities is large, we sought a format of
documentation that would be commonly encountered and useful.

The first criteria is length: the documentation must not be too ex-
haustive, otherwise most of the development time would be spent in
reading the documentation with the risk that the participants would
not finish the task. Another risk is that participants do not read the

documentation carefully if it is too long, as seen in Dekel’s study
[7]. Additionally, there must be the possibility that participants
search in wrong parts of the document for a given solution—a sit-
uation that frequently occurs in web searches. So the size of the
documentation must be carefully balanced.

Although there are many different documentation formats (such
as JavaDocs, UML diagrams, etc.) we settled on free-form text
which gives a short description of the API and source code exam-
ples that show how to use the API. This matches the needs ex-
pressed in Robillard’s study [25]: linear documentation instead of
small interlinked pieces, and examples showing how various API
elements are used together. This is also similar to the format of
questions and answers in Stack Overflow, strongly suggesting this
is the type of documentation developers favor. We did not inves-
tigate UML documentation as it was already investigated by Ar-
isholm et al. [1], and discarded JavaDoc-type documentation (hy-
perlinked documents matching the program structure) as it did not
match developer preferences in Robillard’s study.

A challenge is to give documentation which is not too close to
the programming task. Otherwise, the task is just to type text. The
examples given were not an exact match with the task to achieve.

Choice of programming language We needed a language fa-
miliar to participants—else the time required to teach and learn it
would consume most of the experiment time. At the same time we
needed a language supporting both static and dynamic typing, to
reduce the differences between the experimental treatments.

Since most of the participants come from the University of Duisburg-
Essen, where Java is being taught right from the first semester, we
decided to use the programming language Dart. Dart can be used
similarly to Java, but has optional types annotations.

Choice of IDE Similarly to previous experiments, we use a very
simplified IDE which consists only of an editor with syntax high-
lighting, a treeview for the files within the software project and
buttons for running test cases. This reduces the risk that IDE profi-
ciency affects the results.

Choice of Tasks A first factor is size: excluding warmup tasks,
experiments in the literature range from one single task [19], to ten
tasks or more [32]. Since documentation takes time to read, short
tasks would give an unfair advantage. Likewise, the effect of static
type systems is more visible on larger tasks [17, 14]. Contrary to
our previous experiments, this experiment uses a single task (plus
warmup), whose expected duration is several hours. This also pre-
vented us to use a within-subject design, as the task would be too
long to be repeated.

The type of task to perform has an important effect on the re-
sults. We can not expect static type systems or documentation to
have the same effect regardless of the task; we observed this in a
previous experiment [14]. Hence we need a task that would not fa-
vor too much one or the other treatments (task or documentation),
and would fit in the API usability scenario. We chose a task where
participants use the API in a way that objects need to be config-
ured and passed to the API. Previous experiments have shown that
static type system benefit in such a situation, but we expect docu-
mentation to also benefit. To reduce confounding factors, no other
API is necessary, and the task can be solved without using loops or
conditionals (to reduce confounding factors).

We considered other tasks in [14]: Type error fixing tasks, where
we found an advantage of the type system, and would not expect
an advantage of documentation; and semantic error fixing tasks,
where we found no advantage of the type system, but would expect
an advantage of the documentation, as in Dekel’s study [6].

3.2 Research questions

Our independent variables being documentation and type sys-
tem, and our dependent variable being time, our first two research
questions are obvious:

• RQ1: When a free–text form documentation is given, do de-
velopers actually use it?

• RQ2: Is there a difference in development time for a given
programming task between statically and dynamically typed
programming languages, with or without a given free–text
form documentation?

One potential confounding factor in measuring development time
is, that potentially developers spend a lot of time only reading doc-
umentation. Hence, we are also interested in the results of RQ2
without taking the reading time into account:

• RQ3: Assuming that developers have already read and un-
derstood the documentation, does that influence the potential
difference in development time (from RQ2)?

3.3 Programming Task and API
The domain for the programming task was a delivery service:

different kinds of packages from a vendor (with multiple stores)
need to be delivered to a customer. The domain was chosen as it is
easily understandable by the participants.

The programming task is to deliver a product (a kitchen) to a
customer under some constraints: the shortest way should be taken,
i.e. a store that is as close as possible to the target address and a
carrier should be used that is as close as possible to this store. To
solve this task, a method is given to the participants whose header
contains key objects for the customer and the product objects.

void t a s k (C o n n e c t i o n s d a t a l i n k s ,
P e r s o n a l I d e n t i f i c a t i o n cus tomer ,
Ki tchenKey k i t c h e n) {

D e l i v e r y d = D e l i v e r y . c r e a t e D e l i v e r y () ;
P r o d u c t prod = d a t a l i n k s . g e t C a t a l o g s () .

ge tHomeAidsCata log () .
g e t P r o d u c t B y I d (k i t c h e n) ;

d . s e t D e l i v e r y O b j e c t (prod) ;

Customer c = d a t a l i n k s . g e t L i b r a r i e s () .
g e t C u s t o m e r L i b r a r y () . g e t C l i e n t (c u s t o m e r) ;

C o n t a c t c t = C o n t a c t . c r e a t e C o n t a c t () ;
c t . s e t P e r s o n (c) ;
Address ca = / / g e t a d d r e s s v i a c o n n e c t i o n s . . .

d . s e t D e s t i n a t i o n (c t) ;

S t o r e s = d a t a l i n k s . ge tManager s () . . .
g e t N e a r e s t S t o r e F o r P r o d u c t (prod , ca) ;

d . s e t S o u r c e (s) ;
S h i p p e r s h i p p e r =

. . . g e t N e a r e s t C a r r i e r F o r P r o d u c t (prod , s) ;
d . s e t T r a n s p o r t e r (. . .) ;
/ / . . . s e t some a d d i t i o n a l p r o p e r t i e s . . .
re turn d ;

}

Figure 1: Example solution for the task (statically typed)

The challenge for developers is to locate all the API elements
necessary to properly configure a delivery object. Figure 1 shows
an extract from a possible solution (some code is omitted for space

reasons). For the dynamically typed code all type annotations (es-
pecially in the header) would be removed. The figure also shows
how similar Dart is to Java, and also that neither loops nor condi-
tions are required to solve the task.

The API’s source code was available to the participants. It fol-
lows the design decisions of previous experiments (see [17, 14]).
First, the methods to be used by the developers require parame-
ters and return objects that are only basic data types or object from
the API itself (it does not use standard library classes to reduce
confounding factors due to expertise in the standard APIs). Sec-
ond, the API is rather small (about 2000 lines of code), but is large
enough that developers can not completely read the code within the
experiment. For instance, it is larger than the systems used in the
experiment by Arisholm, which had 293 and 338 lines of code et
al. [1]. Finally, the API does not contain additional documentation
(no JavaDocs, no comments, etc.) in order to control the documen-
tation variable in the experiment more strictly.

Finally, developers were equipped with test cases. When all the
tests pass, the programming task has been solved. The source code
of the tests was not available to the subjects.

3.4 Documentation
As motivated in section 3.1, we decided to put text documents

into the project, i.e. separate ASCII files, that describe of a certain
part of the API and provide the corresponding code examples. The
names of these ASCII files give a hint about their content. For ex-
ample, a file named delivery.txt describes the meaning of delivery
objects in general and provides code snippets creating and instanti-
ating a delivery object and related objects (illustrating how several
API elements are used together, as recommended in [25]). The
documentation also contains parts of the API which were not rel-
evant for the programming task. For instance, the documentation
contains code snippets that show how a certain kind of carrier can
be requested for the delivery, while the programming task requires
to select a carrier depending on the distance from the store.

Figure 2 gives an impression of the documentation delivered to
the participants.1.

Each document starts with a general description of its content
and then gives a more detailed description of specific topics, in-
cluding code snippets. For example, the code in Figure 2 shows
how to create and initialize a contact object – which is required for
solving the programming task (see Figure 1). As another example,
the last code snippet in 2 describes the access to a certain object
from the furniture catalog by its name – code which is not used in
the solution. But the last line of code shows how a product is actu-
ally stored in the delivery object – which is used in the solution.

We distributed the relevant and the irrelevant information in the
documentation randomly in order to give subjects not the ability to
learn where to look into the documentation (without actually read-
ing it).

Altogether, we provided six of such documentation files, each
with a length between one and six kilobytes.

3.5 Measurements
The experiment performed a number of different measurements,

where it should be mentioned that the development time is the main
measurement for the experiment.

• Development Time (DT, seconds): The main measurement
in the experiment is the development time (DT), i.e. the time

1The documentation given to the participants was written in
German—this is an abridged translation of the documentation file
on delivery

D e l i v e r y

A d e l i v e r y o b j e c t c o n t a i n s a l l r e l e v a n t i n f o r m a t i o n
i n o r d e r t o d e l i v e r a p r o d u c t t o a c u s t o m e r . I t
r e q u i r e s f u r t h e r i n f o r m a t i o n a b o u t t h e cus tomer , t h e
p r o d u c t i t s e l f , and t h e s t o r e from which t h e p r o d u c t
i s d e l i v e r e d . [. . .]

[. . .]

The d e l i v e r y o b j e c t p e r m i t s t o add f u r t h e r r e c e i v e r s
i n o r d e r t o p e r m i t t o d e l i v e r a p r o d u c t a l t h o u g h t h e
r e c e i v e r i s n o t a t home . In c a s e t h i s i s n o t d e s i r e d ,
a c u s t o m e r o b j e c t must be l o a d e d from t h e
P r i v a t e C l i e n t L i b r a r y . A d d i t i o n a l a d d r e s s e s (such as
n e i g h b o u r s , e t c .) must be l o a d e d from t h e
L o c a t i o n D i r e c t o r y .

[. . .]

The f o l l o w i n g code s n i p p e t e x e m p l i f i e s t h e c r e a t i o n
and i n i t i a l i s a t i o n o f a c o n t a c t o b j e c t .
. .
n e i g h b o r c o n t a c t = C o n t a c t . c r e a t e C o n t a c t () ;
n e i g h b o r = Neighbor . c r e a t e N e i g h b o r () ;
n e i g h b o r c o n t a c t . s e t L o c a t i o n (n e i g h b o r l o c a t i o n) ;
n e i g h b o r c o n t a c t . s e t P e r s o n (n e i g h b o r) ;
p o s t D e l i v e r y . s e t D e s t i n a t i o n (n e i g h b o r c o n t a c t) ;
. .
[. . .]

For d i f f e r e n t k i n d s o f p r o d u c t s t h e r e a r e d i f f e r e n t
c a t a l o g s t h a t can be used t o i d e n t i f y a p r o d u c t ,
f o r example by i t s name . For example , t h e f o l l o w i n g
code s n i p p e t s e l e c t s a p r o d u c t c a l l e d " C h a i r " t o be
d e l i v e r e d .

f u r n i t u r e =
f u r n i t u r e C a t a l o g . ge tFurn i tu reByName (" C h a i r ") ;

p o s t D e l i v e r y . s e t D e l i v e r y O b j e c t (f u r n i t u r e) ;

[. . .]

Figure 2: Small extract from the documentation delivery.txt
given to subjects that had access to documentation

required to solve the programming tasks. The development
time is measured from the moment when subjects were given
the programming task until the moment when the program-
ming task is fulfilled (i.e. until all test cases passed).

• Number of File switches (FS): The number of file switches
measures how often developers switch between different files
during development.2

• Number of documentation switches (DS): We measured
how often developers (those ones to whom documentation
has been delivered) switched into the documentation. The
number is an indicator for whether documentation has been
actually used.

• Documentation reading time (DRT): We measured the time
that developers (those ones to whom documentation has been
delivered) spent on the documentation, i.e. it is the sum
of time spans between switching from a documentation file
within the IDE. We give this time measurement the name
documentation reading time, although this time (probably)
additionally includes the time required to find the relevant

2The motivation for this measurement is that previous experiments
that measured differences between static and dynamic type systems
showed that the number of file switches reveal the same results as
the development time, see section 2.2.

places in the documentation, to understand the documenta-
tion and to think about the relationship between the given
documentation the relationship to the given programming prob-
lem.

• Coding time (CT = DT – DRT): While the development
time is the complete time required to solve the programming
problem, i.e. including the time required for studying the
documentation, the coding time is the development time mi-
nus the documentation reading time. The intention of this
measurement is to test, whether – under the assumption that
it is not necessary to study the documentation at all – the cod-
ing time is (finally) much less than the ordinary development
time

3.6 Experimental Design
We designed the experiment as a 2x2 randomized between-subject

factorial design (see [33]) that analyzes the effect of the indepen-
dent variables type system (with the treatments static and dynamic
type system) and documentation (with the treatments with and with-
out documentation) on the dependent variable development time
(respectively coding time). This experimental design consists of
four groups, each one represents a combination of a treatment of
both independent variables. All subjects are randomly assigned to
one of the four groups in a way that finally each group has approx-
imately the same number of participants.

This 2x2 design has the potential problem that for a small sample
size, groups may be unbalanced (i.e. good developers are more
frequently in one group than in a different group) and there may be
a high deviations among subjects (i.e. a large difference between
the best and worst developers). These issues may hide the effects
in the experiment—in such cases the independent variables have a
non-significant effect on the dependent variable. Because of that,
our previous experiments consisted only of 2 groups [14, 17, 12].
However, in constrast to our previous studies, this experiment has a
single, large programming task, which allows to detect the effects
more easily. We conducted a pilot experiment in which we tested
the task on some subjects, which convinced us that the main effects
are already visible in this setting.

Table 1 shows the four different groups we have in the experi-
ment.

4. EXPERIMENT RESULTS
The experiment has been performed at the University of Duisburg–

Essen and the University of Koblenz–Landau. In total, 25 stu-
dents were used as participants in the analysis (two subjects were
removed from the data3, one subject cancelled the experiment).
The data was collected in multiple sessions, depending on student
schedules. Students were randomly assigned to one of the four
groups in order to reduce the potential for accidental bias, the rea-
sons for which are explained thoughtfully by Vogt (see [31]). Fig-
ure 1 describes the names of the groups and the number of subjects.
Almost all groups have the same number of subjects (each has six
subjects) with the exception of group 1 which has seven. Group
1 has both documentation and static type system, group 2 had no
documentation and static typing. The other groups had the same
configuration of documentation with dynamic typing.

3For one subject, the machine crashed which made the experiment
data for this subject unreadable, one subject was a non–native ger-
man speaker and said, that he did not completely understand the
documentation.

Documentation
Yes No

Static TS 1(7) 2(6)
Dynamic TS 3(6) 4(6)

Table 1: Experimental groups: groupNumber (numberOfSub-
jects)

4.1 Empirical Data
Table 2 shows the raw anonymized data for the experiment: The

first row shows each participant number, the second the experi-
mental group. Continuing rows show development time (DT), file
switches (FS), number of switches to documentation (DS), time
spent reading documentation (DRT) and coding time (CT).

Three participants (8, 20, and 23) were unable to complete the
development task within our time constraints. All of the partici-
pants that were unable to complete the tasks happened to be in the
group without documentation. Two of these (20 and 23) used the
dynamically typed language, while one other (13) was given the
statically typed language.

In order to ease the reading of the raw measurements, Figure 3
illustrates the development times via boxplots, which reveals the
following possible trends, which will be evaluated more carefully
work with standard statistical assessments:

1. The raw median amount of time taken to complete the task
appears to increase from groups 1–4.

2. The raw difference between static and dynamic typing, with
documentation (groups 1 and 3), appears to be large.

3. The raw difference between static typing without documen-
tation, and dynamic typing with documentation, does not ap-
pear to be large.

4. The raw differences between static typing without documen-
tation and dynamic typing either with or without documen-
tation, appear to be rather small, although this is potentially
mitigated by the fact that 2 of six participants in group 4 did
not complete the task.

Group

4
dynamic

type, no doc

3
dynamic
 type+doc

2
static type,
no doc

1
static

type+doc

D
e
v
e
lo

p
m

e
n

t
ti

m
e
 (

in
 s

e
c
o

n
d

s
)

12000

10000

8000

6000

4000

2000

0

Figure 3: Boxplot for raw development time measurements

4.2 RQ1: Documentation usage
There are many ways in which an analysis of our first research

question can be quantified, although which is the “right” one is not
obvious. In this experiment, we analyzed the use of documenta-
tion by having participants use a single monitor and tracking both
switches between code and documentation and time spent on each.
From our perspective, there are several other techniques that could
potentially be used, for example, eye tracking technology on sin-
gle or multiple monitors, or even, to give a very different approach,
subjective surveys about the user’s experience with the documen-
tation, could potentially draw different kinds of insight into RQ1.
While many approaches may have merit, we chose our approach
because it is objective and easily trackable.

Given our methodology, we first analyzed, whether the number
of file switches to documentation files (for developers to whom
documentation was delivered) is significantly larger than zero (no
documentation). Table 4 shows the results. In this table, we present
the Shapiro–Wilk test, which was not significant (p>.12), i.e. a nor-
mal distribution can reasonably be assumed. Thus, we conducted a
traditional parametric 1-sample t-Test (a comparison against zero),
which was found to be significant (p<.001). The 95% confidence
interval is between 54 and 109 with the standard alpha of .05. Per-
forming the same study on time reveals that developers spent be-
tween 724 and 1345 seconds (i.e. 12 – 22 minutes) on the docu-
mentation and that this difference was also significant (p < .001).

Shapiro–Wilk T–Test 95% Confidence Interval
DS .12 .001 54 109

DRT .537 .001 724 1345
DRT/DT .99 .001 .15 .23

Table 4: Results for research question 1

Another way to assess whether documentation was used is to
evaluate how long it was displayed on the screen. We tracked this
using the ratio DRT/DT, effectively the time spent on reading docu-
mentation divided by the total time spent on developing as a whole.
The resulting T-Test reveals that their usage of the API was greater
than zero (p < .001). More specifically, the traditional 95% confi-
dence interval indicates developers spent between 15% and 23% of
the development time on documentation (DRT / DT).

4.3 RQ2: Development time
The experiment is built as a standard 2x2 between-subject de-

sign with two factors, namely type system and documentation. The
standard analysis technique for this type of design is a two-factor
ANOVA with the aforementioned fixed factors and the dependent
variable development time. While this technique is standard, one
important assumption of the two-factor ANOVA is the homogene-
ity of variances, commonly tested with a Levene Test. In our case,
the Levene Test was significant (p<.034), implying that our data ex-
hibits heteroscedasticity. In other words, this test confirms what is
visually obvious from our boxplots—different experimental groups
had different amounts of variance. Given this observation, we dou-
ble checked our results using non-parametric statistics. Results
from these tests confirm our findings and we present only the para-
metric results here.

Thus, testing the results as a two-factor ANOVA, we find a sig-
nificant effect for language (p=.007), an effect that approaches sig-
nificance for documentation (p=.075), and a non-significant effect
for the interaction (.211). The overall difference, with 95% confi-
dence, between the static and dynamic typing factors was between

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Group 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4

DT 36
68

38
70

30
42

30
92

18
77

57
56

57
15

11
46

0*

50
56

10
43

9

46
18

23
74

83
63

74
68

71
96

10
94

7

55
74

10
04

6

79
31

11
46

0*

60
78

90
25

11
46

0*

96
78

49
94

FS 25
3

18
9

36
7

17
0

21
0

51
9

48
7

11
20

35
9

70
9

39
6

32
0

79
6

67
2

73
0

67
4

50
5

73
4

37
2

92
0

41
9

68
0

83
4

61
6

41
1

DS 35 47 94 41 43 45 30 0 0 0 0 0 0 17
5

13
0

13
2

93 10
3

91 0 0 0 0 0 0

DRT 55
3

74
1

94
7

78
1

43
5

58
8

33
8

0 0 0 0 0 0 17
88

12
95

19
01

12
14

13
60

15
34

0 0 0 0 0 0

CT 31
15

31
29

20
95

23
11

14
42

51
68

53
77

11
46

0*

50
56

10
43

9

46
18

23
74

83
63

56
80

59
01

90
46

43
60

86
86

63
97

11
46

0*

60
78

90
25

11
46

0*

96
78

49
94

Table 2: Measured development times (DT, time in seconds), file switches (FS), documentation switches (DS), documentation reading
time (DRT), and coding time (CT), * = programming task not finished in time

DT FS DS* DRT* CT
Group 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
MIN 1877 2374 5574 4994 170 320 372 411 30 - 91 - 338 - 1214 - 1442 2374 4360 4994
MAX 5756 11460 10947 11460 519 1120 734 920 94 - 175 - 947 - 1901 - 5377 11460 9046 11460
Avg 3860 7052 8194 8783 314 617 615 647 48 - 121 - 626 - 1515 - 3234 7052 6678 8783

Median 3668 6710 7700 9352 253 553 673 648 43 - 117 - 588 - 1447 - 3115 6710 6149 9352
Std.Dev. 1430 3589 1973 2715 145 315 145 209 21 - 32 - 211 - 278 - 1512 3589 1827 2715

Table 3: Descriptive statistics for raw measurements (groups 2 and 4 do not have values for DS and DRT, because they do not have
documentation)

912 and 5353, i.e. between 15 and 89 minutes. In this case, static
typing had the advantage. With respect to documentation, given
that the effect only approached significance, we urge the reader
to use caution in the validity of the result. While we report the
result for completeness, we make no direct claims as to whether
documentation had a positive impact 4. With that said, overall, the
95% confidence interval for the difference between the groups with
and without documentation was between -391 and 4496. Thus, the
group with documentation can arguably be said to have a small ad-
vantage. Table 5 shows the results of running a T–Test (again, to
double check the two–factor ANOVA with the significant Levene–
Test), with comparable results.

Type System Documentation
static dynamic with without

Shapiro–Wilk (p-values) .08 .45 .63 .17
T-Test (p-values) .008 .098
95% Conf. Interval 912 5353 -391 4496
Benefit statically typed (with documentation)*

Table 5: Results for research question 2 – the variable docu-
mentation is only close to significant (p<.1)

4.4 RQ3: Coding time
In order to evaluate the amount of time each group spent pro-

gramming, we analyzed the data in a third way, by removing the
amount of time the documentation groups spent analyzing docu-
mentation. Said in a different way, in our third question, we sub-
tracted out the time spent looking at documentation from the total
development time for the documentation group. From this point of
view, the group that never received documentation would have the
same times.
4On the other hand, discarding a p-value close to, but exceeding the
traditional significance level (alpha = 0.05), may result in a Type II
error, in this case, assuming that there is no difference when there
actually is. We also note that the alpha level is arbitrary; some
studies use an alpha level of 0.1, others an alpha level of 0.01.

We perform this analysis to differentiate between two scenar-
ios. First, developers with documentation might browse it, but ul-
timately spend the same amount of time on programming as the
group without documentation. On the other hand, users with doc-
umentation may spend less time looking at the code, if the doc-
umentation helps them to understand the code more quickly. If
the former was the case, it might imply that documentation was
only marginally helpful, while if the latter was the case, documen-
tation could be seen as helping developers. Given that our previ-
ous result from RQ2 showed that documentation only approached
significance, separating the concerns in this way might help us to
understand what happened in the experiment.

Group

4321

C
o

d
in

g
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

12000

10000

8000

6000

4000

2000

0

Figure 4: Boxplot for coding time measurements

We reran the experimental analysis with this new view of the
data. The Levene-Test is also significant, hence we employ the

same procedure as before. In this case, the type system was sig-
nificant (p=.018), documentation was significant (.008), and the in-
teraction effect continued to be non-significant (.426). For typing,
the 95% confidence intervals of the difference between the groups
was between 323 and 5082 seconds (5–85 minutes). The static typ-
ing group again had the advantage. For the documentation main
effect, the 95% confidence interval for the difference was between
810 and 5386 seconds (14–90 minutes), with more time needed for
the group without documentation. Figure 6 shows the T-Test that
has been applied in order to double–check the two-factor ANOVA,
with comparable results.

For a more intuitive representation of the differences, Figure 4
shows the boxplots for the different coding times for each group.

Type System Documentation
static dynamic with without

Shapiro–Wilk (p-values) .06 .25 .54 .19
T-Test (p-values) .03 .01
95% Conf. Interval 323 5082 810 5386
Benefit statically typed with documentation

Table 6: Results for research question 3

5. EXPLORATORY STUDY
Our purpose in this section is to document additional observa-

tions we had about our data, by analyzing interactions with the de-
velopment environment [17]. Given the time necessary to complete
the tasks, we elected not to require additional time from the subjects
to gather qualitative data; hence we base these observations on the
interaction data only. While we hope they help the reader garner
more information toward possible causes for our observed effects
(e.g., why did documentation help those with static typing?), the
reader should interpret this section as a collection of possible clues,
not definitive answers.

First, our previous studies indicated that the number of file switches
“might” be related to observed differences in productivity and we
wanted to recheck this hypothesis here. Thus, we ran another two-
factor ANOVA with the number of file switches as the dependent
variable, and type system and documentation as independent vari-
ables (Table 7, top). Both type system (p = .067) and documenta-
tion (p=.064) approach significance, with small effect sizes (η2

p=.151
and η2

p=.155, respectively), with the interaction non-significant (p =
.129). Table 7 also shows results for the number of file switches, ex-
cluding the number of switches to documentation (code switches).

F p-value partial η2

FS

Type System 3.73 .067 .151
Documentation 3.86 .064 .155
TS * Doc 2.50 .129 .106

C
S

Type System 2.316 .143 .099
Documentation 8.344 .007 .298
TS * Doc 1.362 .256 .061

Table 7: Univariate ANOVA on file switches (FS) and code
switches (CS)

Besides metrics related to switches between files, which remain
at least suggestive that this metric might be related to the observed
differences with static/dynamic typing with or without documenta-
tion, we also analyzed additional time metrics during the sessions.
For this, we have the following broad observations:

• Documentation. Participants with documentation and static
typing (group 1) and dynamic typing (group 3) spent a sim-
ilar proportion of time reading documentation (medians of
19 and 21%). Both groups used the documentation less in
the second half of the session. However, participants in the
static group showed a much stronger drop in documentation
usage in the second half of the session. This result could
indicate that the API might be learned more quickly by this
group. Whether this learning occurs is unclear, but it could
be worthy of more study.

• Source files. Participants in all groups spent between 75%
and 97% of their time in source files which were relevant to
the task. In short, participants quickly realize whether a file
is helpful, regardless of group.

• Test runs. Similar to our previous experiments, we found
that participants using dynamically typed languages conducted
more test runs. Documentation did not appear to have an im-
pact.

Again, while we offer these more informal observations to try to
give the reader some insight into potential causes, we do so with
an air of caution. Like in all experiments, we had experimental
controls only for the independent variables discussed in this work.
As such, while these results might be suggestive that file switches,
and potentially learning effects related to static typing, might be
related to our observations, more study is needed to be certain.

6. DISCUSSION
Our experiment comparing the impact of API documentation and

static type systems had the following results:

• Subjects who had access to the documentation accessed be-
tween 54 and 109 times the documentation and spent there
between 12 and 22 minutes (respectively between 15% and
22% of the development time). From that we conclude that
the provided documentation was actually used.

• The presence of a static type system had a significant posi-
tive effect on development time: Subjects using the statically
typed language required between 15 and 89 minutes less time
for solving the task.

• The presence of documentation had only a close to signifi-
cant effect on development time.

• Both, the static type system as well as documentation, re-
duced pure coding time significantly. The differences be-
tween the static and the dynamic type system as well as with
and without documentation were comparable (approximately
between 10–90 minutes).

A possible explanation of the results pro static type system is
that develpers with a static type system (i.e. where the parameter
and return types are explicitely declared in the API) have a benefit
because they directly see in the code what types are required and re-
quested. Hence, instead of looking into different code fragements
in order to find out what kind of data they needs use in the API
(which requires additional time), developers are directly guided to
the corresponding types. This effect is so strong that it exists inde-
pendent of whether or not documentation is available. For us the
important implication of this is, that previous experiments, which
did not take documentation into account, were not falsified —the
large benefit of static type systems even existed in the presence of
documentation.

The interpretation of the pro documentation effect is slightly
harder. First, it looks as if the documentation effect is not that
strong as assumed by the experimenters—because the effect on de-
velopment time is only close to significant. However, as soon as
the reading time is subtracted from the development times, the ex-
istence of documentation becomes a significant advantage. Hence,
it looks like the reading time in the experiment was (still) too large
and influenced the experiment results in an undesired way. We be-
lieve that future experiments should choose either a larger program-
ming task or a more precise documentation in order to measure the
documentation effect.

Additionally, three subjects in the experiment were not able to
complete the programming tasks—none of these subjects had doc-
umentation available. This could potentially indicate that docu-
mentation may increase the correctness of the tasks. In addition,
since these subjects were considered to have finished just as they
ran out of time, we may have advantaged the subjects without doc-
umentation by underestimating their task completion time.

Our exploratory study allowed us to gain additional insights. As
in previous experiments, a possible explanation for the differences
we see is that both documentation and static typing cause less sys-
tem browsing, which could result in less time spent.

The second insight found in our exploratory study is that the
API documentation tends to be browsed less in the second half of
the session. This effect is much more pronounced in static typ-
ing users. This might be interpreted as subjects assimilating the
API over time. If true, this could indicate that longer task would
benefit more from API documentation. Of course, only a partial
replication with a longer task would help us ascertain this fact. The
experiment of Arisholm [1] had a related finding: their experiment
had several task, and they hypothesize that learning effects led to
increased performance (in terms of correctness) in the last task.

7. THREATS TO VALIDITY
The overarching results aside, like any scientific experiment, it

is not possible for any one study to fully flesh out all potential con-
founding variables in regards to a particular research topic. At best,
empirical work provides a snapshot of carefully controlled vari-
ables which, if done well, can help other researchers find answers
to deeply difficult questions over time. Our study is no exception
and we focus here on what we felt were the most likely validity
threats.

Type of documentation. First, the quality and shape of software
documentation can vary considerably. In the study of Roehm et al.
[26], several industrial developers do not trust documentation and
prefer to rely on source code. Dart’s home page (https://www.dartlang.org)
acknowledges the incompleteness of the documentation and points
to Stack Overflow. Languages like Java and .NET have a much
more extensive coverage, although one study by Maalej and Robil-
lard showed that some API documentation contains bloat and is of
questionable value (e.g., rehashes method names, includes trivial
examples) [16].

In our case, we wrote correct documentation that was equivalent
across groups, was grammatically understandable (in German), and
that covered what we felt were the most important points in re-
gards to learning an API. Our documentation contained examples
and scenarios that we thought would be useful. In other words, we
set out to write what seemed to us to be “good” documentation. We
would be unsurprised if systems that have misleading, incorrect, or,
more abstractly, poor documentation, might not benefit program-
mers. For example, a pilot study by Leotta et al. suggests that out
of date, or as they authors say, misaligned, UML documents can
impact programmer productivity [15].

Type of type system. We have chosen Dart’s type system in the
experiment which has a number of parallels to Java’s type system:
the types are declared in the code and identified by type names. It
might be possible and likely that the measured effect for different
kinds of type systems is different.

Usefulness of documentation. Besides the quality of the docu-
mentation, we must also consider whether the participants found it
useful. We tracked carefully whether participants switched to doc-
umentation and have provided evidence showing as such in RQ1.
However, we can not assess whether the documentation was useful,
correctly used, or comprehended, beyond that.

Single task. Our choice of a single task limits the generalizabil-
ity of our results. Previous results have shown that not all tasks lend
themselves well to static typing, for example [14]. Given this, we
would be unsurprised if different types of tasks impacted program-
mers differently. In this experiment, we chose a single task that
previous studies show lends itself to static typing and evaluated the
impact once documentation was introduced. As the showed, at least
for this task, the effect was strengthened.

Choice of experimental design. In previous studies, we tracked
participants over a set of tasks, conducting what is commonly termed
a repeated measures experiment [14]. In such experiments, par-
ticipants complete a set of tasks repeatedly, which likely leads to
learning over time. Such studies have pros and cons, namely in that
they provide a view of how a system can be learned (see e.g., Ar-
isholm et al. for an example with UML [1]), but may not capture
potential confounds related to how a system is learned. In contrast,
single tasks provide a snapshot of developers as they use a tool
once, but may not provide much insight into how a system can be
used with continuous usage. Such pros and cons are well known in
a variety of academic disciplines and are discussed thoughtfully by
Vogt [31].

The role of expertise. Like previous experiments, we used stu-
dents late in the academic pipeline for our experiment. While one
study suggests that this class of user might be at least representa-
tive of professionals [13], recent research has shown, with some
confidence, that novices have difficulty with type annotations in
statically typed languages [8, 27]. Likewise, experts in a certain
dynamic languages may not be as strongly affected by the lack of
static typing or documentation, although to our knowledge this has
not been studied formally. As such, the reader should not assume
that our findings generalize to all levels of expertise.

Choice of environments. The fact that we restricted our par-
ticipants to a simple IDE may not reflect the state of the practice.
Eclipse allows very quick navigation between API elements and
their documentation (including hovering to get documentation [7]),
for JavaDoc-style documentation. However including a state-of-the
art IDE adds a variety of confounding factors related to the exper-
tise of subject with tools. Some subjects may not be aware of the
existence of tools, usage data show that even highly-praised tools
such as Eclipse’s “open resource” tool are not used by 88% of de-
velopers [18].

Another issue is that we evaluated participants as they used a sin-
gle monitor, flipping between documentation and computer code.
We ultimately chose to use a single monitor because many individ-
uals do program in this manner (e.g., on a laptop). If the experi-
ment were re-run with dual monitors, participants might have had
documentation on one monitor and code on the other, potentially
minimizing time to flip between them.

8. CONCLUSION
API usability is an active field of research. There is evidence

in the literature of two factors that contribute to it: the presence

of documentation, and the presence of type annotations. We con-
ducted a study comparing the impact of documentation and static
type systems on API usability as measured by development time.
The study had two components: a 2x2 randomized controlled trial,
and an exploratory study of the subjects’ interaction logs.

Overall, we found that both static type systems and documen-
tation had a positive effect; however, the effect of static type sys-
tems was stronger, as it was not balanced by the need for additional
reading that documentation exhibits. As a result, the effect of doc-
umentation was only close to significant.

However our exploratory study found interesting findings related
to documentation: it appears that subjects use documentation more
heavily at the start of their tasks, which means that the effect of
documentation may be larger in longer tasks. Further experiments
are needed to validate this tentative hypothesis.

Overall our results confirm and expand on previous findings.
It appears that adding documentation to statically typed systems
strengthens the effects we previously observed [17]. In a sense,
static typing appears to be even more effective when documenta-
tion is added, as both helps appear to reinforce each other.

9. ACKOWLEDGEMENTS
We would like to thank the volenteers from the University of

Duisburg–Essen and from the University of Koblenz–Landau for
participating in the experiment. Last but not least, we especially
thank Ralf Lämmel from the University of Koblenz–Landau for his
kind support.

10. REFERENCES
[1] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche. The

impact of uml documentation on software maintenance: An
experimental evaluation. IEEE Trans. Software Eng.,
32(6):365–381, 2006.

[2] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk. Predicting
maintenance performance using object-oriented design
complexity metrics. IEEE Trans. Software Eng.,
29(1):77–87, 2003.

[3] F. P. Brooks, Jr. No silver bullet - essence and accidents of
software engineering. IEEE Computer, 20(4):10–19, 1987.

[4] K. B. Bruce. Foundations of object-oriented languages:
types and semantics. MIT Press, Cambridge, MA, USA,
2002.

[5] B. Dagenais and M. P. Robillard. Creating and evolving
developer documentation: understanding the decisions of
open source contributors. In Proceedings of SIGSOFT FSE
2010, pages 127–136, 2010.

[6] U. Dekel and J. D. Herbsleb. Improving api documentation
usability with knowledge pushing. In Proceedings of ICSE
2009, pages 320–330, 2009.

[7] U. Dekel and J. D. Herbsleb. Reading the documentation of
invoked api functions in program comprehension. In
Proceedings of ICPC 2009, pages 168–177, 2009.

[8] P. Denny, A. Luxton-Reilly, and E. D. Tempero. All syntax
errors are not equal. In Proceedings of ITiCSE 2012, pages
75–80, 2012.

[9] E. Duala-Ekoko and M. P. Robillard. Asking and answering
questions about unfamiliar apis: An exploratory study. In
Proceedings of ICSE 2012, pages 266–276, 2012.

[10] B. Ellis, J. Stylos, and B. A. Myers. The factory pattern in
api design: A usability evaluation. In Proceedings of ICSE
2007, pages 302–312, 2007.

[11] J. D. Gannon. An experimental evaluation of data type
conventions. Commun. ACM, 20(8):584–595, 1977.

[12] M. Hoppe and S. Hanenberg. Do developers benefit from
generic types? an empirical comparison of generic and raw
types in java. In Proceedings of OOPSLA 2013, page to
appear, 2013.

[13] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects-a comparative study of students and professionals in
lead-time impact assessment. Empirical Software
Engineering, 5(3):201–214, 2000.

[14] S. Kleinschmager, S. Hanenberg, R. Robbes, É. Tanter, and
A. Stefik. Do static type systems improve the maintainability
of software systems? an empirical study. In Proceedings of
ICPC 2012, pages 153–162, 2012.

[15] M. Leotta, F. Ricca, G. Antoniol, V. Garousi, J. Zhi, and
G. Ruhe. A pilot experiment to quantify the effect of
documentation accuracy on maintenance tasks. In
Proceedings of ICSM 2013, page to appear, 2013.

[16] W. Maalej and M. P. Robillard. Patterns of knowledge in api
reference documentation. IEEE Trans. Software Eng.,
39(9):1264–1282, 2013.

[17] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik.
An empirical study of the influence of static type systems on
the usability of undocumented software. In Proceedings of
OOPSLA 2012, pages 683–702, 2012.

[18] E. R. Murphy-Hill, R. Jiresal, and G. C. Murphy. Improving
software developers’ fluency by recommending development
environment commands. In Proceedings of SIGSOFT FSE
2012, page 42, 2012.

[19] V. Pankratius, F. Schmidt, and G. Garreton. Combining
functional and imperative programming for multicore
software: An empirical study evaluating scala and java. In
Proceedings of ICSE 2012, pages 123–133, 2012.

[20] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey. Crowd
documentation: Exploring the coverage and the dynamics of
api discussions on stack overflow. Technical Report
GIT-CS-12-05, Georgia Institute of Technology, May 2012.

[21] M. Petre. Uml in practice. In Proceedings of ICSE 2013,
pages 722–731, 2013.

[22] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[23] L. Prechelt and W. F. Tichy. A controlled experiment to
assess the benefits of procedure argument type checking.
IEEE Trans. Softw. Eng., 24(4):302–312, 1998.

[24] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F.
Tichy. Two controlled experiments assessing the usefulness
of design pattern documentation in program maintenance.
IEEE Trans. Software Eng., 28(6):595–606, 2002.

[25] M. P. Robillard and R. DeLine. A field study of api learning
obstacles. Empirical Software Engineering, 16(6):703–732,
2011.

[26] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do
professional developers comprehend software? In
Proceedings of ICSE 2012, pages 255–265, 2012.

[27] A. Stefik and S. Siebert. An empirical investigation into
programming language syntax. ACM Transactions on
Computing Education (To Appear), 2013.

[28] T. Tenny. Program readability: Procedures versus comments.
IEEE Trans. Software Eng., 14(9):1271–1279, 1988.

[29] W. F. Tichy. Hints for reviewing empirical work in software
engineering. Empirical Software Engineering, 5(4):309–312,

2000.
[30] E. Tryggeseth. Report from an experiment: Impact of

documentation on maintenance. Empirical Software
Engineering, 2(2):201–207, 1997.

[31] W. P. Vogt. Quantitative Research Methods for Professionals
in Education and Other Fields. Allyn and Bacon, 2006.

[32] R. Wettel, M. Lanza, and R. Robbes. Software systems as
cities: a controlled experiment. In Proceedings of ICSE
2011, pages 551–560, 2011.

[33] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and
B. Regnell. Experimentation in Software Engineering.
Springer, 2012.

	Introduction
	Related Work
	Studies of APIs and Documentation
	Type Systems as Documentation

	Experiment Description
	Initial considerations
	Research questions
	Programming Task and API
	Documentation
	Measurements
	Experimental Design

	Experiment results
	Empirical Data
	RQ1: Documentation usage
	RQ2: Development time
	RQ3: Coding time

	Exploratory study
	Discussion
	Threats to Validity
	Conclusion
	Ackowledgements
	References

