
Modern Information Retrieval

Chapter 14

Multimedia Information Retrieval

The Challenges
Content-based Image Retrieval
Retrieving and Browsing Video
Fusion Models: Combining it All
Segmentation
Compression and MPEG Standards

Multimedia Information Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 1



What is Multimedia?
We face an ever-growing mountain of digital data

sharing through cable, satellite, mobile phones

uploading through personal cameras, laptops, and mobile phones

trend accelerated by mobile phones with cameras

Need to develop better management methods and tools
for all this multimedia data

Multimedia is essentially any digital data, including plain text,
mostly unstructured, that we use to communicate or capture
information
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Multimedia IR
Most general form of the multimedia retrieval problem

The retrieval of text, image, video and sound data related to the
interest of the user and their ranking according to a similarity
degree

Similarity degree should be computed to improve
likelihood that user will find answers relevant

For searching, user could describe a scene in video by
typing

Keanu Reeves avoiding bullets in a
helicopter crash in the movie The Matrix
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Multimedia IR
Multimedia information retrieval (MMIR) encompasses
different sub-areas

content representation and multimedia object representation

feature extraction

query formulation to map high-level semantic concepts into
low-level features

query-by-example

relevance feedback, interactive queries

efficient feature indexing and cataloguing

integrated searching and browsing

techniques for searching multimedia based on their contents
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Text IR versus Multimedia IR
Several aspects that make text retrieval different from
image, audio or video retrieval

in text, words are readily available as basic units and structure is
provided by punctuation and paragraphs

in contrast, multimedia data is typically an uninterrupted stream,
a linear story with few delimiters

For non-text media, defining the semantic unit is a
fundamental step to attain high-quality search

In video, for instance, time is important—content
changes with time
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Text IR versus Multimedia IR
Advances in speech recognition allow the generation of
good quality speech transcripts

However, even a good transcript lacks punctuation,
paragraphs, and all the elements that provide structure

Although retrieval based on a speech transcript seems
very close to text retrieval, in practice it is not

time associated with every word in the speech transcript can be a
valuable information for dealing with this problem
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Text IR versus Multimedia IR
Sheer differences in sizes of text documents and
multimedia objects

75-minute audio signal compressed in MP3: 60M bytes

We have a strong technological culture around words

concepts of summarizing and highlighting are much better
understood for text

for multimedia there is no canonical or universally agreed notion
of what a summary is

Multimedia retrieval is a relatively new discipline

Even though, growth of image and video search
engines is here to stay
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Text IR versus Multimedia IR
Information flow in a multimedia retrieval system
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The Challenges
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The Semantic Gap
Large gap between contents of a multimedia signal and
its meaning

Usually referred to as the semantic gap
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The Semantic Gap
Object recognition: hard problem in image and audio
processing

humans can look at an image and identify faces and objects

automatically labeling components of an image or analyzing the
sounds in a waveform are unsolved problems

Multimedia IR systems make heavy use of
human-generated words

almost ignore the content features to generate an answer for the
user
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The Semantic Gap
Image or audio signal carry subjective and emotional
interpretations

difficult for computers to reproduce

in speech, non-semantic information conveyed by the prosody of
the signal

prosody allows distinguishing between “don’t stop" and
“Don’t! Stop!"
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Feature Ambiguity
Aperture problem

bar is moving to the right, which cannot be properly interpreted
with aperture

for efficiency, simple motion detector only measures portion of the
image—the aperture

aperture limits decision to small portion of image

lack of global information on image makes interpretation difficult
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Machine-generated Data
Growth of data is big challenge
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Content-based Image Retrieval
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Content-based Image Retrieval
Idea: identify and extract features related to image
contents

The problem: content-based image retrieval is the
task of retrieving images based on their contents

Query-by-example (QBE)

user supplies an image and the system finds other images that
are similar to it

ignores semantic information associated with images

Best ranking functions based on image properties that
are not affected by variables

pose, camera focal length and focus, lighting, camera viewpoint,
and motion
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Color-Based Retrieval
Common QBE solution: feature summaries across
entire image

average color: treat color as a global feature

does not depend on image resolution
even though, location of colors is very relevant

compare color histograms of different pictures
colors are quantized into one of N bins
number of pixels in each bin are compared
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Color-Based Retrieval
Color histogram is independent of image resolution and
viewing angle

No need to perform foreground–background
segmentation

Histogram of color ci in image I is defined as

hI(ci) = P (color(p) = ci|p ∈ I)

P (color(p) = ci|p ∈ I): probability that pixel p randomly selected
from image I has color ci
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Color-Based Retrieval
To improve color histogram include information on
relative locations of each color

Build color autocorrelogram by counting pixels

hI(ci, cj , r) = P (color(p1) = ci∧color(p2) = cj |r = d(p1−p2))

(ci, cj): color pair

d(p1 − p2): distance between two pixels p1 and p2

pixels p1 and p2 randomly selected from image I
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Color-Based Retrieval
Large differences between autocorrelograms of distinct
images that have identical color histograms
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Example 1
Example of application of the technique
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Example 1
Color constancy: perceptual property associated with
a color

problem with retrieval based on color histograms

human viewers recognize color of an object, almost without
regard to incident light

an apple looks red, either in daylight or under indoor light

humans are good at perceiving the same colors

a color histogram is not so forgiving
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Texture
Texture: a measure of the repetitive elements in the
image

A perceptual phenomenon, easily detected by humans

Challenging to describe mathematically

Characterizes the repeating patterns of image intensity
that are too fine to be distinguished as separate objects

Most texture measures are invariant to intensity and
orientation
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Co-occurrence Texture Measures
Simplest texture measure: uses co-occurrence matrix
called gray-level co-occurrence matrix (GLCM)

Summarizes information about patterns of light in pairs
of image pixels

Pixel pairs to use are determined using a vector ~v

pixel pair (p1, p2) that has directionality and distance determined
by ~v is said to be ~v-aligned

establishes directionality and distance for pixels in each pair
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Co-occurrence Texture Measures
Given a vector ~v, pixel pairs [p1, p2] for which ~p1 − ~p2 = ~v

are said to be ~v-aligned

~v-aligned pixels are considered in GLCM matrix
computations
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Co-occurrence Texture Measures
PI(ci, cj , ~v): probability of finding ~v-aligned pixel pairs in
image I, associated with colors ci and cj

PI(ci, cj , ~v) = P (color(p1) = ci, color(p2) = cj |~p2 − ~p1 = ~v)

Statistics to summarize information in a GLCM

energy, entropy, contrast, and homogeneity
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Co-occurrence Texture Measures
Energy: measure of brightness of ~v-aligned pixels

EI(ci, cj , ~v) =
∑

i

∑

j

PI(ci, cj , ~v)2

Entropy: measure of non-uniformity of ~v-aligned pixels

ΨI(ci, cj , ~v) =
∑

i

∑

j

PI(ci, cj , ~v) log PI(ci, cj , ~v)

Contrast: measure of differences between pixel light
intensities φi of pixels in ~v-aligned pairs

CI(ci, cj , ~v) =
∑

i

∑

j

(φi − φj)
2 PI(ci, cj , ~v)
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Co-occurrence Texture Measures
Homogeneity: measure of similarity of pixels

HI(ci, cj , ~v) =
∑

i

∑

j

PI(ci, cj , ~v)

1 + |φi − φj|
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Example 2
Example of texture retrieval using the QBIC system
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Salient Points
Algorithms for color and texture-based retrieval use
histograms over entire image

More sophisticated approach builds a feature model

combine color and spatial frequency information, at “interesting”
image regions

Analyze image looking for points that are especially
distinct
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Salient Points
Salient points : technique that finds image features that
are persistent across a number of scales

Especially robust to changes in lighting, position of
camera, and even object’s angle

Typical operations at salient points include key points,
stable orientation, and local geometry on texture
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Salient Points
Salient points tend to be associated with corners or
distinct places in the image

Multimedia Information Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 32



Example 3
Image similarity computed by summarizing statistics of
salient points

Image characteristics near salient point defined by
simple spectral filters

Values are clustered using k-means to determine
“words” in the language

Algorithm like pLSA used for image matching
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Example 3
Results produced content retrieval using salient points
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Audio and Music Retrieval
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The Problem
The audio retrieval problem

The retrieval of audio tracks that match a vaguely
specified audio-information need.

This problem takes many forms such as:

fingerprinting: given a small snippet of sound, find an audio
object that matches it

speech recognition: given an audio track, recognize the text it
contains

speaker identification: given an audio track, recognize the
speaker(s) it contains

spoken document retrieval: given a text query, retrieve spoken
documents that match the query
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Fingerprinting
Audio fingerprinting is a commercially successful IR
task

Use a small snippet of sound to query a large database
and look for an exact match

Process is complicated because the query is often
corrupted

Typical case: snippet of sound captured by a cell phone in the
noisy environment of a pub
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Fingerprinting
One solution approach:

look for changes in the spectrogram

encode the most salient portions of the audio

spectrogram: spectral-temporal distribution of sound

Difficulty:

make process robust to common abuses in audio signals

loud background noise, inexpensive microphones on a cell phone,
and compression algorithms optimized for voice and not music

Location of a peak relatively stable even when noise
added

Constellation of peaks constitutes a fingerprint that
can be used to identify a section of the audio piece

Multimedia Information Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 38



Fingerprinting
Fingerprinting using Madonna’s song “Borderline”
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Speech Recognition
Recognize the words contained on audio track

Works well when two conditions are met:

constrained acoustic environment: single voice and no
background noise or music

well defined task: limited number of words need to be recognized
at any point in time

Unfortunately, multimedia signals usually violate both
conditions
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Hidden Markov Models
Used to find sequence of word models that best explain
the audio

Include information on the legal phoneme sequences
and their pronunciation

All information is tied together within a single
probabilistic framework

Model estimates probability that a set of phonemes,
corresponding to a word, sounds like what was heard
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Hidden Markov Models
Simple HMM illustrating these two models
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Hidden Markov Models
Speech signal as a sequence of static states

the signal is assumed to be constant and when it changes the
HMM moves to a new state

Each state models a portion of a speech signal with a
probabilistic density function

To handle the dynamics of speech, each acoustic
model is composed of three to five states

Each state describes the likely MFCC (mel-frequency
cepstral coefficient) vectors with a Gaussian Mixture
Model (GMM)
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Gaussian Mixture Models
Many ways to pronounce the phoneme /a/ in the word
cat

to handle this, use a GMM for each phoneme

A GMM is a probability density function modeled with a
small number of Gaussian bumps, which in this case
lead to a 39-D space
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Gaussian Mixture Models
Basic form of this multidimensional Gaussian model

G(x, µ,Σ) =
1

(2π)N/2 |Σ|1/2
exp

(

−
1

2
(x − µ)T Σ−1(x − µ)

)

where

x is the N-dimensional data point

µ is the location of the Gaussian mean

(·)T represents matrix transpose

Σ is a matrix that describes the covariance of the data
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Gaussian Mixture Models
We create a mixture of these Gaussians by adding a
number of them

Each component represents the probability of a
different portion of the acoustic space

GMM(x, {µ}, {Σ}) =
∑

i

AiGi(x, µi,Σi),

where

Gi is a single multidimensional Gaussian

Ai is a weighting coefficient

Generally these covariance matrices are diagonal
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Language and Acoustic Models
Language model makes speech recognition work by
constraining number of possible words, which greatly
reduces chances of mistakes

very simple solution: only words that are allowed are the ten digits

in this case, we say that the vocabulary size is 10 and that the
language has a perplexity of 10

Typical large-vocabulary speech-recognition systems
have a perplexity of 60

Speech recognition works well even over lousy
communication channels such as a cell phone
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Speaker Identification
Consists of determining who is speaking regardless of
the words they are saying

Two common approaches

speaker-dependent speech recognition

GMMs density estimation

Speaker-dependent speech recognition: unique
models tuned to the pronunciation peculiarities of each
speaker

collecting speaker-dependent information for a large population is
impractical
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Speaker Identification
More general model like a single GMM used to capture
all sounds produced by a speaker

GMM might require up to 2,000 components to properly
model the way each speaker speaks

large number of components is necessary because system is not
trying to recognize individual words

Speaker identification using GMMs often needs more
than 10 seconds of speech to make a reliable decision
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Spoken Document Retrieval
Retrieve spoken documents that fit a text query

Two speech-specific approaches are most commonly
used

keyword spotting

phonetic recognition

Both approaches are more robust for IR than normal
speech-to-text using a speech recognizer
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Spoken Document Retrieval
Keyword spotting: recognize pre-selected keywords
inside spoken documents

each keyword contains a lot of information

presence of one of them is highly informative

approach is limiting because users must include those keywords
in their queries
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Spoken Document Retrieval
Phonetic recognition: perform retrieval at the
phoneme level

Key issue: needs to deal with mismatches at the level of
underlying sounds

Using conventional IR techniques the words “bat" and “bet" are
completely different

But phonetically the /a/ and the /i/ in these two words are very
easy to confuse
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Audio Basics
Analyzing the audio signal, to extract basic information,
is an important part of an audio-retrieval system

Audio is recorded as a waveform

measures of the changes in air pressure along the wave over time

if sound wave is produced by combination of multiple sources,
signal is complex

each object in a sound landscape has three primary dimensions
loudness, pitch, and timbre

For IR, we can ignore the overall loudness of the signal

Pitch and timbre carry different kinds of information
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Audio Basics
Pitch: attribute of sound that describes musical melody

psychoacousticians define it based on what we perceive

speech researchers define it based on what the glottis in the
throat is doing

engineers define it based on the harmonicity of the signal

Here we will use the musical definition—we are most
interested in which notes are played

For our purposes, we define

pitch (or note): the lowest frequency in the
harmonic complex
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Audio Basics
While the pitch is often ignored in speech processing, it
is an important cue for

Auditory Scene Analysis

understanding the emotional content of the signal

Timbre: property of the sound that allows identifying
the type of musical instrument that is playing

separate dimension of sound that we define as everything except
for the loudness and pitch information

allows understanding emotional and musical content in a signal

To understand the words, we look at the timbre
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Sound Spectrograms
Describe how frequency of signal changes over time
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Sound Chromagrams
Music IR systems depend on a representation of the
sound known as the chromagram

Chroma: cyclic metric that assigns a same value to two
tones separated by an integral number of octaves

Chromagram: formed from the spectrogram by
combining multiple octaves into a single 12-D vector

if base octave is from 65 to 123 Hz, information from each octave
are combined to find the estimate of the 12 notes in the
chromagram

Resulting chromagram represents the notes (or
chroma) of the music as a function of time
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Sound Chromagrams
12-dimensional chromagram, as a function of time, for 3
of the notes (cases a, b, c) shown in the last figure (2
slides back)
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Mel-Frequency Cepstral Coefficients
MFCC: most common representation for timbre

operates on each frame of the spectrogram

converts detailed spectral information into a (usually)
13-dimensional vector that captures the broad shape of the
spectrum
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Mel-Frequency Cepstral Coefficients
Processing steps compute MFCC of the following
speech signal: “a huge tapestry hung in her hallway"

a) spectrogram

b) rescaling to convert to a mel-scale filter bank

c) DCT to reduce the dimensionality to 13
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Retrieving and Browsing Video
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Video Abstracts
Video representation that captures content concisely
and efficiently

for a user unfamiliar with a video, it should be easier to assimilate
abstract than original video

Abstract covers video content when it captures all the
salient topics or events of the original video

Video-abstraction typically requires to

analyze and segment the original video into manageable units

rank such units using various combinations of visual, audio,
textual, and other features extracted from the original stream

select the relevant units/segments that define the summary

generate the visualization for such summary
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Video Abstracts
Visualization schemes can be divided into two types

static (frame-based)

dynamic (video-based)

Dynamic summaries are constructed by generating a
new video sequence, typically a much shorter one, from
the source video
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Static Summaries
Static display : something that can be printed on paper

Simplest video summary is its title

Next in complexity, visual summaries are based on a
subset of still images (key-frames)

Static summaries provide a compact alternative to a full
video because they are assembled from static images
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Static Summaries
In movie making, storyboards describe action to be
shot, camera angles

provide a summary of the entire film

In video summarization, storyboards are composed of
an array of thumbnails in chronological order

early storyboard approaches were very simple

key-frames were selected either:
randomly, or
at certain time intervals

main disadvantage is that they do not provide context
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Static Summaries
More sophisticated approaches

extract the key-frames based on shots or scenes

to select key-frames, use a combination of low-level features such
as color, texture, and motion

Despite their drawbacks, static storyboards are widely
used in video-retrieval systems and commercial
products like iMovie
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Static Summaries
Visualization with time information into filmstrip

Cuboid associated with each thumbnail has depth
proportional to duration of the shot
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Sophisticated Storyboards
In traditional storyboards, thumbnails have same size

In two-dimensional storyboards

thumbnails of different sizes

relative size indicates importance of key frame

Example: Video Manga

inspired by Manga, represents one type of storyboard
thumbnails of different size packed in visually pleasing form
analogous to style used in comic books

Challenge: efficient layout of variable-size thumbnails
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Sophisticated Storyboards
Manga: size of thumbnails reflect importance of key
frames
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Mosaics and Salient Stills
Shots can include moving objects and camera motion

tilting and panning, zooming and changes of depth field

Shot represented by synthetic panoramic images
denoted salient stills or mosaics

Salient Stills

class of composite images that aggregate temporal changes in a
shot

three types, depending on whether motion introduced by camera
or object

pan
zoom
timeprints
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Mosaics and Salient Stills
PanningMosaic: find overlap between different images
in time and combine them into one image
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Mosaics and Salient Stills
Timeprint: multiple video frames combined into single
image that shows motion
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Mosaics and Salient Stills
Generation of salient stills requires two major steps:

modeling

rendering

Modeling: estimate correspondence between frames

Rendering: select

frame of reference

frames to render

how objects will be handled in relation to the background image

what type of temporal operator should be applied
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Mosaics and Salient Stills
For salient stills from panning

compute camera motion from frame to frame

create single panoramic still image as composite of all the frames
in the shot

once salient stills computed for all shots, users can quickly grasp
video content

Salient stills for zoom
combine multiple key-frames into a single multi-resolution image

Timeprint
salient still from zoom or pan

incorporates objects in the scene creating an aggregate of the
background and objects positions
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Mosaics and Salient Stills
Storyboard that combines mosaics and traditional
key-frames
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Dynamic Summaries
Static summaries

not suitable for videos where most of the information resides in
audio track

Dynamic summaries
incorporate time and audio

provide compactness and non-static representation

Examples of these summaries:

slide shows

moving storyboards

movie trailers
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Dynamic Summaries
Slide Shows display key frames at a fixed rate and
includes play controls and a time bar

to select the key frames composing a slide show, different
algorithms can be used

Moving Storyboard (MSB)
slide show synchronized with version of original audio track

can have the same duration of original audio track

one or more key frames per shot are extracted and displayed
during the entire duration of the shot
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Dynamic Summaries
More advanced interfaces result from combining several
modalities

speech recognition

image processing

natural language understanding to process video automatically

Movie Content Analysis (MoCA) Project
generates movie trailers using several modalities

movie trailer: short version of longer video intended to attract
viewer’s attention
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Dynamic Summaries
MoCA creates a video abstract in 3 steps

1. segment video to understand the shots and identify faces, dialog,
and extra text from the titles

2. select clips that best represent the movie

3. assemble clips by ordering them and select the right transitions

Emotional content of the story not considered by
automatic means
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Interactive Summaries
Apple Video Magnifier

early interface for video browsing

hierarchical view of entire movie

starting with row of key frames, every frame is expanded into
another row to provide the next level of detail
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Interactive Summaries
Even sophisticated storyboards do not work for both
videos and collections of videos

One solution: movieDNA

visualization for video, video collections and linear data in general

2D image where image graphically resembles a DNA fingerprint

requires segmentation of video by
straight-forward approach, or
more sophisticated content-based approach

time (in one or more different videos) flows down the image

each pixel says which feature is present in video
presence of a person
presence of a topic
type of audio
any other kind of metadata
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Interactive Summaries
In movieDNA, user can quickly

see what is in the video

see when it occurs

jump to the appropriate segment

HMDNA: Hierarchical movieDNA
aggregation of several movieDNAs

provides high-level overview of a video collection, at-a-glance
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Interactive Summaries
2-Level Hierarchical MovieDNA
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Visual vs. Audio Browsing
Humans are much more efficient at browsing visual
content than browsing speech or audio content

Defining audio unit equivalent to thumbnail image unit is
challenging

For starters, need to listen to one audio stream at a time

Two approaches for speeding up audio:

time-scale modification (TSM)

speech summarization
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Visual vs. Audio Browsing
TSM algorithms

generate comprehensible speech signal by shortening signal in a
way that preserves pitch, timbre, and voice quality of the signal

speech can be sped up by a constant factor of 2.5 and still be
comprehensible to an average user

alternative: analyze the words and select only some of the
phrases or sentences for playback; for this use

speech-recognition algorithms to extract the text and timings
text-summarization algorithms to select the most important
phrases
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Evaluating Summaries
No universal definition of a set of evaluation metrics to
determine quality of a summary

In most cases, evaluation is subjective

determining whether a user can successfully perform specific
tasks while using a summary instead of the original video

Key point: evaluating quality of a summary depends on
the questions you ask subjects
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Fusion Models: Combining it All
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Fusion Models: Combining it All
Multimedia fusion

combining different kinds of data to make a better decision for a
multimedia-retrieval task

two distinct kinds of fusion

recognizing one domain based on information from the other
using both domains for simultaneous recognition of content of
interest

Recognizing one domain based on the other

build a joint probability model that fuses a multimedia signal with
a textual model

allows using audio to label faces, images, and audio
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Fusion Models: Combining it All
Use both domains for simultaneous recognition of
content

use different kinds of information to better understand the signal

best example: audio–visual speech recognition
improve speech recognition by reading the lips in a video
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Naming Faces
The Web, and especially news articles, are filled with
pictures and their captions

Inherent problem: extract, from the captions, names for
faces in the pictures

Berg and her colleagues solve this problem in three
stages

1. use a technique based on principle-components analysis (PCA)
to find faces in image

2. use simple named-entity detectors to look in the caption for
proper names

3. cluster all the facial images that are labeled with each name
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Naming Faces
Faces come in a multitude of styles and poses

Yet, large range of images preserve common features

EigenFaces

important tool for recognizing common features in faces

find optimal subspace using principle components analysis (PCA)

all (training) images of faces are aligned so that eyes and other
features of the face are always in the same spot

image brightness is then read out of the image, composing a
single vector of size N × M

each facial image forms one point in high-dimensional space

discriminate the portion of the space that corresponds to faces
from the portions that do not
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Naming Faces
Eigenface representations

E igenface 1 E igenface 2 E igenface 3

E igenface 4 E igenface 5 E igenface 6

E igenface 7 E igenface 8 E igenface 9

S umming 1 S umming 2 S umming 3

S umming 4 S umming 5 S umming 6

S umming 7 S umming 8 O rigina l Image
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Naming Faces
Named-entity detector extracts common names from
the captions associated with each image

Difficulties

proper names that do not correspond to a single face, such as an
organization

faces in the image that do not have a name listed in the caption
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Naming Faces
Problem: establish correspondence between proper
names and images

Solution: use a combination of clustering and
expectation–maximization

Berg builds probabilistic model that divides EigenFace space

expectation–maximization (EM) algorithm is used

estimate a probabilistic model that connects EigenFace space
to each potential name
use either maximum-likelihood or an average estimate to
assign a name (or null) to each face image

repeat until name-image assignment converges

Berg gets approximately 78% accuracy on an identification task
over 1000 images on the Web
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Naming Images
More general approach: fuse images and words

use a generalized language model

any number of words are used to describe portions of an image

Barnard proposes solution based on
machine-translation

like translating from one language to another, connect image
features to words

use hierarchical image clustering

label each cluster with a set of words
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Naming Images
First task when analyzing images

identify different regions of image that correspond to different
objects

for this, use normalized cuts

Normalized cuts

graph that connects each pixel to each other pixel is built

weight of the edge is a function of how similar the two pixels are

function describes how spatially separated two pixels are in the
original image

can be formulated as a singular-value decomposition (SVD)
problem
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Naming Images
Image segmentation performed by normalized cuts

Given an image, we can
query the word–image probability model to estimate the words
that are most likely to be associated with that image, or

find the image features that best correspond to any word
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Naming Audio
Slaney studied analogous approach

but aimed at connecting audio and words

each sound file assumed to contain just one sound

no segmentation is needed

sounds from two different sound-effects libraries were linked with
their textual description

anchor space represents sounds as points, or anchors, that
correspond to distances in an ensemble of sound models

distances from the query sound to each of the anchor models
compose a vector

distances are computed using GMMs, much like the models of a
speaker in speaker-identification
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Naming Audio
Math involved in semantic–audio retrieval

second equation follows from application of Bayes Rule to first
equation
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Combining Audio and Video for
AVSR
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Combining Audio and Video AVSR
Audio–visual speech recognition (AVSR)

combines acoustic and visual information on the face of the
talking person

even in great acoustic conditions, easier to distinguish with visual
information

Represent visual evidence with pixel-based or
shape-based features

pixel-based features: image pixels, often transformed much like
EigenFaces, form a feature vector

shape-based features: based on finding the location of facial
features such as lip positions and jaw outline

either type of feature, or a combination of them, can be used as
input to a AVSR system
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Combining Audio and Video (AVSR)
Two different approaches to the AVSR problem
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Combining Audio and Video (AVSR)
Early fusion

acoustic and visual features are concatenated

provided as input to a conventional recognizer

information combined at early stage before decision made

Late fusion

use separate recognizers to make decisions about acoustic and
visual information

the two decisions are then fused to decide which word is present

Conventional speech recognizers might use various
phonemes for English

Visual counterpart is a viseme
characteristic visual pattern that represents one position of lips
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Combining Audio and Video (AVSR)
Typical results for audio and audio–visual speech
recognition
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Combining Audio and Video (AVSR)
It seems logical that a recognizer should do better with
an early fusion approach

early fusion has all information it needs to understand
correlations and other oddities of both data

Yet, AVSR works better with late fusion instead of early
fusion

One hypothesis is that joint probability model is too
complicated for a single recognizer to learn

maybe because model cannot capture the nuances of a joint
distribution

maybe because there is not enough data

In either event, late fusion, or a hybrid approach that
combines early and late decisions, works better
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Combining Audio and Video for
Multimedia
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Combining for Multimedia
AVSR can also be used to solve the more general
audio–visual recognition problem

Example: multimedia system proposed by
IBM researchers

best audio-only model had a precision of 30%

best visual-only model (face recognition) had a precision of 29%

best combined system, based on late fusion, had a precision of
47%
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Segmentation
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Segmentation
Task of dividing multimedia objects into smaller objects,
prior to processing multimedia queries

A video is composed of a number of scenes
scene: sequence of adjacent shots that are semantically
coherent

related scenes grouped into higher semantic units, called
segments or stories
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Segmentation
Hierarchy of objects in a film or video
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Segmentation
Transition

a video change from one shot to the next

Cut

abrupt transition

easy to detect because entire image changes

Other transitions
fades, dissolves, and wipes

occur slowly over time

Segmentation algorithms can be of various types

pixel-based, statistical differences, histogram-based, edge-based,
DCT-based, and motion-based
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A Video Segmentation Example
Shot-boundary detection

algorithm for video segmentation

looks at summary statistics to determine instants of major
changes in video

one simple global statistic of value: color histogram of image

Color histogram

computed by counting number of pixels of each color in image

color often represented as three 8-bit numbers

number of colors is too large to count directly

512 different color types: (8 × 8 × 8 colors)

Multimedia Information Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 112



A Video Segmentation Example
Summary of color information in a 35-second long
section of the “21st Century Jet” video

sharp transitions in the signals correspond to shot boundaries

large and slow transitions indicate a dissolve
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A Video Segmentation Example
Best low-rank approximation to the signal

singular-value decomposition (SVD) algorithm

in previous figure, notice small changes in signal during middle of
a shot

for instance, due to motion of object in the frame (at 345 seconds)

shot changes are clearly visible as a dramatic change in the color
signal, for example at time 338

near 357 seconds, two related images are superimposed to
provide a smooth transition between video clips—a dissolve
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Segmentation Schemes for Video
Histogram method works well

because changes to video caused by camera or object movement

Detecting fades is more difficult
because it represents a change in the video over time

starting with a normal image, video linearly decays to black and
then grows into new image

Simple fade detector looks for frames that have a
constant color
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Segmentation Schemes for Video
Dissolves

hardest segment boundary to detect

image slowly changed from one scene to another by cross-fading
the pixels

for example, performing linear interpolation of consecutive
images on a pixel-by-pixel basis

to detect such changes, measure overall variance of luminance of
each image frame

during a dissolve, two images are blended and combination
reduces overall variance
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Segmentation Schemes for Video
To detect a dissolve, look for dip, lasting several
seconds, in mean luminance variance
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Segmentation Schemes for Video
More robust approach to find dissolves

build explicit model as done by Covell

given any two points within a dissolve, intermediate points are
simply a linear interpolation of endpoints

sample pairs of frames in video at intervals of 1 second and
check if intermediate frame is predicted by a linear interpolation
of endpoints

prediction error gives estimate of how likely a dissolve is at this
point

expand the region with low-prediction error to find beginning and
end of the dissolve
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Video Segmentation with Edges
Edges

sharp discontinuities in the luminance of an image

interesting because they are robust to lighting changes and
camera motion

Zabih proposes to combine motion estimation, edge detection to
find edge-change fraction

basic idea: look for edges that do not appear in next image in the
sequence (and vice versa)
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Video Segmentation with Edges
First, register the two images to remove any global
motion

done by finding the shift ∆x, ∆y that maximizes pixel to pixel
correlation Crr between current frame (I1) and next frame (I2)

∑

x,y

Crr(I1[x + ∆x, y + ∆y], I2[x, y])

where x and y are pixel coordinates

given offset required to bring the two frames into alignment, we
have two images that are roughly aligned

as a result, can find and match the edges
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Video Segmentation with Edges
Canny edge detector

finds important (for the purposes of this algorithm) points in an
image

process of computing edges using Canny’s method:
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Video Segmentation with Edges
Scene breaks (of all kinds)

found by counting edges that come and go between frames

for each edge location, look for a corresponding edge in a small
region of the other image

fraction of edges that are found in two images provide measure of
image similarity

when entire scene changes, measure registers a low
similarity—a scene break

edge-based detection is less sensitive to motion and chromatic
changes than histogram-based detection
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Speech Segmentation
Segmentation boundary

characterized by a decision that something has changed in the
signal

probabilistic way to make this decision is:

to build a model of the first portion of the signal
to advance the model through the signal
to detect the point at which the model no longer fits or explains
the data

this (one-sided) calculation is error-prone because a new point
might not fit the model

point can be caused by a noise
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Speech Segmentation
Can use double-sided approach that compares models
on both sides of a potential boundary

Bayesian Information Criteria (BIC)

build a model for signal

segment signal into two smaller pieces

build two different models

given model Mi and data Di with i = 1, ..., N

BIC(Mi) = log P (D1, D2, ..., DN |Mi) −
1

2di

log N

di: number of independent variables in model Mi

first term: log likelihood that model explains data
second term: penalizes models that are more complicated
because they take more parameters to describe them
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Segmentation Evaluation
Shot boundary detection

relatively mature area of research

general purpose algorithm might require several passes through
video

approaches based on global statistics involve a threshold (or set
of thresholds)

set either manually or automatically
in practice, only automatic adaptive thresholds make sense

Challenge: develop a single-pass algorithm that can
robustly detect cuts and transitions in real-time
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Compression
MPEG Standards
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Compression and MPEG Standards
Unlike text documents, one almost never sees an
uncompressed multimedia object

Most multimedia formats remove redundant information
that the human brain can not perceive

human eye can more readily perceive changes in intensity than
changes in color

Compression enables use of digital video in
applications with restricted bandwidth requirements

video-on-demand (VOD)

video conferencing
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Compression and MPEG Standards
Five key procedures for making image and video
compression efficient

color subsampling

removing spatial redundancy with discrete cosine transform
(DCT)

entropy coding

motion compensation

removing temporal redundancy
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Intensity and Sampling
Color and intensity are the most basic elements of a
picture

Intensity of light is sampled at discrete points as
function of time and space

if image is sampled too coarsely, information is lost

If it is sampled too finely, there is unnecessary (redundant)
information in the image

Intensity information is usually captured uniformly, no
matter what the color
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Color
Color is a basic feature of an image

can be perceived and distinguished by humans

visible wavelengths are in the range of 400 to 700 nanometers
(nm)

each color corresponds to a narrow band in this range

human eye can distinguish 400,000 colors

humans generally perceive color with photo sensors that are
sensitive to three different bands of color

gamut of all colors are produced with red, green and blue
(RGB) phosphors in graphics displays
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Color
Color is represented in terms of RGB intensities

Not how human visual system perceives it

Other color systems are used to represent color
information

Hue, Saturation and Value (HSV)

popular alternative color description scheme

basic colors (red, green, purple) are encoded in the value of hue

value (or brightness) is the overall intensity or energy of the light
source

amount of saturation determines whether the color is pink or a
deep red—its vibrancy
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Color
Y CbCr

color system known used as basis of image (JPEG) and video
systems (MPEG and DVD)

like HSV , Y CbCr system encodes color with three values

a luminance or Y

a blue chroma signal Cb

a red chroma value Cr
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Color
Y CbCr values computed as follows

Y = Kr × R + (1 − Kr − Kb) × G + Kb
× B

Cb =
1

2
×

B − Y

1 − Kb

Cr =
1

2
×

R − Y

1 − Kr

variables R, G, and B represent the intensities of red, green, and
blue in the RGB scheme

Kr and Kb are constants given by Kr = 0.299 and Kb = 0.114
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Color
Downsampling color or chrominance information is
important step in image compression

Our eyes are much better at detecting spatial changes
in luminance than at in chrominance

In YCbCr scheme

Y signal is kept unaltered

Cb and Cr signals are each downsampled by a factor of 2 or 4
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Color
Effect of downsampling on color image and its three
components

Note compression artifacts, best seen by looking for the
jagged diagonal lines in the Cb and Cr images
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Lossy Compression
After conversion of image to perceptually relevant color
space (Y CbCr), two kinds of compression

1. lossy stage throws away information eye cannot perceive

2. lossless stage removes statistical redundancies in signal

Sensitivity of eye

ability to perceive different frequencies

beyond roughly 6 cycles per visual degree, ability to perceive a
pattern is quickly reduced

Sort frequency content, keep low-frequency changes

Images described in terms of spectral content

Image decomposed into spectral components using a
discrete Fourier transform (DFT)
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Lossy Compression
DFT represents image in terms of weighted sum of
spatial sinusoids
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Lossy Compression
Since eyes are most sensitive to low spatial
frequencies, transmit coefficients of these frequencies
with higher precision

Spectral analysis accomplished using discrete cosine
transform (DCT)

most important frequencies transferred with highest fidelity

Image partitioned into as many blocks of 8x8 pixels as
needed to fully cover image

DCT represents each block of pixels with 64 different
base functions

each function represents different combination of horizontal and
spatial frequencies
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Lossy Compression
64 base functions

compute DCT of block, 64 coefficients, one per base function

compute DCT again, inconsequential rounding errors
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Lossless Compression
Lossless compression

applied after lossy compression

further compresses the data

does not introduce any errors in the representation

After removing redundancies in signal, aim at removing
statistical patterns in the numbers

Two common approaches

run-length encoding

entropy coding
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Lossless Compression
Run-Length Encoding (RLE)

during DCT processing, rearrange pixels in 8 × 8 DCT block in
order of their importance

transmit these coefficients by transmitting a value and a count of
how many times the same value is used

Entropy Coding

second stage of compression

uses entropy (randomness) of coefficients to design optimal
coding scheme
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Temporal Redundancy
In video compression, do two additional and related
types of redundancy removal

motion estimation

image prediction

Important in video because one video frame often looks
very similar to the next

Transmit just the changes between one frame and the
next, which is a delta image
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Temporal Redundancy
Transmit only the first image in a scene

then transmit delta images

an image can only be reconstructed if we first decompress all
preceding images

very sensitive to errors, which makes skipping through the video
more difficult

Alternative is provided by MPEG compression

delta images can be computed in either forward and backward
directions relative to fully-transmitted images known as I-frames
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Motion Prediction
Given two images, compress the first image and then
use it to predict the second image

use a pixel in the first image to predict the exact same pixel in the
second image

using subtraction alone does not necessarily decrease the
amount of transmitted data

Video compression uses a more powerful technique
known as motion prediction
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Motion Prediction
Each 16 × 16 block of pixels predicted in new frame
based on nearby blocks in prior frame

Involves search for best match in preceding frame

Look for a translation that minimizes difference function
E(∆x,∆y) between two consecutive frames I1 and I2

E(∆x,∆y) =
∑

x,y

(I1[x + ∆x, y + ∆y] − I2[x, y])2

Each 16 × 16 block of image that is highly similar to a
neighboring block

represented by a predictive displacement function
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Motion Prediction
Frames in the stream are compressed

independently, or

relatively to neighboring frames

I-frames

compressed standalone

rate of I-frames not necessarily related to compression

in streaming video, I-frames play a key role for scrubbing

live streams have a lower frequency of I-frames

reason you cannot change your digital channel instantly
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Motion Prediction
Each 16 × 16 block of image compressed by analyzing
and saving prediction error

Ie(x, y) = It(x, y) − Ii(x + ∆x, y + ∆y)

where

It: current frame in the video stream,

Ii: reference frame

∆x and ∆y: motion prediction vectors for this macro block

Ie: 16 × 16 block image error
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Motion Prediction
Function E(∆x,∆y) and motion prediction hide three
important details

1. summation usually carried out over a macro block, yielding an
estimate of which pixel values are best found in the other image

2. in brute-force implementation, cost grows with square of
maximum distance considered

3. best motion-prediction vectors for any one macro block are
independent of any other block
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Motion Prediction
Example of motion prediction vectors between two
images
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MPEG Standards
Much of audio-visual content in multimedia systems
encoded in MPEG

standard for compression and delivery of multimedia

created by the International Standards Organization (ISO) and
the International Electro-Technical Commission (IEC)

not just a standard but a family of standards:
MPEG-1, MPEG-2, MPEG-4, MPEG-7, MPEG-21
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MPEG-1
Standard started in 1988 and approved in late 1992

In 1988 video did not fit on common storage media

applications like Video CD and CD-ROM drove development of
MPEG-1

challenge: fit audio and video in storage media then used
exclusively for audio

interactivity needed to support random access
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MPEG-1
Designed to achieve video quality comparable to VHS

1.5M bps (bits per second)

a frame size of 352x240

29.97 frames per second

stereo audio at 192 bps

Efficient compression algorithm that can be decoded in
real-time

Widely adopted, playable in most computers and DVD
players

MP3

level 3 MPEG-1

most popular audio-compression standard
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MPEG-2
Developed to provide higher quality and bandwidth than
MPEG-1

Bit rates

3 – 15 Mbps for broadband

15 – 30 Mbps for HDTV

Efficiently compresses interlaced video

most significant enhancement from MPEG-1

MPEG-2 scales well to HDTV resolution and bit rates

makes an MPEG-3 standard unnecessary

MPEG-2 decoders also decode MPEG-1 bit streams
also, provides multi-channel surround sound coding

Multimedia Information Retrieval, Modern Information Retrieval, Addison Wesley, 2010 – p. 153



MPEG-2
MPEG uses information from neighboring areas to
compress specific areas of a frame

Motion vector captures movement of target area and
makes prediction easier

Prediction involves more than just looking at previous
frames

Three types of frames are used: I, P, and B

I-frames are denoted intra frames

P-frames and B-frames are denoted inter frames
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MPEG-2
I-frames do not reference any other frame

simply coded as a still image

consequently, decoding can start at any I-frame

I-frames provide anchors into the video stream

constitute the entry points for random access

provide a fresh start from the point of view of error recovery
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MPEG-2
P-frames are compressed

reconstructed using forward prediction

reconstruction requires either previous I-frame or previous
P-frame

from one of previous frames, along with motion prediction
vectors, calculate the new frame

B-frames, or bidirectional frames, are unique

use both forward and backward predictions

reconstructed from closest past I-frame or P-frame, and closest
I-frame or P-frame in the future

MPEG prediction can be described from the point of
view of the encoder or the decoder
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MPEG-2
Typical sequence of frames in encoded stream and
frame dependency
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MPEG-2
Coding/transmission order of frames must be different
from display/playback order

otherwise, decoder would have to suspend reconstruction of
B-frames until reference P or B frames arrive

Display sequence displayed can be transmitted as
IBBPBBBI
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MPEG-2
Decoder needs three buffers

one for forward prediction

one for backward prediction

one for the reconstructed image

Each block in a P-frame can be intra-coded or predicted

Each block in a B-frame can be intra-coded or predicted
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MPEG-4
Originally targeted at low-bit rate video applications

scope was afterwards expanded

MPEG-4 scales

can perform under a wide range of bit-rates, from a couple of
Kbits/sec to 10Mb/sec

can use object-based compression

first standard to reach beyond block-based compression
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MPEG-4
Vision for MPEG-4 was

to provide a bridge between Web media and conventional media

MPEG-4

enables interaction with objects within the scene

supports integration of natural and synthetic media

provides compression for speech, audio and video
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MPEG-7
First MPEG standard that is not about compression

about semantics of media

describes metadata about the content, not the content itself

can be seen as a content description standard

uses a Description Definition Language (DDL) and is defined in
XML
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MPEG-21
Open framework for multimedia delivery and
consumption

addresses the challenges of describing the intellectual properties
rights associated with a piece of multimedia

Fundamental unit of transaction is a Digital Item (DI)

combination of audio, images, video, and text metadata

captures relationship among these components
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MPEG-21
Rights Expression Language

standard to allow sharing digital rights information among various
players involved

MPEG-21 provides framework where two people can
interact with one another

they can manipulate, trade, consume,and access, a Digital Item
smoothly and efficiently

Hope is that such transparent interaction discourages
illicit file sharing
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