Modern Information Retrieval

Chapter 3 Modeling

Part I: Classic Models

Introduction to IR Models Basic Concepts The Boolean Model Term Weighting The Vector Model Probabilistic Model

IR Models

- **Modeling** in IR is a complex process aimed at producing a ranking function
 - Ranking function: a function that assigns scores to documents with regard to a given query
- This process consists of two main tasks:
 - The conception of a logical framework for representing documents and queries
- The definition of a ranking function that allows quantifying the similarities among documents and queries

Modeling and Ranking

- IR systems usually adopt index terms to index and retrieve documents
- Index term:
 - In a restricted sense: it is a keyword that has some meaning on its own; usually plays the role of a noun
 - In a more general form: it is any word that appears in a document
- Retrieval based on index terms can be implemented efficiently
- Also, index terms are simple to refer to in a query
- Simplicity is important because it reduces the effort of query formulation

Introduction

Information retrieval process

Introduction

- A **ranking** is an ordering of the documents that (hopefully) reflects their **relevance** to a user query
- Thus, any IR system has to deal with the problem of predicting which documents the users will find relevant
- This problem naturally embodies a degree of uncertainty, or vagueness

IR Models

An **IR model** is a quadruple [**D**, **Q**, \mathcal{F} , $R(q_i, d_j)$] where

- 1. D is a set of logical views for the documents in the collection
- 2. \mathbf{Q} is a set of logical views for the user queries
- 3. ${\mathcal F}$ is a framework for modeling documents and queries
- 4. $R(q_i, d_j)$ is a ranking function

A Taxonomy of IR Models

Retrieval: Ad Hoc x Filtering

Ad Hoc Retrieval:

Retrieval: Ad Hoc x Filtering

- Each document is represented by a set of representative keywords or index terms
- An index term is a word or group of consecutive words in a document
- A pre-selected set of index terms can be used to summarize the document contents
- However, it might be interesting to assume that all words are index terms (full text representation)

Let,

- t be the number of index terms in the document collection
- \mathbf{k}_i be a generic index term

Then,

The **vocabulary** $V = \{k_1, \ldots, k_t\}$ is the set of all distinct index terms in the collection

$$V = k_1 \ k_2 \ k_3 \ \cdots \ k_t$$
 vocabulary of t index terms

Documents and queries can be represented by patterns of term co-occurrences

$$V = \begin{bmatrix} k_1 & k_2 & k_3 & \dots & k_t \\ 1 & 0 & 0 & \dots & 0 \end{bmatrix}$$

pattern that represents documents (and queries) with the term k_1 and no other

pattern that represents documents (and queries) with all index terms

- Each of these patterns of term co-occurence is called a term conjunctive component
- For each document d_j (or query q) we associate a unique term conjunctive component $c(d_j)$ (or c(q))

... 1

The Term-Document Matrix

- The occurrence of a term k_i in a document d_j establishes a relation between k_i and d_j
- A term-document relation between k_i and d_j can be quantified by the frequency of the term in the document
- In matrix form, this can written as

$$\begin{array}{ccc} d_1 & d_2 \\ k_1 & \left[\begin{array}{ccc} f_{1,1} & f_{1,2} \\ f_{2,1} & f_{2,2} \\ f_{3,1} & f_{3,2} \end{array} \right] \end{array}$$

where each $f_{i,j}$ element stands for the frequency of term k_i in document d_j

Logical view of a document: from full text to a set of index terms

- Simple model based on set theory and boolean algebra
- Queries specified as boolean expressions
 - quite intuitive and precise semantics
 - neat formalism
 - example of query

$$q = k_a \land (k_b \lor \neg k_c)$$

- Term-document frequencies in the term-document matrix are all binary
 - $w_{ij} \in \{0,1\}$: weight associated with pair (k_i, d_j)
 - $w_{iq} \in \{0, 1\}$: weight associated with pair (k_i, q)

- A term conjunctive component that satisfies a query q is called a **query conjunctive component** c(q)
- A query q rewritten as a disjunction of those components is called the **disjunct normal form** q_{DNF}

To illustrate, consider

query
$$q = k_a \wedge (k_b \vee \neg k_c)$$

vocabulary
$$V = \{k_a, k_b, k_c\}$$

Then

- $q_{DNF} = (1, 1, 1) \lor (1, 1, 0) \lor (1, 0, 0)$
- c(q): a conjunctive component for q

The three conjunctive components for the query $q = k_a \land (k_b \lor \neg k_c)$

- This approach works even if the vocabulary of the collection includes terms not in the query
- Consider that the vocabulary is given by $V = \{k_a, k_b, k_c, k_d\}$
 - Then, a document d_j that contains only terms k_a , k_b , and k_c is represented by $c(d_j) = (1, 1, 1, 0)$
 - The query $[q = k_a \land (k_b \lor \neg k_c)]$ is represented in disjunctive normal form as

$$q_{DNF} = (1, 1, 1, 0) \lor (1, 1, 1, 1) \lor (1, 1, 0, 0) \lor (1, 1, 0, 1) \lor (1, 0, 0, 0) \lor (1, 0, 0, 1)$$

The similarity of the document d_j to the query q is defined as

$$sim(d_j, q) = \begin{cases} 1 & \text{if } \exists c(q) \mid c(q) = c(d_j) \\ 0 & \text{otherwise} \end{cases}$$

The Boolean model predicts that each document is either relevant or non-relevant

Drawbacks of the Boolean Model

- Retrieval based on binary decision criteria with no notion of partial matching
- No ranking of the documents is provided (absence of a grading scale)
- Information need has to be translated into a Boolean expression, which most users find awkward
- The Boolean queries formulated by the users are most often too simplistic
- The model frequently returns either too few or too many documents in response to a user query

- The terms of a document are not equally useful for describing the document contents
- In fact, there are index terms which are simply vaguer than others
- There are properties of an index term which are useful for evaluating the importance of the term in a document
 - For instance, a word which appears in all documents of a collection is completely useless for retrieval tasks

- To characterize term importance, we associate a weight $w_{i,j} > 0$ with each term k_i that occurs in the document d_j
 - If k_i that does not appear in the document d_j , then $w_{i,j} = 0$.
- The weight $w_{i,j}$ quantifies the importance of the index term k_i for describing the contents of document d_j
- These weights are useful to compute a rank for each document in the collection with regard to a given query

Let,

- \blacksquare k_i be an index term and d_j be a document
- \bigvee $V = \{k_1, k_2, ..., k_t\}$ be the set of all index terms
- $w_{i,j} \ge 0$ be the weight associated with (k_i, d_j)
- Then we define $\vec{d_j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$ as a weighted vector that contains the weight $w_{i,j}$ of each term $k_i \in V$ in the document d_j

- The weights $w_{i,j}$ can be computed using the **frequencies** of occurrence of the terms within documents
- Let $f_{i,j}$ be the frequency of occurrence of index term k_i in the document d_j
- The total frequency of occurrence F_i of term k_i in the collection is defined as

$$F_i = \sum_{j=1}^N f_{i,j}$$

where N is the number of documents in the collection

The **document frequency** n_i of a term k_i is the number of documents in which it occurs

Notice that $n_i \leq F_i$.

For instance, in the document collection below, the values $f_{i,j}$, F_i and n_i associated with the term *do* are

- For classic information retrieval models, the index term weights are assumed to be **mutually independent**
 - This means that $w_{i,j}$ tells us nothing about $w_{i+1,j}$
- This is clearly a simplification because occurrences of index terms in a document are not uncorrelated
- For instance, the terms computer and network tend to appear together in a document about computer networks
 - In this document, the appearance of one of these terms attracts the appearance of the other
 - Thus, they are correlated and their weights should reflect this correlation.

- To take into account term-term correlations, we can compute a correlation matrix
- Let $\vec{M} = (m_{ij})$ be a term-document matrix $t \times N$ where $m_{ij} = w_{i,j}$
- The matrix $\vec{C} = \vec{M}\vec{M}^t$ is a term-term correlation matrix
- Each element $c_{u,v} \in \mathbf{C}$ expresses a correlation between terms k_u and k_v , given by

$$c_{u,v} = \sum_{d_j} w_{u,j} \times w_{v,j}$$

Higher the number of documents in which the terms k_u and k_v co-occur, stronger is this correlation

Term-term correlation matrix for a sample collection

TF-IDF Weights

TF-IDF Weights

TF-IDF term weighting scheme:

- Term frequency (TF)
- Inverse document frequency (IDF)
- Foundations of the most popular term weighting scheme in IR

- **Luhn Assumption**. The value of $w_{i,j}$ is proportional to the term frequency $f_{i,j}$
 - That is, the more often a term occurs in the text of the document, the higher its weight
- This is based on the observation that high frequency terms are important for describing documents
- Which leads directly to the following tf weight formulation:

$$tf_{i,j} = f_{i,j}$$

Term Frequency (TF) Weights

A variant of tf weight used in the literature is

$$tf_{i,j} = \begin{cases} 1 + \log f_{i,j} & \text{if } f_{i,j} > 0\\ 0 & \text{otherwise} \end{cases}$$

where the log is taken in base 2

The log expression is a the preferred form because it makes them directly comparable to *idf* weights, as we later discuss

Term Frequency (TF) Weights

Log tf weights $tf_{i,j}$ for the example collection

 d_4

Inverse Document Frequency

- We call document exhaustivity the number of index terms assigned to a document
- The more index terms are assigned to a document, the higher is the probability of retrieval for that document
 - If too many terms are assigned to a document, it will be retrieved by queries for which it is not relevant
- Optimal exhaustivity. We can circumvent this problem by optimizing the number of terms per document
- Another approach is by weighting the terms differently, by exploring the notion of term specificity
Specificity is a property of the term semantics

- A term is more or less specific depending on its meaning
- To exemplify, the term beverage is less specific than the terms tea and beer
- We could expect that the term beverage occurs in more documents than the terms tea and beer
- Term specificity should be interpreted as a statistical rather than semantic property of the term
- Statistical term specificity. The inverse of the number of documents in which the term occurs

- Terms are distributed in a text according to Zipf's Law
- Thus, if we sort the vocabulary terms in decreasing order of document frequencies we have

$$n(r) \sim r^{-\alpha}$$

where n(r) refer to the *r*th largest document frequency and α is an empirical constant

That is, the document frequency of term k_i is an exponential function of its rank.

$$n(r) = Cr^{-\alpha}$$

where C is a second empirical constant

Setting $\alpha = 1$ (simple approximation for english collections) and taking logs we have

$$\log n(r) = \log C - \log r$$

- For r = 1, we have C = n(1), i.e., the value of C is the largest document frequency
 - This value works as a normalization constant
- An alternative is to do the normalization assuming C = N, where N is the number of docs in the collection

$$\log r \sim \log N - \log n(r)$$

Let k_i be the term with the rth largest document frequency, i.e., $n(r) = n_i$. Then,

$$idf_i = \log \frac{N}{n_i}$$

where idf_i is called the **inverse document frequency** of term k_i

Idf provides a foundation for modern term weighting schemes and is used for ranking in almost all IR systems

Idf values for example collection

[term	n_i	$idf_i = \log(N/n_i)$
	1	to	2	1
	2	do	3	0.415
	3	is	1	2
	4	be	4	0
	5	or	1	2
	6	not	1	2
	7	I	2	1
	8	am	2	1
	9	what	1	2
	10	think	1	2
	11	therefore	1	2
	12	da	1	2
	13	let	1	2
	14	it	1	2

TF-IDF weighting scheme

- The best known term weighting schemes use weights that combine idf factors with term frequencies
- Let $w_{i,j}$ be the term weight associated with the term k_i and the document d_j

Then, we define

$$w_{i,j} = \begin{cases} (1 + \log f_{i,j}) \times \log \frac{N}{n_i} & \text{if } f_{i,j} > 0 \\ 0 & \text{otherwise} \end{cases}$$

which is referred to as a tf-idf weighting scheme

TF-IDF weighting scheme

Tf-idf weights of all terms present in our example document collection

To do is to be. To be is to do.			d_1	d_2	d_3	d_4
	1	to	3	2	-	-
d_1	2	do	0.830	-	1.073	1.073
	3	is	4	-	-	-
To be or not to be.	4	be	-	-	-	-
I am what I am.	5	or	-	2	-	-
	6	not	-	2	-	-
d_2	7	I	-	2	2	-
	8	am	-	2	1	-
Do be do be do	9	what	-	2	-	-
	10	think	-	-	2	-
d	11	therefore	-	-	2	-
	12	da	-	-	-	5.170
Do do do da da da	13	let	-	-	-	4
Let it be, let it be.	14	it	-	-	-	4
d_4						<u> </u>

Variants of TF-IDF

Several variations of the above expression for tf-idf weights are described in the literature

For tf weights, five distinct variants are illustrated below

	tf weight
binary	{0,1}
raw frequency	$f_{i,j}$
log normalization	$1 + \log f_{i,j}$
double normalization 0.5	$0.5 + 0.5 rac{f_{i,j}}{max_i f_{i,j}}$
double normalization K	$K + (1 - K) \frac{f_{i,j}}{\max_i f_{i,j}}$

Variants of TF-IDF

Five distinct variants of idf weight

	idf weight		
unary	1		
inverse frequency	$\log \frac{N}{n_i}$		
inv frequency smooth	$\log(1+\frac{N}{n_i})$		
inv frequeny max	$\log(1 + \frac{max_in_i}{n_i})$		
probabilistic inv frequency	$\log \frac{N-n_i}{n_i}$		

Variants of TF-IDF

Recommended tf-idf weighting schemes

weighting scheme	document term weight	query term weight
1	$f_{i,j} * \log \frac{N}{n_i}$	$(0.5 + 0.5 \frac{f_{i,q}}{\max_i f_{i,q}}) * \log \frac{N}{n_i}$
2	$1 + \log f_{i,j}$	$\log(1 + \frac{N}{n_i})$
3	$(1 + \log f_{i,j}) * \log \frac{N}{n_i}$	$(1 + \log f_{i,q}) * \log \frac{N}{n_i}$

TF-IDF Properties

- Consider the tf, idf, and tf-idf weights for the *Wall Street Journal* reference collection
- To study their behavior, we would like to plot them together
- While idf is computed over all the collection, tf is computed on a per document basis. Thus, we need a representation of tf based on all the collection, which is provided by the term collection frequency *F*_i
 - This reasoning leads to the following tf and idf term weights:

$$tf_i = 1 + \log \sum_{j=1}^{N} f_{i,j} \qquad idf_i = \log \frac{N}{n_i}$$

TF-IDF Properties

Plotting tf and idf in logarithmic scale yields

- We observe that tf and idf weights present power-law behaviors that balance each other
- The terms of intermediate idf values display maximum tf-idf weights and are most interesting for ranking

- Document sizes might vary widely
- This is a problem because longer documents are more likely to be retrieved by a given query
- To compensate for this undesired effect, we can divide the rank of each document by its length
- This procedure consistently leads to better ranking, and it is called document length normalization

- Methods of document length normalization depend on the representation adopted for the documents:
 - Size in bytes: consider that each document is represented simply as a stream of bytes
 - Number of words: each document is represented as a single string, and the document length is the number of words in it
 - Vector norms: documents are represented as vectors of weighted terms

Documents represented as vectors of weighted terms

- Each term of a collection is associated with an orthonormal unit vector \vec{k}_i in a t-dimensional space
- For each term k_i of a document d_j is associated the term vector component $w_{i,j} \times \vec{k_i}$

The document representation $\vec{d_j}$ is a vector composed of all its term vector components

$$\vec{d_j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$

The document length is given by the norm of this vector, which is computed as follows

$$|\vec{d_j}| = \sqrt{\sum_{i}^{t} w_{i,j}^2}$$

Three variants of document lengths for the example collection

	d_1	d_2	d_3	d_4
size in bytes	34	37	41	43
number of words	10	11	10	12
vector norm	5.068	4.899	3.762	7.738

- Boolean matching and binary weights is too limiting
- The vector model proposes a framework in which partial matching is possible
- This is accomplished by assigning non-binary weights to index terms in queries and in documents
- Term weights are used to compute a degree of similarity between a query and each document
- The documents are ranked in decreasing order of their degree of similarity

For the vector model:

- The weight $w_{i,j}$ associated with a pair (k_i, d_j) is positive and non-binary
- The index terms are assumed to be all mutually independent
- They are represented as unit vectors of a t-dimensionsal space (t is the total number of index terms)
- The representations of document d_j and query q are t-dimensional vectors given by

$$\vec{d_j} = (w_{1j}, w_{2j}, \dots, w_{tj})$$

 $\vec{q} = (w_{1q}, w_{2q}, \dots, w_{tq})$

Since $w_{ij} > 0$ and $w_{iq} > 0$, we have $0 \leq sim(d_j, q) \leq 1$

Weights in the Vector model are basically tf-idf weights

$$w_{i,q} = (1 + \log f_{i,q}) \times \log \frac{N}{n_i}$$
$$w_{i,j} = (1 + \log f_{i,j}) \times \log \frac{N}{n_i}$$

- These equations should only be applied for values of term frequency greater than zero
- If the term frequency is zero, the respective weight is also zero

Document ranks computed by the Vector model for the query "to do" (see tf-idf weight values in Slide 43)

Advantages:

- term-weighting improves quality of the answer set
- partial matching allows retrieval of docs that approximate the query conditions
- cosine ranking formula sorts documents according to a degree of similarity to the query
- document length normalization is naturally built-in into the ranking

Disadvantages:

It assumes independence of index terms

Probabilistic Model

Probabilistic Model

- The probabilistic model captures the IR problem using a probabilistic framework
- Given a user query, there is an ideal answer set for this query
- Given a description of this ideal answer set, we could retrieve the relevant documents
- Querying is seen as a specification of the properties of this ideal answer set
 - But, what are these properties?

Probabilistic Model

- An initial set of documents is retrieved somehow
- The user inspects these docs looking for the relevant ones (in truth, only top 10-20 need to be inspected)
- The IR system uses this information to refine the description of the ideal answer set
- By repeating this process, it is expected that the description of the ideal answer set will improve

Probabilistic Ranking Principle

The probabilistic model

- Tries to estimate the probability that a document will be relevant to a user query
- Assumes that this probability depends on the query and document representations only
- The ideal answer set, referred to as R, should maximize the probability of relevance
- But,
 - How to compute these probabilities?
 - What is the sample space?

Let,

- $\blacksquare R$ be the set of relevant documents to query q
- **a** \overline{R} be the set of non-relevant documents to query q
- $\mathbf{P}(R|\vec{d_j})$ be the probability that d_j is relevant to the query q
- \blacksquare $P(\overline{R}|\vec{d_j})$ be the probability that d_j is non-relevant to q
- The similarity $sim(d_j, q)$ can be defined as

$$sim(d_j, q) = \frac{P(R|\vec{d_j})}{P(\overline{R}|\vec{d_j})}$$

Using Bayes' rule,

$$sim(d_j, q) = \frac{P(\vec{d_j}|R, q) \times P(R, q)}{P(\vec{d_j}|\overline{R}, q) \times P(\overline{R}, q)} \sim \frac{P(\vec{d_j}|R, q)}{P(\vec{d_j}|\overline{R}, q)}$$

where

- $P(\vec{d_j}|R,q)$: probability of randomly selecting the document d_j from the set R
- P(R,q): probability that a document randomly selected from the entire collection is relevant to query q
- \blacksquare $P(\vec{d_j}|\overline{R},q)$ and $P(\overline{R},q)$: analogous and complementary

Assuming that the weights $w_{i,j}$ are all binary and assuming independence among the index terms:

$$sim(d_j, q) \sim \frac{(\prod_{k_i \mid w_{i,j}=1} P(k_i \mid R, q)) \times (\prod_{k_i \mid w_{i,j}=0} P(\overline{k}_i \mid R, q))}{(\prod_{k_i \mid w_{i,j}=1} P(k_i \mid \overline{R}, q)) \times (\prod_{k_i \mid w_{i,j}=0} P(\overline{k}_i \mid \overline{R}, q))}$$

where

- $P(k_i|R,q)$: probability that the term k_i is present in a document randomly selected from the set R
- P($\overline{k}_i | R, q$): probability that k_i is not present in a document randomly selected from the set R
- **probabilities with** \overline{R} : analogous to the ones just described

To simplify our notation, let us adopt the following conventions

$$p_{iR} = P(k_i | R, q)$$

$$q_{iR} = P(k_i | \overline{R}, q)$$

Since

$$sim(d_j, q) \sim \frac{(\prod_{k_i | w_{i,j} = 1} p_{iR}) \times (\prod_{k_i | w_{i,j} = 0} (1 - p_{iR}))}{(\prod_{k_i | w_{i,j} = 1} q_{iR}) \times (\prod_{k_i | w_{i,j} = 0} (1 - q_{iR}))}$$

Taking logarithms, we write

$$sim(d_j, q) \sim \log \prod_{k_i | w_{i,j} = 1} p_{iR} + \log \prod_{k_i | w_{i,j} = 0} (1 - p_{iR}) \\ -\log \prod_{k_i | w_{i,j} = 1} q_{iR} - \log \prod_{k_i | w_{i,j} = 0} (1 - q_{iR})$$

Summing up terms that cancel each other, we obtain

$$sim(d_{j}, q) \sim \log \prod_{k_{i}|w_{i,j}=1} p_{iR} + \log \prod_{k_{i}|w_{i,j}=0} (1 - p_{ir})$$
$$-\log \prod_{k_{i}|w_{i,j}=1} (1 - p_{ir}) + \log \prod_{k_{i}|w_{i,j}=1} (1 - p_{ir})$$
$$-\log \prod_{k_{i}|w_{i,j}=1} q_{iR} - \log \prod_{k_{i}|w_{i,j}=0} (1 - q_{iR})$$
$$+\log \prod_{k_{i}|w_{i,j}=1} (1 - q_{iR}) - \log \prod_{k_{i}|w_{i,j}=1} (1 - q_{iR})$$

Using logarithm operations, we obtain

$$sim(d_j, q) \sim \log \prod_{k_i | w_{i,j} = 1} \frac{p_{iR}}{(1 - p_{iR})} + \log \prod_{k_i} (1 - p_{iR}) + \log \prod_{k_i | w_{i,j} = 1} \frac{(1 - q_{iR})}{q_{iR}} - \log \prod_{k_i} (1 - q_{iR})$$

Notice that two of the factors in the formula above are a function of all index terms and do not depend on document d_j. They are constants for a given query and can be disregarded for the purpose of ranking

Further, assuming that

 $\blacksquare \forall k_i \notin q, \quad p_{iR} = q_{iR}$

and converting the log products into sums of logs, we finally obtain

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log\left(\frac{p_{iR}}{1 - p_{iR}}\right) + \log\left(\frac{1 - q_{iR}}{q_{iR}}\right)$$

which is a key expression for ranking computation in the probabilistic model
Term Incidence Contingency Table

Let,

- N be the number of documents in the collection
- n_i be the number of documents that contain term k_i
- \blacksquare R be the total number of relevant documents to query q
- r_i be the number of relevant documents that contain term k_i
- Based on these variables, we can build the following contingency table

	relevant	non-relevant	all docs
docs that contain k_i	r_i	$n_i - r_i$	n_i
docs that do not contain k_i	$R - r_i$	$N - n_i - (R - r_i)$	$N - n_i$
all docs	R	N-R	N

Ranking Formula

If information on the contingency table were available for a given query, we could write

$$p_{iR} = \frac{r_i}{R}$$

$$q_{iR} = \frac{n_i - r_i}{N - R}$$

Then, the equation for ranking computation in the probabilistic model could be rewritten as

$$sim(d_j, q) \sim \sum_{k_i[q, d_j]} \log\left(\frac{r_i}{R - r_i} \times \frac{N - n_i - R + r_i}{n_i - r_i}\right)$$

where $k_i[q, d_j]$ is a short notation for $k_i \in q \land k_i \in d_j$

Ranking Formula

- In the previous formula, we are still dependent on an estimation of the relevant dos for the query
- For handling small values of r_i , we add 0.5 to each of the terms in the formula above, which changes $sim(d_j, q)$ into

$$\sum_{k_i[q,d_j]} \log\left(\frac{r_i + 0.5}{R - r_i + 0.5} \times \frac{N - n_i - R + r_i + 0.5}{n_i - r_i + 0.5}\right)$$

This formula is considered as the classic ranking equation for the probabilistic model and is known as the Robertson-Sparck Jones Equation

Ranking Formula

- The previous equation cannot be computed without estimates of r_i and R
- One possibility is to assume $R = r_i = 0$, as a way to boostrap the ranking equation, which leads to

$$sim(d_j, q) \sim \sum_{k_i[q, d_j]} \log\left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

This equation provides an idf-like ranking computation

In the absence of relevance information, this is the equation for ranking in the probabilistic model

Ranking Example

Document ranks computed by the previous probabilistic ranking equation for the query "to do"

Ranking Example

- The ranking computation led to negative weights because of the term "do"
- Actually, the probabilistic ranking equation produces negative terms whenever $n_i > N/2$
- One possible artifact to contain the effect of negative weights is to change the previous equation to:

$$sim(d_j, q) \sim \sum_{k_i[q, d_j]} \log\left(\frac{N+0.5}{n_i+0.5}\right)$$

By doing so, a term that occurs in all documents $(n_i = N)$ produces a weight equal to zero

Ranking Example

Using this latest formulation, we redo the ranking computation for our example collection for the query "to do" and obtain

Estimaging r_i and R

- Our examples above considered that $r_i = R = 0$
- An alternative is to estimate r_i and R performing an initial search:
 - select the top 10-20 ranked documents
 - inspect them to gather new estimates for r_i and R
 - remove the 10-20 documents used from the collection
 - rerun the query with the estimates obtained for r_i and R
- Unfortunately, procedures such as these require human intervention to initially select the relevant documents

Consider the equation

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log\left(\frac{p_{iR}}{1 - p_{iR}}\right) + \log\left(\frac{1 - q_{iR}}{q_{iR}}\right)$$

- How obtain the probabilities p_{iR} and q_{iR} ?
 - Estimates based on assumptions:

$$p_{iR} = 0.5$$

- $q_{iR} = \frac{n_i}{N}$ where n_i is the number of docs that contain k_i
- Use this initial guess to retrieve an initial ranking
- Improve upon this initial ranking

Substituting p_{iR} and q_{iR} into the previous Equation, we obtain:

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log\left(\frac{N - n_i}{n_i}\right)$$

- That is the equation used when no relevance information is provided, without the 0.5 correction factor
- Given this initial guess, we can provide an initial probabilistic ranking
- After that, we can attempt to improve this initial ranking as follows

- We can attempt to improve this initial ranking as followsLet
 - D : set of docs initially retrieved
 - \blacksquare D_i : subset of docs retrieved that contain k_i
- Reevaluate estimates:

$$p_{iR} = \frac{D_i}{D}$$

$$q_{iR} = \frac{n_i - D_i}{N - D}$$

This process can then be repeated recursively

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log\left(\frac{N - n_i}{n_i}\right)$$

To avoid problems with D = 1 and $D_i = 0$:

$$p_{iR} = \frac{D_i + 0.5}{D+1}; \quad q_{iR} = \frac{n_i - D_i + 0.5}{N-D+1}$$

$$p_{iR} = \frac{D_i + \frac{n_i}{N}}{D+1}; \quad q_{iR} = \frac{n_i - D_i + \frac{n_i}{N}}{N-D+1}$$

Pluses and Minuses

Advantages:

- Docs ranked in decreasing order of probability of relevance
- Disadvantages:
 - **need** to guess initial estimates for p_{iR}
 - **method does not take into account** tf factors
 - the lack of document length normalization

Comparison of Classic Models

- Boolean model does not provide for partial matches and is considered to be the weakest classic model
- There is some controversy as to whether the probabilistic model outperforms the vector model
- Croft suggested that the probabilistic model provides a better retrieval performance
- However, Salton et al showed that the vector model outperforms it with general collections
- This also seems to be the dominant thought among researchers and practitioners of IR.

Modern Information Retrieval

Modeling

Part II: Alternative Set and Vector Models

Set-Based Model Extended Boolean Model Fuzzy Set Model The Generalized Vector Model Latent Semantic Indexing Neural Network for IR

Alternative Set Theoretic Models

- Set-Based Model
- Extended Boolean Model
- Fuzzy Set Model

Set-Based Model

Set-Based Model

- This is a more recent approach (2005) that combines set theory with a vectorial ranking
- The fundamental idea is to use mutual dependencies among index terms to improve results
- Term dependencies are captured through termsets, which are sets of correlated terms
- The approach, which leads to improved results with various collections, constitutes the first IR model that effectively took advantage of term dependence with general collections

- **Termset** is a concept used in place of the index terms
- A termset $S_i = \{k_a, k_b, ..., k_n\}$ is a subset of the terms in the collection
- If all index terms in S_i occur in a document d_j then we say that the termset S_i occurs in d_j
- There are 2^t termsets that might occur in the documents of a collection, where t is the vocabulary size
 - However, most combinations of terms have no semantic meaning
 - Thus, the actual number of termsets in a collection is far smaller than 2^t

Let t be the number of terms of the collection

- Then, the set $V_S = \{S_1, S_2, ..., S_{2^t}\}$ is the **vocabulary-set** of the collection
 - To illustrate, consider the document collection below

To simplify notation, let us define

$$k_a = \text{to}$$
 $k_d = \text{be}$ $k_g = \text{I}$ $k_j = \text{think}$ $k_m = \text{let}$
 $k_b = \text{do}$ $k_e = \text{or}$ $k_h = \text{am}$ $k_k = \text{therefore}$ $k_n = \text{it}$

 $k_c = is$ $k_f = not$ $k_i = what$ $k_l = da$

Further, let the letters a...n refer to the index terms $k_a...k_n$, respectively

Consider the query q as "to do be it", i.e. q = {a, b, d, n}
 For this query, the vocabulary-set is as below

Termset	Set of Terms	Documents	
S_a	$\{a\}$	$\{d_1, d_2\}$	
S_b	<i>{b}</i>	$\{d_1, d_3, d_4\}$	Notice that there are 11 termsets that occur
S_d	$\{d\}$	$\{d_1, d_2, d_3, d_4\}$	
S_n	$\{n\}$	$\{d_4\}$	
S_{ab}	$\{a,b\}$	$\{d_1\}$	of the maximum of 15
S_{ad}	$\{a,d\}$	$\{d_1, d_2\}$	or the maximum of 15
S_{bd}	$\{b,d\}$	$\{d_1,d_3,d_4\}$	formed with the terms
S_{bn}	$\{b,n\}$	$\{d_4\}$	
S_{abd}	$\{a, b, d\}$	$\{d_1\}$	in q
S_{bdn}	$\{b,d,n\}$	$\{d_4\}$	

- At query processing time, only the termsets generated by the query need to be considered
- A termset composed of *n* terms is called an *n*-termset
- Let \mathcal{N}_i be the number of documents in which S_i occurs
- An *n*-termset S_i is said to be **frequent** if \mathcal{N}_i is greater than or equal to a given threshold
 - This implies that an *n*-termset is frequent if and only if all of its (n-1)-termsets are also frequent
 - Frequent termsets can be used to reduce the number of termsets to consider with long queries

- Let the threshold on the frequency of termsets be 2
- To compute all frequent termsets for the query $q = \{a, b, d, n\}$ we proceed as follows
 - 1. Compute the frequent 1-termsets and their inverted lists:

$$S_a = \{d_1, d_2\}$$

$$S_b = \{d_1, d_3, d_4\}$$

$$S_d = \{d_1, d_2, d_3, d_4\}$$

2. Combine the inverted lists to compute frequent 2-termsets:

$$S_{ad} = \{d_1, d_2\}$$

$$S_{bd} = \{d_1, d_3, d_4\}$$

3. Since there are no frequent 3termsets, stop

- Notice that there are only 5 *frequent* termsets in our collection
- Inverted lists for frequent *n*-termsets can be computed by starting with the inverted lists of frequent 1-termsets
 - Thus, the only indice that is required are the standard inverted lists used by any IR system
 - This is reasonably fast for short queries up to 4-5 terms

- The ranking computation is based on the vector model, but adopts termsets instead of index terms
- Given a query q, let
 - \blacksquare { S_1, S_2, \ldots } be the set of all termsets originated from q
 - \mathcal{N}_i be the number of documents in which termset S_i occurs
 - \blacksquare N be the total number of documents in the collection
 - $\blacksquare \mathcal{F}_{i,j}$ be the frequency of termset S_i in document d_j

For each pair $[S_i, d_j]$ we compute a weight $\mathcal{W}_{i,j}$ given by

$$\mathcal{W}_{i,j} = \begin{cases} (1 + \log \mathcal{F}_{i,j}) \log(1 + \frac{N}{N_i}) & \text{if } \mathcal{F}_{i,j} > 0 \\ 0 & \mathcal{F}_{i,j} = 0 \end{cases}$$

We also compute a $\mathcal{W}_{i,q}$ value for each pair $[S_i,q]$

Consider

• query $q = \{a, b, d, n\}$

document d_1 = ``a b c a d a d c a b''

Termset	Weight		
S_a	$\mathcal{W}_{a,1}$	$(1 + \log 4) * \log(1 + 4/2) = 4.75$	
S_b	$\mathcal{W}_{b,1}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$	
S_d	$\mathcal{W}_{d,1}$	$(1 + \log 2) * \log(1 + 4/4) = 2.00$	
S_n	$\mathcal{W}_{n,1}$	$0 * \log(1 + 4/1) = 0.00$	
S_{ab}	$\mathcal{W}_{ab,1}$	$(1 + \log 2) * \log(1 + 4/1) = 4.64$	
S_{ad}	$\mathcal{W}_{ad,1}$	$(1 + \log 2) * \log(1 + 4/2) = 3.17$	
S_{bd}	$\mathcal{W}_{bd,1}$	$(1 + \log 2) * \log(1 + 4/3) = 2.44$	
S_{bn}	$\mathcal{W}_{bn,1}$	$0 * \log(1 + 4/1) = 0.00$	
S_{dn}	$\mathcal{W}_{dn,1}$	$0 * \log(1 + 4/1) = 0.00$	
S_{abd}	$\mathcal{W}_{abd,1}$	$(1 + \log 2) * \log(1 + 4/1) = 4.64$	
S_{bdn}	$\mathcal{W}_{bdn,1}$	$0 * \log(1 + 4/1) = 0.00$	

A document d_j and a query q are represented as vectors in a 2^t -dimensional space of termsets

$$\vec{d_j} = (\mathcal{W}_{1,j}, \mathcal{W}_{2,j}, \dots, \mathcal{W}_{2^t,j})$$

$$\vec{q} = (\mathcal{W}_{1,q}, \mathcal{W}_{2,q}, \dots, \mathcal{W}_{2^t,q})$$

The rank of d_j to the query q is computed as follows

$$sim(d_j, q) = \frac{\vec{d_j} \bullet \vec{q}}{|\vec{d_j}| \times |\vec{q}|} = \frac{\sum_{S_i} \mathcal{W}_{i,j} \times \mathcal{W}_{i,q}}{|\vec{d_j}| \times |\vec{q}|}$$

For termsets that are not in the query q, $W_{i,q} = 0$

- The document norm $|\vec{d_j}|$ is hard to compute in the space of termsets
- Thus, its computation is restricted to 1-termsets
- Let again $q = \{a, b, d, n\}$ and d_1

The document norm in terms of 1-termsets is given by

$$\vec{d_1} = \sqrt{\mathcal{W}_{a,1}^2 + \mathcal{W}_{b,1}^2 + \mathcal{W}_{c,1}^2 + \mathcal{W}_{d,1}^2}$$

= $\sqrt{4.75^2 + 2.44^2 + 4.64^2 + 2.00^2}$
= 7.35

- To compute the rank of d_1 , we need to consider the seven termsets S_a , S_b , S_d , S_{ab} , S_{ad} , S_{bd} , and S_{abd}
- The rank of d_1 is then given by

$$sim(d_{1},q) = (\mathcal{W}_{a,1} * \mathcal{W}_{a,q} + \mathcal{W}_{b,1} * \mathcal{W}_{b,q} + \mathcal{W}_{d,1} * \mathcal{W}_{d,q} + \mathcal{W}_{ab,1} * \mathcal{W}_{ab,q} + \mathcal{W}_{ad,1} * \mathcal{W}_{ad,q} + \mathcal{W}_{bd,1} * \mathcal{W}_{bd,q} + \mathcal{W}_{abd,1} * \mathcal{W}_{abd,q}) / |\vec{d_{1}}|$$

$$= (4.75 * 1.58 + 2.44 * 1.22 + 2.00 * 1.00 + 4.64 * 2.32 + 3.17 * 1.58 + 2.44 * 1.22 + 4.64 * 2.32) / 7.35$$

$$= 5.71$$

- The concept of frequent termsets allows simplifying the ranking computation
- Yet, there are many frequent termsets in a large collection
 - The number of termsets to consider might be prohibitively high with large queries
- To resolve this problem, we can further restrict the ranking computation to a smaller number of termsets
- This can be accomplished by observing some properties of termsets such as the notion of closure

- The closure of a termset S_i is the set of all frequent termsets that co-occur with S_i in the same set of docs
- Given the closure of S_i , the largest termset in it is called a **closed termset** and is referred to as Φ_i
 - We formalize, as follows
 - Let $D_i \subseteq C$ be the subset of all documents in which termset S_i occurs and is frequent
 - Let $S(D_i)$ be a set composed of the frequent termsets that occur in all documents in D_i and only in those

Then, the closed termset S_{Φ_i} satisfies the following property

$$\not\exists S_j \in S(D_i) \mid S_{\Phi_i} \subset S_j$$

Frequent and closed termsets for our example collection, considering a minimum threshold equal to 2

frequency(S_i)	frequent termset	closed termset
4	d	d
3	b, bd	bd
2	a, ad	ad
2	g, h, gh, ghd	ghd

- Closed termsets encapsulate smaller termsets occurring in the same set of documents
- The ranking $sim(d_1, q)$ of document d_1 with regard to query q is computed as follows:

$$\blacksquare d_1 =$$
 ''abcadadcab''

$$q = \{a, b, d, n\}$$

minimum frequency threshold = 2

$$sim(d_1,q) = (\mathcal{W}_{d,1} * \mathcal{W}_{d,q} + \mathcal{W}_{ab,1} * \mathcal{W}_{ab,q} + \mathcal{W}_{ad,1} * \mathcal{W}_{ad,q} + \mathcal{W}_{bd,1} * \mathcal{W}_{bd,q} + \mathcal{W}_{abd,1} * \mathcal{W}_{abd,q}) / |\vec{d_1}|$$

= (2.00 * 1.00 + 4.64 * 2.32 + 3.17 * 1.58 + 2.44 * 1.22 + 4.64 * 2.32) / 7.35
= 4.28

- Thus, if we restrict the ranking computation to closed termsets, we can expect a reduction in query time
- Smaller the number of closed termsets, sharper is the reduction in query processing time

Extended Boolean Model
Extended Boolean Model

- In the Boolean model, no ranking of the answer set is generated
- One alternative is to extend the Boolean model with the notions of partial matching and term weighting
- This strategy allows one to combine characteristics of the Vector model with properties of Boolean algebra

Consider a conjunctive Boolean query given by $q = k_x \wedge k_y$

- For the boolean model, a doc that contains a single term of *q* is as irrelevant as a doc that contains none
- However, this binary decision criteria frequently is not in accordance with common sense
- An analogous reasoning applies when one considers purely disjunctive queries

When only two terms x and y are considered, we can plot queries and docs in a two-dimensional space

A document d_j is positioned in this space through the adoption of weights $w_{x,j}$ and $w_{y,j}$

These weights can be computed as normalized tf-idf factors as follows

$$w_{x,j} = \frac{f_{x,j}}{\max_x f_{x,j}} \times \frac{idf_x}{\max_i idf_i}$$

where

- f_{x,j} is the frequency of term k_x in document d_j
- *idf*_i is the inverse document frequency of term k_i , as before

To simplify notation, let

$$w_{x,j} = x \text{ and } w_{y,j} = y$$
$$\vec{d_j} = (w_{x,j}, w_{y,j}) \text{ as the point } d_j = (x, y)$$

- For a disjunctive query $q_{or} = k_x \vee k_y$, the point (0,0) is the least interesting one
- This suggests taking the distance from (0,0) as a measure of similarity

For a conjunctive query $q_{and} = k_x \wedge k_y$, the point (1, 1) is the most interesting one

This suggests taking the complement of the distance from the point (1,1) as a measure of similarity

$$sim(q_{or}, d) = \sqrt{\frac{x^2 + y^2}{2}}$$
$$sim(q_{and}, d) = 1 - \sqrt{\frac{(1-x)^2 + (1-y)^2}{2}}$$

Generalizing the Idea

- We can extend the previous model to consider Euclidean distances in a t-dimensional space
- This can be done using *p*-norms which extend the notion of distance to include p-distances, where $1 \le p \le \infty$
 - A generalized conjunctive query is given by
 - $q_{and} = k_1 \wedge^p k_2 \wedge^p \ldots \wedge^p k_m$
 - A generalized disjunctive query is given by

 $q_{or} = k_1 \vee^p k_2 \vee^p \ldots \vee^p k_m$

Generalizing the Idea

The query-document similarities are now given by $sim(q_{or}, d_j) = \left(\frac{x_1^p + x_2^p + \dots + x_m^p}{m}\right)^{\frac{1}{p}}$ $sim(q_{and}, d_j) = 1 - \left(\frac{(1-x_1)^p + (1-x_2)^p + \dots + (1-x_m)^p}{m}\right)^{\frac{1}{p}}$

where each x_i stands for a weight $w_{i,d}$

If
$$p = 1$$
 then (vector-like)
 $sim(q_{or}, d_j) = sim(q_{and}, d_j) = \frac{x_1 + ... + x_m}{m}$
If $p = \infty$ then (Fuzzy like)
 $sim(q_{or}, d_j) = max(x_i)$
 $sim(q_{and}, d_j) = min(x_i)$

Properties

- By varying *p*, we can make the model behave as a vector, as a fuzzy, or as an intermediary model
- The processing of more general queries is done by grouping the operators in a predefined order
- For instance, consider the query $q = (k_1 \wedge^p k_2) \vee^p k_3$
 - k_1 and k_2 are to be used as in a vectorial retrieval while the presence of k_3 is required

The similarity $sim(q, d_j)$ is computed as

$$sim(q,d) = \left(\frac{\left(1 - \left(\frac{(1-x_1)^p + (1-x_2)^p}{2}\right)^{\frac{1}{p}}\right)^p + x_3^p}{2}\right)^{\frac{1}{p}}$$

Conclusions

- Model is quite powerful
- Properties are interesting and might be useful
- Computation is somewhat complex
- However, distributivity operation does not hold for ranking computation:

$$\blacksquare q_1 = (k_1 \lor k_2) \land k_3$$

$$q_2 = (k_1 \land k_3) \lor (k_2 \land k_3)$$

$$sim(q_1, d_j) \neq sim(q_2, d_j)$$

Fuzzy Set Model

Fuzzy Set Model

- Matching of a document to a query terms is approximate or vague
- This vagueness can be modeled using a fuzzy framework, as follows:
 - each query term defines a fuzzy set
 - each doc has a degree of membership in this set
- This interpretation provides the foundation for many IR models based on fuzzy theory
- In here, we discuss the model proposed by Ogawa, Morita, and Kobayashi

Fuzzy Set Theory

- Fuzzy set theory deals with the representation of classes whose boundaries are not well defined
- Key idea is to introduce the notion of a degree of membership associated with the elements of the class
- This degree of membership varies from 0 to 1 and allows modelling the notion of marginal membership
- Thus, membership is now a gradual notion, contrary to the crispy notion enforced by classic Boolean logic

Fuzzy Set Theory

A fuzzy subset A of a universe of discourse U is characterized by a membership function

 $\mu_A: U \to [0,1]$

- This function associates with each element u of U a number $\mu_A(u)$ in the interval [0,1]
- The three most commonly used operations on fuzzy sets are:
 - the complement of a fuzzy set
 - the union of two or more fuzzy sets
 - the intersection of two or more fuzzy sets

Fuzzy Set Theory

Let,

- U be the universe of discourse
- A and B be two fuzzy subsets of U
- **\overline{A}** be the complement of A relative to U
- $\blacksquare u$ be an element of U

Then,

$$\mu_{\overline{A}}(u) = 1 - \mu_A(u)$$

$$\mu_{A \cup B}(u) = max(\mu_A(u), \mu_B(u))$$

$$\mu_{A \cap B}(u) = min(\mu_A(u), \mu_B(u))$$

Fuzzy Information Retrieval

- Fuzzy sets are modeled based on a thesaurus, which defines term relationships
- A thesaurus can be constructed by defining a term-term correlation matrix C
- Each element of *C* defines a normalized correlation factor $c_{i,\ell}$ between two terms k_i and k_{ℓ}

$$c_{i,l} = \frac{n_{i,l}}{n_i + n_l - n_{i,l}}$$

where

- \blacksquare n_i : number of docs which contain k_i
- \blacksquare n_l : number of docs which contain k_l
- \blacksquare $n_{i,l}$: number of docs which contain both k_i and k_l

Fuzzy Information Retrieval

- We can use the term correlation matrix C to associate a fuzzy set with each index term k_i
- In this fuzzy set, a document d_j has a degree of membership $\mu_{i,j}$ given by

$$\mu_{i,j} = 1 - \prod_{k_l \in d_j} (1 - c_{i,l})$$

- The above expression computes an algebraic sum over all terms in d_j
- A document d_j belongs to the fuzzy set associated with k_i , if its own terms are associated with k_i

Fuzzy Information Retrieval

- If d_j contains a term k_l which is closely related to k_i , we have
 - $\Box c_{i,l} \sim 1$
 - $\blacksquare \mu_{i,j} \sim 1$
 - and k_i is a good fuzzy index for d_j

Fuzzy IR: An Example

Consider the query $q = k_a \land (k_b \lor \neg k_c)$

The disjunctive normal form of q is composed of 3 conjunctive components (cc), as follows: $\vec{q}_{dnf} = (1, 1, 1) + (1, 1, 0) + (1, 0, 0) = cc_1 + cc_2 + cc_3$

Let D_a , D_b and D_c be the fuzzy sets associated with the terms k_a , k_b and k_c , respectively

Fuzzy IR: An Example

Let $\mu_{a,j}$, $\mu_{b,j}$, and $\mu_{c,j}$ be the degrees of memberships of document d_j in the fuzzy sets D_a , D_b , and D_c . Then,

$$cc_{1} = \mu_{a,j}\mu_{b,j}\mu_{c,j}$$

$$cc_{2} = \mu_{a,j}\mu_{b,j}(1-\mu_{c,j})$$

$$cc_{3} = \mu_{a,j}(1-\mu_{b,j})(1-\mu_{c,j})$$

Fuzzy IR: An Example

$$\mu_{q,j} = \mu_{cc_1+cc_2+cc_3,j}$$

$$= 1 - \prod_{i=1}^{3} (1 - \mu_{cc_i,j})$$

$$= 1 - (1 - \mu_{a,j}\mu_{b,j}\mu_{c,j}) \times (1 - \mu_{a,j}(1 - \mu_{c,j})) \times (1 - \mu_{a,j}(1 - \mu_{c,j}))$$

Conclusions

- Fuzzy IR models have been discussed mainly in the literature associated with fuzzy theory
- They provide an interesting framework which naturally embodies the notion of term dependencies
- Experiments with standard test collections are not available

Alternative Algebraic Models

- Generalized Vector Model
- Latent Semantic Indexing
- Neural Network Model

Generalized Vector Model

Generalized Vector Model

- Classic models enforce independence of index terms
 For instance, in the Vector model
 - A set of term vectors $\{\vec{k}_1, \vec{k}_2, \ldots, \vec{k}_t\}$ are linearly independent

Frequently, this is interpreted as $\forall_{i,j} \Rightarrow \vec{k}_i \bullet \vec{k}_j = 0$

In the generalized vector space model, two index term vectors might be non-orthogonal

Key Idea

- As before, let $w_{i,j}$ be the weight associated with $[k_i, d_j]$ and $V = \{k_1, k_2, ..., k_t\}$ be the set of all terms
- If the $w_{i,j}$ weights are binary, all patterns of occurrence of terms within docs can be represented by minterms:

$$(k_1, k_2, k_3, \dots, k_t)$$

$$m_1 = (0, 0, 0, \dots, 0)$$

$$m_2 = (1, 0, 0, \dots, 0)$$

$$m_3 = (0, 1, 0, \dots, 0)$$

$$m_4 = (1, 1, 0, \dots, 0)$$

$$\vdots$$

$$m_{2^t} = (1, 1, 1, \dots, 1)$$

For instance, m_2 indicates documents in which solely the term k_1 occurs

Key Idea

For any document d_j, there is a minterm m_r that includes exactly the terms that occur in the document
 Let us define the following set of minterm vectors m_r,

$$\begin{array}{rcl}
1, 2, \dots, 2^t \\
\vec{m}_1 &= & (1, 0, \dots, 0) \\
\vec{m}_2 &= & (0, 1, \dots, 0) \\
\vdots \\
\vec{m}_{2^t} &= & (0, 0, \dots, 1)
\end{array}$$

Notice that we can associate each unit vector \vec{m}_r with a minterm m_r , and that $\vec{m}_i \bullet \vec{m}_j =$ 0 for all $i \neq j$

Key Idea

- Pairwise orthogonality among the \vec{m}_r vectors does not imply independence among the index terms
- On the contrary, index terms are now correlated by the \vec{m}_r vectors
 - For instance, the vector \vec{m}_4 is associated with the minterm $m_4 = (1, 1, ..., 0)$
 - This minterm induces a dependency between terms k_1 and k_2
 - Thus, if such document exists in a collection, we say that the minterm m_4 is active
 - The model adopts the idea that co-occurrence of terms induces dependencies among these terms

Forming the Term Vectors

- Let $on(i, m_r)$ return the weight $\{0, 1\}$ of the index term k_i in the minterm m_r
 - The vector associated with the term k_i is computed as:

$$\vec{k}_{i} = \frac{\sum_{\forall r} on(i, m_{r}) c_{i,r} \vec{m}_{r}}{\sqrt{\sum_{\forall r} on(i, m_{r}) c_{i,r}^{2}}}$$
$$c_{i,r} = \sum_{d_{j} \mid c(d_{j}) = m_{r}} w_{i,j}$$

Notice that for a collection of size N, only N minterms affect the ranking (and not 2^t)

Dependency between Index Terms

A degree of correlation between the terms k_i and k_j can now be computed as:

$$\vec{k}_i \bullet \vec{k}_j = \sum_{\forall r} on(i, m_r) \times c_{i,r} \times on(j, m_r) \times c_{j,r}$$

This degree of correlation sums up the dependencies between k_i and k_j induced by the docs in the collection

The Generalized Vector Model

An Example

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	1	2	0
d_7	0	5	0
q	1	2	3

Computation of $c_{i,r}$

	K_1	K_2	K_3]		K_1	K_2	K_3		$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
d_1	2	0	1		$d_1 = m_6$	1	0	1	m_1	0	0	0
d_2	1	0	0		$d_2 = m_2$	1	0	0	m_2	3	0	0
d_3	0	1	3		$d_3 = m_7$	0	1	1	m_3	0	5	0
d_4	2	0	0		$d_4 = m_2$	1	0	0	m_4	0	0	0
d_5	1	2	4		$d_{5} = m_{8}$	1	1	1	m_5	0	0	0
d_6	0	2	2		$d_{6} = m_{7}$	0	1	1	m_6	2	0	1
d_7	0	5	0		$d_7 = m_3$	0	1	0	m_7	0	3	5
q	1	2	3]	$q = m_8$	1	1	1	m_8	1	2	4

Computation of $\overrightarrow{k_i}$

$$\vec{k}_{1} = \frac{(3\vec{m}_{2}+2\vec{m}_{6}+\vec{m}_{8})}{\sqrt{3^{2}+2^{2}+1^{2}}}$$
$$\vec{k}_{2} = \frac{(5\vec{m}_{3}+3\vec{m}_{7}+2\vec{m}_{8})}{\sqrt{5+3+2}}$$
$$\vec{k}_{3} = \frac{(1\vec{m}_{6}+5\vec{m}_{7}+4\vec{m}_{8})}{\sqrt{1+5+4}}$$

	$c_{1,r}$	$c_{2,r}$	$c_{3,r}$
m_1	0	0	0
m_2	3	0	0
m_3	0	5	0
m_4	0	0	0
m_5	0	0	0
m_6	2	0	1
m_7	0	3	5
m_8	1	2	4

Computation of Document Vectors

$$\overrightarrow{d_1} = 2\overrightarrow{k_1} + \overrightarrow{k_3}$$

$$\overrightarrow{d_2} = \overrightarrow{k_1}$$

$$\overrightarrow{d_2} = \overrightarrow{k_1}$$

$$\overrightarrow{d_3} = \overrightarrow{k_2} + 3\overrightarrow{k_3}$$

$$\overrightarrow{d_4} = 2\overrightarrow{k_1}$$

$$\overrightarrow{d_4} = 2\overrightarrow{k_1}$$

$$\overrightarrow{d_5} = \overrightarrow{k_1} + 2\overrightarrow{k_2} + 4\overrightarrow{k_3}$$

$$\overrightarrow{d_6} = 2\overrightarrow{k_2} + 2\overrightarrow{k_3}$$

$$\overrightarrow{d_6} = 5\overrightarrow{k_2}$$

$$\overrightarrow{q} = \overrightarrow{k_1} + 2\overrightarrow{k_2} + 3\overrightarrow{k_3}$$

	K_1	K_2	K_3
d_1	2	0	1
d_2	1	0	0
d_3	0	1	3
d_4	2	0	0
d_5	1	2	4
d_6	0	2	2
d_7	0	5	0
q	1	2	3

Conclusions

- Model considers correlations among index terms
- Not clear in which situations it is superior to the standard Vector model
- Computation costs are higher
- Model does introduce interesting new ideas
- Classic IR might lead to poor retrieval due to:
 - unrelated documents might be included in the answer set
 - relevant documents that do not contain at least one index term are not retrieved
 - Reasoning: retrieval based on index terms is vague and noisy
- The user information need is more related to concepts and ideas than to index terms
- A document that shares concepts with another document known to be relevant might be of interest

The idea here is to map documents and queries into a dimensional space composed of concepts

Let

- *t*: total number of index terms
- N: number of documents
- **M** = $[m_{ij}]$: term-document matrix $t \times N$
- To each element of M is assigned a weight $w_{i,j}$ associated with the term-document pair $[k_i, d_j]$
 - The weight $w_{i,j}$ can be based on a *tf-idf* weighting scheme

The matrix $\mathbf{M} = [m_{ij}]$ can be decomposed into three components using singular value decomposition

$$\mathbf{M} = \mathbf{K} \cdot \mathbf{S} \cdot \mathbf{D}^T$$

were

- **K** is the matrix of eigenvectors derived from $\mathbf{C} = \mathbf{M} \cdot \mathbf{M}^T$
- **D**^T is the matrix of eigenvectors derived from $\mathbf{M}^T \cdot \mathbf{M}$
- S is an $r \times r$ diagonal matrix of singular values where $r = \min(t, N)$ is the rank of M

Computing an Example

Let $\mathbf{M}^T = [m_{ij}]$ be given by

	K_1	K_2	K_3	$q ullet d_j$
d_1	2	0	1	5
d_2	1	0	0	1
d_3	0	1	3	11
d_4	2	0	0	2
d_5	1	2	4	17
d_6	1	2	0	5
d_7	0	5	0	10
q	1	2	3	

Compute the matrices \mathbf{K} , \mathbf{S} , and \mathbf{D}^{t}

- In the matrix S, consider that only the *s* largest singular values are selected
- Keep the corresponding columns in K and \mathbf{D}^T
- The resultant matrix is called \mathbf{M}_s and is given by

$$\mathbf{M}_s = \mathbf{K}_s \cdot \mathbf{S}_s \cdot \mathbf{D}_s^T$$

- where s, s < r, is the dimensionality of a reduced concept space
- The parameter s should be
 - Iarge enough to allow fitting the characteristics of the data
 - small enough to filter out the non-relevant representational details

Latent Ranking

The relationship between any two documents in s can be obtained from the $\mathbf{M}_s^T \cdot \mathbf{M}_s$ matrix given by

$$\begin{split} \mathbf{M}_{s}^{T} \cdot \mathbf{M}_{s} &= (\mathbf{K}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T})^{T} \cdot \mathbf{K}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T} \\ &= \mathbf{D}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{K}_{s}^{T} \cdot \mathbf{K}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T} \\ &= \mathbf{D}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{S}_{s} \cdot \mathbf{D}_{s}^{T} \\ &= (\mathbf{D}_{s} \cdot \mathbf{S}_{s}) \cdot (\mathbf{D}_{s} \cdot \mathbf{S}_{s})^{T} \end{split}$$

In the above matrix, the (i, j) element quantifies the relationship between documents d_i and d_j

Latent Ranking

- The user query can be modelled as a pseudo-document in the original M matrix
- Assume the query is modelled as the document numbered 0 in the M matrix
- The matrix $\mathbf{M}_s^T \cdot \mathbf{M}_s$ quantifies the relationship between any two documents in the reduced concept space
- The first row of this matrix provides the rank of all the documents with regard to the user query

Conclusions

- Latent semantic indexing provides an interesting conceptualization of the IR problem
- Thus, it has its value as a new theoretical framework
- From a practical point of view, the latent semantic indexing model has not yielded encouraging results

Classic IR:

- Terms are used to index documents and queries
- Retrieval is based on index term matching

Motivation:

Neural networks are known to be good pattern matchers

- The human brain is composed of billions of neurons
- Each neuron can be viewed as a small processing unit
- A neuron is stimulated by input signals and emits output signals in reaction
- A chain reaction of propagating signals is called a spread activation process
- As a result of spread activation, the brain might command the body to take physical reactions

- A neural network is an oversimplified representation of the neuron interconnections in the human brain:
 - nodes are processing units
 - edges are synaptic connections
 - the strength of a propagating signal is modelled by a weight assigned to each edge
 - the state of a node is defined by its activation level
 - depending on its activation level, a node might issue an output signal

Neural Network for IR

A neural network model for information retrieval

Neural Network for IR

- Three layers network: one for the query terms, one for the document terms, and a third one for the documents
- Signals propagate across the network
 - First level of propagation:
 - Query terms issue the first signals
 - These signals propagate across the network to reach the document nodes
- Second level of propagation:
 - Document nodes might themselves generate new signals which affect the document term nodes
 - Document term nodes might respond with new signals of their own

Quantifying Signal Propagation

- Normalize signal strength (MAX = 1)
- Query terms emit initial signal equal to 1
- Weight associated with an edge from a query term node k_i to a document term node k_i :

$$\overline{w}_{i,q} = \frac{w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2}}$$

Weight associated with an edge from a document term node k_i to a document node d_j :

$$\overline{w}_{i,j} = \frac{w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,j}^2}}$$

Quantifying Signal Propagation

After the first level of signal propagation, the activation level of a document node d_j is given by:

$$\sum_{i=1}^{t} \overline{w}_{i,q} \ \overline{w}_{i,j} = \frac{\sum_{i=1}^{t} w_{i,q} \ w_{i,j}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2} \times \sqrt{\sum_{i=1}^{t} w_{i,j}^2}}$$

which is exactly the ranking of the Vector model

- New signals might be exchanged among document term nodes and document nodes
- A minimum threshold should be enforced to avoid spurious signal generation

Conclusions

- Model provides an interesting formulation of the IR problem
- Model has not been tested extensively
- It is not clear the improvements that the model might provide

Modern Information Retrieval

Chapter 3 Modeling

Part III: Alternative Probabilistic Models BM25 Language Models Divergence from Randomness Belief Network Models Other Models

BM25 (Best Match 25)

BM25 (Best Match 25)

- BM25 was created as the result of a series of experiments on variations of the probabilistic model
- A good term weighting is based on three principles
 - inverse document frequency
 - term frequency
 - document length normalization
- The classic probabilistic model covers only the first of these principles
- This reasoning led to a series of experiments with the Okapi system, which led to the BM25 ranking formula

At first, the Okapi system used the Equation below as ranking formula

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \frac{N - n_i + 0.5}{n_i + 0.5}$$

which is the equation used in the probabilistic model, when no relevance information is provided

It was referred to as the BM1 formula (Best Match 1)

- The first idea for improving the ranking was to introduce a **term-frequency** factor $\mathcal{F}_{i,j}$ in the BM1 formula
 - This factor, after some changes, evolved to become

$$\mathcal{F}_{i,j} = S_1 \times \frac{f_{i,j}}{K_1 + f_{i,j}}$$

where

- $f_{i,j}$ is the frequency of term k_i within document d_j
- K_1 is a constant setup experimentally for each collection
- S₁ is a scaling constant, normally set to $S_1 = (K_1 + 1)$

If $K_1 = 0$, this whole factor becomes equal to 1 and bears no effect in the ranking

The next step was to modify the $\mathcal{F}_{i,j}$ factor by adding **document length normalization** to it, as follows:

$$\mathcal{F}_{i,j}^{'} = S_1 \times \frac{f_{i,j}}{\frac{K_1 \times len(d_j)}{avg_doclen} + f_{i,j}}$$

where

- len (d_j) is the length of document d_j (computed, for instance, as the number of terms in the document)
- *avg_doclen* is the average document length for the collection

Next, a correction factor $G_{j,q}$ dependent on the document and query lengths was added

$$\mathcal{G}_{j,q} = K_2 \times len(q) \times \frac{avg_doclen - len(d_j)}{avg_doclen + len(d_j)}$$

where

- len(q) is the query length (number of terms in the query)
- \blacksquare K_2 is a constant

A third additional factor, aimed at taking into account term frequencies within queries, was defined as

$$\mathcal{F}_{i,q} = S_3 \times \frac{f_{i,q}}{K_3 + f_{i,q}}$$

where

- $f_{i,q}$ is the frequency of term k_i within query q
- \blacksquare K_3 is a constant
- S₃ is an scaling constant related to K_3 , normally set to $S_3 = (K_3 + 1)$

Introduction of these three factors led to various BM (Best Matching) formulas, as follows:

$$sim_{BM1}(d_j, q) \sim \sum_{k_i[q, d_j]} \log\left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

$$sim_{BM15}(d_j,q) \sim \mathcal{G}_{j,q} + \sum_{k_i[q,d_j]} \mathcal{F}_{i,j} \times \mathcal{F}_{i,q} \times \log\left(\frac{N-n_i+0.5}{n_i+0.5}\right)$$

$$sim_{BM11}(d_j,q) \sim \mathcal{G}_{j,q} + \sum_{k_i[q,d_j]} \mathcal{F}'_{i,j} \times \mathcal{F}_{i,q} \times \log\left(\frac{N-n_i+0.5}{n_i+0.5}\right)$$

where $k_i[q, d_j]$ is a short notation for $k_i \in q \land k_i \in d_j$

- Experiments using TREC data have shown that BM11 outperforms BM15
- Further, empirical considerations can be used to simplify the previous equations, as follows:
 - Empirical evidence suggests that a best value of K_2 is 0, which eliminates the $G_{j,q}$ factor from these equations
 - Further, good estimates for the scaling constants S_1 and S_3 are $K_1 + 1$ and $K_3 + 1$, respectively
 - Empirical evidence also suggests that making K_3 very large is better. As a result, the $\mathcal{F}_{i,q}$ factor is reduced simply to $f_{i,q}$
 - For short queries, we can assume that $f_{i,q}$ is 1 for all terms

These considerations lead to simpler equations as follows

$$sim_{BM1}(d_j, q) \sim \sum_{k_i[q, d_j]} \log\left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

$$sim_{BM15}(d_j, q) \sim \sum_{k_i[q, d_j]} \frac{(K_1 + 1)f_{i,j}}{(K_1 + f_{i,j})} \times \log\left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

$$sim_{BM11}(d_j, q) \sim \sum_{k_i[q, d_i]} \frac{(K_1 + 1)f_{i,j}}{\frac{K_1 \ len(d_j)}{doclen} + f_{i,j}} \times \log\left(\frac{N - n_i + 0.5}{n_i + 0.5}\right)$$

BM25 Ranking Formula

- BM25: combination of the BM11 and BM15
- The motivation was to combine the BM11 and BM25 term frequency factors as follows

$$\mathcal{B}_{i,j} = \frac{(K_1 + 1)f_{i,j}}{K_1 \left[(1 - b) + b \frac{len(d_j)}{avg_doclen} \right] + f_{i,j}}$$

where *b* is a constant with values in the interval [0, 1]

- If b = 0, it reduces to the BM15 term frequency factor
- If b = 1, it reduces to the BM11 term frequency factor
- For values of b between 0 and 1, the equation provides a combination of BM11 with BM15

BM25 Ranking Formula

The ranking equation for the BM25 model can then be written as

$$sim_{BM25}(d_j,q) \sim \sum_{k_i[q,d_j]} \mathcal{B}_{i,j} \times \log\left(\frac{N-n_i+0.5}{n_i+0.5}\right)$$

where K_1 and b are empirical constants

- $K_1 = 1$ works well with real collections
- b should be kept closer to 1 to emphasize the document length normalization effect present in the BM11 formula
- For instance, b = 0.75 is a reasonable assumption
- Constants values can be fine tunned for particular collections through proper experimentation

BM25 Ranking Formula

- Unlike the probabilistic model, the BM25 formula can be computed without relevance information
- There is consensus that BM25 outperforms the classic vector model for general collections
- Thus, it has been used as a baseline for evaluating new ranking functions, in substitution to the classic vector model

Language Models

Language Models

- Language models are used in many natural language processing applications
 - Ex: part-of-speech tagging, speech recognition, machine translation, and information retrieval
- To illustrate, the regularities in spoken language can be modeled by probability distributions
- These distributions can be used to predict the likelihood that the next token in the sequence is a given word
- These probability distributions are called language models

Language Models

- A language model for IR is composed of the following components
 - A set of document language models, one per document d_j of the collection
 - A probability distribution function that allows estimating the likelihood that a document language model M_j generates each of the query terms
 - A ranking function that combines these generating probabilities for the query terms into a rank of document d_j with regard to the query

Statistical Foundation

Let S be a sequence of r consecutive terms that occur in a document of the collection:

$$S = k_1, k_2, \ldots, k_r$$

An *n*-gram language model uses a Markov process to assign a probability of occurrence to *S*:

$$P_n(S) = \prod_{i=1}^r P(k_i | k_{i-1}, k_{i-2}, \dots, k_{i-(n-1)})$$

where n is the order of the Markov process

The occurrence of a term depends on observing the n-1 terms that precede it in the text
Statistical Foundation

- Unigram language model (n = 1): the estimatives are based on the occurrence of individual words
- **Bigram language model** (n = 2): the estimatives are based on the co-occurrence of pairs of words
- Higher order models such as **Trigram language models (**n = 3**)** are usually adopted for speech recognition
 - **Term independence assumption**: in the case of IR, the impact of word order is less clear
 - As a result, Unigram models have been used extensively in IR

- Ranking in a language model is provided by estimating $P(q|M_j)$
- Several researchs have proposed the adoption of a multinomial process to generate the query
- According to this process, if we assume that the query terms are independent among themselves (unigram model), we can write:

$$P(q|M_j) = \prod_{k_i \in q} P(k_i|M_j)$$

By taking logs on both sides

$$\log P(q|M_j) = \sum_{k_i \in q} \log P(k_i|M_j)$$
$$= \sum_{k_i \in q \land d_j} \log P_{\in}(k_i|M_j) + \sum_{k_i \in q \land \neg d_j} \log P_{\notin}(k_i|M_j)$$
$$= \sum_{k_i \in q \land d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{P_{\notin}(k_i|M_j)}\right) + \sum_{k_i \in q} \log P_{\notin}(k_i|M_j)$$

where P_{\in} and P_{\notin} are two distinct probability distributions:

- The first is a distribution for the query terms in the document
- The second is a distribution for the query terms not in the document

- For the second distribution, statistics are derived from all the document collection
- Thus, we can write

$$P_{\not\in}(k_i|M_j) = \alpha_j P(k_i|C)$$

where α_j is a parameter associated with document d_j and $P(k_i|C)$ is a collection C language model

 \square $P(k_i|C)$ can be estimated in different ways

For instance, Hiemstra suggests an idf-like estimative:

$$P(k_i|C) = \frac{n_i}{\sum_i n_i}$$

where n_i is the number of docs in which k_i occurs

Miller, Leek, and Schwartz suggest

$$P(k_i|C) = \frac{F_i}{\sum_i F_i}$$

where $F_i = \sum_j f_{i,j}$

Thus, we obtain

$$\log P(q|M_j) = \sum_{k_i \in q \land d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)} \right) + n_q \log \alpha_j + \sum_{k_i \in q} \log P(k_i|C)$$
$$\sim \sum_{k_i \in q \land d_j} \log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)} \right) + n_q \log \alpha_j$$

where n_q stands for the query length and the last sum was dropped because it is constant for all documents

- The ranking function is now composed of two separate parts
- The first part assigns weights to each query term that appears in the document, according to the expression

$$\log \left(\frac{P_{\in}(k_i|M_j)}{\alpha_j P(k_i|C)}\right)$$

- This term weight plays a role analogous to the tf plus idf weight components in the vector model
- Further, the parameter α_j can be used for document length normalization

- The **second part** assigns a fraction of probability mass to the query terms that are not in the document—a process called **smoothing**
- The combination of a multinomial process with smoothing leads to a ranking formula that naturally includes tf, idf, and document length normalization
- That is, smoothing plays a key role in modern language modeling, as we now discuss

Smoothing

- In our discussion, we estimated $P_{\notin}(k_i|M_j)$ using $P(k_i|C)$ to avoid assigning zero probability to query terms not in document d_j
- This process, called smoothing, allows fine tuning the ranking to improve the results.
- One popular smoothing technique is to move some mass probability from the terms in the document to the terms not in the document, as follows:

$$P(k_i|M_j) = \begin{cases} P_{\in}^s(k_i|M_j) & \text{if } k_i \in d_j \\ \alpha_j P(k_i|C) & \text{otherwise} \end{cases}$$

where $P_{\in}^{s}(k_{i}|M_{j})$ is the **smoothed distribution** for terms in document d_{j}

Smoothing

Since $\sum_{i} P(k_i | M_j) = 1$, we can write

$$\sum_{k_i \in d_j} P^s_{\in}(k_i | M_j) + \sum_{k_i \notin d_j} \alpha_j P(k_i | C) = 1$$

$$\alpha_j = \frac{1 - \sum_{k_i \in d_j} P^s_{\in}(k_i | M_j)}{1 - \sum_{k_i \in d_j} P(k_i | C)}$$

Smoothing

- Under the above assumptions, the smoothing parameter α_j is also a function of $P_{\in}^s(k_i|M_j)$
- As a result, distinct smoothing methods can be obtained through distinct specifications of $P_{\in}^{s}(k_{i}|M_{j})$
 - Examples of smoothing methods:
 - Jelinek-Mercer Method
 - Bayesian Smoothing using Dirichlet Priors

Jelinek-Mercer Method

The idea is to do a linear interpolation between the document frequency and the collection frequency distributions:

$$P_{\in}^{s}(k_{i}|M_{j},\lambda) = (1-\lambda)\frac{f_{i,j}}{\sum_{i} f_{i,j}} + \lambda \frac{F_{i}}{\sum_{i} F_{i}}$$

where $0 \le \lambda \le 1$

It can be shown that

$$\alpha_j = \lambda$$

Thus, the larger the values of λ , the larger is the effect of smoothing

Dirichlet smoothing

In this method, the language model is a multinomial distribution in which the conjugate prior probabilities are given by the Dirichlet distribution

This leads to

$$P_{\in}^{s}(k_{i}|M_{j},\lambda) = \frac{f_{i,j} + \lambda \frac{F_{i}}{\sum_{i} F_{i}}}{\sum_{i} f_{i,j} + \lambda}$$

As before, closer is λ to 0, higher is the influence of the term document frequency. As λ moves towards 1, the influence of the term collection frequency increases

Dirichlet smoothing

- Contrary to the Jelinek-Mercer method, this influence is always partially mixed with the document frequency
- It can be shown that

$$\alpha_j = \frac{\lambda}{\sum_i f_{i,j} + \lambda}$$

As before, the larger the values of λ, the larger is the effect of smoothing

Smoothing Computation

- In both smoothing methods above, computation can be carried out efficiently
- All frequency counts can be obtained directly from the index
- The values of α_j can be precomputed for each document
- Thus, the complexity is analogous to the computation of a vector space ranking using tf-idf weights

Applying Smoothing to Ranking

- The IR ranking in a multinomial language model is computed as follows:
 - **compute** $P_{\in}^{s}(k_{i}|M_{j})$ using a smoothing method
 - compute P(k_i|C) using ^{n_i}/_{∑_in_i} or ^{F_i}/_{∑_iF_i}
 compute α_j from the Equation α_j = ^{1-∑_{k_i∈d_j} P^s_∈(k_i|M_j)}/_{1-∑_{k_i∈d_j} P(k_i|C)}
 - compute the ranking using the formula

$$\log P(q|M_j) = \sum_{k_i \in q \land d_j} \log \left(\frac{P_{\in}^s(k_i|M_j)}{\alpha_j P(k_i|C)} \right) + n_q \log \alpha_j$$

- The first application of languages models to IR was due to Ponte & Croft. They proposed a Bernoulli process for generating the query, as we now discuss
- Given a document d_j , let M_j be a reference to a language model for that document
- If we assume independence of index terms, we can compute $P(q|M_j)$ using a multivariate Bernoulli process:

$$P(q|M_j) = \prod_{k_i \in q} P(k_i|M_j) \times \prod_{k_i \notin q} [1 - P(k_i|M_j)]$$

where $P(k_i|M_j)$ are term probabilities

This is analogous to the expression for ranking computation in the classic probabilistic model

A simple estimate of the term probabilities is

$$P(k_i|M_j) = \frac{f_{i,j}}{\sum_{\ell} f_{\ell,j}}$$

which computes the probability that term k_i will be produced by a random draw (taken from d_j)

However, the probability will become zero if k_i does not occur in the document

Thus, we assume that a non-occurring term is related to d_j with the probability $P(k_i|C)$ of observing k_i in the whole collection C

P($k_i|C$) can be estimated in different ways

For instance, Hiemstra suggests an idf-like estimative:

$$P(k_i|C) = \frac{n_i}{\sum_{\ell} n_{\ell}}$$

where n_i is the number of docs in which k_i occurs

Miller, Leek, and Schwartz suggest

$$P(k_i|C) = rac{F_i}{\sum_\ell F_\ell}$$
 where $F_i = \sum_j f_{i,j}$

This last equation for $P(k_i|C)$ is adopted here

As a result, we redefine $P(k_i|M_j)$ as follows:

$$P(k_i|M_j) = \begin{cases} \frac{f_{i,j}}{\sum_i f_{i,j}} & \text{if } f_{i,j} > 0\\ \frac{F_i}{\sum_i F_i} & \text{if } f_{i,j} = 0 \end{cases}$$

In this expression, $P(k_i|M_j)$ estimation is based only on the document d_j when $f_{i,j} > 0$

This is clearly undesirable because it leads to instability in the model

This drawback can be accomplished through an average computation as follows

$$P(k_i) = \frac{\sum_{j|k_i \in d_j} P(k_i|M_j)}{n_i}$$

- That is, $P(k_i)$ is an estimate based on the language models of all documents that contain term k_i
- However, it is the same for all documents that contain term k_i
- That is, using $P(k_i)$ to predict the generation of term k_i by the M_j involves a risk

To fix this, let us define the average frequency $\overline{f}_{i,j}$ of term k_i in document d_j as

$$\overline{f}_{i,j} = P(k_i) \times \sum_i f_{i,j}$$

The risk $R_{i,j}$ associated with using $\overline{f}_{i,j}$ can be quantified by a geometric distribution:

$$R_{i,j} = \left(\frac{1}{1+\overline{f}_{i,j}}\right) \times \left(\frac{\overline{f}_{i,j}}{1+\overline{f}_{i,j}}\right)^{f_{i,j}}$$

For terms that occur very frequently in the collection, $\overline{f}_{i,j} \gg 0$ and $R_{i,j} \sim 0$

For terms that are rare both in the document and in the collection, $f_{i,j} \sim 1$, $\overline{f}_{i,j} \sim 1$, and $R_{i,j} \sim 0.25$

- Let us refer the probability of observing term k_i according to the language model M_j as $P_R(k_i|M_j)$
- We then use the risk factor $R_{i,j}$ to compute $P_R(k_i|M_j)$, as follows

$$P_R(k_i|M_j) = \begin{cases} P(k_i|M_j)^{(1-R_{i,j})} \times P(k_i)^{R_{i,j}} & \text{if } f_{i,j} > 0\\ \frac{F_i}{\sum_i F_i} & \text{otherwise} \end{cases}$$

- In this formulation, if $R_{i,j} \sim 0$ then $P_R(k_i|M_j)$ is basically a function of $P(k_i|M_j)$
- Otherwise, it is a mix of $P(k_i)$ and $P(k_i|M_j)$

Substituting into original $P(q|M_j)$ Equation, we obtain

$$P(q|M_j) = \prod_{k_i \in q} P_R(k_i|M_j) \times \prod_{k_i \notin q} [1 - P_R(k_i|M_j)]$$

which computes the probability of generating the query from the language (document) model

This is the basic formula for ranking computation in a language model based on a Bernoulli process for generating the query

- A distinct probabilistic model has been proposed by Amati and Rijsbergen
- The idea is to compute term weights by measuring the divergence between a term distribution produced by a random process and the actual term distribution
- Thus, the name **divergence from randomness**
- The model is based on two fundamental assumptions, as follows

First assumption:

- Not all words are equally important for describing the content of the documents
- Words that carry little information are assumed to be randomly distributed over the whole document collection C
- Given a term k_i , its probability distribution over the whole collection is referred to as $P(k_i|C)$
- The amount of information associated with this distribution is given by

$$-\log P(k_i|C)$$

By modifying this probability function, we can implement distinct notions of term randomness

Second assumption:

- A complementary term distribution can be obtained by considering just the subset of documents that contain term k_i
- This subset is referred to as the elite set
- The corresponding probability distribution, computed with regard to document d_j , is referred to as $P(k_i|d_j)$
- Smaller the probability of observing a term k_i in a document d_j , more rare and important is the term considered to be
- Thus, the amount of information associated with the term in the elite set is defined as

$$1 - P(k_i | d_j)$$

Given these assumptions, the weight $w_{i,j}$ of a term k_i in a document d_j is defined as

$$w_{i,j} = [-\log P(k_i|C)] \times [1 - P(k_i|d_j)]$$

- Two term distributions are considered: in the collection and in the subset of docs in which it occurs
- The rank $R(d_j, q)$ of a document d_j with regard to a query q is then computed as

$$R(d_j,q) = \sum_{k_i \in q} f_{i,q} \times w_{i,j}$$

where $f_{i,q}$ is the frequency of term k_i in the query

- To compute the distribution of terms in the collection, distinct probability models can be considered
- For instance, consider that Bernoulli trials are used to model the occurrences of a term in the collection
- To illustrate, consider a collection with 1,000 documents and a term k_i that occurs 10 times in the collection
- Then, the probability of observing 4 occurrences of term k_i in a document is given by

$$P(k_i|C) = {\binom{10}{4}} \left(\frac{1}{1000}\right)^4 \left(1 - \frac{1}{1000}\right)^6$$

which is a standard binomial distribution

- In general, let p = 1/N be the probability of observing a term in a document, where N is the number of docs
- The probability of observing $f_{i,j}$ occurrences of term k_i in document d_j is described by a binomial distribution:

$$P(k_i|C) = \binom{F_i}{f_{i,j}} p^{f_{i,j}} \times (1-p)^{F_i - f_{i,j}}$$

$$\lambda_i = p \times F_i$$

and assume that $p \to 0$ when $N \to \infty$, but that $\lambda_i = p \times F_i$ remains constant

Under these conditions, we can aproximate the binomial distribution by a Poisson process, which yields

$$P(k_i|C) = \frac{e^{-\lambda_i} \ \lambda_i^{f_i,j}}{f_{i,j}!}$$

The amount of information associated with term k_i in the collection can then be computed as

$$-\log P(k_i|C) = -\log\left(\frac{e^{-\lambda_i} \lambda_i^{f_i,j}}{f_{i,j}!}\right)$$
$$\approx -f_{i,j}\log\lambda_i + \lambda_i\log e + \log(f_{i,j}!)$$
$$\approx f_{i,j}\log\left(\frac{f_{i,j}}{\lambda_i}\right) + \left(\lambda_i + \frac{1}{12f_{i,j} + 1} - f_{i,j}\right)\log e$$
$$+\frac{1}{2}\log(2\pi f_{i,j})$$

in which the logarithms are in base 2 and the factorial term $f_{i,j}!$ was approximated by the **Stirling's formula**

$$f_{i,j}! \approx \sqrt{2\pi} f_{i,j}^{(f_{i,j}+0.5)} e^{-f_{i,j}} e^{(12f_{i,j}+1)^{-1}}$$

Another approach is to use a Bose-Einstein distribution and approximate it by a geometric distribution:

$$P(k_i|C) \approx p \times p^{f_{i,j}}$$

where $p = 1/(1 + \lambda_i)$

The amount of information associated with term k_i in the collection can then be computed as

$$-\log P(k_i|C) \approx -\log\left(\frac{1}{1+\lambda_i}\right) - f_{i,j} \times \log\left(\frac{\lambda_i}{1+\lambda_i}\right)$$

which provides a second form of computing the term distribution over the whole collection

Distribution over the Elite Set

The amount of information associated with term distribution in elite docs can be computed by using Laplace's law of succession

$$1 - P(k_i | d_j) = \frac{1}{f_{i,j} + 1}$$

Another possibility is to adopt the ratio of two Bernoulli processes, which yields

$$1 - P(k_i | d_j) = \frac{F_i + 1}{n_i \times (f_{i,j} + 1)}$$

where n_i is the number of documents in which the term occurs, as before
Normalization

- These formulations do not take into account the length of the document d_j . This can be done by normalizing the term frequency $f_{i,j}$
- Distinct normalizations can be used, such as

$$f'_{i,j} = f_{i,j} \times \frac{avg_doclen}{len(d_j)}$$

or

$$f'_{i,j} = f_{i,j} \times \log\left(1 + \frac{avg_doclen}{len(d_j)}\right)$$

where avg_doclen is the average document length in the collection and $len(d_j)$ is the length of document d_j

Normalization

- To compute $w_{i,j}$ weights using normalized term frequencies, just substitute the factor $f_{i,j}$ by $f'_{i,j}$
- In here we consider that a same normalization is applied for computing $P(k_i|C)$ and $P(k_i|d_j)$
- By combining different forms of computing $P(k_i|C)$ and $P(k_i|d_j)$ with different normalizations, various ranking formulas can be produced

Bayesian Network Models

Bayesian Inference

- One approach for developing probabilistic models of IR is to use Bayesian belief networks
- Belief networks provide a clean formalism for combining distinct sources of evidence
 - Types of evidences: past queries, past feedback cycles, distinct query formulations, etc.
- In here we discuss two models:
 - **Inference network**, proposed by Turtle and Croft
 - **Belief network model**, proposed by Ribeiro-Neto and Muntz
- Before proceeding, we briefly introduce Bayesian networks

Bayesian networks are **directed acyclic graphs** (DAGs) in which

- **the nodes** represent random variables
- **the arcs** portray causal relationships between these variables
- the strengths of these causal influences are expressed by conditional probabilities
- The parents of a node are those judged to be direct causes for it
- This causal relationship is represented by a link directed from each parent node to the child node

The **roots** of the network are the nodes without parents

Let

- $\mathbf{I} x_i$ be a node in a Bayesian network G
- $\Gamma_{x_i} \text{ be the set of parent nodes of } x_i$
- The influence of Γ_{x_i} on x_i can be specified by any set of functions $F_i(x_i, \Gamma_{x_i})$ that satisfy

$$\sum_{\forall x_i} F_i(x_i, \Gamma_{x_i}) = 1$$
$$\leq F_i(x_i, \Gamma_{x_i}) \leq 1$$

where x_i also refers to the states of the random variable associated to the node x_i

A Bayesian network for a joint probability distribution $P(x_1, x_2, x_3, x_4, x_5)$

The dependencies declared in the network allow the natural expression of the joint probability distribution

 $P(x_1, x_2, x_3, x_4, x_5) = P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2, x_3)P(x_5|x_3)$

- The probability $P(x_1)$ is called the **prior** probability for the network
- It can be used to model previous knowledge about the semantics of the application

- An epistemological view of the information retrieval problem
- Random variables associated with documents, index terms and queries
- A random variable associated with a document d_j represents the event of observing that document
- The observation of d_j asserts a belief upon the random variables associated with its index terms

An inference network for information retrieval

- The edges from d_j to the nodes k_i indicate that the observation of d_j increase the belief in the variables k_i
- d_j has index terms k_2 , k_i , and k_t
- $\blacksquare q$ has index terms k_1 , k_2 , and k_i
 - q_1 and q_2 model boolean formulation

$$q_1 = (k_1 \wedge k_2) \vee k_i$$

 $\blacksquare I = (q \lor q_1)$

$$on(i, \vec{k}) = \begin{cases} 1 & \text{if } k_i = 1 \text{ according to } \vec{k} \\ 0 & \text{otherwise} \end{cases}$$

Let
$$d_j \in \{0, 1\}$$
 and $q \in \{0, 1\}$

The ranking of d_j is a measure of how much evidential support the observation of d_j provides to the query

- The ranking is computed as $P(q \wedge d_j)$ where q and d_j are short representations for q = 1 and $d_j = 1$, respectively
- d_j stands for a state where $d_j = 1$ and $\forall_{l \neq j} \Rightarrow d_l = 0$, because we observe one document at a time

$$P(q \wedge d_j) = \sum_{\forall \vec{k}} P(q \wedge d_j | \vec{k}) \times P(\vec{k})$$
$$= \sum_{\forall \vec{k}} P(q \wedge d_j \wedge \vec{k})$$
$$= \sum_{\forall \vec{k}} P(q | d_j \wedge \vec{k}) \times P(d_j \wedge \vec{k})$$
$$= \sum_{\forall \vec{k}} P(q | \vec{k}) \times P(\vec{k} | d_j) \times P(d_j)$$
$$P(\overline{q \wedge d_j}) = 1 - P(q \wedge d_j)$$

- The observation of d_j separates its children index term nodes making them mutually independent
- This implies that $P(\vec{k}|d_j)$ can be computed in product form which yields

$$P(q \wedge d_j) = \sum_{\forall \vec{k}} P(q|\vec{k}) \times P(d_j) \times \left(\prod_{\forall i \mid on(i,\vec{k})=1} P(k_i|d_j) \times \prod_{\forall i \mid on(i,\vec{k})=0} P(\overline{k}_i|d_j) \right)$$

where $P(\overline{k}_i|d_j) = 1 - P(k_i|d_j)$

Prior Probabilities

- The **prior probability** $P(d_j)$ reflects the probability of observing a given document d_j
- In Turtle and Croft this probability is set to 1/N, where N is the total number of documents in the system:

$$P(d_j) = \frac{1}{N} \qquad P(\overline{d}_j) = 1 - \frac{1}{N}$$

To include document length normalization in the model, we could also write $P(d_j)$ as follows:

$$P(d_j) = \frac{1}{|\vec{d_j}|} \qquad P(\overline{d_j}) = 1 - P(d_j)$$

where $|\vec{d_j}|$ stands for the norm of the vector $\vec{d_j}$

Network for Boolean Model

- How an inference network can be tuned to subsume the Boolean model?
- First, for the Boolean model, the prior probabilities are given by:

$$P(d_j) = \frac{1}{N} \qquad P(\overline{d}_j) = 1 - \frac{1}{N}$$

Regarding the conditional probabilities $P(k_i|d_j)$ and $P(q|\vec{k})$, the specification is as follows

$$P(k_i|d_j) = \begin{cases} 1 & \text{if } k_i \in d_j \\ 0 & \text{otherwise} \end{cases}$$
$$P(\overline{k}_i|d_j) = 1 - P(k_i|d_j)$$

Network for Boolean Model

We can use $P(k_i|d_j)$ and $P(q|\vec{k})$ factors to compute the evidential support the index terms provide to q:

$$P(q|\vec{k}) = \begin{cases} 1 & \text{if } c(q) = c(\vec{k}) \\ 0 & \text{otherwise} \end{cases}$$
$$P(\overline{q}|\vec{k}) = 1 - P(q|\vec{k})$$

where c(q) and $c(\vec{k})$ are the conjunctive components associated with q and \vec{k} , respectively

By using these definitions in $P(q \wedge d_j)$ and $P(\overline{q \wedge d_j})$ equations, we obtain the Boolean form of retrieval

For a tf-idf ranking strategy

Prior probability P(d_j) reflects the importance of document normalization

$$P(d_j) = \frac{1}{|\vec{d_j}|} \qquad P(\overline{d_j}) = 1 - P(d_j)$$

For the document-term beliefs, we write:

$$P(k_i|d_j) = \alpha + (1 - \alpha) \times \overline{f}_{i,j} \times \overline{idf}_i$$
$$P(\overline{k}_i|d_j) = 1 - P(k_i|d_j)$$

where α varies from 0 to 1, and empirical evidence suggests that $\alpha = 0.4$ is a good default value

Normalized term frequency and inverse document frequency:

$$\overline{f}_{i,j} = \frac{f_{i,j}}{\max_i f_{i,j}} \qquad \overline{idf}_i = \frac{\log \frac{N}{n_i}}{\log N}$$

A T

For the term-query beliefs, we write:

$$P(q|\vec{k}) = \sum_{k_i \in q} \overline{f}_{i,j} \times w_q$$
$$P(\overline{q}|\vec{k}) = 1 - P(q|\vec{k})$$

where w_q is a parameter used to set the maximum belief achievable at the query node

- By substituting these definitions into $P(q \wedge d_j)$ and $P(\overline{q \wedge d_j})$ equations, we obtain a tf-idf form of ranking
- We notice that the ranking computed by the inference network is distinct from that for the vector model
- However, an inference network is able to provide good retrieval performance with general collections

Combining Evidential Sources

- In Figure below, the node *q* is the standard keyword-based query formulation for *I*
- The second query q_1 is a Boolean-like query formulation for the same information need

Combining Evidential Sources

Let
$$I = q \vee q_1$$

In this case, the ranking provided by the inference network is computed as

$$P(I \wedge d_j) = \sum_{\vec{k}} P(I|\vec{k}) \times P(\vec{k}|d_j) \times P(d_j)$$
$$= \sum_{\vec{k}} (1 - P(\overline{q}|\vec{k}) \ P(\overline{q}_1|\vec{k})) \times P(\vec{k}|d_j) \times P(d_j)$$

which might yield a retrieval performance which surpasses that of the query nodes in isolation (Turtle and Croft)

- The belief network model is a variant of the inference network model with a slightly different network topology
- As the Inference Network Model
 - Epistemological view of the IR problem
 - Random variables associated with documents, index terms and queries
- Contrary to the Inference Network Model
 - Clearly defined sample space
 - Set-theoretic view

P(d_j | q): rank of d_j with regard to q

By applying Bayes' rule, we can write

$$P(d_j|q) = P(d_j \wedge q) / P(q)$$

$$P(d_j|q) \sim \sum_{\forall \vec{k}} P(d_j \wedge q|\vec{k}) \times P(\vec{k})$$

because P(q) is a constant for all documents in the collection

Instantiation of the index term variables separates the nodes q and d making them mutually independent:

$$P(d_j|q) \sim \sum_{\forall \vec{k}} P(d_j|\vec{k}) \times P(q|\vec{k}) \times P(\vec{k})$$

- To complete the belief network we need to specify the conditional probabilities $P(q|\vec{k})$ and $P(d_j|\vec{k})$
- Distinct specifications of these probabilities allow the modeling of different ranking strategies

For the vector model, for instance, we define a vector $\vec{k_i}$ given by

$$\vec{k}_i = \vec{k} \mid on(i, \vec{k}) = 1 \land \forall_{j \neq i} on(i, \vec{k}) = 0$$

The motivation is that tf-idf ranking strategies sum up the individual contributions of index terms

We proceed as follows

$$P(q|\vec{k}) = \begin{cases} \frac{w_{i,q}}{\sqrt{\sum_{i=1}^{t} w_{i,q}^2}} & \text{if } \vec{k} = \vec{k}_i \land on(i, \vec{q}) = 1\\ 0 & \text{otherwise} \end{cases}$$
$$P(\overline{q}|\vec{k}) = 1 - P(q|\vec{k})$$

Further, define

$$P(d_j | \vec{k}) = \begin{cases} \frac{w_{i,j}}{\sqrt{\sum_{i=1}^t w_{i,j}^2}} & \text{if } \vec{k} = \vec{k}_i \land on(i, \vec{d}_j) = 1\\ 0 & \text{otherwise} \end{cases}$$
$$P(\overline{d_j} | \vec{k}) = 1 - P(d_j | \vec{k})$$

Then, the ranking of the retrieved documents coincides with the ranking ordering generated by the vector model

Computational Costs

- In the inference network model only the states which have a single document active node are considered
- Thus, the cost of computing the ranking is linear on the number of documents in the collection
- However, the ranking computation is restricted to the documents which have terms in common with the query
- The networks do not impose additional costs because the networks do not include cycles

Other Models

- Hypertext Model
- Web-based Models
- Structured Text Retrieval
- Multimedia Retrieval
- Enterprise and Vertical Search

Hypertext Model

The Hypertext Model

- Hypertexts provided the basis for the design of the hypertext markup language (HTML)
- Written text is usually conceived to be read sequentially
- Sometimes, however, we are looking for information that cannot be easily captured through sequential reading
 - For instance, while glancing at a book about the history of the wars, we might be interested in wars in Europe
 - In such a situation, a different organization of the text is desired

The Hypertext Model

- The solution is to define a new organizational structure besides the one already in existence
- One way to accomplish this is through hypertexts, that are high level interactive navigational structures
- A hypertext consists basically of nodes that are correlated by directed links in a graph structure

The Hypertext Model

- Two nodes A and B might be connected by a **directed link** l_{AB} which correlates the texts of these two nodes
- In this case, the reader might move to the node B while reading the text associated with node A
- When the hypertext is large, the user might lose track of the organizational structure of the hypertext
- To avoid this problem, it is desirable that the hypertext include a hypertext map
 - In its simplest form, this map is a directed graph which displays the current node being visited
The Hypertext Model

- Definition of the structure of the hypertext should be accomplished in a domain modeling phase
- After the modeling of the domain, a user interface design should be concluded prior to implementation
- Only then, can we say that we have a proper hypertext structure for the application at hand

Web-based Models

Web-based Models

- The first Web search engines were fundamentally IR engines based on the models we have discussed here
- The key differences were:
 - the collections were composed of Web pages (not documents)
 - the pages had to be crawled
 - the collections were much larger
- This third difference also meant that each query word retrieved too many documents
- As a result, results produced by these engines were frequently dissatisfying

Web-based Models

- A key piece of innovation was missing—the use of link information present in Web pages to modify the ranking
- There are two fundamental approaches to do this namely, PageRank and Hubs-Authorities
 - Such approaches are covered in Chapter 11 of the book (Web Retrieval)

Structured Text Retrieval

Structured Text Retrieval

- All the IR models discussed here treat the text as a string with no particular structure
- However, information on the structure might be important to the user for particular searches
 - Ex: retrieve a book that contains a figure of the Eiffel tower in a section whose title contains the term "France"
- The solution to this problem is to take advantage of the text structure of the documents to improve retrieval
- Structured text retrieval are discussed in Chapter 13 of the book

Multimedia Retrieval

Multimedia Retrieval

- Multimedia data, in the form of images, audio, and video, frequently lack text associated with them
- The retrieval strategies that have to be applied are quite distinct from text retrieval strategies
- However, multimedia data are an integral part of the Web
- Multimedia retrieval methods are discussed in great detail in Chapter 14 of the book

Enterprise and Vertical Search

Enterprise and Vertical Search

- Enterprise search is the task of searching for information of interest in corporate document collections
- Many issues not present in the Web, such as privacy, ownership, permissions, are important in enterprise search
- In Chapter 15 of the book we discuss in detail some enterprise search solutions

Enterprise and Vertical Search

- A *vertical collection* is a repository of documents specialized in a given domain of knowledge
 - To illustrate, Lexis-Nexis offers full-text search focused on the area of business and in the area of legal
- Vertical collections present specific challenges with regard to search and retrieval