
Present and Future of the Informatics Profession

1 UPGRADE Vol. II, No. 4, August 2001 © Novática and Informatik/Informatique

Let’s Design Everything Again: 
Thoughts on Computing and Its Teaching

Ricardo Baeza-Yates

“Man is the only animal to trip over the same stone twice” 
“El hombre es el único animal capaz de tropezar dos veces en la misma piedra”

 Spanish popular saying.

“Everything is highly intertwined”
Ted Nelson, inventor of Xanadú.

The aim of this article is to give a personal view of our field; a critical and constructive analysis of the
current state of affairs and the implications this has on education. Although this view is rooted in a local
context, most of the issues considered are also of relevance in a global context.

Keywords: Training in Computing, Software Engineering,
Databases, Interfaces, Public Software

Introduction and Motivation
The first problem we have with our field is what name to

give it. Are we talking about Computer Science and/or Compu-
ter Engineering or Informatics? Is the correct term computer,
computation, computational or informatics? Where do infor-
mation systems fit in or should they be they considered as a sep-
arate area? I still do not have any clear answers. Perhaps the
problem is intrinsic. As the joke goes: Computer Science has
two problems: Computer and Science. Have you ever heard of
the science of washing machines or any other machine? Do
mathematics or physics need to say they are sciences? In short
it’s a problem of coming of age, of maturity, and consequently
of insecurity. In any case it is clear that what we do is rooted
both in engineering and basic science. Before we go on it is
necessary to make something clear. Many of the things I say
here are self-evident or common sense. Nevertheless, despite
being obvious, many of them have not been said by anybody
else and that’s why I am saying them here. Is it that they are

very obvious or that they only become obvious once you know
them?

The ultimate aim of any software is to transmit some knowl-
edge to the mind of the person using it and vice versa. The
biggest bottleneck occurs at interfaces, at the final point of
communication with the user, and the problem lies not only in
bandwidth but also in the very way information is represented
(Figure 1). As Djikstra said recently, we have still not been able
to rise the challenge of making large software systems less
complex. 

How to eliminate this bottleneck is the main aim of this arti-
cle, which may seem like a hotchpotch of apparently uncon-
nected arguments. However, we often forget to analyse our
universe as a whole, from the point of view of an outside
observer. For anything we wish to study, form and content
should be given their due degree of importance and considera-
tion. I will start by presenting an analysis of the relationship
between technology and culture, and an analysis of computing
itself and in the context of our profession. I will go on to talk

1

Ricardo Baeza-Yates is a Doctor (Ph.D.) in Computer Science
(University of Waterloo, Canada), Magister in Electrical Engi-
neering and Computer Sciences from the University of Chile and
Electrical Civil Engineer by the same university. He is currently a
Tenured Professor in the Department of Computer Science of the
University of Chile and his fields of research are algorithms, in-
formation retrieval and visualization. He is the author of several
books. He has twice been president of the Chilean CS Society
(SCCC). Currently, among other posts, he is president of the
CLEI (Centro Latinoamericano de Estudios en Informática) and
is the international coordinator for the subprogram of IT and ap-
plied electronics of CYTED (Iberoamerican Cooperation Pro-
gramme on Science and Technology). During the year 2000 he set
up a search engine for the Chilean Web <http://www.todocl.cl>.Fig. 1: Comunication of Information.

Software

Screen

Mind 
Model

User

Hardware

Interface



Present and Future of the Informatics Profession

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 4, August 2001 2

about some of the implications on education of this analysis
and I will put forward some basic ideas regarding what to teach
and how to teach it. In short, my message is that we should not
forget the many kinds and many levels of relationships that
exist, that we should constantly test the hypotheses we make
and that we should really redesign and not merely reengineer. 

Technology and Society
We are moving in a highly technological world so it is

important to understand the way technology and our society
interact. The relationship between technology and culture is
one of love and hate, of successes and failures, of visionaries
and monopolies. 

How long does technology need to reach all levels of society?
In many cases not many years, from a historian’s point of view.
For example, printing took a hundred years to reach all of
Europe. However, for someone living at that time this was
considerably longer than an average lifespan. The telephone or
commercial aviation took more than 30 years to have any
impact on a significant percentage of the population. The fax
was invented last century but has only had any real impact on
society in the last couple of decades and it is still not present in
most homes. To quote Norman: “Today we often hear that the
pace of change has speeded up, that changes happen in “Inter-
net time”, in months or weeks, not decades or years. False.”
[Norman 98]. The Internet has been with us for more than 30
years and it is still not in every home, even in developed coun-
tries. 

History is packed with examples of innovative or high quality
technologies which flopped. Here a few: Edison invented the
phonograph in 1877 and in spite of this his company failed;
nobody has heard of the first car company in the United States
(Duryea); the Macintosh operating system was much superior
to DOS, but it lost the commercial battle; Sony’s Beta technol-
ogy was better than VHS; etc.

One of the reasons for this failure is an inability to under-
stand what the customer really wants. Logic does not always
defeat the whims of the market. In the case of Edison, the prob-
lem was their choice of artists for their records. The public
wanted to hear the best known singers. It didn’t matter if there
were others equally as good or better, it was the name that
counted. In the case of a product, again quoting Norman: “… it
only matters that what is being offered is good enough for the
purpose. Moreover, if you lead the marketplace in sales, it is
permissible to use a nonstandard infrastructure. After all, if
you have the majority of customers, then what you do becomes
the standard. Your competitors have little choice but to follow.
If you are not the leader, then having nonstandard infrastruc-
ture is a bad idea. Ultimately, it leads to extinction” [Norman
98]. For software there are many examples of this kind. 

2.1 Accidental Products, Damaged Products
Sometimes bad products are sold as part of a marketing strat-

egy to break new ground and get a name known. Speed is the
important thing, not whether a product actually works or not.
For this reason haste is the most important impediment to
quality. Often technological quality, a good design, user-friend-

liness (or the contrary), are equally unimportant. To quote
Norman: “What kind of world is this, anyway, where horrible
products don’t matter?”. It’s our world and the only kind we
have.

“Buy! The only 100% compatible 64 bit RISC computer,
Posix compatible operating system and with total connectivity,
even ATM. The solution for this world of open systems. Plus the
software that you need free: object oriented development tools
with graphic intelligent interface, transactional database and
SQL server with support for 99 known or future formats and 64
more utilitaries.” Beware! As with other products of this con-
sumer market of ours, the reality we find is different from what
the advertising claims (although there are always exceptions to
prove the rule). 

Most of the most popular and influential technologies in
computing nowadays were never meant to be used as they are
used today, nor were they meant to dominate the market the
way they do. The success of MS-DOS/Windows, Unix/Linux,
several programming languages and the World Wide Web are
proof of this. By this I don’t mean they are good or bad, merely
that they were not designed for what they have become today.
Those of you who know the history of DOS and CP/M will
know what I am talking about, or how prototypes like X-Win-
dows or Mosaic have changed the course of computing history.
These and other cases like them are clear examples of acciden-
tal products and systems that have ended up dominating our
world while at the same time making us less sure of our ability
to shape the future of technology. 

According to Karl Reed this should be a task for the pro-
fessionals of computing, who should not only report on new
advances or problems but also steer the development and use of
information technologies [Reed 98]. According to Reed this
has happened due to an aversion to planning. I prefer to think
that what is happening is that our planning is not successful ei-
ther because of the environment I am about to describe, or be-
cause of a lack of time.

Would you accept a car with an engine you had to switch off
and start up again in order to make it work (people tell this as a
joke but it isn’t really so funny) or a television that gave you an
electric shock every now and then? Of course you wouldn’t, but
that’s what we accept in software. In March 1999 Microsoft
recognized in a private meeting with its distributors that five
thousand errors in Windows’95 had been corrected in
Windows’98 (but they didn’t say how many new ones had been
added!). That is to say that millions of defective software
copies were sold at an irreparable cost to their customers. In
short, what we need are serious, high quality software compa-
nies if we want to get back on course again. This also means
changing marketing policies and not accepting with half
finished products. 

Sadly, better solutions take time and many companies are
reluctant to invest in development and/or research if technolo-
gy changes every year. That is the current paradox, and while it
is understandable it is also damaging. Today, instead of think-
ing, we are using familiar solutions that were no use 20 years
ago. It’s true that it’s not a good idea to re-invent the wheel, but
neither is it a good idea to have no time to invent anything.

2



Present and Future of the Informatics Profession

3 UPGRADE Vol. II, No. 4, August 2001 © Novática and Informatik/Informatique

There will come a time when it will be pointless to invest in
new technological advances if we cannot use them properly.
When this time comes we will have to go back to the drawing
board and think. Yes, think; something that the pace of the
modern world let’s us do very little of, to the point where we
are forgetting how to do it.

2.2 Implications
The use of technology is conditioned to a great extent by

historical accidents and cultural variables as much as by the
nature of the technology itself. Social, cultural and organiza-
tional aspects of technology are much more complex than mere
technical aspects. After a technology has been established, it
becomes entrenched and it is very difficult to make any chang-
es. We should try to bear this in mind for the future, since in our
field there are many examples which we will be looking at later
on, the most obvious one being the Windows operating system. 

To close, let us remember that technological advances are of
no use unless society advances alongside them. In fact some
studies show that productivity has not actually increased, in
spite of the degree of computerization the world has experi-
enced [Brynjolfsson/Hitt 98], [Dewan/Kraemer 98].

Our Technological Environment
Technology advances so quickly that it leaves no time for

thinking or using it to design efficient solutions. I would now
like to show how many of the solutions we use (and conse-
quently their designs) are based on premises that are no longer
valid; and how solutions which existed in the past are now
coming back into their own. However, in the long run the
technological race is self-defeating. But let us start with a little
history. 

3.1. A Little History
Things have been rediscovered so many times. You would

think that Windows had discovered graphic interfaces if you
didn’t know the history of Xerox Parc and then Apple. Others
believe that RISC technology was invented by IBM with its line
of RS-6000 equipment, unaware that it was developed in the
mid 70s. 

Let us make a brief analysis of the development of computing
in recent years. Many technologies have advanced exponential-
ly. This is the case of Moore’s famous law that states that the
capacity of microprocessors doubles every 18 months. This
prediction, made in 1965, is still proving to be true [Hamilton
99]. The same can be said of the memory chip capacity per dol-
lar which has increased by a factor of 134 million in the last 40
years. Recently a similar rate of growth can be seen with the
Internet. The number of computers connected doubles every 15
months. This cannot continue indefinitely since today more
than 20% of the world’s computers are already connected and
it would mean there would be as many computers as people by
the year 2010. The growth of the Web is even more impressive.
Since 1993 the number of servers doubles every 3 months, and
today the figure stands at over 30 million. Similarly the United
State’s Internet capacity increased by 1,000 times in the 80s

and possibly by that much in the 90s. In spite of this, traffic on
the net is growing at an even faster rate.

If we compare a present day personal computer with a typical
one 20 years ago, we can see that the storage capacity has
increased more than 1,000 fold and the processing capacity by
at least 150 times. These drastic differences in growth rates lead
to problems. For example, improvements in speed on the
networks (several Gb per second is being forecast) are difficult
to exploit since processors are not as fast. Other technologies
have not developed at the same pace, such as disk transfer rates,
which have increased by much less, and are now as input/out-
put one of computing’s bottlenecks.

As far as we users are concerned we haven’t even doubled
our capacity and yet sometimes I am amazed at how easy it is
to get used to something bigger (as one of the interpretations of
Murphy’s law states: however big your disk is it will always be
nearly full). The same can be said of software, which hasn’t
undergone any spectacular advances either; you could even go
as far as to say that methods haven’t changed much in the last
10 years. While it is true that many computational resources are
cheap, the solution does not lie in using the design that we
already had, but without optimising it and asking the user to
buy a computer twice as big and twice as fast. 

The most important features of present day computing are
largely dictated by the impact of the Internet. Among them we
can mention interactivity, distributed information and process-
ing, digitalization and the use of multiple media, use of shared
resources and collaborative systems, standardization and open
systems. It is difficult to make predictions; many have got it
wrong in the past. The most famous examples are from IBM’s
founder, Thomas Watson, in 1943: “I think there is a market for
five computers” and from Digital’s founder, Kenneth Olsen, in
1977: “There is no reason why a person would want to have a
computer in their home”. Among short term speculations are:
the mass adoption of optical fibre, the development of wireless
networks, the convergence of PCs with Unix workstations, the
greater use of collaborative tools and of course the total massi-
fication of computers and the Internet. 

3.2. Operating Systems and Networks
Most premises upon which traditional operating systems

were founded are no longer valid. In the past hardware resourc-
es (CPU, memory, disk) were very expensive so their use was
limited. This led to many solutions being unnecessarily compli-
cated, in order to reduce their cost or the impact they had on
shared reduces. 

These premises changed in the 80s and while costs went
down, the speed of processors and size of memories increased
by more than 100 times. Why then aren’t operating systems at
least 100 times faster? To adapt existing solutions at first
improvements were used in the interfaces (for example the
cache memory). However the complexity of the solution itself
imposed a maximum limit to these improvements. The solution
is to simplify the solution. Enter the paradigm “simplicity
equals speed”. One of the corollaries of this paradigm has been
the shift from CISC processors to RISC ones. 

3



Present and Future of the Informatics Profession

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 4, August 2001 4

Also history is forgotten. Windows 1.0 was never sold,
Windows 2.0 was a failure and only Windows 3.1 was a
success, being no more than a good patch on DOS. Windows
NT needs a minimum of 16Mb and 32Mb is recommended.
What happened to the 64K that DOS needed? Is memory so
cheap that we can afford to forget about being efficient? Are
processors so fast now that we can forget about good data struc-
tures and algorithms? Defenders of Windows NT will say that
it is much more than DOS, that it includes a system of win-
dows, network connectivity, multiprocessing, etc. All right, but
for example Linux with X-Windows works with 4Mb and bet-
ter with 8Mb. Why then does Windows NT need so many
resources? Clearly there is a design problem somewhere. The
rise in mobile computing may help to improve designs in this
particular area, since with laptops we cannot afford the luxury
of having a lot of resources or of using a lot of energy (battery). 

A similar phenomenon has occurred in networks. In the past
they were expensive and slow. Now they are cheap and fast.
Most current technologies have had to adapt to the changes,
although there is still a lot more to be done. For instance, ATM
was designed in the 60s and is now coming back onto the scene,
because it is simple and fast, reaching speeds of 155 Mb/s.
However that is still a long way from speeds of several Gb/s
that can be reached with optical fibre. 

Another example is X-Windows, the most popular Unix
windows system, which is transparent to the network protocol
used. That is to say, it is a distributed windows system. The
communication protocol used by X-Windows assumes that the
network is fast and the screen graphics are slow. However now-
adays that is not true, because while networks are fast, they are
congested and shared by many users. And the speed of screen
graphics has also increased. 

3.3. The Art of Programming
Programming is perhaps the heart of Computer Science. It is

the world of algorithms and data structures and programming
paradigms. Throughout its evolution programming has been
more an art than a science or engineering. It is not for nothing
that Knuth’s famous trilogy on algorithms and data structures
is called The Art of Computer Programming. 

For many people programming is not an entirely respectable
job; that’s what programmers are for. But we should make a
distinction between people who are able to design the solution
to a problem and turn it into a program and those who are only
able to turn the solution into a program. A real programmer, as
Yourdon would say, is someone who can carry out the whole
process, from analysis to implementation. 

Programming keeps you in training for solving problems
whether they are big or small. Programming should be satisfy-
ing. It should in no way be demeaning for an engineer, or what-
ever we think we are, to program. Quite the contrary; it is we
engineers who will often make the best programs because only
we fully understand our own solutions. Another important
point is that good code is not the least comprehensible or the
most extravagant code, but the one which is the clearest, most
efficient and best documented. Many people also equate being
a keen programmer with being a hacker. As with any addiction,

extremes are not wholesome. Neither should we see hackers as
evil programmers. There are good hackers and bad hackers, and
the former are indispensable. 

3.4. Software Engineering?
In 1999, an important executive of a major US computer

company told me: “We could afford to do it well because we
had the resources and we wanted to break into a new market”.
Of course at a technical level we would always like to do things
well, but the market is telling us otherwise. There is no time,
there are no resources, it’s now or never. The result is badly de-
signed and poorly tested products. These days the only compa-
ny in the market that could afford to do things well is Microsoft.
But they don’t seem to want to.

Perhaps the best place to start is with the famous year 2000
glitch, or the millennium bug (although really this century
started in the year 2001). Whichever way you look at it, this
was a ridiculous problem which had a massive impact. Should
this embarrass us? I don’t think so. 

Was it a mistake to consider only two digits instead of four
for the date? Everybody knows that the main reason was to use
less memory, a resource which 20 years ago was much more
expensive than it is now. I think it was neither a mistake nor was
it good design. The real reason is that none of the designers
thought that their software would still be in use after more than
20 years. Not even today do we think that, plagued as we are
with annual changes of hardware. It is true that in some instanc-
es programs have developed without the original design having
changed, but this is not the normal case. Why do we go on using
that software? Because of the bad software development habits
we mention below. 

Computing changes, but that does not mean that it improves.
Many companies may prefer not to change software which we
know works or which we know where it doesn’t work. This
software survives successive changes of hardware until in
many cases it loses its original source code as a result. Other
companies have tried to change it, but their projects have failed
due to not using the right methodologies and/or tools. There
again, today we can see the other extreme. There is an exces-
sive use of resources and the design is of secondary impor-
tance. For example, Windows‘98 has more than twice the
number of lines of code than the latest version of Solaris and
occupies much more memory when running. The reader can
draw his or her own conclusions as to which operating system
is better designed, leaving aside the fact that the more lines of
code there are the more chance there is that there will be errors.
Just because memory today is cheaper doesn’t mean we should
overuse it. 

Why does this happen? Let’s draw a parallel with civil engi-
neering. Can you imagine a bridge being built that falls down
five times while under construction due to design faults?
Unthinkable. Worse still, can you imagine that, at the very
moment of opening that same bridge with 100 people on it, you
find a fatal error in its design? Impossible. However, everyone
in programming uses trial and error techniques. Now consider
the number of designers. A house is designed by one to three
architects. What would happen if there were dozens? And when



Present and Future of the Informatics Profession

5 UPGRADE Vol. II, No. 4, August 2001 © Novática and Informatik/Informatique

a house is being built you don’t make major changes to its
design. How many times do software implementers change the
design? Plenty, partly because often they the same people and
having two roles without separating them clearly is always a
problem. We used to talk a lot about reusability, but it is only
now, with class libraries and design patterns, that this word has
any real meaning. In the past it was difficult to make use of
what had been done by other people for countless reasons: code
not available, different language or environment, lack of docu-
mentation, etc. Modularity and component independence is vi-
tal if we want to integrate different products and technologies.
We can also talk about quality. If we add reuse and using the
right control tools, in the future we may be talking about real
software engineering [IEEE 98]. Although I am aware that oth-
ers might shoot me down here, I would say that software engi-
neering is actually software handcraft. TeX is perhaps the best
example, since in the beginning it was the work of an excellent
craftsman, Don Knuth, and for the last 10 years not one error
has been found in its code (and the final cost of each single er-
ror grows exponentially). Unless we change our way of think-
ing and stop relying on always being able to test, and that if
there are errors it doesn’t matter, programming will continue to
be an art in which few will be masters and most will always be
apprentices. This change will need to be radical, since even the
biggest software companies are still not in a position to say that
their product has no error. The following examples from Win-
dows illustrate this point. 

Windows’95 contained nearly 15 million lines of code.
Applying Caper Jones’ estimates [Jones 96], a code of this size
has a potential number of errors of nearly 3 million, which
gives an idea of how many tests need doing. To get this figure
down to five thousand requires at least 18 repeat tests [Lewis
98a]. Although software companies should perhaps perform
more tests this would raise the cost and delay the products
release on the market. 

Sadly history shows that bringing out new versions quickly
often means a more successful product. This happens because
customers do not base their choice on quality, though this is
less true of critical products such as a Web server. Here quality
is more important which is why the Apache server wins over a
Unix type operating system, although it is public domain soft-
ware. Many companies say that they don’t use public domain
software because it doesn’t have support. But most PC prod-
ucts, especially Windows, don’t have support either. Windows
NT has around 25 million lines of code, which means more
tests should be carried out to ensure required levels of reliabil-
ity. Moreover Windows NT is supposed to be certified at secu-
rity level C2 for use on Internet. However a study carried out
by Shake Communications Pty. Ltd. revealed 104 problems,
some of them very serious ones, which make it vulnerable to
hackers [Lewis 98b]. 

In the case of software, suppositions similar to those regard-
ing operating systems were made: expensive and limited
resources. Now resources are cheap and plentiful. But it is also
bad to misuse resources by writing software needing large
amounts of memory or a lot of available space on the disk. This
is acceptable only when it is really necessary, and on most

occasions this is not the case. This is another side effect of not
having enough time to design software and of producing it in
order to bring out new releases as quickly as possible, because
that’s what the market is demanding. This abuse of technology
has a harmful effect. For instance, if we want to do something
faster, the most common solution is to buy a faster computer.
However it is cheaper and possibly faster to use a better solu-
tion (better software, better parameter adjustment, better net-
work configuration, etc.). 

3.5. Artificial Intelligence?
Artificial Intelligence is one of the areas of computing which

promised most and has progressed the least. Whether it be in
games like chess or processing of natural speech, results have
shown that good heuristics, black boxes or neural networks are
only partially effective. But we are still a long way from the
Turing Test. Let me use chess to help me put across my ideas.
In May 1997, Gary Kasparov, then world chess champion, was
beaten by Deep Blue from IBM (Big Blue), the champion of
chess programs. Has the machine triumphed? By analysing this
pseudo-victory of artificial intelligence over man perhaps we
can put an end to the abuse of terms like expert or intelligent
systems. Isn’t a good algorithm intelligent? Is brute force intel-
ligent? 

At the beginning of the 50s it was predicted that in 20 years
there would be programs capable of defeating the world chess
champion. More than twice that time was needed for that to
happen. So does this make computer programs intelligent then?
No, Deep Blue doesn’t think like a person (neither does it think,
but let’s just say it does something similar, for comparison’s
sake). Kasparov knows what lines of play to analyse and he
studies just a few moves in depth. On the other hand, Deep Blue
analyses millions of moves and appraises a large number of
positions, but it can do it faster. The fundamental difference lies
in intuition, creativity and long term strategy. If Deep Blue had
the ability to assess positions like Kasparov does, it would be
invincible. However, Deep Blue evaluates a position on the
basis of heuristics. That is, rules that work most of the time but
other times don’t. 

The more complex the game is and the longer term the objec-
tive is, the more difficult it is to analyse any given position. For
example, for some time the best checkers program has been
better than any human. Why? Because there are far fewer
possible positions in checkers and the rules are much simpler,
which allows it to assess every possible move. On the other
hand, in the oriental game of Go it is necessary to control the
board little by little, without knowing until the end if many of
the pieces are still alive or not. This makes it more difficult to
analyse, because long term strategy is required. In this case
intuition and experience are much more important than memo-
ry (as in the game of bridge) or an ability to make rapid calcu-
lations (as in checkers). 

The first misinterpretation we can make of Deep Blue’s win
is that it may seem as if computer has defeated man. What has
actually happened is that a group of experts in computing and
chess have programmed a high powered computer and have
succeeded in defeating the world champion. That is to say, a



Present and Future of the Informatics Profession

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 4, August 2001 6

group of people who have worked over a long period, concen-
trating especially on working out how to defeat the champion,
have had more success than the intelligence and memory of one
man working alone. I don’t consider it such a big thing that a
program can beat one person, since it’s an unfair fight. Deep
Blue has a large number of processors, it knows more than a
million games by heart and can analyse 200 million positions a
second. It would be an interesting experiment to see if with less
time per match its calculating capacity might be less important.
Could Deep Blue defeat a group of grand masters? I doubt it. 

There are also factors which have nothing to do with intelli-
gence that affect a chess player’s concentration. According to
some chess players, Kasparov had a great deal of respect for
Deep Blue. Others say that he took his role as defender of man-
kind very seriously and that his defeat would be a milestone in
history. And of course Kasparov is a human being, with emo-
tions, who needs to eat, drink and sleep, and who feels the
pressure of knowing that he cannot exert any psychological
pressure of his own on his opponent. An opponent who neither
makes mistakes nor gets tired. If we look back, one of the
reasons for all the successful defences of his title was
Kasparov’s greater psychological strength. 

Man defeats himself every day. Kasparov was defeated in
public. That’s all. When a computer can read a book, under-
stand it and explain it, that will be something to shout about.
Deep Blue is an example of software engineering, of a good
program in a world where not many are to be found. A program
that has been improved over many years, that uses knowledge
from many sources and that has had time to evolve. If we made
use of technology as Deep Blue does, we would be in a better
world for sure. 

3.6. Interfaces with Common Sense
Because of the limitations of the original Macintosh which,

in order to keep its cost down, couldn’t run two applications
simultaneously, (very different from its powerful predecessors:
Altos and Lisa), Macintosh’s desktop metaphor was not
centred on documents. The user was therefore required to
choose an application and then choose a document, rather than
selecting the document first and then the application to use it
with. Though on the surface this looks like the same thing, it
meant a radical difference in the development of interfaces.
Only for the last few years has it been possible to select a
document and run a predefined application or choose one from
a menu. To quote Bruce Tognazzini, one of Macintosh’s
designers: “We have come to accept that the way to create or
edit a document is to open that document inside an application,
or tool. This is equivalent to having to slide your entire house
inside a hammer before you can hang a picture on the wall or
hiving to put your teeth inside your toothbrush before you can
brush them” (from the essay Nehru Jacket Computers in [Tog-
nazzini 96]).

Let’s take a look at present day interfaces. The information
we store is based on a hierarchy of files and directories in which
we navigate from father to son and vice versa. That is to say in
just one dimension. Not only that, but we have to remember
where each file we create is and what name we gave it (not to

mention limitations of length, symbols, or not being able to use
identical names). Also, while the screen is a bi-dimensional
space, the interface rarely makes use of this fact neither does it
learn how we use it nor what order we do things in. For exam-
ple, I might be moving a file right across the screen to put it in
the waste bin and at the last moment my finger slips. Result:
two icons end up one on top of the other. The interface might
have assumed that what I was trying to do was to get rid of the
file! In my opinion, part of the success of browsers and the
model imposed by HTML lies in the fact that, as well as being
a very simple interface, it has a single level link structure. New
paradigms of visual representation of knowledge are already
appearing [Greenberg 99]. 

The computer technology we use should be transparent for
the user. In fact how many newbie users only use one directory
to put all the files they use in? The user doesn’t need to know
that there are directories or files. Besides not everything can be
classified into directories and files. A file should be able to
belong to two or more different classifications which should be
able to change as time passes. How we understand things
depends on our place in time and space. Our surroundings are
not static, but the computer unnecessarily forces us to keep our
documents immovable in space and time. 

Let’s give this some serious thought. The computer should –
and can – name and group together files and retrieve them using
their content or the values of an attribute. For example, you
might say: show all the letters I was editing yesterday, get the
first lines of each letter, then choose the line I need. Another
baseless premise is that we need a common interface for every-
body. People are different, they think and work in different
ways. Why not have interfaces which adapt to each user, which
can be personalized and which learn the way and the order we
do things in? To pave the way for the implementation of new
interfaces, we should scrap the past and replace file systems
with data organized in a more flexible and powerful way
[Baeza-Yates et al. 99]. This leads us to our next subject.

3.7. Databases
One of the biggest problems of current databases is the large

number of different models, although the relational model is
the predominant one. However new applications need data
which is not so structured and rigid: multimedia, hierarchical
objects, etc. While suitable models do exist for these types of
data, there are no tools which allow us to integrate well two or
more models. In fact attempts to incorporate these extensions
to the relational models have not been very successful. 

If we forget past hypotheses, we may be looking at more
powerful and flexible models. An example is the case of objects
with dynamic attributes [Baeza-Yates et al. 99]. In this model
the objects have a dynamic number of attributes, the values of
which have type and are also dynamic. This model can be
considered as an extension of the classless object model. How-
ever it is also a powerful query language that can handle object
sets that satisfy arbitrary attribute conditions, including their
non existence or if they have an undefined value. 

There are many arguments in favour of this model: simplici-
ty, flexibility and uniformity; the elimination of suppositions



Present and Future of the Informatics Profession

7 UPGRADE Vol. II, No. 4, August 2001 © Novática and Informatik/Informatique

regarding data structures and their relation with objects that
contain information; its ease of use; the fact that it allows
multiple views of the same information by means of queries;
and the fact that it generalizes hierarchical file systems.

This model should simplify the work of users, programmers
and applications for handling information. This model is also
useful on the Web, where objects can be shared by aggregating
specific attributes to each object’s use. These objects can be
manipulated and transferred in open form using XML.

Our Professional Environment
In addition to those problems directly caused by ques-

tions of a technological nature, there are also problems related
to the market and the professional environment. For example,
professional overspecialization, the lack of good software
project managers or the scant interaction between theory and
practice in software development [Glass 99]. We will be taking
a closer look at some of these aspects in the following sections.

4.1 Complaints from Industry
The most commonly heard complaints from industry are that

much of what is taught is of no use. Industry is saying that what
is needed is for students to get more practical knowledge and
skills, so they can apply what they have learnt to a business
context and thus make their entry into the real world of industry
so much easier. That what is needed are software engineers, not
scientists [IEEE 97]. The first thing I would like to say is that
all that is true, but it all depends on your point of view.
Commercial objectives are short term while university objec-
tives are long term. Other more specific complaints include the
lack of industrial patents developed in universities and the
absence of entrepreneurial innovation. 

What a company wants is a young person with experience.
The lack of practical knowledge is difficult to remedy in a
system in which the technology changes so quickly. That is
why concepts are so important, since they give the ability to
adapt and learn. It is true that often companies lose the invest-
ment they make in training, but that is normal in a highly
competitive market. Specialization (for instance, specific tools)
and continuous training are the employer’s responsibility, not
the university’s. However one of the main problems is that by
investing in training the employer may lose the employee when
he or she gets a better paid job on account of being better
trained. This often happens as a result of the employer not
giving enough importance to the investment they have made. 

Finally, we come to the commercial aspect. I believe this
problem goes beyond computer engineers; it is a question of
the interaction between technology and society. We cannot
have know-alls who are also good sales people with an under-
standing of business. These skills are often innate and cannot
be taught (I often feel like I am trying to teach common sense,
and the results are not too heartening). There are already short-
comings in the technical curricula given the present volume of
different subjects there are in computing which cannot all be
satisfactorily covered. 

4.2 University-company Relations
Joint research by universities and companies has always been

bogged down by various factors. These include the slow admin-
istrative apparatus of universities and the companies view,
often justifiable, that universities are incapable of achieving
short term goals. We need to develop an infrastructure for
applied research and to increase technological transfer, which
is what many developing countries really need to export soft-
ware and maintain growth in this area. 

Another way to provide an incentive for applied research
would be to create research projects in which it would be oblig-
atory to have some industrial counterpart. These projects need
not only be for applied research but can also be for basic re-
search, though with lower budgets and smaller working groups.
This would allow specific problems to be tackled and would en-
courage support from companies since the risks would be
smaller. 

We should also be bringing universities and companies closer
together in a way that is beneficial for both parties. Technolog-
ical transfer, exchange programs and the like are ideas that have
been mooted thousands of times already. The fact that univer-
sities register no patents is criticized. The same criticism could
be levelled at Chilean software companies. First of all it is very
time consuming. Secondly it is not cheap (at least 10,000
USD). Thirdly, in the course of the process the result cannot be
published (which flies in the face of the current system of
academic assessment based on publications, although this is
changing in Europe). And point number four, ideas should not
be patentable (for example, an algorithm). 

4.3 Monoposoft vs. Open Source
The Open Source movement (that is, free source code) is

gaining momentum every day and is beginning to attract media
attention as a result. The classic example is Linux: Would its
creator ever have imagined that it would be used now by mil-
lions of people? Meanwhile, Microsoft is fighting with the US
federal government and their software is a source of money and
jokes [Lewis 98a], [Lewis 98b]. Sadly many of these jokes
should make us cry rather than laugh. But these jokes conceal
important truths and lead some people to fight against wind-
mills as romantic Don Quixotes.

How can it be that not only is there such a thing as free soft-
ware, but its source code is public too? This doesn’t make any
sense in a capitalist market, where it would be hard to imagine
asking thousands of programmers to work for nothing. My
personal opinion is that Open Source only exists because
Microsoft exists. If we have to choose between cheap software
and Microsoft software, for many different reasons we are
bound to choose the latter. But if the alternative is free we
would be willing to take a risk and try that software. Also,
though it may seem to be a contradiction, freeware may be
better than commercial software. If someone finds an error and
reports it, in a matter of minutes you will be able to go to an
Internet news group and get a correction for the problem. And
if not, a lot of programmers will take a look at the code and one
of them will spot where the problem is. This inefficient mech-
anism is nevertheless highly effective. 

4



Present and Future of the Informatics Profession

© Novática and Informatik/Informatique UPGRADE Vol. II, No. 4, August 2001 8

Another advantage is that the process is scalable: as the code
grows in size more people can get involved in its development.
A few years ago a Microsoft internal document that talked
about the danger that Open Source represented for the company
was leaked onto the Internet (see this and other related subjects
in [Sanders 98], [IEEE 99], [Lewis 99a], [Lewis 99b]). 

Microsoft is a de facto monopoly. Every two or three years,
millions of users have to upgrade their copy of Windows. They
don’t get complete compatibility with older versions but they
do pay prices that keep abreast of the times: a captive market
must be exploited. It’s like having to regularly move house but
not always to a better one. In 1999 Bill Gates published his 12
rules for the effective use of Internet in companies [Gates 99],
which show that he was utterly converted to the world of elec-
tronic mail. He has also learned the advantages of free soft-
ware, particularly when it also allows him to blow away the
competition: Explorer. From an economic point of view soft-
ware development in Microsoft is not the most effective (in fact
it is the users who find most of the problems, and they can’t
always get direct help to solve them), but it is definitely the
most efficient. Microsoft is perhaps the only company that is
capable of stopping this snowball. It could even afford to take
5 years to develop a real operating system and applications with
much better interfaces, as described before. But this is not go-
ing to happen, because it would mean earning less. Depending
on the result of the anti-trust case, in which Microsoft has re-
cently had a favourable but not definitive sentence, and on the
advance of public code, this millennium will be the information
age or the Microsoft age. 

Final Comments
I would like to begin by quoting Peter Freeman [Freeman

97]: “If we compromise the core of computing science, we risk
losing long-term foundational skills. If we fail to take into
account the concerns of the computing professional, we risk
becoming obsolete. The key is to achieve the right balance – but
there is more than one way to get there”.

We have to concern ourselves with both form and content. If
we can create good professionals they will become agents of
change [Garlan et al. 97]. That should be one of the main aims
of university and I feel that it has also been a major personal
driving force for what I do.

Most of what we learn in our lives is of little use, it’s mostly
technical knowledge. The important thing is the training asso-
ciated with that learning process, the development of logical
and analytical capabilities, the ability to abstract, conceptualize
and solve problems. The objective is not knowledge per se, it is
personal development. It is to learn and learn constantly. I be-
lieve that there is a better way to do this, by integrating knowl-
edge and new tools in innovative courses in which the student
has a greater understanding of the final goal. The main aims
should be flexibility, adaptability, to put emphasis on concepts
and to facilitate continuous learning. 

All sciences have evolved in a real world context, not just in
isolation, the origin of calculus being perhaps the most classic
example of this. In the past there were people who knew most

of what there was to know in terms of scientific knowledge, but
nowadays this is very difficult, which forces us into group or
multidisciplinary work. These two facts should help us to
consider new ways of teaching. Two different lines of action
present themselves. Either designing different professionals,
based on the three elements involved: people, processes, and
technology [IEEE 97], for example, an information architect
[Baeza-Yates/Nussbaum 99]; or drastically changing the way
we teach by integrating all the suggested classic contents
[ACM] into one single problem solving based course [Baeza-
Yates 00]. 

Although these proposals are of a preliminary nature, I think
that they are a first step towards designing better, more
complete and coherent curricula, and teaching them in a differ-
ent way, by motivating students and giving them clear explana-
tions of why they are learning each subject and how these
subjects are related to the world they live in. In short, integrat-
ing everything, in a certain manner returning to the Renais-
sance, to encyclopedic and enlightened thought. It is also clear
that we have to encourage critical thinking and lay great
emphasis on matters of design. 

This article is at the same time an essay on the many prob-
lems surrounding our field and a quiet appeal for sense. In our
private lives as in our professional lives, we accept so many
things as true, as basic hypotheses that we never question.
Similarly, the ideas expressed here should be taken only as one
more point of view to be considered. However, I do hope that
these lines appeal to your common sense, that sense which is so
important and at the same time in such short supply, and in
passing create a little awareness of the multiple problems
surrounding our field and our daily task. This is a constructive
criticism and is in no way intended to be divisive [Glass 99]. 

Acknowledgements and Notes
I am grateful for comments and encouragement from Omar Alonso,

Juan Álvarez, Karin Becker, Tania Bedrax-Waiss, Carlos Castillo,
Helena Fernández, Terry Jones, Miguel Nussbaum, Greg Rawlins and
Jorge Vidart. This article is an updated and abridged version of a paper
that dates from 1999, whose full content, in Spanish, is available at
<http://www.baeza.cl/manifest/manifest.html>. 

References 
[ACM]

ACM-IEEE Curricula Recommendations for Computer Science
and for Information Systems, <http://www.acm.org/education>. 

[Baeza-Yates 00]
Ricardo Baeza-Yates: Un Curso Integrado para Primer Año, Con-
greso Iberoamericano de Educación Superior en Computación,
Mexico City, September 2000. 

[Baeza-Yates et al. 99]
Ricardo Baeza-Yates, Terry Jones, Greg Rawlins: New
Approaches to Manage Information: Attribute-Centric Data Sys-
tems, SPIRE’2000, IEEE CS Press, 2000. 

[Baeza-Yates/Nussbaum 99]
Ricardo Baeza-Yates, Miguel Nussbaum: The Information Archi-
tect: A Missing Link, DCC, Univ. of Chile, Technical Report,
1999 (www.baeza.cl/manifest/infarch.html). Spanish language
version presented at the Congreso Iberoamericano de Educación
Superior en Computación, Mexico City, September 2000. 

5



Present and Future of the Informatics Profession

9 UPGRADE Vol. II, No. 4, August 2001 © Novática and Informatik/Informatique

[Brynjolfsson/Hitt 98]
Erik Brynjolfsson, Lorin M. Hitt: Beyond The Productivity Para-
dox, Communications of The ACM, volume 41:8, August 1998,
pp. 49–55. 

[Denning 97]
Peter J. Denning: A New Social Contract for Research, Comm. of
ACM 40(2), February 1997, pp. 132–134. 

[Dewan/Kraemer 98]
Sanjeev Dewan, Kenneth L. Kraemer: International Dimensions
of the Productivity Paradox, Communications of the ACM 41(8),
August 1998, pp. 56–62. 

[Freeman 97]
Peter Freeman: Elements of Effective Computer Science, IEEE-
Computer, November 1997, page 47–48. 

[Garlan et al. 97]
David Garlan, David P. Gluch and James E. Tomayko: Agents of
Change: Educating Software Engineering Leaders, IEEE Compu-
ter 30(11), November 1997, pp. 59–65. 

[Gates 99]
Bill Gates: Business @ The Speed of Thought, Warner Books,
1999. 

[Glass 99]
Robert L. Glass: Is Criticism of Computing Academy Inevitably
Divisive?, Comm. of the ACM 42(6), June 1999, pp. 11–13. 

[Greenberg 99]
AIlan Greenberg: Facing Up to New Interfaces, IEEE Computer,
April 1999, pp. 14–16. 

[Hamilton 99]
Scott Hamilton:, Taking Moore’s Law Into the Next Century,
IEEE Computer, January 1999, pp. 43–48. 

[IEEE 97]
IEEE Special Issue, Status of Software Engineering Education
and Training, IEEE Software, Nov/Dec 1997. 

[IEEE 98]
IEEE Special Issue on the Future of Computing and Software
Engineering, IEEE Computer, January 1998. 

[IEEE 99]
IEEE Special Issue on Linux, IEEE Software, January 1999. 

[Jones 96]
Capers Jones: Software Estimating Rules of Thumb, IEEE Com-
puter, May 1996, pp. 117–118. 

[Lewis 98a]
Ted Lewis: Joe Sixpack, Larry Lemming and Ralph Nader, IEEE
Computer, July 1998, pp. 107–109. 

[Lewis 98b]
Ted Lewis: What to Do About Microsoft, IEEE Computer, Sep-
tember 1998, pp. 109–112. 

[Lewis 99a]
Ted Lewi:, The Open Source Acid Test, IEEE Computer, Febru-
ary 1999, pp. 125–128. 

[Lewis 99b]
Ted Lewis: Asbestos Pajamas: An Open Source Dialogue, IEEE
Computer, April 1999, pp. 108–112. 

[Norman 98]
Donald A. Norman: The Invisible Computer, MIT Press, 1998. 

[Reed 98]
Karl Reed, Why the CS should help chart the Future of IT. IEEE
Computer, July 1998, pp. 77–78. 

[Sanders 98]
James Sanders: Linux, Open Source, and Software’s Future,
IEEE Software, Sept./Oct. 1998, pp. 88–91. 

[Tognazzini 96]
Bruce Tognazzini: Tog on Software Design, Addison Wesley,
1996

English translation by Steve Turpin


