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Abstract. Proximity searching consists in retrieving objects out of a
database similar to a given query. Nowadays, when multimedia databases
are growing up, this is an elementary task. The permutation based index
(PBI) and its variants are excellent techniques to solve proximity search-
ing in high dimensional spaces, however they have been surmountable in
low dimensional ones. Another PBI’s drawback is that the distance be-
tween permutations cannot allow to discard elements safely when solving
similarity queries.

In the following, we introduce an improvement on the PBI that allows to
produce a better promissory order using less space than the basic permu-
tation technique and also gives us information to discard some elements.
To do so, besides the permutations, we quantize distance information by
defining distance rings around each permutant, and we also keep this
data. The experimental evaluation shows we can dramatically improve
upon specialized techniques in low dimensional spaces. For instance, in
the real world dataset of NASA images, our boosted PBI uses up to 90%
less distances evaluations than AESA, the state-of-the-art searching al-
gorithm with the best performance in this particular space.

Keywords: Permutation based index, Distance quantization, Proximity search-
ing

1 Introduction

Nowadays, similarity searching has become an important task for retrieving ob-
jects in a multimedia database; with applications in pattern recognition, data
mining and computational biology, to name a few. This task can be mapped into
a metric space problem. A Metric Space is a pair (X, d), where X is a universe
of objects, and d is a distance function d : X × X → R+ ∪ {0}. The distance
function is a metric if it satisfies, for all x, y, z ∈ X, the following properties:
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reflexivity d(x, y) = 0 iff x = y, symmetry d(x, y) = d(y, x), and triangle in-
equality d(x, y) ≤ d(x, z) + d(z, y). The last one being useful to discard objects
when solving similarity queries.

In practical applications, we have a subset U of n objects taken from the
universe X. So, the similarity searching problem can be defined as the problem
of finding a small subset S ⊂ U of the objects that are close to a given query q
with respect to a particular metric function.

Basically, there are two types of queries: range query (q, r)d and k-nearest
neighbor query kNN(q)d. The first one retrieves all the objects within a given
radius r measured from q, that is, (q, r)d = {u ∈ U, d(q, u) ≤ r}. The second
retrieves the k objects in U that are the closest to q. Formally, |kNN(q)d| = k,
and ∀ u ∈ kNN(q)d, v ∈ U \ kNN(q)d, d(u, q) ≤ d(v, q).

There are some indices to speed up similarity queries. One of them, the
permutation-based index (PBI) [3] has a competitive performance in the hard
case of high dimensional spaces. Oddly, in low dimensional spaces, this technique
has poor performance when compared with, for instance, the pivot-based index
(which is particularly well suited for low dimensional spaces, as reported in [4]).
Another important drawback of the PBI is that it does not allow to discard
objects when solving similarity queries.

Our contribution consists in granting the basic PBI the capability of safely
discard objects. For this sake, we enhance the PBI with distance information in
a convenient way, so that the increment of the space requirement is very small.
Our technique allows to improve the retrieval of the PBI in low and medium
dimensional metric spaces in a dramatic way. As a matter of fact, in the real
world metric space of NASA images, we obtain the true answer of the 1NN(q)d
using 90% less distances evaluations than AESA, the best pivot index.

2 Related Work

2.1 Metric Space Indices

There are three kinds of indices for proximity searching in metric spaces, namely,
pivot-based indices, partition-based indices and permutation-based indices. In
[4], the reader can find a complete survey of the first two kinds.

Pivot-based indices consider a subset of objects A = {a1, a2, . . . , a|A|} ⊆
U, called the pivots. These indices keep all the n|A| distances between every
object of the dataset U to all ai ∈ A. Later, to solve a range query (q, r)d, the
pivot-based searching algorithms measure d(q, a1) and, by virtue of the triangle
inequality, for every u ∈ U they lower bound d(q, u) ≥ |d(q, a1) − d(u, a1)|.
So, if |d(q, a1) − d(u, a1)| > r then d(q, u) > r and they discard u avoiding the
computation of d(q, u). Once they are done with a1, they use a2 to try to discard
elements from the remaining set, and so on, until using all the pivots in A. The
elements that still cannot be discarded at this point are directly compared with q.

There are many techniques based on this idea. Some of them try to reduce
the memory requirements in order to get a small index, and others to reduce the



number of distance evaluations. These kinds of techniques have a competitive
performance in low dimensional spaces. One can imagine that a low dimensional
space is one that can be embedded in a uniformly distributed vector space whose
dimension is lower than 16, preserving the relative distances among objects.

Among the pivoting techniques, AESA [10] excels in the searching perfor-
mance. To do this, AESA considers that every object could be a potential pivot.
So, it stores the whole matrix of distances between every object pair. The ma-

trix requires n(n−1)
2 memory. Since, every object can operate as a pivot, the

authors also define a scheme to sequencing the pivot selection. For this sake,
they use an array SumLB which accumulates the lower bounds of the distances
between the query and every non-discarded object, with respect to all the pre-
vious objects in U used as pivots. Formaly, if it has previously selected i pivots,
SumLB(u) =

∑i
j=1 |d(q, aj) − d(u, aj)|. So, the first pivot is an object chosen

at random, and from the second pivot, AESA uses the non-discarded object
that minimize SumLB(u). AESA is the bottom line of exact algorithms. How-
ever, in several real-world scenarios, AESA is impractical to use, as its memory
requirement is only plausible for reduced size dataset (up to tens of thousands).

Partition-based indices split the space into zones as compact as possible and
assign the objects to these zones. To do this, a set of centers {c1, . . . , cm} ∈ U

is selected, so that each other object is placed in the zone of its closest center.
These indices have a competitive performance in high dimensional spaces.

2.2 The Permutation Based Index (PBI)

Let P ⊂ U be a subset of permutants of size m. Each element u ∈ U induces a
preorder ≤u given by the distance from u towards each permutant, defined as
y ≤u z ⇔ d(u, y) ≤ d(u, z), for any pair y, z ∈ P.

LetΠu = i1, i2, . . . , im be the permutation of u, where permutant pij ≤u pij+1
.

Permutants at the same distance take an arbitrary but consistent order. Every
object in U computes its preorder of P and associates it to a permutation which
is stored in the index (PBI does not store distances). Thus, a simple imple-
mentation needs nm space. Nevertheless, as only the permutant identifiers are
necessary, it is possible to compact several permutants in a single machine word.

The hypothesis of the PBI is that two equal objects are associated to the
same permutation, while similar objects are, hopefully, related to similar per-
mutations. So, if Πu is similar to Πq one expects that u is close to q.

At query time, the PBI search algorithm computes Πq and compares it with
all the permutations stored in the index. Subsequently, the dataset U is traversed
in increasing permutation dissimilarity, comparing the objects in U with the
query using the distance d of a particular metric space. Regrettably, PBI does
not allow the discarding of objects at query time. Instead, a premature cut off
in the reviewing process produces a probabilistic search algorithm (as the search
algorithm reports the right answer to the query with some probability).



There are many similarity measures between permutations. One of them is
the Lp family of distances [5], that obeys Eq. (1).

Lp(Πu, Πq) =
∑

j=[1,|P|]

|Π−1
u (ij)−Π−1

q (ij)|
p (1)

With p = 1, we obtain Spearman Footrule (SF ) and for p = 2 Spearman Rho

(Sρ). For example, let Πu = (42153) and Πq = (32154) be the object u ∈ U and
query q ∈ X\U permutations, respectively. Thus SF (Πu, Πq) = 8, Sρ(Πu, Πq) =
32. As reported in [3], SF has a good performance with less operations than the
others.

There have been several works trying to improve the PBI’s performance. In [7,
1]. Some variants have been proposed with the aim of reducing the space required
by the permutations [2, 8, 9]. To do so, instead of using the whole permutation,
just considering some of its portions. However, these technique lose precision in
the query retrieval.

In general terms, all of the PBI’s variants are designed for high dimensional
spaces and none of them can prune the dataset when solving similarity queries.

2.3 Distance Quantization

A simple way to reduce the memory requirement when representing the distances
among objects is to quantize them. Of course, there is a tradeoff between memory
requirement and precision. However, there are some cases where the quantization
is effective. For instance, in BAESA [6], the authors quantize the whole distance
matrix of AESA [10]. Using only four bits per distance, eight times less space
than AESA, BAESA needs just 2.5 times the distance computations of AESA.

3 Our Contribution

Essentially, we introduce a novel modification into the PBI. It consists in enhanc-
ing it with quantized distance information. Since we now have distance data, we
can safely discard objects, and this dramatically improves the performance of
the PBI search algorithm in low and medium metric spaces.

In the following, we describe the modification of the PBI and also how to
adapt the PBI searching algorithm in order to benefit from the extra data.

3.1 Enhancing PBI with Distance Quantization

For each object u ∈ U, the index stores not only its permutation, but also
quantized distance information. To do that, for each permutant p ∈ P, we define
ζ concentric zones z1, . . . , zζ limited by ζ − 1 radii r1, . . . , rζ−1 and two extra
values r0 = 0 and rζ = ∞ (for limiting the first and last zone). So, each object
u ∈ U is located in the zone zi where it satisfies the relation ri−1 < d(u, p) ≤ ri.
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Fig. 1. Example of our technique, permutations and zones for every object.

To compute the zones, we do not need extra distance computations. In fact,
we compute them during the calculation of the permutation. We call Πu the per-
mutation for u and Zu the zones information for object u. So, for the permutant
in the j-th cell of the permutation, Zu(j) indicates in which of its zones the ob-
ject u lies. Hence, every object has its permutation and new extra information,
the zone where it belongs according to every permutant.

Geometrically, for each pi ∈ P, this can be seen as partitioning the space
with ζ distance rings centered in pi. Fig. 1 illustrates the idea, where the dataset
is U = {p1, p2, p3, u1, . . . , u7} and the first three objects are the permutants
(P = {p1, p2, p3}). Each one has 3 zones (which are denoted by z1, z2, z3). For
each object in U, we show its permutation Πu in the sequence closed by [ ]
and its zone information Zu in the one closed by ( ). For example, for u6, its
permutation is [2, 1, 3] and for permutants p2, p1 and p3, u6 belongs to zones 1, 2
and 2. Notice that with our proposal, now we can figure out whether two objects
with equal permutations are close or not.

Our proposal has two significant advantages, namely, (i) now we can discard
some elements without compute their distances directly, and (ii) we improve the
prediction power of the PBI.

In terms of space, besides the table of permutations, we need to store the
distance information. Each object needs m⌈log2 m⌉ bits for the permutation
(remember that m = |P|) and also needs to store the zones. In order to represent
the m zones (one for each permutant), we need m⌈log2 ζ⌉ bits (where ζ is the
number of zones). Finally, for each zone of a permutant, we need a float number
to store the radius. This counts for mζ32 bits. Adding up for the n objects we
obtain nm(⌈log2 m⌉+ ⌈log2 ζ⌉) + ζm32 bits.

For the sake of determining an equivalence in space requirement between
permutants with or without zones, we follow this rationale. The standard PBI
uses nm⌈log2 m⌉ bits. The extra memory used by the zones allows to add more
permutants to the plain PBI, but is not enough to double the number of per-
mutants. Assuming that m is a power of 2, any extra permutant forces to use



another bit. We also assume that ζ is a power of 2. So, in the numerator of
Eq. (2), we have the space used by the PBI with zones, and in its denominator,
the space used by a plain PBI with m∗ permutants, where m∗ ∈ (m, 2m).

nm(log2 m+ log2 ζ) + ζm32

nm∗(log2 m+ 1)
=

m(log2 m+ log2 ζ)

m∗(log2 m+ 1)
+

ζm32

nm∗(log2 m+ 1)
(2)

The second term isO
(

ζ
n log2 m

)

, so is negligible. The first term is m(log2 m+log2 ζ)
m∗(log2 m+1)

= m
m∗

(

1 + −1+log2 ζ

log2 m+1

)

. To do a fair memory comparison, we set this term to 1.

So, the number of equivalent permutants m∗ for m permutants and ζ zones is

m∗ = m

(

1 +
−1 + log2 ζ

log2 m+ 1

)

(3)

In the rest of this section, we show how to use the PBI index enhanced with
the quantized distance information during the query time. For shortness, we call
this index the PZBI.

Object discarding In order to discard objects in the new PZBI, we adapt the
pivot excluding criterion. To do so, after computing the distance from q to all the
permutants in order to produce Πq, we compute the zones where q belongs (Zq)
and the zones where the query ball (q, r)d intersects. For this sake, we manage
two arrays FZ and LZ. For each permutant, in FZ and LZ we store the first
and last zone, respectively, where the query ball intersects. Therefore, given the
query radius r, for each permutant p ∈ P, FZp and LZp store the number of the
zone that contains d(p, q)− r and d(p, q) + r, respectively.

With this, when we are reviewing the objects, for each permutant p ∈ P we
discard, by virtue of the triangle inequality, every element in U that belongs
to any zone that is not in the range [FZp, LZp]. This allows discarding some
elements without performing the direct comparison with the query.

Note that we can simulate kNN(q)d queries with range queries whose initial
radius is ∞, and that its radius reduces to the final one as long as the search
process progresses.

Improving the Distance Permutation Since we have more information
per object (its permutation and corresponding zones), we can use the zone
information so as to improve the reviewing order when solving a similarity
query. We propose several strategies as follow. Let us define ZD(Zu, Zv) =
∑

j=[1,|P|] |Zu(j) − Zv(j)|. ZD accumulates the sum of absolute values of dif-
ferences in the zone identifiers between the objects u and v ∈ X for all the
permutants. With this, we define the following variants:

– PsF: Just computing Spearman Footrule SF as the plain PBI, see Eq. (1).
– SPZ: It is the sum of SF (Πu, Πq) and ZD(Zu, Zq).



– PZ: We compute SF (Πu, Πq) and ZD(Zu, Zq), separately. Next, we sort by
SF in increasing order and use ZD to break ties.

– ZP: Analogous to PZ, but we sort by ZD(Zu, Zq) and break ties with
SF (Πu, Πq).

Computing Radius Another important issue to define is how to establish the
radii of the concentric zones. Every radius can be asigned as follow:

– Uniformly distributed by distances (REQ). We obtain a sample of ob-
jects and compute their distance towards the permutant. This gives us a
good approximation of the distribution of distances with respect to that
permutant. Let us call rmax and rmin the maximum and minimum dis-
tance computed in the sample for that permutant. Then, we basically use
(rmax − rmin)/ζ as the increment between one radius to the next.

– Uniformly distributed by elements (EEQ). Once again we obtain a
sample of objects and compare them with the permutant. Later, we sort the
distances and select points taken at regular intervals (a fraction 1

ζ
of the

sample size).

4 Experimental Evaluation

We tested our contribution with two kinds of databases: uniformly distributed
vectors in the unitary cube of dimension in [8,32] and NASA images. The first
one allows us to know the performance of the search algorithm and how the
parameters can change the results. The second one gives us a good idea of how
our technique works in real life.

4.1 Unitary Cube

We use a dataset with 80,000 vectors uniformly distributed in the unitary cube
using the Euclidean distance. We tested 1NN(q)d queries with a query set of
size 100 in dimension 8 to 32.

In Fig. 2, we show the performance of the PZBI using 8 permutants in di-
mension 8, with REQ parameter. In Fig. 2(a), the y-axe shows the average of
the percentage of elements retrieved by the 1NN(q)d, as we review an increas-
ing portion of the database (x-axe). Fig. 2(b) shows the impact of the number
of zones in the performance of the PZBI. Notice that we can process 1NN(q)d
queries faster than pivot-based algorithm. For instance, with 8 zones and EEQ,
PZBI requires up to 81% less distance evaluations. Pivots are represented with
a horizontal line just to allow a visual comparison of the results. In this plot, we
can notice that the strategy SPZ is better than PZ or ZP.

In Fig. 3, we use dimensions 8, 16 and 32. We show that the PBI is beated
by the PZBI using 8 zones and SPZ in low dimensional spaces. Notice that the
PBI becomes better in high dimension. Pivot-based algorithm in dimension 16 is
out the plot with almost 54,000 distances. In this figure we use m∗ permutants



 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

Q
ue

ry
 c

om
pl

et
io

n

% database

Dimension 8, 8 permutants, using REQ

pivots
Permutation PsF

SPZ z=2
SPZ z=4
SPZ z=8

(a) Query completion.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2  3  4  5  6  7  8

D
is

ta
nc

e 
ev

al
ua

tio
ns

zones

Dimension 8, 8 permutants/pivots

piv
perm PsF
SPZ REQ
SPZ EEQ

PZ REQ
PZ EEQ
ZP REQ
ZP EEQ

(b) Distance evaluation.
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and we show that in high dimension is better to use more permutants, however,
in low dimension, is better to split the space with zones.

4.2 NASA images

We use a dataset of 40,150 20-dimensional feature vectors, generated from images
downloaded from NASA3, where duplicated vectors were eliminated. We also use
Euclidean distance.

In Fig. 4, we use 8 and 16 permutants with 8 zones (Figs. (a) and (b), respec-
tively). Notice that using the strategy SPZ we have an excellent improvement in
the distance evaluations. In this figure, we are comparing our results with AESA
(see Section 2.1) and its quantized version BAESA (see Section 2.3). Notice that
our PZBI needs 1

3 of the distance computations used by AESA, as can be seen
when using 8 zones, EEQ space partitioning and SPZ. AESA and pivots are
represented with an horizontal line in order to simplify the visual comparison.

3 at http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
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Fig. 5. NASA image dataset. kNN(q)d queries, varying k.

In Fig. 5, we test kNN(q)d queries, varying k ∈ [1, 10] (that is, increasing
the size of the query answer), the number of zones ζ ∈ [8, 32], with two different
size of permutants, m = |P| = 8 and 64. In Fig. 5(a), we notice that using
m = 8 permutants, we compute less than 50% of distance evaluations of AESA
for 1NN(q)d and just 3 times or 10NN(q)d using significantly less space in the
index. We also notice that with just 8 permutants and 8 zones, we can retrieve
up to 4NN(q)d faster than AESA. On the other hand, using m = 64 permutants
with 32 zones (5 bits per element) we are computing just 25% of the pivot
technique even in the hardest case.

In Fig. 5(b), we use 64 permutants and we have a better performance. For
example, with 32 zones, 64 permutants and REQ we use just the 10% of distance
of AESA, that is to say 90% less than the reference-algorithm for metric spaces.

In both plots (Figs. 4 and 5), our technique beats AESA. This is really
surprising, as AESA used to be the lower bound of searching in metric spaces.



5 Conclusions and Future Work

The basic Permutant Based Index (PBI) has shown an excellent performance in
high dimensional metric spaces. Its main drawback is that it does not allow to
safely discard objects when solving similarity queries. Our contribution consists
in granting the basic PBI the capability of safely discard objects. For this sake,
we enhance the PBI with distance information in a quantized way.

Our technique allows to improve the retrieval of the PBI in low and medium
dimensional metric spaces in a dramatic way.

In order to illustrate the benefits of our technique, we can say that in the
real world metric space of NASA images PBI with quantized distance is capable
to beat AESA search algorithm. As a matter of fact, with 32 zones and 64
permutants we use just the 10% of distance evaluation of AESA, that is to say
90% less than the reference-algorithm for metric spaces.

Future Work We plan to develop a searching algorithm to efficiently solve
k-nearest neighbor queries based on our PBI with quantized distances.

Another trend is to develop efficient mechanism to avoid the sorting of the
whole set of non-discarded objects.
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