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ABSTRACT
The metric space model allows abstracting many similarity
search problems. Similarity search has multiple applications
especially in the multimedia databases area. The idea is to
index the database so as to accelerate similarity queries.
Although there are several promising indices, few of them
are dynamic, i.e., once created very few allow to perform
insertions and deletions of elements at a reasonable cost.

The Dynamic Spatial Approximation Trees (DSA–trees)
have shown to be a suitable data structure for searching
high dimensional metric spaces or queries with low selectiv-
ity (i.e., large radius), and are also completely dynamic. The
performance of DSA–trees is directly related to the amount
of backtracking in search time. To boost the performance in
this data structure a sufficient condition is to maintain in the
nodes elements close-to-each-other. In this work we propose
a new data structure for searching in metric spaces, based
on the DSA–tree, which holds its virtues and takes advan-
tage of element clusters, which are present in many metric
spaces, and can also make better use of available memory to
improve searches. In fact, we use these element clusters to
improve the spatial approximation.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content anal-
ysis and indexing—indexing methods; H.3.3 [Information
storage and retrieval]: Information Search and Retrieval
—search process

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Similarity search is a suitable way to find in a database

any kind of unstructured data and has applications in a
vast number of fields. Some examples are next generation
databases (e.g. storing images, fingerprints, or audio clips),
text searching, information retrieval, machine learning and
classification, image quantization and compression, compu-
tational biology, and function prediction. These applications
have some common characteristics, where one of the main
ones is that the concept of exact search is of no use and we
search instead for similar objects.

The similarity search problem can be formally defined
through the concept of metric space, which provides a for-
mal framework that is independent of the application do-
main. There is a universe U of objects and a nonnegative
distance function d : U × U −→ R

+ defined among them.
This distance satisfies the three axioms that make the set a
metric space: strict positiveness (d(x, y) = 0 ⇔ x = y), sym-
metry (d(x, y) = d(y, x)) and triangle inequality (d(x, z) ≤
d(x, y) + d(y, z)). The smaller the distance between two ob-
jects, the more “similar” they are. We have a finite database
S ⊆ U , which is a subset of the universe of objects and can
be preprocessed (to build an index, for example). Later,
given an object from the universe (a query q), we must re-
trieve all similar elements in the database. There are two
typical queries of this kind:

Range query: Retrieve all elements within distance r to q

in S. This is, the set {x ∈ S, d(x, q) ≤ r}.

Nearest neighbor query (k-NN): Retrieve the k closest
elements to q ∈ S. That is, a set A ⊆ S such that
|A| = k and ∀ x ∈ A, y ∈ S − A, d(x, q) ≤ d(y, q).

In this paper we are devoted to range queries, as near-
est neighbor queries can be rewritten as range queries in
an optimal way [8]. The distance is considered expensive
to compute (think, for instance, in comparing two finger-
prints). Hence, it is customary to define the complexity of
the search as the number of distance evaluations performed,
disregarding other components such as CPU time for side
computations, and even I/O time.

Since, the computational cost of determining the similar-
ity among objects is known to be a significant part of the to-
tal running time, a number of data structures and algorithms



have been devised to deal efficiently with large collections of
data [13, 12, 5]. Given a database of n = |S| objects, queries
can be trivially answered by performing n distance evalua-
tions. The goal is to build an index of the database to speed
up queries, avoiding the exhaustive search and computing a
minimal amount of distances. All those structures work on
the basis of discarding elements using the triangle inequal-
ity, and most of them use the classical divide-and-conquer
approach (which is a general algorithmic approach).

There are effective methods to search on D–dimensional
spaces considering that the distance function belongs to the
Minkowski’s distance function family Lp = (

P

1≤i≤d |xi −

yi|
p)1/p, such as kd–trees [2, 3] but for roughly 20 dimen-

sions or more those structures cease to work well. For a
survey on these methods see [7]. We focus in this paper in
general metric spaces, although the solutions are well suited
also for D–dimensional spaces. It is interesting to notice
that the concept of “dimensionality” is related to “easiness”
or “hardness”of searching a D–dimensional space: higher di-
mensional spaces have a probability distribution of distances
among elements whose histogram is more concentrated and
with larger mean. This makes the work of any similarity
search algorithm more difficult. We extend this idea, follow-
ing [5], by saying that a general metric space is high dimen-
sional when its histogram of distances is concentrated.

Among all the techniques for metric space indexing we
are interested in the dynamic data structures, where the
database is unknown beforehand and the objects arrive to
the index at random times as well as the queries. Static
data structures may benefit from the full knowledge of the
database to select the best reference points for a particular
data structure. A dynamic data structure cannot make such
strong assumptions about the database and will not have
statistics about all the database.

The Dynamic Spatial Approximation Tree (DSA–tree) is
a recently proposed data structure for searching in metric
spaces [11], based on a novel concept: rather than divid-
ing the search space, approach the query spatially, that is,
start at some point in the space and get closer and closer
to the query [10]. The DSA–tree behaves better than the
other existing data structures on metric spaces of high di-
mension or queries with low selectivity, which is the case in
many applications. This index is fully dynamic and is in-
crementally built via insertions. As such, the tree root will
be the first object arriving, and this is repeated recursively
at every level in the tree. The DSA–tree supports insertion
and deletion of elements and has proven to be competitive
in all dimensionalities but unable of taking advantage of the
available memory.

Unlike some other metric data structures [5, 4], the (DSA–
tree) does not take advantage if the metric space has clus-
ters, or can improve the search at the expense of using more
memory. Our proposal, based on DSA–tree is still dynamic,
competitive, and makes better use of the available memory
(however, it still cannot improve by using more memory).
If the DSA–tree grouped objects that are very close to each
other it could achieve better search performance by having
to do less backtracking. We propose a new data structure
that performs the spatial approximation on groups of ob-
jects or clusters, rather than individual objects, and thus
reduces search costs.

2. PREVIOUS WORK
Algorithms to search in general metric spaces can be di-

vided into two large areas: pivot-based algorithms and com-
pact partition-based ones. Pivot-based algorithms are better
suited for low dimensional metric spaces, while compact par-
titions ones deal better with high dimensional metric spaces.
Although the former can improve by using more memory,
they need more and more memory to beat the latter as di-
mension grows. On the other hand, indices based on com-
pact partitions use a fixed amount of memory and cannot
be improved by giving them more space. However, there are
algorithms that combine ideas from both areas. See [12, 13,
5, 9] for more complete surveys.

Pivot-Based Algorithms.
The idea is to use a set of k distinguished elements (“piv-

ots”) p1 . . . pk ∈ S and storing, for each dataset element
x, its distance to the k pivots (d(x, p1) . . . d(x, pk)). Later,
given the query q, its distance to the k pivots is computed
(d(q, p1) . . . d(q, pk)). Now, if for some pivot pi it holds that
|d(q, pi) − d(x, pi)| > r, then we know by the triangle in-
equality that d(q, x) > r and therefore do not need to ex-
plicitly evaluate d(x, p). All the other elements that cannot
be discarded using this rule are directly compared with the
query.

Clustering Algorithms.
This second trend consists of dividing the space into zones

as compact as possible, usually in a recursive fashion, and
storing a representative point (“center”) for each zone plus
a few extra data that permit quickly discarding the zone
at query time. Two criteria can be used to delimit a zone.
The first one is the Voronoi region, where we select a set
of centers and put every other point inside the zone of its
closest center. The regions are bounded by hyperplanes
and the zones are analogous to Voronoi regions in vector
spaces. Let {c1 . . . cm} be the set of centers. At query
time we evaluate (d(q, c1), . . . , d(q, cm)), choose the closest
center c and discard every zone whose center ci satisfies
d(q, ci) > d(q, c) + 2r, as its Voronoi area cannot intersect
the query ball. The second criterion is the covering radius
cr(ci), which is the maximum distance between ci and an
element in its zone. If d(q, ci) − r > cr(ci), then there is no
need to consider zone i. The two criteria can be combined.

Combining Clustering with Pivots.
There are some indices that combine both ideas by di-

viding the space into compact zones and, at the same time,
storing distances to some distinguished elements (pivots) [1].

3. DYNAMIC SPATIAL APPROXIMATION
TREES

In this section we briefly describe DSA–trees, in particular
the version called timestamp with bounded arity (reported in
[11] as one of the better options for this dynamic tree), on
top of which we build our approach.

3.1 Insertion Algorithm
The DSA–tree is built incrementally via insertions. The

tree has a maximum arity denoted by MaxArity. Each tree
node a stores a timestamp of its insertion time, time(a),



Algorithm 1 Insertion of a new element x into a DSA–tree
with root a using timestamping and bounded arity.

Insert(Node a, Element x)

1. R(a) ← max(R(a), d(a, x))
2. c← argminb∈N(a)d(b, x)
3. If d(a, x) < d(c, x) ∧ |N(a)| < MaxArity Then
4. N(a)← N(a) : x
5. N(x)← 〈〉, R(x)← 0
6. T (x)← CurrentT ime
7. CurrentT ime← CurrentT ime + 1
8. Else Insert(c,x)

its covering radius, R(a), and its set of children N(a) (the
neighbors of a). To insert a new element x, its point of in-
sertion is sought starting at the tree root and moving to the
neighbor closest to x, updating R(a) in the way. We finally
insert x as a new (leaf) child of a if (1) x is closer to a

than to any b ∈ N(a), and (2) the arity of a, |N(a)|, is not
already maximal. In other case, we insert x in the subtree
of the closest element b ∈ N(a). Neighbors are stored left
to right in increasing timestamp order. Note that each ele-
ment is older than its children and than its next sibling. See
Algorithm 1.

3.2 Search Algorithm
The idea for range searching is to replicate the insertion

process of relevant elements. That is, we act as if we wanted
to insert q but keep in mind that relevant elements may be
at distance up to r from q. So in each decision for simulating
the insertion of q we permit a tolerance of ±r, so that it may
be that relevant elements were inserted in different children
of the current node, and backtracking is necessary.

We have to consider two facts. The first is that, at the
time an element x was inserted, a node a in its path may
not have been chosen as its parent because its arity was
already maximal. So, at query time, instead of choosing
the closest to x among {a} ∪ N(a), we may have chosen
only among N(a). Hence, we perform the minimization only
among elements in N(a). The second fact is that, at the
time x was inserted, elements with higher timestamp were
not yet present in the tree, so x could choose its closest
neighbor only among elements older than itself.

Hence, we consider the neighbors {b1, . . . , bk} of a from
oldest to newest, disregarding a, and perform the minimiza-
tion as we traverse the list. This means that we enter into the
subtree of bi if d(q, bi) 6 min{d(q, b1), . . . , d(q, bi−1)} + 2r.
That is, we always enter into b1; we enter into b2 if d(q, b2) 6

d(q, b1) + 2r; and so on. Let us stress again the reason: be-
tween the insertion of bi and bi+j there may have appeared
new elements that have chosen bi just because bi+j was not
yet present, so we may miss an element if we do not enter
into bi because of the existence of bi+j .

Up to now we do not really need the exact timestamps but
just to keep the neighbors sorted by timestamp. We make
better use of the timestamp information in order to reduce
the work done inside older neighbors. Say that d(q, bi) >

d(q, bi+j) + 2r. We have to enter into the subtree of bi any-
way because bi is older. However, only the elements with
timestamp smaller than that of bi+j should be considered
when searching inside bi; younger elements have seen bi+j

and they cannot be interesting for the search if they are in-
side bi. As parent nodes are older than their descendants,

Algorithm 2 Searching for q with radius r in a DSA–tree
rooted at a, built with timestamping and bounded arity.

RangeSearch(Node a, Query q, Radius r,
Timestamp t)

1. If T (a) < t ∧ d(a, q) ≤ R(a) + r Then
2. If d(a, q) ≤ r Then Report a
3. dmin ←∞
4. For bi ∈ N(a) Do // ascend. timestamps
5. If d(bi, q) ≤ dmin + 2r Then
6. t′ ← min{t} ∪ {T (bj ), j > i ∧

d(bi, q) > d(bj , q) + 2r}
7. RangeSearch(bi,q,r,t

′)
8. dmin ← min{dmin, d(bi, q)}

as soon as we find a node inside the subtree of bi with times-
tamp larger than that of bi+j we can stop the search in that
branch, because all its subtree is even younger.

Algorithm 2 depicts the search process. Note that d(a, q)
is always known except in the first invocation, and the initial
t is +∞.

4. OUR PROPOSAL
As we mention previously, we build our proposal on the

DSA–tree. The new data structure, called DSACL–tree for
short, performs the spatial approximation on groups or clus-
ters of objects that are very close to each other, rather than
individual objects. By this way it can reduce search costs,
because it has to do less backtracking. The new data struc-
ture is still dynamic, competitive, and makes better use of
the available memory.

Therefore, in the DSACL–tree each node represents a clus-
ter of very similar objects, for short we refer to it simply as
cluster. Thus, we relate the clusters by their proximity in
the metric space. So, each node of the tree would be able
to store multiple database objects, reducing the number of
nodes with respect to the original DSA–tree. This reduce the
number of pointers used by the tree structure, thus makes a
better use of the available memory.

As in the DSA–tree we build the DSACL–tree incremen-
tally, considering a maximum arity and maintaining infor-
mation of the timestamp (time of insertion of each element).
We also register the timestamp time(c) of each node c in the
tree, that is, the time when this node (and its cluster) was
created. Each node c keeps an object center(c) as the center
of the cluster and the k nearest objects (cluster(c)) seen in
its subtree, and is connected with their clusters-neighbors
N(c). The cluster also has a cluster radius rc(c), that is,
considering the objects in increasing order to the center(c)
the distance of the k-th object in the cluster(c). Any object
further away from the center than rc(c) would become part
of another tree node, which could be a new neighbor in some
cases, since the arity is bounded in the same way as DSA–
tree. Each node c also stores the maximum distance between
the center(c) and the farthest object in its subtree R(c) (as
DSA–tree does), called covering radius of the subtree of c.

Since each node c represents a cluster centered in center(c)
with at most k objects within cluster(c), we maintain the
distances between center(c) and all the objects in cluster(c)
ordered by increasing distance to the center. At search
time, we can use these stored distances in order to minimize
the number of distance computations using the triangle in-
equality. Besides, if x1, . . . , xk are the objects in cluster(c)



sorted by distances, the covering radius of the cluster will
be rc(c) = d(center(c), xk). Therefore, for each object xi

inside the cluster, we stored its insertion moment time(xi)
and the distance d(center(c), xi). It is clear it is not neces-
sary to really register rc(c) because it can be obtained from
the stored distances inside the node.

Figure 1 allows us to see graphically the differences be-
tween DSA–tree and DSACL–tree for the same metric space
in R

2, using Euclidean distance. The insertion sequence in
both cases is a, p1, p2, . . . , p13 and the maximum arity is 3.
For the DSACL–tree the maximum size of the cluster is 2.
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Figure 1: Comparison between a DSA–tree (a) and
DSACL–tree (b) for the same metric space S ⊂ R

2,
using Euclidean distance.

Figure 2 depicts, for the same metric space used as exam-
ple, how are grouped the elements in clusters within S and
how they are related into the tree.

Now, we describe the insertion process.

4.1 Insertion
When we insert a new element x in a DSACL-tree we have

to consider two cases. The first is when the new element
becomes the center of a new node. The second is when
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Figure 2: Clusters and their relations from the
DSACL–tree, for the same example of Figure 1.

x should be inserted into a cluster of a node c, that is, x

must belong to the cluster(c), which means x is one of the
k-nearest elements for the center(c) at that current time.

As we have already mentioned, to incrementally build the
DSACL–tree we maintain the same considerations as DSA–
tree, i.e. we set the maximum arity of the tree and store
the insertion time of each object, denoted by timestamp(·).
We also maintain the creation time, time(c), for each node
c in the tree and set the maximum size k of each cluster
node. Moreover, given a node c, we store in its cluster(c) the
k nearest elements seen in its subtree sorted by increasing
distance to the center(c), and for each of them we register
its timestamp and the distance to the center.

When we insert a new element x in the cluster of a node c

(that can occurs when d(center(c), x) < rc(c)) and we have
achieved the maximum cluster size (|cluster(c)| = k), we
need to remove an element from cluster(c) to create a free
slot for x. As objects within the cluster are sorted in increas-
ing distance (cluster(c) = x1, . . . , xk) we simple exclude xk

and include x. This also reduce the volume of cluster(c).
Of course we have to reinsert xk. For this sake, we start
xk’s reinsertion process starting from node c (and not from
the root), because the fact that xk was previously inserted
in node c implies that either (i) xk is closer to c than to
each other ancestor in the path from the root, or (ii) each of
those ancestors has reached its maximum arity. Finally, the
timestamp of the reinserted object is updated to the new
insertion time.

When we insert a new element x into a DSACL–tree the
whole insertion process is the following. It begins in the node
which is the tree root, and in each center node c considered,
we first evaluate if x must belong to cluster(c), this is to
achieve the smallest possible volume for the current cluster.
Thus, we have the following cases:

1. If x should not belong to cluster(c), we need to deter-
mine if x is closer to center(c) than the centers of the
neighboring nodes in N(c):

(a) If x is closer to center(c) and the arity of c is not
already the maximum, we insert x as the center
of a new neighboring node of c. In this case we
create a new node b with center(b) = x, and we
add b in N(c).

(b) If x is not closer to the center(c), or the arity of
c has achieved the maximum value, we continue
the insertion process from the c’s neighbor node
b (b ∈ N(c)) whose center(b) is the closest to
x. Recursively with b we have to check whether x



must belong to the cluster(b), x has to be inserted
as a center of a new neighboring node, or we have
to continue down the tree until we find the correct
insertion point.

2. On the other hand, if there is a free slot in c or x

is closer of the center than its current covering ra-
dius, then x must belong to cluster(c). In the first
case (|cluster(c)| < k), we simple insert x with its
distance d(center(c), x) into the cluster(c) preserving
the increasing order of distances. In the second case
(d(center(c), x) < rc(c)), we can reduce rc(c) by ex-
cluding the farthest element within the cluster and in-
serting x (and its distance) into cluster(c). Next, we
need to reinsert the excluded element by searching its
correct insertion point from the node c as we mention.

In the last case it is important to notice what happens
when the cluster is full, but x can reduce rc(c). As x must
belong to cluster(c), we remove xk, the farthest current el-
ement in cluster(c) from it former cluster and then we rein-
sert xk in the tree. Therefore, xk has to choose the nearest
element between center(c) and the centers of the neighbor-
ing nodes in N(c). If the former center(c) is the nearest one,
we insert a new node b whose center(b) = xk in N(c), if the
arity is not maximal. Otherwise, we continue the search of
the insertion point from the nearest center of a neighbor-
ing node in N(c), following the same procedure previously
detailed. This can recursively reduce the volume of other
clusters.

Algorithm 3 illustrates the whole insertion process. The
function is invoked as InsertCl(a, x), where a is the root
node of the tree and x is the element to be inserted. As can
be seen, as in the DSA–tree we only have to follow a path
from the tree root to the cluster, or to the node which will
be its father node when this element has to be a new center
of a neighboring node. MaxArity is the upper bound of the
arity, k is the maximum size of a cluster, and CurrentT ime

is the current timestamp, which increases before each inser-
tion.

The tree can be built incrementally. The first element
inserted x will create a single node a, which become the
tree root, whose center will be center(a) = x with rc(a) =
0, cluster(a) = ∅, N(a) = ∅, and R(a) = 0. Then, the
following k insertions will be responsible to fill cluster(a)
completely. In this situation, the next insertion will create
a new node in the neighborhood of a, whose center will be
the farthest from center(a).

As can be noticed, an insertion cannot change the center
of a node, but it could create (at most) a new node with one
corresponding center. Nevertheless, the insertion of a new
object can affect many nodes, by changing their clusters
with successive replacements of objects inside the clusters
in a path from the tree root to a leaf.

Finally, we can observe that in DSACL-tree occurs the
same as in DSA–tree: We cannot guarantee that a new el-
ement x will become a neighbor of the first node a satis-
fying that x does not belong to cluster(a) and it is near-
est to center(a) than any other center of neighboring nodes
b ∈ N(a). The reason is that the node a had already reached
the maximum arity, so x will be forced to choose the node in
N(a) whose center is the nearest one to continue the inser-
tion process. This fact will have implications in the search
procedure.

Algorithm 3 Insertion of a new element x into a DSACL–
tree with a as tree root, using timestamping and bounded
arity.

InsertCl (Node a, Element x)
1. R(a)← max(R(a), d(center(a), x))
/* Let rc(c) be the distance from center(a)

to the farthest element in cluster(a) */
2. If ((|cluster(a)| < k) ∨ (d(center(a), x) < rc(a))) Then
3. cluster(a)← cluster(a) ∪ {x}
4. d′(x)← d(center(a), x)
5. timestamp(x) ← CurrentT ime
6. If (|cluster(a)| = k + 1) Then
7. y ← argmaxz∈cluster(a)d

′(z)
8. cluster(a)← cluster(a)− {y}
9. InsertCl(a,y)
10. Else
11. c← argminb∈N(a)d(center(b), x)
12. If d(center(a), x) < d(center(c), x) ∧ |N(a)| < MaxArity

Then /* b becomes a new node, neighbor of a,
with center(b) = x */

13. N(a)← N(a) ∪ {b}
14. center(b)← x
15. N(b)← ∅, R(b) ← 0
16. cluster(b)← ∅
17. timestamp(x)← CurrentT ime
18. time(b)← CurrentT ime
19. Else
20. InsertCl (c,x)

4.2 Range Search
When performing a range query, we proceed in a similar

way as DSA–tree, that is we perform the spatial approxima-
tion to the query via the centers of nodes. As we mentioned
previously, the idea for range searching is to replicate the in-
sertion process of the relevant elements to the query. That
is, we act as if we wanted to insert q but keeping in mind
that relevant elements may be at distance up to r from q,
so in each decision we simulate the insertion of q permitting
a tolerance of ±r. So that it may be that relevant elements
were inserted in a cluster, in different children of the current
node, and backtracking is necessary.

We have two important facts to consider during searches.
The first one is that at the time an element x was inserted,
a node a in its path may not have been chosen as its parent
because its arity was already maximal. So, at query time,
instead of choosing the closest center to x among {a}∪N(a),
we may have chosen only among N(a). Hence, we perform
the minimization only among elements in N(a). The second
fact is that, at the time x was inserted, elements with higher
timestamp were not yet present in the tree, so x could choose
its closest center of a neighbor only among elements older
than itself.

Moreover, because we have clusters within the nodes, in
each node a reached during the search we have to check
whether cluster(a), whose radius is rc(a), intersects with
the query (q, r). If there is no intersection we can discard all
the elements in the cluster without any comparison with q.
However, if there is intersection, we still can use center(a)
as a pivot. That is, we can avoid some distance computation
considering the stored distances to the center(a) and the tri-
angle inequality to discard any element xi ∈ cluster(a) that
satisfies |d(center(a), xi)−d(center(a), q)| > r. In this case,
non discarded elements must be compared directly with q.

It is very important to notice that, if the query is strictly
contained inside the cluster of a node a reached during the



search, we can stop the process on the subtree of a, because
in no other place of this subtree we could find any relevant
elements to the query.

We also can use the timestamps and covering radii infor-
mation to prune searches, as DSA–tree does.

Algortithm 4 depicts the DSACL–tree search algorithm. It
is initially invoked as RangeSearchCl(a, q, r,CurrentT ime),
where a is the tree root.

Algorithm 4 Range Search of q with radius r in a DSACL-
tree with tree root a.
RangeSearchCl (Node a, Query q, Radius r, Timestamp t)
1. If time(a) < t ∧ d(center(a), q) ≤ R(a) + r Then
2. If d(center(a), q) ≤ r Then Report a
3. If (d(center(a), q)− r ≤ rc(a))∨

(d(center(a), q) + r ≤ rc(a)) Then
4. For ci ∈ cluster(a) Do
5. If |(d(center(a), q)− d′(ci)| ≤ r Then
6. If d(ci, q) ≤ r Then Report ci

7. If d(center(a), q) + r < rc(a) Then Return
8. dmin ← ∞
9. For bi ∈ N(a) in increasing order of timestamp Do
10. If d(center(bi), q) ≤ dmin + 2r Then
11. k ← min{j > i, d(center(bi), q) > d(center(bj), q) + 2r}
12. RangeSearchCl (bi,q,r,time(bk))
13. dmin ← min{dmin, d(center(bi), q)}

Figure 3 shows graphically the different situations that
can occur during the search process in a DSACL–tree. In
Figure (a), we find that d(center(a), q) ≤ R(a) + r, so we
need to evaluate the subtree of the node a, but we do not
enter into its cluster because d(center(a), q) − r > rc(a),
thus there are not relevant elements for the query. In Figure
(b), d(center(a), q)−r ≤ rc(a), then we need to consider the
elements in cluster(a), but in this case we can use center(a)
as pivot. Finally, in Figure (c), after evaluate the elements in
cluster(a), since d(center(a), q)+r < rc(a) we can conclude
the search process in this subtree as the query is strictly
contained into cluster(a).
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rc(a)a

r
q

(a)

r
q

R(a)

rc(a)a

(b)

q rR(a)

rc(a)a

(c)

Figure 3: All the possible cases where it is satisfied
that d(center(a), q) ≤ R(a) + r.

5. EXPERIMENTAL RESULTS
For the experiments we have selected four widely different

metric spaces. They are available from the SISAP Metric
Library (www.sisap.org). Using these databases we can
give a broad picture of the performance of our index.

English: is a dictionary of 69,069 English words. We use the
edit distance or Levenshtein distance, that is, the min-
imum number of character insertions, deletions, and
substitutions needed to make two strings equal.

Documents: 1,265 documents under the Cosine similarity,
from trec-3 collection. In this model the space has
one coordinate per term and documents are seen as
vectors in this space. The distance we use is the angle
between the vectors.

NASA: 40,700 20-dimensional feature vectors, generated
from NASA images, using Euclidean distance.

Histograms: 112,682 8-D color histograms (112-dimensional
vectors) from an image database. Euclidean distance
is used for this metric space, because it is the simplest
meaningful alternative, but any quadratic form can be
used as a distance.

For the search experiments, we build the indices with 90%
of the points and use the other 10% (randomly chosen) as
queries. All our results are averaged over 10 index construc-
tions using different permutations of the datasets. We have
considered range queries retrieving on average 0.01%, 0.1%
and 1% of the dataset. This corresponds to radii 0.140,
0.150 and 0.195 for the documents; 0.12, 0.285 and 0.53 for
the images; and 0.051768, 0.082514 and 0.131163 for the his-
tograms. Words have a discrete distance, so we used radii
1 to 4, which retrieved on average 0.003%, 0.037%, 0.326%
and 1.757% of the dataset, respectively. The same queries
are used for all the experiments on the same datasets. For
economy of space, we place all the experimental results to-
gether in Figure 4.

For all the considered metric spaces we start by determin-
ing experimentally which is the best cluster size for search-
ing, so we tested with sizes: 10, 50, 100, 150, 200, and 250.
The best size is 50 elements in English space and 10 elements
in the others. In the following results, we set the cluster size
in 50 elements for all the experiments on DSACL–trees for
English space and in 10 elements for Documents, NASA,
and Histograms spaces.

Then, we have to select the best maximum arity for each
space. We try several values of maximum arities, namely 2,
4, 8, 16, and 32, but we also evaluate how it is affected the
search on our tree when we do not bound the arity. Figure
4, left column, shows the construction costs of the DSACL–
tree with all the arities tested. As can be seen, construction
costs increases as arity grows.

Additionally, the left column also shows the construction
costs for the other indices which DSACL-tree is compared
with (that performance comparison is given in Section 5.1).

Figure 4, middle column, depicts the results obtained in
searches. As can be seen for the English space (Figure (b))
we select the option without bounded arity, for the Docu-
ments (Figure (e)) maximum arity of 4 is the best one, and
for NASA space and for Histograms (Figures (h) and (k),
respectively) the best arity is 8. The rule of thumb is that
low arities are good for low dimensions or small search radii
and viceversa (higher arities are better for high dimensions
or low selectivity).

5.1 Comparison with other indices
In order to evaluate the competitiveness of the DSACL–

tree, we compare its search performance with three data
structures. One of them is clearly the DSA–tree, the sec-
ond one is the M–tree [6], that is the best-known dynamic
secondary-memory data structure and its code is freely avail-
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(c) English space
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Figure 4: In the first row we show the results for the English dictionary, using cluster size of 50 objects. In
the following rows, we show results for the other spaces, using cluster size of 10 objects. In Plot (a), (d), (g),
and (j), LC reaches 26.9 · 106, 73.3 · 103, 16.8 · 106, and 64.0 · 106 distance evaluations, respectively. In Plot (a)
and (d), M − tree reaches 10.6 ·106 and 145 ·103, distance evaluations, respectively. In Plot(j), DSACL-tree with
unbounded arity reaches 12.7 · 106 distance evaluations. On the left column, we show construction costs both
for the DSACL–tree with different arities and for the alternative indices. On the middle column, we show
DSACL–tree search costs. On the right column, we compare the DSACL–tree search costs with the costs of
all the alternative indices DSACL–tree is compared with.



able1, and the last one is the List of Clusters [4] because,
despite it is not dynamic, it works well in high dimensional
spaces. We choose these indices because they have demon-
strated to be competitive and its codes are freely available2.

For the M–tree we have used the parameter setting sug-
gested by the authors3. For the DSA–tree we used the best
parameters reported in [11] for each considered metric space.
For the List of Clusters we show the best cluster size exper-
imentally determined for each space, but in order to make a
fair comparison we also show for each metric space the op-
tion with the cluster size that obtains similar construction
costs than DSACL–tree.

Figures 4(a), (d), (g), and (j) show that, in general, the
DSATCL–tree is a very economical alternative in terms of
distance computations during index construction. In fact,
the plots show that it is similar, and sometimes cheaper,
than the basic DSA–tree.

In the those plots, we show the construction cost of a LC

with best cluster size. As can be notice, constructing this
particular LC is very costlier. In terms of space requirement,
the M-tree is the index using more space, and the DSACL–
tree is the second alternative. The DSA–tree and the LC
use little space in order to index the objects.

Finally, in terms of object retrieval, Figures 4(c), (f), (i),
and (l) show that the best suited DSACL–tree for each met-
ric space is consistently the best or second best in searching
performance for all the spaces considered.

6. CONCLUSIONS AND FUTURE WORKS
In this work we present the DSACL–tree which is a new

index for searching metric spaces. This new index enhances
the good features of the DSA–tree (spatial approximation
and dynamism) by taking into account the element clus-
ters present in the metric space. In fact, each node of the
DSACL–tree not only stores a single object as the root of
a tree, but also it maintains a bucket to store the elements
which are the closest ones with respect to the current root.
This allows us to reduce the backtracking in the tree improv-
ing the cost of retrieval relevant elements when performing
a proximity query. We have shown some empirical evidence
that our new index is competitive with other dynamic in-
dices such as DSA–tree and M–tree.

Future work considers a secondary memory version of the
DSACL–tree. We also pretend to perform an exhaustive ex-
perimental study of our data structure, both to understand
its behavior in other metric spaces and also to evaluate the
quality of the clusters produced in the DSACL–tree.

1At http://www-db.deis.unibo.it/research/Mtree/
2Codes of DSA–tree and List of Clusters are available at
SISAP Metric Space Library (www.sisap.org)
3SPLIT_FUNCTION = G_HYPERPL, PROMOTE_PART_FUNCTION
= MIN_RAD, SECONDARY_PART_FUNCTION = MIN_RAD, RA-
DIUS_FUNCTION = LB, MIN_UTIL = 0.2. We use PAGE
SIZE = 4KB
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