US 20100180057A1

a2y Patent Application Publication o) Pub. No.: US 2010/0180057 A1

a9 United States

Navarro et al. 43) Pub. Date: Jul. 15, 2010
(54) DATA STRUCTURE FOR IMPLEMENTING (21) Appl. No.: 12/351,364
PRIORITY QUEUES
(22) Filed: Jan. 9, 2009
(75) Inventors: Gonzalo Navarro, Santiago (CL); L . .
Rodrigo Andres Paredes Publication Classification
Moraleda, Santiago (CL) (51) Int.CL
P 4 GO6F 13/37 (2006.01)
Correspondence Address:
BAKER BOTTS L.LP. (52) US.CL it 710/115
2001 ROSS AVENUE, 6TH FLOOR (57) ABSTRACT

DALLAS, TX 75201 (US)

Particular embodiments of the present invention are related to
(73) Assignee: Yahoo! Inc., Sunnyvale, CA (US) implementing a priority queue.

10

24 22

Patent Application Publication

20

Jul. 15,2010 Sheet1 of 8

24

22

22

FIG. 1

US 2010/0180057 A1

10

Patent Application Publication Jul. 15,2010 Sheet2 of 8 US 2010/0180057 A1

f 100
Network Client
I 105
Client Host
110
Server Host Server Host
120 120

FIG. 2

Patent Application Publication Jul. 15,2010 Sheet 3 of 8 US 2010/0180057 A1

1QS (Set A, Index idz, Stack S)

1. Ifide = S.top() Then S.pop(), Return Afide] * 302
2. pide — randomlidz, S.top{)—1] +——— 304
3. pida’ — partition(4, Alpidz], idz, S.top()—1) <« 306
4. S.push(pidz’) «— 308
5. Return IQS(A, idz, 5) «— 310

FIG. 3

9 1 2 3 4 3 & 7T B 9 10 11 12 13 4 85
(51)81 74 12 53 92 86 25 67 33 18 41 49 €2 29 27| § = {16} 402

& 1 2 3 4 3 & .§9101112i31415
29 12 49 41 18 25|51/67 86 92 58 63 74 81| S = {16, 8} «——— 404

¢ 1 2 Ma 3 & 7

18)25 29 12133|41 49 37 s = {16, 8, 4} « 406
e\;_ 203

12 J18)29 25 g = {16, 8, 4, 1} «— 408
\;

i2 g = {16, 8, 4, 1, 0} <410

2234}_56?89]011}2133415
18125 25) 33141 49 37| 51| €7 B6 92 58 63 74 81 &

{16, 8, 4, 1} «— 412

[

FIG. 4

Patent Application Publication Jul. 15,2010 Sheet 4 of 8 US 2010/0180057 A1

////'ﬂ;:hexap conitinees in the m\

- [s B) () (-]]
—— N/ o
extracted elements, idx other pivots S{0] free cells

s0 they are also free cells

FIG. 5

Quickheap(Integer N) // constructor of an empty quickheap
1. capacity «— N + 1, heap « new Array[capacity], S « {0}, idz « 0

FIG. 6(a)

Quickheap(Array A, Integer N} // constructor of a quickheap from an array A
1. capacity + max{N, [A|} + 1, heap « new Array[capacity]
2. 8 {|A]}, ide « 0, heap.copy(4)

FIG. 6(b)

findMin()
1. IQS(heap,idx,S), Return heaplidz mod capacity]

FIG. 6(c)

extract Min()
1. 1QS{(heap,idz,S), idx « idz + 1, S.pop()
2. Return heap[(idr — 1) mod capacity]

FIG. 6(d)

Patent Application Publication Jul. 15,2010 Sheet S of 8 US 2010/0180057 A1

extractKMin(int R)

1. finalPos — idx + k ~ 1, top — S.top()
2. While finalPos > top Do
3, While idz < top Do Report heaplidz], ide — idz 4+ 1
4. S.pop(), top « S.top() // we consumed this chunk
5. Ifidx = finalPos +1 Then Return // we are done
// else, we use quickselect to find finalPos
6. first — idx, last — top — 1
7. While TRUE Do
8. pidz — random|first, last]
9. pidz’ — partition{heap, heaplpidz], first,last)
10. If pidx' < finalPos Then first « pida’ + 1
11, Else
12. S.push(pidz’) // if pida’ > finalPos we push pida’ on S
13. If pide’ = finalPos Then top = pide’, Break
14. Else last «— pide’ — 1

15. While édx < top Do Report heaplids], ide — idr + 1
16. S.pop{() // we have consumed this chunk

FIG. 6(e)

add(Elem z, Index pidz)

1. ‘While TrRuE Do // moving pivots, starting from pivot S[pidz]

heap[(S[pidz] + 1) mod capacity] «— heap[S[pidz] mod capacity]

Spida] « Spidz] + 1

If (|S] = pide + 1) OR // we are in the first chunk

{(heap[S[pidz + 1] mod capacity] < z) Then // we found the chunk

heap[(S[pidx] — 1) mod capacity] — z, Return

Else
heap(S[pidz] — 1) mod capacity] « heap|(S[pidz + 1] + 1) mod capacity]
pidx — pidz + 1 // go to next chunk

il SO

oo om

insert(Elem z)
1. add(x, 0)

FIG. 6(p)

Patent Application Publication Jul. 15,2010 Sheet 6 of 8 US 2010/0180057 A1

findChunk(Index pos)

1. pidr — 0 // start in chunk 0

2. While pide < |S| AND S[pidz] > pos Do pidz «— pidz + 1
3. Return pide — 1 // come back to the last reviewed pivot

delete(Index pos)
1. pidr — findChunk(pos) // chunk id
2. If S[pidz] = pos Then
3. S.extractElement(pidz) // we extract the pidz-th pivot from S
4. pidr +- pidz — 1 // we go back one pivot, that is, go forward in heap
5. For i« pide downto 0 Do // starting from pivot S{pidx]
// moving the last element of the chunk

6. heaplpos mod capacity] — heap[(S[i] — 1) mod capacity]
// moving the pivot
7. heap|(S]i] — 1) mod capacity] «— heap|(S[i]) mod capacity)
8. Sli] « Sli] — 1 // updating pivot position
9. pos + S[i] + 1 // updating position pos
FIG. 6(g)

decreaseKey{(Index pos, Decrement 4)
1. pide — findChunk(pos) // chunk id
2. If Spidz] = pos Then
3, S.extract Element(pide) // we extract the pidr-th pivot from S
4. pidz «— pidx — 1 // we go one pivot back _
5. newValue — heap[pos mod capacity] — & // computing the new element
6. If (S| =pide +1) OR // we are in the first chunk
(heap[S|pidz + 1] mod capacity] < newValue) Then // we found the chunk

7. heaplpos mod capacity] «— newValue, Return
8. Else // creating an empty cell next to the preceding pivot
9. heaplpos mod capacity] — heap|(S[pidx + 1] + 1) mod capacity]

10. add(newValue, pidz + 1)

FIG. 6(h)

Patent Application Publication Jul. 15,2010 Sheet 7 of 8 US 2010/0180057 A1

38

/

@20 25]@i41 49 37|} 67 ec 92 58 63 74 e1fw) $= {16, 8 4, 1} <«—— 702

. \V

:129 25 [@Iqi 49 37[@{ 67 85 92 G8 53 74 81 £={17, 8 4 1} <«——704

s S~ 7

;29 25 I@i 41 48 1 I@I 85 92 58 &3 74 BL 6'1 $=1{17,9 4 13 <+—— 706

35

]29 25 llﬂ 49 37 35 |@] 86 9z 58 63 74 81 s? 8= {17. 9, 4,1 <«—— 708

FIG. 7

Patent Application Publication Jul. 15,2010 Sheet 8 of 8 US 2010/0180057 A1

202 200

Processor ’/ /
204
Cache /
210

\\ Network
Host Bridge Interface

216

206

\

High Performance I/O Bus

212 i i 214

\ I/O Bus System _/

Bridge Memary

1 I

Standard I/0O Bus

218 I 220 1

\ Mass N I/O Ports

Storage

208

FIG. 8

US 2010/0180057 Al

DATA STRUCTURE FOR IMPLEMENTING

PRIORITY QUEUES
TECHNICAL FIELD
[0001] The present disclosure generally relates to data
structures.
BACKGROUND
[0002] As the popularity of the Internet has increased, so

has the prevalence of search engines. Generally speaking, a
search engine is an information retrieval system designed to
assist in finding information stored on a computer system.
Search engines are often used to minimize the time required
to find information and the amount of information which
must be consulted. A commonly-used type of search engine is
a web search engine which assists in searching for informa-
tion on the World Wide Web (e.g., Yahoo!, Google, etc.).

[0003] A search engine may provide an interface to a group
of items that enables a user to specify criteria about an item of
interest and instruct the search engine to find items relevant to
the criteria. The criteria are referred to as a search query. The
search engine may return a list of items that meet the criteria
specified by the query which may be sorted or ranked. For
example, ranking items by relevance (from highest to lowest)
may reduce the time required for a user to find desired infor-
mation. Probabilistic search engines rank items based on
measures of similarity (between each item and the query,
typically on a scale of 1 to 0, 1 being most similar) and
sometimes popularity or authority or use relevance feedback.

[0004] To provide a set of matching items that are sorted
according to some criteria quickly, a search engine will typi-
cally collect metadata about the group of items under consid-
eration beforehand through a process referred to as indexing.
The index typically requires a smaller amount of computer
storage, which is why some search engines only store the
indexed information and not the full content of each item, and
instead provide a method of navigating to the items in the
search engine result page. Alternatively, the search engine
may store a copy of each item in a cache so that users can see
the state of the item at the time it was indexed or for archive
purposes or to make repetitive processes work more effi-
ciently and quickly.

[0005] In implementations where search results are
indexed and assigned a relevancy score, the various relevancy
scores for a particular search query may be thought of as an
array of elements. Accordingly, when a search query is per-
formed, it may be desirable to order the relevancy scores
associated with the search results in order to return the results
to a user in order of relevancy. In programming, a data struc-
ture known as a “priority queue” may be used to maintain
such relevancy scores. Generally speaking a priority queue is
a data structure that orders items by a priority value. Often,
the first item that is removed from the queue generally has the
highest priority value, after which the second highest item has
the second highest value, and so on.

[0006] Many traditional approaches to implementing pri-
ority queues have disadvantages. For example, some tradi-
tional implementations may require massive amounts of stor-
age resources, and thus may be impractical in many
applications. As another example, some traditional imple-

Jul. 15,2010

mentations may require large computational complexity in
order to implement, and thus may be inefficient in many
applications.

SUMMARY

[0007] The present invention provides methods, appara-
tuses and systems directed to implementing a priority queue
data structure. The data structure described may have less
complexity and may be implemented more efficiently than
traditional approaches to implementing priority queues.

DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a schematic diagram that illustrates an
example network environment in which particular implemen-
tations of the invention may operate.

[0009] FIG. 2 is a schematic diagram illustrating a client
host environment to which implementations of the invention
may have application.

[0010] FIG. 3 illustrates an embodiment of the incremental
quicksort (IQS) algorithm to which implementations of the
invention may have application.

[0011] FIG. 4 illustrates an example execution of the IQS
algorithm depicted in FIG. 3 to which implementations of the
invention may have application.

[0012] FIG. 5 illustrates sub-structures of a quickheap data
structure to which implementations of the invention may have
application.

[0013] FIGS. 6A-6H illustrate example pseudo-code for
implementing various quickheap operations to which imple-
mentations of the invention may have application.

[0014] FIG. 7 illustrates a diagram graphically depicting
the insertion of a new element into a quickheap in accordance
with the algorithms depicted in FIG. 6F.

[0015] FIG. 8 is a schematic diagram illustrating an
example computing system architecture that may be used to
implement one or more of physical servers depicted in FIG. 1.

DESCRIPTION OF EXAMPLE EMBODIMENT(S)

[0016] A. Overview

[0017] Particular embodiments of the present invention are
related to implementing a priority queue data structure which
may be referred to herein as a “quickheap.” A quickheap may
be a data structure for efficiently implementing a priority
queue. The quickheap may provide for maintaining an ele-
ment set in a partially ordered way, thus allowing efficient
insertion of new elements into the set, extractions from ele-
ments of the set according to priorities of the respective ele-
ments, and/or other operations.

[0018] The present invention can be implemented in a vari-
ety of manners, as discussed in more detail below. Other
implementations of the invention may be practiced without
some or all of specific details set forth below. In some
instances, well known structures and/or processes have not
been described in detail so that the present invention is not
unnecessarily obscured.

[0019] B. Example Network Environment

[0020] Particular implementations of the invention operate
in a wide area network environment, such as the Internet,
including multiple network addressable systems. Network
cloud 60 generally represents one or more interconnected
networks, over which the systems and hosts described herein
can communicate. Network cloud 60 may include packet-
based wide area networks (such as the Internet), private net-

US 2010/0180057 Al

works, wireless networks, satellite networks, cellular net-
works, paging networks, and the like.

[0021] As FIG. 1 illustrates, a particular implementation of
the invention can operate in a network environment compris-
ing network application hosting site 20, such as an informa-
tional web site, social network site and the like. Although
FIG. 1 illustrates only one network application hosting site,
implementations of the invention may operate in network
environments that include multiples of one or more of the
individual systems and sites disclosed herein. Client nodes
82, 84 are operably connected to the network environment via
a network service provider or any other suitable means.

[0022] Network application hosting site 20 is a network
addressable system that hosts a network application acces-
sible to one or more users over a computer network. The
network application may be an informational web site where
users request and receive identified web pages and other
content over the computer network. The network application
may also be a search platform supporting one or more search
engines.

[0023] Network application hosting site 20, in one imple-
mentation, comprises one or more physical servers 22 and
content data store 24. The one or more physical servers 22 are
operably connected to computer network 60 via a router 26.
The one or more physical servers 22 host functionality that
provides a network application (e.g, a news content site, etc.)
to a user. As discussed in connection with FIG. 2, in one
implementation, the functionality hosted by the one or more
physical servers 22 may include web or HTTP servers, ad
serving systems, geo-targeting systems, and the like. Still
further, some or all of the functionality described herein may
be accessible using an HTTP interface or presented as a web
service using SOAP or other suitable protocols.

[0024] Content data store 24 stores content as digital con-
tent data objects. A content data object or content object, in
particular implementations, is an individual item of digital
information typically stored or embodied in a data file or
record. Content objects may take many forms, including: text
(e.g., ASCII, SGML, HTML), images (e.g., jpeg, tif and gif),
graphics (vector-based or bitmap), audio, video (e.g., mpeg),
or other multimedia, and combinations thereof. Content
object data may also include executable code objects (e.g.,
games executable within a browser window or frame), pod-
casts, etc. Structurally, content data store 24 connotes a large
class of data storage and management systems. In particular
implementations, content data store 24 may be implemented
by any suitable physical system including components, such
as database servers, mass storage media, media library sys-
tems, and the like.

[0025] Network application hosting site 20, in one imple-
mentation, provides web pages, such as front pages, that
include an information package or module describing one or
more attributes of a network addressable resource, such as a
web page containing an article or product description, a
downloadable or streaming media file, and the like. The web
page may also include one or more ads, such as banner ads,
text-based ads, sponsored videos, games, and the like. Gen-
erally, web pages and other resources include hypertext links
or other controls that a user can activate to retrieve additional
web pages or resources. A user “clicks” on the hyperlink with
a computer input device to initiate a retrieval request to
retrieve the information associated with the hyperlink or con-
trol.

Jul. 15,2010

[0026] FIG. 2 illustrates the functional modules of a client
host server environment 100 within network application host-
ing site 20 according to one particular implementation. As
FIG. 2 illustrates, network application hosting site 20 may
comprise one or more network clients 105 and one or more
client hosts 110 operating in conjunction with one or more
server hosts 120. The foregoing functional modules may be
realized by hardware, executable modules stored on a com-
puter readable medium, or a combination of both. The func-
tional modules, for example, may be hosted on one or more
physical servers 22 and/or one or more client computers 82,
84.

[0027] Network client 105 may be a web client hosted on
client computers 82, 84, a client host 110 located on physical
server 22, or a server host located on physical server 22.
Client host 110 may be an executable web or HTTP server
module that accepts HyperText Transport Protocol (HTTP)
requests from network clients 105 acting as a web clients,
such web browser client applications hosted on client com-
puters 82, 84, and serving HTTP responses including con-
tents, such as HyperText Markup Language (HTML) docu-
ments and linked objects (images, advertisements, etc.).
Client host 110 may also be an executable module that
accepts Simple Object Access Protocol (SOAP) requests
from one or more client hosts 110 or one or more server hosts
120. In one implementation, client host 110 has the capability
of delegating all or part of single or multiple requests from
network client 105 to one or more server hosts 120. Client
host 110, as discussed above, may operate to deliver a net-
work application, such as an informational web page or an
internet search service.

[0028] In aparticular implementation, client host 110 may
act as a server host 120 to another client host 110 and may
function to further delegate requests to one or more server
hosts 120 and/or one or more client hosts 110. Server hosts
120 host one or more server applications, such as an ad
selection server, sponsored search server, content customiza-
tion server, and the like.

[0029] C. Client Nodes & Example Protocol Environment
[0030] A client node is a computer or computing device
including functionality for communicating over a computer
network. A client node can be a desktop computer 82, laptop
computer, as well as mobile devices 84, such as cellular
telephones, personal digital assistants. A client node may
execute one or more client applications, such as a web
browser, to access and view content over a computer network.
In particular implementations, the client applications allow
users to enter addresses of specific network resources to be
retrieved. These addresses can be Uniform Resource Loca-
tors, or URLs. In addition, once a page or other resource has
been retrieved, the client applications may provide access to
other pages or records when the user “clicks” on hyperlinks to
other resources. In some implementations, such hyperlinks
are located within web pages and provide an automated way
for the user to enter the URL of another page and to retrieve
that page. The pages or resources can be data records includ-
ing as content plain textual information, or more complex
digitally encoded multimedia content, such as software pro-
grams or other code objects, graphics, images, audio signals,
videos, and so forth.

[0031] The networked systems described herein can com-
municate over the network 60 using any suitable communi-
cations protocols. For example, client nodes 82, as well as
various servers of the systems described herein, may include

US 2010/0180057 Al

Transport Control Protocol/Internet Protocol (TCP/IP) net-
working stacks to provide for datagram and transport func-
tions. Of course, any other suitable network and transport
layer protocols can be utilized.

[0032] In addition, hosts or end-systems described herein
may use a variety of higher layer communications protocols,
including client-server (or request-response) protocols, such
as the HyperText Transfer Protocol (HTTP) and other com-
munications protocols, such as HTTP-S, FTP, SNMP, TEL-
NET, and a number of other protocols, may be used. In addi-
tion, a server in one interaction context may be a client in
another interaction context. Still further, in particular imple-
mentations, the information transmitted between hosts may
be formatted as HyperText Markup Language (HTML) docu-
ments. Other structured document languages or formats can
be used, such as XML, and the like.

[0033] In some client-server protocols, such as the use of
HTML over HTTP, a server generally transmits a response to
a request from a client. The response may comprise one or
more data objects. For example, the response may comprise a
first data object, followed by subsequently transmitted data
objects. In one implementation, for example, a client request
may cause a server to respond with a first data object, such as
an HTML page, which itself refers to other data objects. A
client application, such as a browser, will request these addi-
tional data objects as it parses or otherwise processes the first
data object.

[0034] Mobile client nodes 84 may use other communica-
tions protocols and data formats. For example, mobile client
nodes 84, in some implementations, may include Wireless
Application Protocol (WAP) functionality and a WAP
browser. The use of other wireless or mobile device protocol
suites are also possible, such as NTT DoCoMo’s i-mode
wireless network service protocol suites. In addition, the net-
work environment may also include protocol translation gate-
ways, proxies or other systems to allow mobile client nodes
84, for example, to access other network protocol environ-
ments. For example, a user may use a mobile client node 84 to
capture an image and upload the image over the carrier net-
work to a content site connected to the Internet.

[0035] D. Example Operation

[0036] Innumerous applications (e.g., in a search platform
supporting one or more search engines), network application
hosting site 20 and/or one or more of its various components
may maintain one or more priority queues or similar data
structures (e.g, priority queues may maintain partially
ordered lists of relevancy scores for search engine results).
Accordingly, network application hosting site 20 and/or one
or more of its various components may create and/or utilize
one or more quickheaps, as discussed in greater details below.
[0037] A quickheap is based in part on a sorting algorithm
known as an incremental quicksort (IQS) algorithm. Given a
set of items A, 1QS may search for a particular element of A.
[0038] In an embodiment of this disclosure, an “element”
or “data element,” as such terms are used herein, may include
any suitable item or items of data, including without limita-
tion a search result, uniform resource locator, a web page title,
aweb page description, and/or other metadata associated with
a web page.

[0039] FIG. 3 illustrates an embodiment of the 1QS algo-
rithm set forth in pseudocode to which implementations of
the invention may have application. As shown in FIG. 3, IQS
may have aset A, an Index idx corresponding to the priority of
the item sought (e.g., idx=0 would return highest priority,

Jul. 15,2010

idx=1 would return the second highest priority, etc.), and a
stack S passed as input variables. At step 302, IQS may
determine whether the top element of S (S.top) is equal to the
desired idx value. If S.top equals idx then the top value may be
popped from S, and A[idx] (e.g., the value at positionidx in A)
may be returned. Otherwise, IQS may proceed to step 304.
[0040] At step 304, IQS may choose a random pivot index
pidx between idx and S.top-1.

[0041] At step 306, IQS may partition A based on the value
of pidx. The function partition (A, A[pidx], i,j) referenced at
step 306 rearranges the subarray Ali,j] and returns the new
position pidx' of the original element in A[pidx], such that, in
the rearranged array, all of the elements smaller than A [pidx']
appear before pidx' and all elements larger than A[pidx']
appear after pidx'. Thus, pivot A[pidx'] is left at the correct
position it would have in the hypothetical sorted array Ali,j].
[0042] At step 308, the value pidx' is pushed onto stack S,
such that S may maintain all pivot values present in A.
[0043] At step 310, IQS may recursively call itself, thus in
effect continuing its search for the desired value on a subarray
of A.

[0044] FIG. 4 illustrates an example execution of the IQS
algorithm shown in FIG. 3, demonstrating how IQS may
search for the smallest element (12) of an array A with size
m=16. Because the smallest element would appear in position
idx=0 in a sorted array, the value idx=0 is passed as an input
to IQS. In addition, stack S is initialized with a single value
equal to |Al (e.g., 16 in this example).

[0045] As shown in line 402 of FIG. 4, the first iteration of
1QS may determine that idx (0) does not equal the top value of
S (16), and may accordingly select the array value at position
0 (51) as a random pivot. Because the value 51 would appear
at position 8 in a sorted array A, the partition operation may
place 51 in position 8 (e.g., A[8]), and may rearrange A such
that values lesser than 51 appear in A before 51, and values
greater than 51 appear in A after 51, as shown in line 404. In
addition, the pivot position (8) may be pushed into stack S.
[0046] As shown in line 404 of FIG. 4, the second iteration
of IQS may determine that idx (0) does not equal the top value
of'S (8), and may accordingly select the array value at position
0 (33) as a random pivot. Because the value 33 would appear
at position 4 in a sorted array A, the partition operation may
place 33 in position 4 (e.g., A[4]), and may rearrange A such
that values lesser than 33 appear in A before 33, and values
greater than 33 appear in A after 33, as shown in line 406. In
addition, the pivot position (4) may be pushed into stack S.
[0047] As shown in line 406 of FIG. 4, the third iteration of
1QS may determine that idx (0) does not equal the top value of
S (4), and may accordingly select the array value at position 0
(18) as a random pivot. Because the value 18 would appear at
position 1 in a sorted array A, the partition operation may
place 18 in position 1 (e.g., A[1]), and may rearrange A such
that values lesser than 18 appear in A before 18, and values
greater than 18 appear in A after 18, as shown in line 408. In
addition, the pivot position (1) may be pushed into stack S.
[0048] As shown in line 408 of FIG. 4, the fourth iteration
of IQS may determine that idx (0) does not equal the top value
of'S (1), and may accordingly select the array value at position
0 (12) as a random pivot. Because the value 12 would appear
at position 0 in a sorted array A, the partition operation may
keep 12 in position 0 (e.g., A[0]), and may rearrange A such
that values greater than 12 appear in A after 12 (because 12 is
in position 0, no values will be placed before 12). In addition,
the pivot position (0) may be pushed into stack S.

US 2010/0180057 Al

[0049] As shown in line 410 of FIG. 4, the fifth iteration of
1QS may determine that idx (0) is equal to the top value of S
(0), and may accordingly pop the top value of stack S and
return the value 12, the smallest value in array A. Line 412
depicts the resulting array A and stack S after IQS returns the
desired value of A. The resulting array A is partially ordered,
and the values in stack S represent positions of the pivots of
array A, wherein such pivots are those values of A appearing
in the position of A they would appear in a fully sorted array
A. Tt is noted that the value of 16 within S, as shown in FIG.
4, may represent a fictitious pivot of o at fictitious bit position
16. Such fictitious pivot may be required as an initial input
into IQS, to allow proper execution of IQS. When the result-
ing array is read from right to left, the array starts with a pivot
(fictitious pivot of oo at fictitious bit position 16), and to the
left of such pivot are a collection of elements smaller than it.
Next, another pivot is encountered (the value of 51 at position
8), and another collection of elements, and so on. The result-
ing data structure resembles a heap structure, as the elements
are semi-ordered. Accordingly, the present disclosure
exploits this property to provide the quickheap, a priority
queue over an array processed with algorithm IQS.

[0050] In accordance with the present disclosure, a quick-
heap may be implemented using one or more sub-structures,
including, without limitation, an array heap, a stack S, an
integer idx, and an integer capacity. Array heap may be used
to store individual elements of the quickheap. In the example
depicted in line 412 of FIG. 4, heap may be expressed as {18,
29,...,81, o}

[0051] Stack S may be used to store the positions of the
pivots partitioning heap. In the example depicted in line 412
of FIG. 4, S may be depicted as {16, 8, 4, 1}, wherein the
bottom pivot index 16 indicates the fictitious pivot of co.
[0052] Integer idx may be used to indicate the first cell of a
quickheap. In the example depicted in line 412 of FIG. 4, idx
may equal 1. A separate variable to indicate the last cell of a
quickheap may not be needed, as the last cell of the quickheap
(the fictitious pivot ©), may be stored in S[0].

[0053] Integer capacity may indicate the size ot heap. Up to
capacity —1 elements may be stored in the quickheap, as one
cell is needed to the fictitious pivot . In certain embodi-
ments, heap may be implemented as a circular array, such that
arbitrarily long sequences of insertions and deletions may be
carried out as along as no more than capacity —1 elements are
simultaneously maintained in the quickheap. In the case that
heap is implemented as a circular array, one must take into
account that an element whose position pos in the quickheap
is actually located in the cell pos mod capacity of the circular
array heap.

[0054] FIG. 5illustrates the sub-structures of the quickheap
data structure discussed above. In the example depicted in
FIG. 5, the quickheap starts at cell idx, has three pivots, with
its last cell marked by the fictitious pivot S[0]. Cells after S[0]
may be free cells, such that elements may be added to the tail
of the quickheap (e.g., the array cell heap[S[0] mod capac-
ity]). Extractions of minima may be performed from the head
of'the quickheap (e.g., the array cell heap[idx mod capacity]).
Thus, free cells may also exist before heap[idx] which corre-
spond to extracted elements. The cells before heap[idx] may
also be used when the quickheap “turns around” the circular
array heap. Accordingly, the quickheap may “slide” from left
to right over the circular array heap as quickheap operations
progress.

Jul. 15,2010

[0055] FIGS. 6A-6H illustrate example pseudo-code for
implementing various quickheap operations. The operations
depicted in FIGS. 6 A-6H are each described in detail below.
In the discussion below, the expression “mod capacity” has
been omitted for purposes of clarity and exposition, although
such expression appears in the pseudo-code depicted in FIGS.
6A-6H.

[0056] FIG. 6A depicts example pseudo-code for an opera-
tion Quickheap(Integer N) for creating an empty quickheap.
Given an input N, Quickheap(Integer N), may create an array
heap with a size capacity=N+1 with no elements. When cre-
ating an empty array using Quickheap(Integer N), S and idx
may be initialized such that S={0} and idx=0. In certain
embodiments, it may not be necessary to place a value rep-
resenting oo in heap[S[0]], as the S[0]-th cell may not be
accessed during any quickheap operation.

[0057] FIG. 6B depicts example pseudo-code for an opera-
tion Quickheap(Array A, Integer N) for “heapifying” an
existing array A. Given an array A and integer N as inputs,
Quickheap(Array A, Integer N) may copy array A to heap,
and initialize both S=IAl and idx=0. The value of capacity
may be initialized to the greater of N and |Al+1.

[0058] FIG. 6C depicts example pseudo-code for an opera-
tion findMin() for finding the minimum value in a quickheap.
Because idx indicates the first cell used by the quickheap
allocated over the array heap, and the pivots stored in S
delimit chunks of semi-ordered elements, the minimum of'the
quickheap must be placed within the first chunk (e.g., within
the subarray heap|idx, S.top()-1]). Accordingly, to find the
minimum, IQS (heap, idx, S), a variant of the IQS algorithm
previous discussed, may be used to find the minimum from
the first chunk, and then return the element heap[idx]. The
variant of IQS called may take into account any circular
nature of heap and/or may not perform the pop() operation of
step 302 of FIG. 3.

[0059] FIG. 6D depicts example pseudo-code for an opera-
tion extractMin() for finding and extracting the minimum
value in a quickheap. The operation extractMin() is similar to
findMin() depicted in FIG. 6C, with the key difference that in
extractMin(), the minimum value is not only found, but also
extracted (e.g., removed) from the quickheap. Accordingly,
an QS variant identical or similar to that called in findMin()
may be used to put the minimum into position idx of heap. In
addition, idx may be incremented and the top value of S may
be popped in order to abstractly “remove” the minimum value
from the quickheap. The value of the minimum may be
returned by returning heap[idx-1].

[0060] FIG. 6F depicts example pseudo-code for an opera-
tion extractKMin(int k) that may, based on a received inputk,
find and extract the minimum k values in a quickheap.
Because idx equals the first cell of the quickheap allocated in
the array heap and pivots stored in S delimit chunks of semi-
ordered elements, a multi-extraction of k minima may be
performed using the algorithm set forth in FIG. 6E. The
operation extractKMin(int k) may compute a position
finalPos=idx+k-1, which is the k-th cell of the current extrac-
tion of k-elements. After finalPos is calculated, extractKMin
(int k) may traverse S. All of the pivots in S placed before
finalPos belong to the k-element set of minima sought, so all
such pivots are reported (including extraction of such ele-
ments) as well as their respective chunks of elements (e.g., all
pivots to the left of finalPos and the chunks to the left of such
pivots). The value of idx may also be updated as minima are
reported. If idx exceeds finalPos after the steps recited above,

US 2010/0180057 Al

then all k desired minima have been reported. Otherwise, a
quickselect procedure similar to IQS may be used to find the
finalPos-th element in the chunk delimited by idx and S.top(
)-1. During this quickselect procedure, all pivots in positions
greater than or equal to finalPos are pushed into stack S. At the
completion of the quickselect procedure, the pivot on top of S
is finalPos. Accordingly, all elements from idx to finalPos are
reported and the pivot on top of S at position finalPos is
extracted.

[0061] FIG. 6F depicts example pseudo-code for opera-
tions add(Elem x, Index pidx) and insert (Elem x) for insert-
ing a new element x into a quickheap. To insert a new element
x into a quickheap, the operations must find the chunk where
x may be inserted in accordance with the pivot positions
existing in S, and then create an empty cell within the chunk
in the array heap. In order to carry out the insertion of element
X, the fictitious pivot representing the value co may be moved
one position to the right and its position may be updated in S.
Moving the fictitious pivot in this manner creates a free cell in
the last chunk of heap. Next, the value of x may be compared
with the pivot at cell heap[S[1]]. If the pivot is smaller than or
equal to X, x is placed in the free position left by the pivot at
heap[S[0]]. Otherwise, the first element to the right of heap
[S[1]] may be moved to the free position left by the pivot at
heap[S[0]], and the pivot heap[S[1]] may be moved one posi-
tion to the right, updating its position in S. This process may
be repeated with the pivot at heap[S[2]] and so on until the
position where X is to be placed is found, or the first chunk is
reached. As shown in FIG. 6F, operation insert(Elem x) may
use the operation add(Elem x, Index pidx). Operation add
(Elem x, Index pidx) receives as inputs x, the value to be
added, and pidx, which indicates the chunk at which the
displacement process is to begin. For insertions, the pivot
displacement process starts from the last chunk (as discussed
above), thus operation insert(Elem x) calls add(Elem x, Index
pidx) and initialized pidx=0. However, both operations are
shown in FIG. 6F, as the operation add(Elem x, Index pidx)
will be discussed again below with respect to other quickheap
operations.

[0062] FIG.7 depicts a diagram graphically illustrating the
insertion of a new element (35) into a quickheap with the
elements and pivots shown in line 412 of FIG. 4, in accor-
dance with the operations depicted in FIG. 6F. At line 702,
fictitious pivot oo is moved one position to the right. At line
704, the position of o may be updated in S (from 16 to 17),
and the new element (35) may be compared to with pivot
heap[S[1]]=51. Because 35<51, the element 67, which is to
the right of 51, is moved to the end of the last of the chunk and
pivot 51 is moved one position to the right. At line 706, the
position of 51 may be updated in S (from 8 to 9), and the new
element (35) may be compared to the next pivot 33. Because
35>33, 35 is stored in the second to last chunk at the free
position left by pivot 51 as shown at line 708.

[0063] FIG. 6G depicts example pseudo-code for opera-
tions delete(Index pos) and findChunk (Index pos) for delet-
ing an arbitrary element at position pos in a quickheap. The
delete(Index pos) operation may be though of as the dual of
the insert operation discussed above.

[0064] It is noted that applications may not “know” the
internal positions of elements in a quickheap, but only their
identifiers. Hence, in order to implement the delete operation,
the quickheap may need to be augmented with a dictionary
which, given an element identifier, answers its respective
position. Such dictionary would need to remain synchronized

Jul. 15,2010

with respect to element positions. For purposes of this disclo-
sure, any suitable implementation of a dictionary may be
used. For example, if it is known beforehand how many
elements will need to be managed in a quickheap, and all
element identifiers are consecutive integers, it may be suffi-
cient to add another array to implement the dictionary. Oth-
erwise, the dictionary may be managed with a hash table, an
AVL tree, it any other suitable data structure. In the discussion
below, it is assumed that a dictionary is available that is
operable to maintain the element positions in the quickheap
updated.

[0065] Using the dictionary, the position pos of an element
to be deleted may be obtained. As shown in FIG. 6G, the
delete(Index pos) operation may need to determine the chunk
within heap that contains the element. Because each chunk
has a pivot at its right, each chunk may be referenced by its
associated pivot. Therefore, operation findChunk(Index pos)
may traverse stack S to find the smallest pivot that is larger
than or equal to pos.

[0066] After findChunk(Index pos) determines a pivot
position pidx at a position greater then the element at pos, the
following process is repeated. The element heap[S[pidx]|-1]
may be moved to position heap[pos] (e.g., the element previ-
ous to the pidx-th pivot is placed in the position pos) creating
afree cell position at S[pidx]|-1. The pivot heap[S[pidx]] may
be moved one place to the left, and its position may be
updated in S. Next, pos may be updated to the old pivot
position pos=S[pidx]+1, the and the next chunk to the right
may be processed using the steps described above. The pro-
cess may continue until the fictitious pivot is reached.
[0067] FIG. 6H depicts example pseudo-code for an opera-
tion decreaseKey(Index pos, Decrement d) for decreasing the
value of an element at position pos by an amount d, and
adjusting its position in the quickheap according to the pivots
stored in S. As in the delete operation discussed above, a
dictionary may be used to obtain the position of a particular
element. As the value of the element is being decreased, the
modified element either remains in its current place or is
moved chunk-wise towards position idx. In this sense,
decreaseKey(Index pos, Decrement d) is similar in operation
to insert(Elem x) in that both of them use the auxiliary method
add (Elem x, Index pidx). To decrease the value of an element,
decreaseKey(Index pos, Decrement 0) first determines the
chunk pidx of the element to modify using findChunk(Index
pos). If the element at position pos is a pivot, it is extracted
from S, and then the previous pivot is referenced, such that
there is always a pivot at a position greater than pos. Using
methods similar to decreaseKey(Index pos, Decrement 0), a
similar operation whereby the value of an element is
increased and its position is changed may also be provided.
[0068] E.Example Computing System Architectures
[0069] While the foregoing systems and methods can be
implemented by a wide variety of physical systems and in a
wide variety of network environments, the client and server
host systems described below provide example computing
architectures for didactic, rather than limiting, purposes.
[0070] FIG. 8 illustrates an example computing system
architecture, which may be used to implement a physical
server. In one embodiment, hardware system 200 comprises a
processor 202, a cache memory 204, and one or more soft-
ware applications and drivers directed to the functions
described herein. Additionally, hardware system 200 includes
a high performance input/output (/O) bus 206 and a standard
1/O bus 208. A host bridge 210 couples processor 202 to high

US 2010/0180057 Al

performance I/O bus 206, whereas I/O bus bridge 212 couples
the two buses 206 and 208 to each other. A system memory
214 and a network/communication interface 216 couple to
bus 206. Hardware system 200 may further include video
memory (not shown) and a display device coupled to the
video memory. Mass storage 218, and 1/O ports 220 couple to
bus 208. Hardware system 200 may optionally include a
keyboard and pointing device, and a display device (not
shown) coupled to bus 208. Collectively, these elements are
intended to represent a broad category of computer hardware
systems, including but not limited to general purpose com-
puter systems based on the x86-compatible processors manu-
factured by Intel Corporation of Santa Clara, Calif., and the
x86-compatible processors manufactured by Advanced
Micro Devices (AMD), Inc., of Sunnyvale, Calif., as well as
any other suitable processor.

[0071] The elements of hardware system 200 are described
in greater detail below. In particular, network interface 216
provides communication between hardware system 200 and
any of a wide range of networks, such as an Ethernet (e.g.,
IEEE 802.3) network, etc. Mass storage 218 provides perma-
nent storage for the data and programming instructions to
perform the above described functions implemented in the
location server 22, whereas system memory 214 (e.g.,
DRAM) provides temporary storage for the data and pro-
gramming instructions when executed by processor 202. [/O
ports 220 are one or more serial and/or parallel communica-
tion ports that provide communication between additional
peripheral devices, which may be coupled to hardware sys-
tem 200.

[0072] Hardware system 200 may include a variety of sys-
tem architectures; and various components of hardware sys-
tem 200 may be rearranged. For example, cache 204 may be
on-chip with processor 202. Alternatively, cache 204 and
processor 202 may be packed together as a “processor mod-
ule,” with processor 202 being referred to as the “processor
core.” Furthermore, certain embodiments of the present
invention may not require nor include all of the above com-
ponents. For example, the peripheral devices shown coupled
to standard I/O bus 208 may couple to high performance I/O
bus 206. In addition, in some embodiments only a single bus
may exist, with the components of hardware system 200
being coupled to the single bus. Furthermore, hardware sys-
tem 200 may include additional components, such as addi-
tional processors, storage devices, or memories.

[0073] As discussed below, in one implementation, the
operations of one or more of the physical servers described
herein are implemented as a series of software routines run by
hardware system 200. These software routines comprise a
plurality or series of instructions to be executed by a proces-
sor in a hardware system, such as processor 202. Initially, the
series of instructions may be stored on a storage device, such
as mass storage 218. However, the series of instructions can
be stored on any suitable storage medium, such as a diskette,
CD-ROM, ROM, EEPROM, etc. Furthermore, the series of
instructions need not be stored locally, and could be received
from a remote storage device, such as a server on a network,
via network/communication interface 216. The instructions
are copied from the storage device, such as mass storage 218,
into memory 214 and then accessed and executed by proces-
sor 202.

[0074] An operating system manages and controls the
operation of hardware system 200, including the input and
output of data to and from software applications (not shown).

Jul. 15,2010

The operating system provides an interface between the soft-
ware applications being executed on the system and the hard-
ware components of the system. According to one embodi-
ment of the present invention, the operating system is the
Windows® 95/98/N'T/XP/Vista operating system, available
from Microsoft Corporation of Redmond, Wash. However,
the present invention may be used with other suitable operat-
ing systems, such as the Apple Macintosh Operating System,
available from Apple Computer Inc. of Cupertino, Calif.,
UNIX operating systems, LINUX operating systems, and the
like. Of course, other implementations are possible. For
example, the server functionalities described herein may be
implemented by a plurality of server blades communicating
over a backplane.

[0075] Furthermore, the above-described elements and
operations can be comprised of instructions that are stored on
storage media. The instructions can be retrieved and executed
by a processing system. Some examples of instructions are
software, program code, and firmware. Some examples of
storage media are memory devices, tape, disks, integrated
circuits, and servers. The instructions are operational when
executed by the processing system to direct the processing
system to operate in accord with the invention. The term
“processing system” refers to a single processing device or a
group of inter-operational processing devices. Some
examples of processing devices are integrated circuits and
logic circuitry. Those skilled in the art are familiar with
instructions, computers, and storage media.

What is claimed is:

1. A method for maintaining a priority queue, comprising:

storing an array on computer-readable media, the array

including a plurality of cells, each cell including a data
element and having a position within the array;

storing a data structure on the computer-readable media,

the data structure including at least one variable indicat-
ing at least one pivot cell in the array, wherein each pivot
cell includes a pivot data element such that the pivot data
element is positioned in the cell that the pivot data ele-
ment would be positioned in if all data elements of the
array were fully sorted;

storing a first integer on the computer-readable media, the

first integer indicating a first cell position of the array;
and

storing a second integer on the computer-readable media,

the second integer indicating a capacity of the array.

2. A method according to claim 1, further comprising posi-
tioning each pivot cell such that its associated pivot data
element is of lesser priority than cells positioned to a first side
of the pivot cell and is of a greater priority than cells posi-
tioned to a second side of the pivot cell.

3. A method according to claim 1, further including imple-
menting the data structure as a stack.

4. A method according to claim 1, further including imple-
menting the array as a circular array.

5. A method according to claim 1, further comprising find-
ing the highest priority data element of the array by:

determining the pivot data element of highest priority;

determining if the array includes other data elements of
higher priority than the highest-priority pivot data ele-
ment;

if the array does not include data elements of a higher

priority than the highest-priority pivot data element,
returning the highest-priority pivot data element; and

US 2010/0180057 Al

if the array includes data elements of a higher priority than
the highest-priority pivot data element, sorting the one
or more of the other data elements and returning the
other data element with the highest priority.

6. A method according to claim 5, further comprising
incrementing the first integer.

7. A method according to claim 1, further comprising add-
ing a new data element to the array by inserting the data
element into a cell positioned between a first pivot data ele-
ment of higher priority than the new data element and a
second pivot data element of lower priority than the new data
element.

8. An apparatus, comprising:

one Or more processors;

a memory; and

computer-executable instructions carried on computer

readable media, the instructions readable by the one or

more processors, the instructions, when read and

executed, for causing the one or more processors to:

store an array on the computer-readable media, the array
including a plurality of cells, each cell including a
data element and having a position within the array;

store a data structure on the computer-readable media,
the data structure including at least one variable indi-
cating at least one pivot cell in the array, wherein each
pivot cell includes a pivot data element such that the
pivot data element is positioned in the cell that the
pivot data element would be positioned in if all data
elements of the array were fully sorted;

store a first integer on the computer-readable media, the
first integer indicating a first cell position of the array;
and

store a second integer on the computer-readable media,
the second integer indicating a capacity of the array.

9. An apparatus according to claim 8, further including
computer-executable instructions for causing the one or more
processors to position each pivot cell such that its associated
pivot data element is of lesser priority than cells positioned to
afirst side of the pivot cell and is of a greater priority than cells
positioned to a second side of the pivot cell.

10. An apparatus according to claim 8, further including
computer-executable instructions for causing the one or more
processors to implement the data structure as a stack.

11. An apparatus according to claim 8, further including
computer-executable instructions for causing the one or more
processors to implement the array as a circular array.

12. An apparatus according to claim 8, further including
computer-executable instructions for causing the one or more
processors to find the highest priority data element of the
array by:

determining the pivot data element of highest priority;

determining if the array includes other data elements of

higher priority than the highest-priority pivot data ele-
ment;
if the array does not include data elements of a higher
priority than the highest-priority pivot data element,
returning the highest-priority pivot data element; and

if the array includes data elements of a higher priority than
the highest-priority pivot data element, sorting the one
or more of the other data elements and returning the
other data element with the highest priority.

13. An apparatus according to claim 12, further including
computer-executable instructions for causing the one or more
processors to increment the first integer.

Jul. 15,2010

14. An apparatus according to claim 8, further including
computer-executable instructions for causing the one or more
processors to add a new data element to the array by inserting
the data element into a cell positioned between a first pivot
data element of higher priority than the new data element and
a second pivot data element of lower priority than the new
data element.

15. An article of manufacture comprising:

a computer readable medium; and

computer-executable instructions carried on the computer

readable medium, the instructions readable by a proces-

sor, the instructions, when read and executed, for caus-

ing the processor to:

store an array on the computer-readable media, the array
including a plurality of cells, each cell including a
data element and having a position within the array;

store a data structure on the computer-readable media,
the data structure including at least one variable indi-
cating at least one pivot cell in the array, wherein each
pivot cell includes a pivot data element such that the
pivot data element is positioned in the cell that the
pivot data element would be positioned in if all data
elements of the array were fully sorted;

store a first integer on the computer-readable media, the
first integer indicating a first cell position of the array;
and

store a second integer on the computer-readable media,
the second integer indicating a capacity of the array.

16. An article of manufacture according to claim 15, further
including computer-executable instructions for causing the
one or more processors to position each pivot cell such that its
associated pivot data element is of lesser priority than cells
positioned to a first side of the pivot cell and is of a greater
priority than cells positioned to a second side of the pivot cell.

17. An article of manufacture according to claim 15, further
including computer-executable instructions for causing the
one or more processors to implement the data structure as a
stack.

18. An article of manufacture according to claim 15, further
including computer-executable instructions for causing the
one or more processors to implement the array as a circular
array.

19. An article of manufacture according to claim 15, further
including computer-executable instructions for causing the
one or more processors to find the highest priority data ele-
ment of the array by:

determining the pivot data element of highest priority;

determining if the array includes other data elements of

higher priority than the highest-priority pivot data ele-
ment;
if the array does not include data elements of a higher
priority than the highest-priority pivot data element,
returning the highest-priority pivot data element; and

if the array includes data elements of a higher priority than
the highest-priority pivot data element, sorting the one
or more of the other data elements and returning the
other data element with the highest priority.

20. An article of manufacture according to claim 15, further
including computer-executable instructions for causing the
one or more processors to add a new data element to the array
by inserting the data element into a cell positioned between a
first pivot data element of higher priority than the new data
element and a second pivot data element of lower priority than
the new data element.

