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Abstract—Retrieving the k-nearest neighbors of a query
object is a basic primitive in similarity searching. A related,
far less explored primitive is to obtain the dataset elements
which would have the query object within their own k-nearest
neighbors, known as the reverse k-nearest neighbor query.
We already have indices and algorithms to solvek-nearest
neighbors queries in general metric spaces; yet, in many cases
of practical interest they degenerate to sequential scanning.
The naive algorithm for reverse k-nearest neighbor queries
has quadratic complexity, because thek-nearest neighbors of
all the dataset objects must be found; this is too expensive.
Hence, when solving these primitives we can tolerate trading
correctness in the solution for searching time. In this paper
we propose an efficient approximate approach to solve these
similarity queries with high retrieval rate. Then, we show how
to use our approximatek-nearest neighbor queries to construct
(an approximation of) the k-nearest neighbor graph when we
have a fixed dataset. Finally, combining both primitives we
show how to dynamically maintain the approximate k-nearest
neighbor graph of the objects currently stored within the metric
dataset, that is, considering both object insertions and deletions.

I. I NTRODUCTION

Given an objectq and a datasetU of sizen, thek-nearest
neighbor query(NNk(q)) retrieves thek elements fromU

closest toq. This primitive is a building block for a large
number of problems in a wide number of application areas.
For instance, in pattern classification, the nearest-neighbor
rule can be implemented withNN1(q)’s [1]. NNk(q)’s are
also a fundamental tool in cluster and outlier detection [2],
[3], image segmentation [4], query or document recommen-
dation systems [5], and so on.

A related, but far less explored primitive is thereverse
k-nearest neighbor query(RNNk(q)), that is, given an
object q finding the dataset elements which haveq within
their ownk-nearest neighbors (kNNs). This primitive is quite
expensive to compute since we need thekNNs for several
database objets (or maybe, for them all) in order to verify
the correctness of the query outcome. This similarity query
has interesting applications. For instance, let us consider the
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problem of placing a new supermarket in a given location.
We could perform several reverse 1NN queries in order
to find a place such that many residential areas in that
location would find the new outlet as their nearest choice.
ReversekNN queries can also be used in profile-based mar-
keting, cluster and outlier detection, geographic information
systems, traffic networks, adventure games, or molecular
biology (see [6], [7] for further details). Finally, in thispaper
we use reversekNN queries for dynamickNN graphs.

As can be seen, direct and reversek-nearest neighbors are
fair choices for several problems. Also, thekNN approach
is simple, has a small number of parameters to tune up, has
zero training time, can be adapted to database changes over
time, and has excellent classification performance.

Despite the advantages of thekNN approach, in real-world
applications it is seldom used outside some toy examples,
such as considering small databases or in low-dimensional
vector-spaces. This is because real-world data are medium or
high dimensional, or have no coordinates at all, for instance
strings. In these cases, one needs to resort to themetric
space searchmodel, where objects are treated as black boxes
and the similarity among them is computed with a metric
(comprehensive surveys and books are [8]–[11]).

When we model similarity as a metric space, we are al-
ready approximating the real retrieval need of users. In fact,
given a dataset, we can use several distance functions, each
of them considering some aspects of objects and neglecting
others. Likewise, when we design a model to represent real-
life objects, we usually lose some information. Think, for
instance, in the vector representation of a document. This
representation does not consider either positions of the words
composing the document, the document structure, or the
semantic. Moreover, even if we find the proper metric and
a lossless object representation, there are high-dimensional
metric spaces where solving similarity queries requires re-
viewing almost all the dataset no matter what strategy we
use. In addition, in many applications, the efficiency of the
query execution is much more important than effectiveness.
That is, users want a fast response to their queries and will
even accept approximate results (as far as the number of
false drops and hits are moderate). This has given rise to a



new approach to the similarity search problem: We try to find
the objects relevant to a given query with high probability.
An intuitive notion of what this approach aims to is that it
attempts not to miss many relevant objects at query time.

Our contribution is based on the fact that aNNk(q)
defines a dataset search order given by the distance to the
query. All we need to solve aNNk(q) are the firstk elements
in this order, while the remaining ones are not considered
at all. Calculating this order in the original metric space is
expensive as it implies computingn distances. Our idea is to
use an alternative search order, which is cheaper to compute
than and is rather similar to the real order, especially with
respect to the elements we care the most, the first ones.
The fundamental idea of the alternative order was presented
in [12] for metric range searching. In this paper we use the
alternative search order to efficiently solve direct and reverse
kNN queries with high probability. Then, we apply these
primitives to constructk-nearest neighbor graphs(kNNGs)
and to update thekNNG upon object insertions and deletions.

II. RELATED WORK

1) A summary of metric space searching:A metric space
is a pair(X, d), whereX is the universe of valid objects and
d : X× X → R+ ∪ {0} is distance function defined among
them. Objects inX do not necessarily have coordinates.
The distance function gives us a dissimilarity criterion to
compare objects from the universe. Thus, the smaller the
distance between two objects, the more “similar” they are.
Function d satisfies the following properties: symmetry
d(x, y) = d(y, x), reflexivity d(x, x) = 0, strict positiveness
d(x, y) > 0 ⇐⇒ x 6= y, and the triangle inequality
d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X.

Typically, we have a finitedatabaseor dataset U of
size n, which is a subset of the universe. Later, given
an objectq ∈ X, a proximity query consists in retrieving
objects fromU relevant toq. There are two basic proximity
queries or primitives: Therange query(q, r) retrieves all
the elements inU which are within distancer to q. That
is, (q, r) = {x ∈ U, d(x, q) ≤ r}. The k-nearest neighbor
queryNNk(q) retrieves thek elements fromU closest toq.
That is,NNk(q) such that∀ x ∈ NNk(q), y ∈ U \NNk(q),
d(q, x) ≤ d(q, y), and |NNk(q)| = k (in case of ties we
choose anyk-element set satisfying the condition). The
covering radiuscrq,k of a queryNNk(q) is the distance
from q towards the farthest neighbor inNNk(q).

In this paper, we are also dealing with thereversek-
nearest neighbor queryRNNk(q), which retrieves the ele-
ments fromU havingq in their ownk-nearest neigbors. That
is, RNNk(q) such that∀ x ∈ RNNk(q)⇒ d(q, x) ≤ crx,k.
This primitive does not necessarily retrievek objects.

Given the datasetU, range andkNN queries can be
trivially answered by performingn distance evaluations. On
the other hand, reversekNN queries requiresn2 distance
evaluations. However, as the distance is assumed to be

expensive to compute (think, for instance, in comparing two
fingerprints), it is customary to define the complexity of
the search as the number of distance evaluations performed,
disregarding other components such as CPU time for side
computations and even I/O time. Thus, the ultimate goal is
to build offlinean index in order to speed uponlinequeries.

2) k-Nearest neighbors:Due to its importance in sev-
eral application fields, the literature onkNN searching is
abundant. The most efficient algorithms are focused on 1NN

queries in vector spaces. The techniques used are standard
kd-trees for dimension two andR-trees for dimension up
to four, as described in [13]. So, the problem could be
considered solved for low-dimensional vector-spaces. For
high-dimensional vectors, in [14] the authors present a
probabilistic algorithm using dimensionality reduction tech-
niques that retrieves the nearest neighbor about 50% of
the times. Dimensionality reduction techniques work when
the data lie in a lower dimensional manifold compared to
the representational (number of coordinates) dimension, a
fortunate condition which is not always present. Finally,
using metric indices, we solvekNN queries usingO(nα)
distance computations, whereα ≤ 1 is a parameter depend-
ing on both the particular metric space and the index used.
Yet, there are several cases where traditional metric search
algorithms degenerate to sequential scanning.

3) k-Nearest neighbor graphs:ThekNNG of the setU is
a weighted directed graphG(U, E) connecting each element
u ∈ U to its kNNs, thusE = {(u, v), v ∈ NNk(u)}, where
in this caseNNk(u) ⊆ U \ {u}. Beside the applications
already mentioned forkNN queries,kNNGs can also be used
in metric space searching [15], [16], VLSI design, spin glass
and other physical process simulations [17], and so on.

The kNNG can be constructed by solving aNNk(u) for
eachu ∈ U. There are techniques to speed up the procedure
in vector spaces [17]–[22]. Most of them assume that nodes
are points inRD and thatd is Euclidean or some Minkowski
distance, which is not the case in several applications where
kNNGs are required nor is suitable for general metric spaces
(in [19] the vector space limitation is eliminated but the
algorithm demands polynomial space to be implemented).

We also have alternatives for general metric spaces [15],
[23]–[27]. In [23], the problem is solved using randomiza-
tion in O

(

n log2n log2 Γ(U)
)

expected time. Here,Γ(U)
is the distance ratio between the farthest and closest pairs
of points in U. The author argues that in practiceΓ(U) =
nO(1), in which case the approach isO

(

n log4 n
)

time. How-
ever, the analysis needs a sphere packing bound in the metric
space. Otherwise the cost must be multiplied by “sphere
volumes”, that are also exponential on the dimensionality.
Moreover, the algorithm needsΩ

(

n2
)

space for high di-
mensions, which is too much for practical applications.

In [25], the authors present themetric skip list. It uses
O(n log n) space and can be constructed withO(n log n)
distance computations. It answers 1NN queries using



O(log n) distance evaluations with high probability. Later,
in [26], other authors introducenavigating nets. It can also
be constructed withO(n log n) distance computations, yet
using O(n) space. It gives an (1 + ε)-approximation algo-
rithm to solve 1NN queries in timeO(log n) + (1/ε)O(1).
Both indices could serve to solve the 1NNG problem
with O(n log n) distance computations but not to build
kNNGs. In addition, the hidden constants are exponential
on the intrinsic dimension, which makes these approaches
useful only in low-dimensional metric spaces.

In [24], the author uses a FQTrie [28] in order to speed
up the n NNk(q)’s. Later, this idea is improved in [15],
[27], where the authors propose a generalkNNG construction
methodology for metric spaces. They also plug into the
methodology a generic pivot-based index and a variant of
the BST [29], in order to obtain two concrete algorithms.

A dynamickNNG construction is a hard task since every
object insertion/deletion can affect several sets ofkNNs in
the current graph. We are unaware of any work on this topic.

4) Reversek-nearest neighbors:The techniques de-
scribed in [14], [30]–[32] support reverse 1NN queries,
which are too restrictive for our purposes. The works in [7],
[33] are specific for the metric space scenario and support
reversekNN queries for values ofk > 1. However, we do not
consider them in the experimental evaluation (Section IV),
as they are exact approaches focused in low dimensional
metric spaces, and optimized in order to reduce I/Os. (Ours
is approximated, focused in high dimensional spaces, and
optimized in order to reduce distance evaluations.) Thus, a
experimental comparison is not fair or meaningful.

In [6] the authors claim to be the first solution for
approximate reversekNN searching in general metric spaces
for anyk. This solution assumes that the numberk of objects
enclosed in an arbitrary hypersphere centered in an object
u ∈ U follows a power lowk ∝ cr

df

u,k, wheredf is the fractal
dimension of the space. Then, they solve a regression model
ln cru,k ∝

ln k
df

for each objectu ∈ U so as to estimatecru,k,
given the parameterk and the objectu.

5) The permutation index:Let A ⊆ U be a subset of
anchors. Each elementu ∈ U induces apreorder≤u of the
anchors given by the distance tou, defined asy ≤u z ⇐⇒
d(u, y) ≤ d(u, z), for any anchor pairy, z ∈ A. The relation
≤u is a preorder and not an order because some anchors can
be at the same distance ofu, and then it could be possible
to find two anchorsy 6= z such thaty ≤u z ∧ z ≤u y.

Let Πu = i1, i2, . . . , i|A| be the permutation ofu, where
anchoraij

≤u aij+1
. Anchors at the same distance take an

arbitrary but consistent order. Every object inU computes
its preorder ofA and associates it to a permutation, which
is stored in the index. Thus, the index needsn|A| space.

The crux of this index is that two equal objects must have
the same permutation, while similar objects will hopefully
have similar permutations. So ifΠu is similar to Πq we
expect thatu is close toq. Thus, we have changed the

problem from searchingU to searching the permutation set.
At query time, we computeΠq and compare it with all the

permutations stored in the index. So, we traverseU in the
order≤Πq

induced byΠq (by increasing permutation dis-
similarity). If we limit the number of distance computations
we obtain a probabilistic search algorithm. Fortunately, the
order≤Πq

induced is extremely promissory, as reported in
[12] for range queries.

Similarity between the permutations ofq and u can be
measured byKendall Tau(Kτ ), Spearman Footrule(SF ),
or Spearman Rho(Sρ) metric [34], among others.Kτ can
be seen as the number of swaps that a bubble-sort-like
algorithm has to do in order to make two permutations equal.
Using Π−1(ij) to denote the position of anchoraij

in the
permutationΠ, SF andSρ are defined as follows:

SF (Πu, Πq) =
∑

j = [1,|A|]

|Π−1
u (ij)−Π−1

q (ij)|,

Sρ(Πu, Πq) =

√

∑

j = [1,|A|]

|Π−1
u (ij)−Π−1

q (ij)|2,

as Sρ is monotonous, we useS2
ρ . For example, letΠq =

(42153) and Πu = (32154) be the query and object
u ∈ U permutations, respectively. So,Kτ (Πu, Πq) = 7,
SF (Πu, Πq) = 8, andS2

ρ(Πu, Πq) = 16.

III. O UR PROPOSAL

An obvious procedure to solve theNNk(q) is to report the
first k objects in the order≤q, yet we needn distance eval-
uations to compute it. In this paper, we use the permutation
index to estimate the order≤q and solvekNN queries and
related problems with high retrieval rate. Let us introduce
the concept ofdominating order.

Definition 1 (dominating order):Order≤s dominates or-
der ≤t at level C/k if the first C elements in order≤s

contain the firstk elements in order≤t.
We intensively use the order≤Πq

induced by the per-
mutation of q as an “almost” dominant order for≤q so
as to solvekNN related problems. Even though we cannot
guarantee that≤Πq

is a truly dominant order for≤q, in
practice we verify that for a levelC/k = O(1) we solve
NNk(q)’s and RNNk(q)’s with high probability (that is,
high retrieval rate), even in high dimensional spaces. Both
the domination level and the function to measure similarity
between permutations will be experimentally determined in
Section IV. We assume we already have the permutation
index and we use an abstract permutation similarity function
PS. All the pseudocodes are given in Fig. 1.

1) k-Nearest neighbor queries:We compute the query
permutationΠq and then select the firstC objects in the
order≤Πq

. Next, we compute the distances between these
objects andq and return thek-closest objects.ApproxkNN

implements this. It needs|A|+ C distance computations.



ApproxkNN(Obj q, Int k)
1. Πq ← compute the permutation ofq // |A| evals.
2. pDist← {(u, PS(Πq, Πu)), u ∈ U}
3. C ← selectSort(pDist, C) // by perm. sim.
4. distCq ← {(c, d(c, q)), c ∈ C} // C evals.
5. kNNq ← selectSort(distCq, k) // by dist. toq
6. Return (kNNq, Πq, distCq)

Approx RkNN(Obj q, Int k)
1. Πq ← compute the permutation ofq // |A| evals.
2. pDist← {(u, PS(Πq, Πu)), u ∈ U}
3. For i ∈ [1, C] Do // C + C2 dist. evals. over all
4. c← select(pDist, i) // by perm. sim.
5. kNNc ← ApproxkNNU(c, k) // C evals.
6. If d(q, c) ≤ cov. rad. ofkNNc Then Report c// 1 ev.

ApproxkNNG(Objs U, Int k)
1. E ← ∅
2. For each u ∈ U Do // nC dist ev. overall
3. E ← E ∪ {(u, v), v ∈ ApproxkNNU(u,k)} // C evs.
4. Return(U, E)

RemoveNode(kNNG (U, E), IndexI, Obj u)
1. kNNu ← get the current adjacency ofu from E
2. E ← E \ {(u, v), v ∈ kNNu} // remov.u adja.
3. For each v ∈ U Do E ← E \ {(v, u)}//remov. rev. edg.
4. U← U \ {u}, I.remove(u)

ApproxkNNU(Obj q, Int k)
1. retrieveΠq from the index
2. pDist← {(u, PS(Πq, Πu)), u ∈ U \ {q}}
3. C ← selectSort(pDist, C) // by perm. sim.
4. distCq ← {(c, d(c, q)), c ∈ C} // C evals.
5. Return selectSort(distCq, k) // by dist. toq

Approx RkNNG(Obj u, PermutΠu, SetdCu, Int k,
EdgesE)

1. For each (c, dc,u) ∈ dCu Do // up to C2 evs. over all
2. kNNc ← get the current adjacency ofc from E
3. If dc,u ≤ covering radius ofkNNc Then Report c
4. Else If |kNNc| < k Then // check.c adja. for restor.
5. E ← E \ {(c, v), v ∈ kNNc} // remov. oldc adja.
6. kNNc ← ApproxkNNU(c, k) // C evals.
7. E ← E ∪ {(c, v), v ∈ kNNc} // restor.c adja.
8. If dc,u ≤ cov. radius ofkNNc Then Report c

AddNode(kNNG (U, E), IndexI, Obj u, Int k)
1. (kNNu, Πu, dCu)← ApproxkNN(u, k) // |A|+C evs.
2. RkNNu← Approx RkNNG(u, Πu, dCu, k, E)//0–C2 evs.
3. U← U ∪ {u}, I.add(u, Πu)
4. For each v ∈ RkNNu Do // remove incident edges
5. If v hask neighborsThen // if necessary
6. let w be v’s farthest neighbor, E ← E \ (v, w)
7. E ← E ∪ {(u, v), v ∈ kNNu} // addingu adjacency
8. E ← E ∪ {(v, u), v ∈ RkNNu} // complet. other adjas.

Figure 1. Pseudocodes forkNN related problems. selectSort(set, k) retrieves the firstk elements inset in increasing order, and select(set, k) retrieves
the k-th element ofset.

We consider a variantApproxkNNU for the special case
when the query belongs toU, which is used as an auxiliary
method by other functions. In this variant we retrieveΠq

from the index, thus it only needsC distance computations.
2) Reversek-nearest neighbor queries:We computeΠq

and select the firstC objects in ≤Πq
. Then, for each

candidatec in C, we check if d(q, c) is lower than the
covering radius ofc for kNNs in U \ {c}. We do this in
Approx RkNN, where we useApproxkNNU. This algorithm
needs|A|+ C + C2 distance computations.

3) k-Nearest neighbor graph:For eachu ∈ U we solve
a kNN query retrieving neighbors fromU \ {u} using
ApproxkNNU. This cost nC distance computations (and
extra n|A| distance computations if we need to construct
the index). It is implemented inApproxkNNG.

4) Dynamick-nearest neighbor graph:For this sake, we
have to handle both object insertions into and deletions from
the kNNG. When deleting an object, some nodes in the
kNNG lose a neighbor, so we also need to restore them by
performingkNN queries. However, as the most important
property of thekNNG is that the objects in the adjacency
list of a given objectare the closest ones, we have chosen
to perform a lazykNNG restoration when adding new nodes.

Adding new objects into thekNNG: Given a new
object u 6∈ U, we compute theNNk(u) to determine its
neighbors, but this time, besides retrieving the set ofkNNs,
we also get the permutationΠu of u, and the setdCu
of distances computed when reviewing the firstC objects
in the order induced by the permutationΠu. Then, we
compute theRNNk(u) to know which objects already in
the kNNG must update theirkNN adjacency lists. In this
step, we perform a partial restoration of the graph by calling
Approx RkNNG. Finally, we have to addu into U, Πu

into the permutation index, and update thekNNG. This is
implemented inAddNode, which costs|A| + C distance
computations plus the ones needed to partially restore the
graph, that is from zero toC2 extra distance computations.

FunctionApprox RkNNG reusesΠu and dCu. For each
candidatec in dCu, it retrieves the current adjacency ofc to
check whetheru is a reversekNN of c (using the covering
radius ofc), in which case it reportsc and continues with the
next candidate. Otherwise, ifc haslessthank neighbors, it
is still possible thatu will be a reverse neighbor ofc. Thus,
we restore its adjacency using the variantApproxkNNU (this
costC distance computations) and perform the check again.
This way, we delay the restoration (and its cost) as much



as we can in the process of inserting and deleting objects.
Actually, if the process only considers insertions of new
objects, we never need to restore thekNNG.

Removing objects from thekNNG: We do this in
RemoveNode, which simply extracts the node from bothU,
the graph, and the permutation index; and also extracts its
adjacency list and all the edges pointing to it from the graph
edge set. This operation uses zero distance computations.

To remove an objecto from the index we extract its
permutation. Yet, ifo is an anchor we need to do more
work. The simplest option is to take away its identifier
from every permutation. This does not alter the order in the
permutations, but could degrade the search performance. So,
upon several anchor deletions, it is necessary to restore the
index, that is, choosing a new anchor setA and recompute
all the permutations. This maintenance process can be made
offline. Nevertheless, in this paper we neglect this situation.

IV. EXPERIMENTAL EVALUATION

We have tested ourkNN approach on a synthetic and a
real-world metric space. The synthetic dataset is formed by
10,000 vectors uniformly distributed in the metric space
([0, 1]D, L2) (the unitary realD-dimensional cube with
Euclidean distance), forD = 32 and 64. For this value of
dimension the problem is considered untreatable for exact
techniques. Of course, we have not used the fact that vectors
have coordinates, but have treated them as abstract objects.

The real-word dataset is composed by face images
obtained from several sources: Kanade (vasc.ri.cmu.edu/-

NNFaceDetector/); PIE F SE, PIE NF, and PIET
(web.mit.edu/emeyers/www/face_databases.html); BioID
(www.bioid.com/downloads/facedb/index.php); and
CAS-PEAL (www.jdl.ac.cn/peal/index.html). In order
to standardize this set, face images were re-projected
using PCA, generating 51,246 feature vectors with 2,152
components. We useL2 in order to compare the feature
vectors. We have indexed 20,000 randomly chosen face
images and picked other 100 for the queries.

We run three experimental series. The first one is devoted
to fix the parameters of our approach, namely, the function
to measure similarity between permutations, the domination
level, and the number of anchors. (This is because we do
not have theoretical tools to estimate performance.) In this
series, we also test the performance of the approximate direct
and reversekNN queries. The second series shows brief
results respect to the construction of thekNNG. Finally, the
third series deals with the face images. In the plots we show
how many objects in the query outcome are correctly found,
that is, we compare the query outcome with the real answer
of the proximity query. In general, instead of speaking about
distance computations we refer to the domination level.
(To obtain the number of distances computed one needs to
multiply k by the domination level.)
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Figure 2. Studying the permutation similarity functions. Note the logscales.

The experiments were run on an Intel Core 2 Duo of
2.2 GHz, 4 MB of cache, 4 GB of RAM, and local disk,
running Mac OS X 10.5.6. The algorithms were coded in
C, and compiled withgcc version 4.0.1.

A. Parameter tuning, and direct and reversekNN queries

We start by studying the prediction performance of the
functions to measure permutation similarity. We run a test
similar to the one in [12, Fig. 2]. We do direct and reverse
8NN queries using 64 anchors for 5,000 objects. We use
a smaller dataset as we perform direct and reverse queries
for the 5,000 objects (thus, in average a reverse 8NN query
retrieves 8 objects). The results are show in Fig. 2. As
expected from [12],SF , Sρ, andKτ have similar prediction
power, the later being the most accurate one. Hence, in the
following experiments we only useKτ . Furthermore, when
the space dimensionality increases, it is more difficult to
solve similarity queries, as expected.

Now, we want to fix the domination levelC/k. Plots in
Fig. 2 also show that we obtain reasonable good results from
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Figure 3. Studying the domination level and the size of anchor set. Note
the logscales.

a domination levelC/k = 32, specially inkNN queries. This
is corroborated by the results in Fig. 3(a), where we test
direct and reverse 64NN queries (over the full 10,000-vector
dataset, averaging over 100 queries, so this time we show
percentage of retrieval). In fact, fork = 64 we can use
a lower domination level (for instance, 16). Nevertheless,
the increasing of the dimensionality has a negative effect in
the performance of our approach, but we can control this by
increasing the number of anchors. In Fig. 3(b) we repeat the
test doubling the number of anchors (we use 128), showing
good retrieval results both in direct and reverse queries. We
give some figures to illustrate the point: In dimension 64,
with domination levelC/k = 16 and 64 anchors (Fig. 3(a))
our technique retrieves 76.8% and 81.8% of the direct and
reverse 64NNs, respectively; but if we use 128 anchors, our
approach retrieves 90.8% and 93.8% of the direct and reverse
64NNs, respectively.

With regard to CPU time, our approach needs moderate
time to solve these queries. For instance, in dimension 32,

k = 32, n = 10, 000, and 64 anchors, we need 0.52 and 21.5
seconds in order to solve direct and reversekNN queries,
respectively. A detailed CPU time study will be deferred to
the extended version of this paper.

We run the same tests in dimensionsD = 8 and 16. After
tuning the size of the anchor set to 128 and the domination
level to C/k = 8, we obtain almost complete retrieval.

B. k-Nearest neighbor graphs

We have already shown that our approach has good
performance when solving direct and reversekNN queries.
This suggests good results in thekNNG construction process,
since it is based in solving a singlekNN query per object
in the dataset (and each one needsC = O(k) distance
computations). Therefore, given the datasetU of size n,
the whole process needsnC = O(nk) distance evaluations
in order to obtain the approximatekNNG. Hence, it is
interesting to know how good is the approximation.

For this sake, we show in Table I the percentage ofk-
nearest neighbors properly computed in the graph (%kNN),
and the ratio between the average covering radius of the
approximate and the realkNNG (cr ratio). In this case we
use 10,000 objects and 128 anchors. Fork = 8, we use
level C/k = 32, and fork = 64, level 16. (Remember that
the number of distance evaluations can be easily derived by
multiplying the domination level byk.)

We recover more than 98% of the truekNNs in dimension
D = 32 using a reasonable number of distance computa-
tions. This dimensionality is considered as untreatable for
traditional exact techniques. Similar results are obtained
for D = 64 (more than 91% of true neighbors in the
graph). Finally, it can be seen that the degradation of the
approximatekNNG with respect to the real one is negligible.
In fact, the average covering radius of the approximatekNNG

has increased less than 4% for small values ofk.
In the extended version of this paper we will also show

how much varying these measures when inserting and delet-
ing objects from the graph. However, we expect that these
numbers remain constant.

C. Face images

Finally, we perform a brief test in this dataset of 20,000
objects having representational dimensionality 2,152. We
have considered anchor sets of sizes 32 and 64 (which
are moderate when considering the high dimensionality).
Fig. 4(a) shows good results forkNN queries. In fact,
for 2NN and 4NN queries we retrieve around 86% of the

Table I
QUALITY PERFORMANCE IN THE CONSTRUCTION OFkNNGS

D k = 8, C/k = 32 k = 64, C/k = 16
% kNN cr ratio % kNN cr ratio

32 98.1 1.035 98.8 1.052
64 91.1 1.023 92.1 1.083
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Figure 4. Direct and reversekNN queries in the face space. Note the
logscales.

nearest neighbors using levelC/k = 64 and 64 anchors.
Finally, these experimental results confirm improvements in
the retrieval rate when increasing the size of the anchor set
and the domination level.

In Fig. 4(b), we plot the percentage of reversekNNs
properly retrieved. In this difficult case, we have excellent
retrieval rate, which can be even improved by increasing the
anchor set size or the domination level (and thus, the number
of distance evaluations performed in the query). We suspect
that the superior reversekNN retrieval rate in this space is
explained by the presence of outliers, that is, face images
with no reverse neighbors. So, we repeat the experiment
excluding outliers and we obtain a lower, but still good,
rate. Certainly, this deserves more research.

V. CONCLUSIONS

We have presented a new approximate approach to solve
severalk-nearest neighbor (kNN) related problems in general
metric spaces.

Our contribution is based on the following observation: A
kNN query defines a search order in the metric datasetU, of
sizen. This order is the sequence of object identifiers when
they are sorted in increasing distance to the query. All we
need to solve akNN query are the firstk elements in this
sequence. Calculating this order is expensive in the original
metric space as it implies computingn distances. Our idea
is to use an alternative order, much cheaper to compute, yet
it yields a rather similar sequence. This alternative orderis
obtained with thepermutation index[12]. In this index, we
choose a set of objects, theanchors, from the datasetU.
Then, each object in the dataset computes the distance to
all of the anchors and stores in the index the permutation of
anchor identifiers in increasing order of distance.

To solve thekNN query we compute the alternative order.
Then, we select its firstC > k elements, and refine this sub-
set so as to obtain an approximation to the truekNN answer.
We have experimentally shown that one can conveniently
chooseC/k = O(1), for reasonable values of the constant
in the big-O notation. With a similar technique we can solve
the related, but more difficult problem of computingreverse
kNN queries usingO(k2) distance computations.

With these low complexity bounds it is possible to foresee
a large number of applications that may benefit with these
algorithms. For instance, we also apply these primitives to
constructk-nearest neighbor graphs(kNNGs), and also to
update thekNNG upon object insertions and deletions.

In order to illustrate the effectiveness of our approach,
we can say that in dimension 64, withC/k = 16 and 128
anchors, our technique retrieves 91% and 94% of the direct
and reverse 64NNs, respectively. Of course, we can obtain
even better results if we increase the value ofC/k or the
size of the anchor set.

With respect to thekNNG, using 128 anchors andC/k =
32, we recover more than 98% of the truek-nearest neigh-
bors in dimension 32 using a reasonable amount of distance
computations. Also, the expansion of the covering radii in
the approximate graph is negligible, less than an 4% when
compared with the covering radii of the realkNNG.

Future work involves the exploration of other alternative
orders when solvingkNN problems. Another interesting
trend is to speed upreverseknn queries by incorporating
the regression model of [6] in order to efficiently estimate
the covering radii of objects in the dataset. This way, instead
of spend distance computations in order to compute the
covering radii, we can use them in order to review more
elements in the database, to hopefully improve our results
when retrieving reversek-nearest neighbors.
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[27] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro, “Prac-
tical construction ofk-nearest neighbor graphs in metric
spaces,” inProc. 5th WEA, ser. LNCS, vol. 4007. Springer,
2006, pp. 85–97.
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