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Abstract—Retrieving the k-nearest neighbors of a query  problem of placing a new supermarket in a given location.
object is a basic primitive in similarity searching. A related, We could perform several reverseNd queries in order
far less explored primitive is to obtain the dataset elemert 4, fing 5 place such that many residential areas in that
which would have the query object within their own k-nearest . . . .
neighbors, known as the reverse k-nearest neighbor query. location would fmd the new outlet as 'Fhelr n_earest choice.
We already have indices and algorithms to solvek-nearest ~REVErsekNN queries can also be used in profile-based mar-
neighbors queries in general metric spaces; yet, in many cas  keting, cluster and outlier detection, geographic infarora
of practical interest they degenerate to sequential scanng.  systems, traffic networks, adventure games, or molecular

The naive algorithm for reverse k-nearest neighbor queries . . ; ; :

has quadratic complexity, because theék-nearest neighbors of biology (see [623’ [7] forfl_thh:)r dgtalls).glnally, n r’ahpaper
all the dataset objects must be found; this is too expensive. We USe reverseNN q.uerles Oor dynamigNN gra_p S.
Hence, when solving these primitives we can tolerate tradim As can be seen, direct and reveksaearest neighbors are

correctness in the solution for searching time. In this pape  fair choices for several problems. Also, theiN approach
we propose an efficient approximate approach to solve these s simple, has a small number of parameters to tune up, has

similarity queries with high retrieval rate. Then, we show how — ;erq training time, can be adapted to database changes over
to use our approximatek-nearest neighbor queries to construct dh ellent classifcai ;
(an approximation of) the k-nearest neighbor graph when we IME, and has excelient classication performance.

have a fixed dataset. Finally, combining both primitives we Despite the advantages of theN approach, in real-world
show how to dynamically maintain the approximate k-nearest  applications it is seldom used outside some toy examples,

neighbor graph of the objects currently stored withinthe meric  sych as considering small databases or in low-dimensional
dataset, that is, considering both object insertions and detions. vector-spaces. This is because real-world data are medium o
high dimensional, or have no coordinates at all, for instanc
strings. In these cases, one needs to resort tontagic
space searcmodel, where objects are treated as black boxes
Given an objecy and a datasetl of sizen, thek-nearest  and the similarity among them is computed with a metric
neighbor query(NNy(q)) retrieves thek elements fromU  (comprehensive surveys and books are [8]-[11]).
closest tog. This primitive is a building block for a large When we model similarity as a metric space, we are al-
number of problems in a wide number of application areasready approximating the real retrieval need of users. Ity fac
For instance, in pattern classification, the nearest-meigh given a dataset, we can use several distance functions, each
rule can be implemented withVN1(q)'s [1]. NNy (g)'s are  of them considering some aspects of objects and neglecting
also a fundamental tool in cluster and outlier detection [2] others. Likewise, when we design a model to represent real-
[3], image segmentation [4], query or document recommentife objects, we usually lose some information. Think, for
dation systems [5], and so on. instance, in the vector representation of a document. This
A related, but far less explored primitive is theverse  representation does not consider either positions of thrdsvo
k-nearest neighbor querfRNNi(g)), that is, given an composing the document, the document structure, or the
objectq finding the dataset elements which hayevithin  semantic. Moreover, even if we find the proper metric and
their ownk-nearest neighborg(INs). This primitive is quite  a lossless object representation, there are high-dimeaisio
expensive to compute since we need thens for several metric spaces where solving similarity queries requires re
database objets (or maybe, for them all) in order to verifyviewing almost all the dataset no matter what strategy we
the correctness of the query outcome. This similarity queryuse. In addition, in many applications, the efficiency of the
has interesting applications. For instance, let us con$ie  query execution is much more important than effectiveness.
. _ That is, users want a fast response to their queries and will
1 Partially funded by CONACyYT, Mexico.

1 Partially funded by MEC grant TIN2006-15071-C03-03, Sp#&iart even accept appr_OX|mate results (as f_ar as th_e number of
of this work was made while visiting the LBD, Univ. of Corufi@pain. false drops and hits are moderate). This has given rise to a
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new approach to the similarity search problem: We try to findexpensive to compute (think, for instance, in comparing two
the objects relevant to a given query with high probability.fingerprints), it is customary to define the complexity of
An intuitive notion of what this approach aims to is that it the search as the number of distance evaluations performed,
attempts not to miss many relevant objects at query time. disregarding other components such as CPU time for side

Our contribution is based on the fact thatNVy(q) computations and even I/O time. Thus, the ultimate goal is
defines a dataset search order given by the distance to the build offlinean index in order to speed wmline queries.
query. All we need to solve AN (q) are the firs& elements 2) k-Nearest neighborsDue to its importance in sev-
in this order, while the remaining ones are not considerearal application fields, the literature diNN searching is
at all. Calculating this order in the original metric spase i abundant. The most efficient algorithms are focusedon 1
expensive as it implies computingdistances. Our idea is to queries in vector spaces. The techniques used are standard
use an alternative search order, which is cheaper to computel-trees for dimension two ané&-trees for dimension up
than and is rather similar to the real order, especially withto four, as described in [13]. So, the problem could be
respect to the elements we care the most, the first onesonsidered solved for low-dimensional vector-spaces. For
The fundamental idea of the alternative order was presentduigh-dimensional vectors, in [14] the authors present a
in [12] for metric range searching. In this paper we use thgrobabilistic algorithm using dimensionality reducticth-
alternative search order to efficiently solve direct anétreg  niques that retrieves the nearest neighbor about 50% of
kNN queries with high probability. Then, we apply these the times. Dimensionality reduction techniques work when
primitives to construck-nearest neighbor graph§NNGs)  the data lie in a lower dimensional manifold compared to
and to update thENNG upon object insertions and deletions. the representational (number of coordinates) dimension, a
fortunate condition which is not always present. Finally,
using metric indices, we solveNN queries usingO(n®)

1) A summary of metric space searchilfymetric space distance computations, whese< 1 is a parameter depend-
is a pair(X, d), whereX is the universe of valid objects and ing on both the particular metric space and the index used.
d: X x X — R* U{0} is distance function defined among Yet, there are several cases where traditional metric Bearc
them. Objects inX do not necessarily have coordinates.algorithms degenerate to sequential scanning.
The distance function gives us a dissimilarity criterion to 3) k-Nearest neighbor graphsThe kNNG of the setU is
compare objects from the universe. Thus, the smaller the weighted directed grapB(U, E) connecting each element
distance between two objects, the more “similar” they arex € U to its kNNs, thusE = {(u,v),v € NNg(u)}, where
Function d satisfies the following properties: symmetry in this caseNN(u) C U\ {u}. Beside the applications
d(z,y) = d(y, z), reflexivity d(z, z) = 0, strict positiveness already mentioned fakNN queries kNNGs can also be used
dz,y) > 0 <= x # y, and the triangle inequality in metric space searching [15], [16], VLSI design, spin glas
d(z,y) <d(z,z)+d(z,y), V z,y,z € X. and other physical process simulations [17], and so on.

Typically, we have a finitedatabaseor datasetU of The kNNG can be constructed by solving 8N (u) for
size n, which is a subset of the universe. Later, giveneachu € U. There are techniques to speed up the procedure
an objectq € X, a proximity query consists in retrieving in vector spaces [17]-[22]. Most of them assume that nodes
objects fromU relevant tog. There are two basic proximity are points inR” and thaid is Euclidean or some Minkowski
queries or primitives: Theange query(q,r) retrieves all  distance, which is not the case in several applications evher
the elements iU which are within distance to ¢. That  kNNGs are required nor is suitable for general metric spaces
is, (¢,7) ={x € U,d(x,q) <r}. The k-nearest neighbor (in [19] the vector space limitation is eliminated but the
query NNy (q) retrieves the: elements fronU closest tog. algorithm demands polynomial space to be implemented).
That is, NN (g) such thaty 2 € NNy (q), y € U\ NNx(q), We also have alternatives for general metric spaces [15],
d(q,z) < d(q,y), and |NNr(q)| = k (in case of ties we [23]-[27]. In [23], the problem is solved using randomiza-
choose anyk-element set satisfying the condition). The tion in O(nloan log? I'(U)) expected time. Herel'(U)
covering radiuscry, Of a query NNi(q) is the distance is the distance ratio between the farthest and closest pairs
from ¢ towards the farthest neighbor NN (q). of points inU. The author argues that in practitéU) =

In this paper, we are also dealing with theversek-  n°(), in which case the approach@n log* n) time. How-
nearest neighbor quer)R NNy (q), which retrieves the ele- ever, the analysis needs a sphere packing bound in the metric
ments fromU havingq in their ownk-nearest neigbors. That space. Otherwise the cost must be multiplied by “sphere
is, RNNy(q) such thatv © € RNNy(q) = d(q,z) < cry .  volumes”, that are also exponential on the dimensionality.
This primitive does not necessarily retriekeobjects. Moreover, the algorithm need@(n?) space for high di-

Given the dataselU, range andkNN queries can be mensions, which is too much for practical applications.
trivially answered by performing distance evaluations. On  In [25], the authors present thaetric skip list It uses
the other hand, reverseNN queries requires:? distance O(nlogn) space and can be constructed wittin logn)
evaluations. However, as the distance is assumed to l@istance computations. It answersNNL queries using
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O(logn) distance evaluations with high probability. Later, problem from searchin® to searching the permutation set.
in [26], other authors introduceavigating netslt can also At query time, we computl, and compare it with all the
be constructed wittO(nlogn) distance computations, yet permutations stored in the index. So, we travéilsen the
using O(n) space. It gives anl(+ ¢)-approximation algo- order <r;, induced byII, (by increasing permutation dis-
rithm to solve NN queries in timeO(logn) + (1/)°M), similarity). If we limit the number of distance computat®on
Both indices could serve to solve theNNG problem  we obtain a probabilistic search algorithm. Fortunateig t
with O(nlogn) distance computations but not to build order <p, induced is extremely promissory, as reported in
kNNGs. In addition, the hidden constants are exponentig12] for range queries.
on the intrinsic dimension, which makes these approaches Similarity between the permutations gfand v can be
useful only in low-dimensional metric spaces. measured byKendall Tau(K,), Spearman FootruléSF),
In [24], the author uses a FQTrie [28] in order to speedor Spearman RhgS,) metric [34], among othersk’, can
up then NN (q)'s. Later, this idea is improved in [15], be seen as the number of swaps that a bubble-sort-like
[27], where the authors propose a genénaliG construction  algorithm has to do in order to make two permutations equal.
methodology for metric spaces. They also plug into theUsing I1-!(i;) to denote the position of anchag; in the
methodology a generic pivot-based index and a variant opermutationll, SF' and S, are defined as follows:
the BST [29], in order to obtain two concrete algorithms.
A dynamickNNG construction is a hard task since every  SF(II,,II;) = Z |H;1(z‘j) - H;l(z’j)|,
object insertion/deletion can affect several setgmfs in j = [1,]A[]
the current graph. We are unaware of any work on this topic. . EFDIN.
4) Reversek-nearest neighbors: The techniques de- Sp(Mu, Ig) = [T (i5) = g~ (25)[%,
scribed in [14], [30]-[32] support reversenti queries, i= (LAl
which are too restrictive for our purposes. The works in [7],as S, is monotonous, we usé*g. For example, lefl, =

[33] argﬁ\?ﬁemﬂc_ forf the rlnetn?:dfspalceHscenarlo an((jtl suptp0r42153) and I, — (32154) be the query and object
revers queries for values of > 1. However,we donot = 1y permutations, respectively. S, (IL,,11,) = 7,

consider them in the experimental evalu:_;mon (Sgcuon .IV)’S[F(HU,HQ) — 8, and S2(I,, T1,) — 16,
as they are exact approaches focused in low dimensiona P

metric spaces, and optimized in order to reduce I/Os. (Ours
is approximated, focused in high dimensional spaces, and
optimized in order to reduce distance evaluations.) Thus, a An obvious procedure to solve théV;(q) is to report the
experimental comparison is not fair or meaningful. first k objects in the ordex,, yet we neech distance eval-

In [6] the authors claim to be the first solution for uations to compute it. In this paper, we use the permutation
approximate reverseNN searching in general metric spaces index to estimate the ordet, and solvekNN queries and
for anyk. This solution assumes that the numbef objects  related problems with high retrieval rate. Let us introduce
enclosed in an arbitrary hypersphere centered in an obje#ie concept otlominating order
u € U follows a power lowk o cr’, , whered; is the fractal Definition 1 (dominating order):Order<, dominates or-
dimension of the space. Then, they solve a regression modéer <; at level C/k if the first C' elements in order,
Inery, o< £ for each object: € U so as to estimater, ,, ~ contain the first: elements in order;.
given the parametet and the object:. We intensively use the ordexp, induced by the per-

5) The permutation indexiet A C U be a subset of mutation ofg as an “almost” dominant order fox, so
anchors Each element. € U induces gpreorder<,, of the  as to solvekNN related problems. Even though we cannot
anchors given by the distance 9 defined ag) <, z <=  guarantee thaty_ is a truly dominant order forl,, in
d(u,y) < d(u, z), for any anchor paiy, z € A. The relation  practice we verify that for a level’/k = O(1) we solve
<, is a preorder and not an order because some anchors caiVi(¢)’s and RNNy(q)’s with high probability (that is,
be at the same distance of and then it could be possible high retrieval rate), even in high dimensional spaces. Both
to find two anchorg # z such thaty <, z A z <, v. the domination level and the function to measure similarity

Let IT, = i1,42,...,4s; be the permutation of, where  between permutations will be experimentally determined in
anchora;; <, a;, ,. Anchors at the same distance take anSection IV. We assume we already have the permutation
arbitrary but consistent order. Every objectlihcomputes index and we use an abstract permutation similarity functio
its preorder ofA and associates it to a permutation, which PS. All the pseudocodes are given in Fig. 1.
is stored in the index. Thus, the index need4| space. 1) k-Nearest neighbor queriesWe compute the query

The crux of this index is that two equal objects must havepermutationIl, and then select the first’ objects in the
the same permutation, while similar objects will hopefully order <p;,. Next, we compute the distances between these
have similar permutations. So I, is similar to I, we  objects and; and return thek-closest objectsApprox kNN
expect thatu is close tog. Thus, we have changed the implements this. It needs\| + C distance computations.

I1l. OUR PROPOSAL



Approx kNN(ODbj ¢, Int k)

. II, — compute the permutation @f// |A| evals.
pDist — {(u, PS(II;,11,)),u € U}

C « selectSoryDist, C) Il by perm. sim.
distCq «— {(c,d(c,q)),c € C} Il C evals.

kNN, < selectSofdistCq, k) // by dist. tog
Return (ENNg, IT,, distCq)

o0 s wN PR

ApproxRENN(ODbj ¢, Int k)
I1, < compute the permutation @f// |A| evals.
pDist — {(u, PS(II;,11,)),u € U}
For i € [1,C] Do/l C' 4+ C? dist. evals. over all
¢ < selectpDist, i) I/l by perm. sim.
ENN. < ApproxkNNU(c, k) // C evals.
If d(g,c) < cov. rad. ofkNN. Then Report ¢// 1 ev.

Approx kNNG(Objs U, Int k)

1. E«~0

2. For eachwu € U Do // nC dist ev. overall

3. E«— EU{(u,v),v € ApproxkNNU(u,k)} // C evs.
4. Return(U, E)

RemoveNodéknNNG (U, E), IndexZ, Obj u)

1. kNN, < get the current adjacency affrom £

2. E«— E\{(u,v),v € kNN,} /] remov.u adja.

3. Foreachv € UDo E — E\ {(v,u)}//remov. rev. edg.
4. U~ U\ {u}, Z.removef)

o0k wDdE

Figure 1.
the k-th element ofset.

We consider a variam\pprox kNNU for the special case
when the query belongs 10, which is used as an auxiliary
method by other functions. In this variant we retriehig
from the index, thus it only needs distance computations.

2) Reverséi-nearest neighbor queriesive computell,
and select the firstC' objects in <r,. Then, for each
candidatec in C, we check ifd(q,c) is lower than the
covering radius ofc for knNs in U \ {c¢}. We do this in
ApproxRENN, where we usépprox kNNU. This algorithm
needs|A| + C + C? distance computations.

3) k-Nearest neighbor graphFor eachu € U we solve
a kNN query retrieving neighbors fronU \ {u} using

Approx kNNU. This costnC' distance computations (and computations plus the ones needed to partially restore the
extran|A| distance computations if we need to construct

the index). It is implemented iAppProx kNNG.
4) Dynamick-nearest neighbor graphFor this sake, we

Approx kNNU(ODbj g, Int k)

retrievell, from the index

pDist — {(u, PS(I1,,1L,)),u € U\ {¢}}

C «— selectSort{Dist, C) Il by perm. sim.
distCq «— {(c,d(c,q)),c € C} Il C evals.
Return selectSoftdistCq, k) // by dist. tog

aprownde

Approx RkNNG(Obj u, Permutll,, SetdCu, Int k,

EdgesFE)
1. For each(c,d.,,) € dCu Do // up to C? evs. over all
kNN, < get the current adjacency offrom E
If d.. < covering radius okNN. Then Report ¢
Else If |kENN.| < k Then // check.c adja. for restor.
E — E\ {(c,v),v € kENN.} // remov. oldc adja.
ENN. < ApproxkNNU(c, k) /I C evals.
E — EU{(c,v),v € kENN_} // restor.c adja.
If d.. < cov. radius ofkNN, Then Report ¢

© NG, WD

AddNode(kNNG (U, E), IndexZ, Obj u, Int k)

1. (NN, I, dCu) «— ApproxkNN(u, k) Il |A|+C evs.
2. RENN, < ApproxRkNNG(u, I1,, dCu, k, E)/I0-C? evs.
3. U~ UuU{u}, Z.add@,II,)

4. For eachv € RkNN, Do // remove incident edges

5 If v hask neighborsThen // if necessary

6. let w be v’s farthest neighbor, £ «— E \ (v, w)

7. E— EU{(u,v),v € kNN, } /[ addingu adjacency

8. F«— EU{(v,u),v € RENN,} // complet. other adjas.

Pseudocodes fénN related problems. selectSprtt, k) retrieves the firsk elements inset in increasing order, and seléstt, k) retrieves

Adding new objects into thé&NNG: Given a new
objectu ¢ U, we compute theVNy(u) to determine its
neighbors, but this time, besides retrieving the sektiofis,
we also get the permutatiol,, of u, and the setdCu
of distances computed when reviewing the fi€stobjects
in the order induced by the permutatidmh,. Then, we
compute theRNN(u) to know which objects already in
the kNNG must update theikNN adjacency lists. In this
step, we perform a partial restoration of the graph by agllin
ApproxRENNG. Finally, we have to add: into U, II,
into the permutation index, and update theNG. This is
implemented inAddNode, which costs|A| + C distance

graph, that is from zero t@'? extra distance computations.

Function Approx RENNG reusesll,, and dCu. For each
candidate: in dC'u, it retrieves the current adjacency ©fo

have to handle both object insertions into and deletion®s fro check whethew is a reverseékNN of ¢ (using the covering
the kNNG. When deleting an object, some nodes in theradius ofc), in which case it reports and continues with the
kNNG lose a neighbor, so we also need to restore them bpext candidate. Otherwise, éfhaslessthank neighbors, it
performing kNN queries. However, as the most importantis still possible that: will be a reverse neighbor af Thus,
property of thekNNG is that the objects in the adjacency we restore its adjacency using the variApprox kNNU (this

list of a given objectare the closest ones, we have chosencostC distance computations) and perform the check again.
to perform a lazykNNG restoration when adding new nodes. This way, we delay the restoration (and its cost) as much



as we can in the process of inserting and deleting objects.
Actually, if the process only considers insertions of new
objects, we never need to restore #eNG.

Removing objects from thénNG: We do this in
RemoveNode which simply extracts the node from bdth
the graph, and the permutation index; and also extracts its
adjacency list and all the edges pointing to it from the graph
edge set. This operation uses zero distance computations.

To remove an object from the index we extract its

permutation. Yet, ifo is an anchor we need to do more
work. The simplest option is to take away its identifier
from every permutation. This does not alter the order in the ‘
permutations, but could degrade the search performance. So 1 2 4 8 16 32 64
upon several anchor deletions, it is necessary to restere th domination level C/k (= C/8)
index, that is, choosing a new anchor getand recompute (@) ([0,1]7, L2), 8NN, 64 anchors, 5,000 objects.
all the permutations. This maintenance process can be made
offline. Nevertheless, in this paper we neglect this situmati

knn’s retrieved

T T

IV. EXPERIMENTAL EVALUATION

We have tested outNN approach on a synthetic and a
real-world metric space. The synthetic dataset is formed by
10,000 vectors uniformly distributed in the metric space
([0,1]P, Ly) (the unitary real D-dimensional cube with
Euclidean distance), fob = 32 and 64. For this value of
dimension the problem is considered untreatable for exact
techniques. Of course, we have not used the fact that vectors
have coordinates, but have treated them as abstract abjects 1

The real-word dataset is composed by face images
obtained from several sources: Kanadas€. ri . cru. edu/ -
NNFaceDetector/); PIE_F_SE, PIENF, and PIET
(web. mi t. edu/ emeyer s/ ww/ f ace_dat abases. htni ); BiolD Figure 2. Studying the permutation similarity functionstdlthe logscales.
(waw. bi oi d. conf downl oads/ f acedb/ i ndex. php); and
CAS-PEAL {ww. jdl.ac.cn/peal /index. htm). In order
to standardize this set, face images were re-projected The experiments were run on an Intel Core 2 Duo of
using PCA, generating 51,246 feature vectors with 2,152.2 GHz, 4 MB of cache, 4 GB of RAM, and local disk,
components. We usé, in order to compare the feature running Mac OS X 10.5.6. The algorithms were coded in
vectors. We have indexed 20,000 randomly chosen fac€, and compiled wittgcc version 4.0.1.
images and picked other 100 for the queries.

We run three experimental series. The first one is devote
to fix the parameters of our approach, namely, the function We start by studying the prediction performance of the
to measure similarity between permutations, the dominatio functions to measure permutation similarity. We run a test
level, and the number of anchors. (This is because we dsimilar to the one in [12, Fig. 2]. We do direct and reverse
not have theoretical tools to estimate performance.) Is thi8NN queries using 64 anchors for 5,000 objects. We use
series, we also test the performance of the approximatetdirea smaller dataset as we perform direct and reverse queries
and reversekNN queries. The second series shows brieffor the 5,000 objects (thus, in average a revernsa §uery
results respect to the construction of theNG. Finally, the  retrieves 8 objects). The results are show in Fig. 2. As
third series deals with the face images. In the plots we showxpected from [12]SF, S,, and K, have similar prediction
how many objects in the query outcome are correctly foundpower, the later being the most accurate one. Hence, in the
that is, we compare the query outcome with the real answebllowing experiments we only us& . Furthermore, when
of the proximity query. In general, instead of speaking dbouthe space dimensionality increases, it is more difficult to
distance computations we refer to the domination levelsolve similarity queries, as expected.

(To obtain the number of distances computed one needs to Now, we want to fix the domination levél'/k. Plots in
multiply & by the domination level.) Fig. 2 also show that we obtain reasonable good results from

reverse knn's retrieved
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2 4 8 16 32 64
domination level C/k (= C/8)
(b) ([0,1]7, L), R8NN, 64 anchors, 5,000 objects.

4 Parameter tuning, and direct and reverBeN queries



100 . . . . — ¥ k = 32,n = 10,000, and 64 anchors, we need 0.52 and 21.5
B ol 5 g | seconds in order to solve direct and revekse\ queries,
o - ""D respectively. A detailed CPU time study will be deferred to
2 80 r Tk 1 the extended version of this paper.
S ol W ] We run the same tests in dimensiabs= 8 and 16. After
~ Py = . . . .
@ s o tuning the size of the anchor set to 128 and the domination
g 60 S 1 level to C'/k = 8, we obtain almost complete retrieval.
2 - - - 4
g %0 + x B. k-Nearest neighbor graphs
g 40f B =50 K e T We have already shown that our approach has good
2 20 X DD==6§14,K r'rg:m X performance when solving direct and revekseN queries.
° T ‘ ‘ ‘ " v ‘ This suggests good results in theNG construction process,

2 1 2 4 8 16 32 64 since it is based in solving a singleNN query per object

domination level C/k (= C/64) in the dataset (and each one needs= O(k) distance

(a) ([0,1]7, L2), 64NN's and R64NN's, 64 anchors, 10,000 objects. computations). Therefore, given the datagetof size n,

the whole process needs” = O(nk) distance evaluations
100 T T

' ke o R in order to obtain the approximateNNG. Hence, it is
T gl :;;15—7:‘ g ] interesting to know how good is the approximation.
2 P For this sake, we show in Table | the percentagek-of
_g 80 | P %7 8 nearest neighbors properly computed in the graphi(9),
£ >< ‘ and the ratio between the average covering radius of the
8 or : | approximate and the re&INNG (cr ratio). In this case we
S sl + x | use 10,000 objects and 128 anchors. ko= 8, we use
5 e level C/k = 32, and fork = 64, level 16. (Remember that
g 50 4;,/ ” D =32 K, 64nn —t— | the number of distance evaluations can be easily derived by
g 4o Dﬁj&yﬁygﬁgg o multiplying the domination level by:.) o _
S D = 64, K, 164nn & We recover more than 98% of the trésNs in dimension
30t ‘ ‘ ‘ ‘ ‘ D = 32 using a reasonable number of distance computa-
1 2 4 8 16 32 64 tions. This dimensionality is considered as untreatabte fo

domination level C/k (= C/64) traditional exact techniques. Similar results are obthine

(b) ([0,1]7, L), 64NN’s and R64NN's, 128 anchors, 10,000 objects. for D = 64 (more than 91% of true neighbors in the
Figure 3. Studying the domination level and the size of ancled. Note graph). Finally, it can be seen that the degradation of the
the logscales. approximateétNNG with respect to the real one is negligible.

In fact, the average covering radius of the approxintatec

has increased less than 4% for small valueg.of
a domination leveC /k = 32, specially inkNN queries. This In the extended version of this paper we will also show
is corroborated by the results in Fig. 3(a), where we teshow much varying these measures when inserting and delet-
direct and reverse 6 queries (over the full 10,000-vector ing objects from the graph. However, we expect that these
dataset, averaging over 100 queries, so this time we shoWwumbers remain constant.
percentage of retrieval). In fact, for = 64 we can use C. Face images

a lower domination level (for instance, 16). Nevertheless, . ) ) )

the increasing of the dimensionality has a negative effecti " nally, we perform a brief test in this dataset of 20,000

the performance of our approach, but we can control this b bjects having representational dimensionality 2,152. We
ave considered anchor sets of sizes 32 and 64 (which

increasing the number of anchors. In Fig. 3(b) we repeat th o=t : c : !
test doubling the number of anchors (we use 128), showinii__re moderate when considering the high dimensionality).

good retrieval results both in direct and reverse querias. wHig- 4(2) shows good results forNN queries. Ig\ fact,
give some figures to illustrate the point: In dimension 64,07 2NN and AN queries we retrieve around 86% of the

with domination levelC'/k = 16 and 64 anchors (Fig. 3(a))

our technique retrieves 76.8% and 81.8% of the direct and Table |
reverse 6HINs, respectively; but if we use 128 anchors, our QUALITY PERFORMANCE IN THE CONSTRUCTION OFSNNGS
approach retrieves 90.8% and 93.8% of the direct and reverse

. D k=8,Ck=32 | k=64,Clk =16
64NNs, respectively. % kNN | cr ratio | % kNN | cr ratio

With regard to CPU time, our approach needs moderate 32 98.1 1.035 98.8 1.052
time to solve these queries. For instance, in dimension 32, 64 91.1 1.023 92.1 1.083




4 , , , , , , Our contribution is based on the following observation: A
K, 64anch, 4nn -t . . .
35 | Kp32anch, dnn o kNN query defines a search order in the metric datésetf
Ku S2anch. 2nn O e sizen. This order is the sequence of object identifiers when
T 1 T -~ . . . .
3 3y Ep g‘z‘gggﬂ 122 O X they are sorted in increasing distance to the query. All we
2 .5 ' '+ o need to solve &NN query are the firsk elements in this
° T sequence. Calculating this order is expensive in the algin
2] L T g . oy . . . . .
< 2 P X I metric space as it implies computimgdistances. Our idea
= 15+ >< - 8 - : is to use an alternative order, much cheaper to compute, yet
£ Ll g - it yields a rather similar sequence. This alternative oider
I -. T obtained with thepermutation indeX12]. In this index, we
) 5@ ------ o8 .
05% ..me % .. @ choose a set of objects, tlanchors from the datasel.
0: e ) ) ) ) Then, each object in the dataset computes the distance to
1 2 4 8 16 32 64 128 all of the anchors and stores in the index the permutation of
domination level C/k anchor identifiers in increasing order of distance.
(a) Space of face imagesNN queries. To solve thekNN query we compute the alternative order.

Then, we select its first’ > k elements, and refine this sub-
set so as to obtain an approximation to the tkuel answer.

We have experimentally shown that one can conveniently
ks chooseC/k = O(1), for reasonable values of the constant
2 in the big-O notation. With a similar technique we can solve
° P the related, but more difficult problem of computirayerse
E .A K G4anch, rinn + ] kNN queries using)(k?) distance computations.

g 70 e ﬁp giggﬁgm*é 1 With these low complexity bounds it is possible to foresee
S e ’ Mo K16k 32anch, r2nn - | a large number of applications that may benefit with these
SE o Ko Saane a9 | algorithms. For instance, we also apply these primitives to
K., 64anch, rinn, no outliers - constructk-nearest neighbor graph§:NNGs), and also to
55 K, 64anch, r2nn, no outliers A . : . .
K,, 64anch, r4nn, no outliers --4-- update thekNNG upon object insertions and deletions.
50 1 2 ;1 ;; ie 3:2 é4 128 In order to illustrate the effectiveness of our approach,
domination level C/k we can say that in dimension 64, with/k = 16 and 128
(b) Space of face images, reversen queries. anchors, our technique retrieves 91% and 94% of the direct

and reverse 6MNs, respectively. Of course, we can obtain
even better results if we increase the valueCof or the
size of the anchor set.

With respect to thé&NNG, using 128 anchors and/k =
nearest neighbors using levél/k = 64 and 64 anchors. 32, We recover more than 98% of the trkenearest neigh-
Finally, these experimental results confirm improvements i POrs in dimension 32 using a reasonable amount of distance
the retrieval rate when increasing the size of the anchor séomputations. Also, the expansion of the covering radii in
and the domination level. the approximate graph is negligible, less than an 4% when

In Fig. 4(b), we plot the percentage of revereans compared with the covering radii of the reainG.
properly retrieved. In this difficult case, we have excdllen Future work involves the exploration of other alternative
retrieval rate, which can be even improved by increasing th@rders when solvingkNN problems. Another interesting
anchor set size or the domination level (and thus, the numbdtend is to speed upeverseknn queries by incorporating
of distance evaluations performed in the query). We suspedhe regression model of [6] in order to efficiently estimate
that the superior revergenn retrieval rate in this space is the covering radii of objects in the dataset. This way, iadte
explained by the presence of outliers, that is, face image€f spend distance computations in order to compute the
with no reverse neighbors. So, we repeat the experimerfovering radii, we can use them in order to review more
excluding outliers and we obtain a lower, but still good,€elements in the database, to hopefully improve our results
rate. Certainly, this deserves more research. when retrieving reversg-nearest neighbors.

Figure 4. Direct and reverseNN queries in the face space. Note the
logscales.
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