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Abstract

The metric space model abstracts many proximity or
similarity problems, where the most frequently considered
primitives are range andk-nearest neighbor search, leav-
ing out thesimilarity join, an extremely important primitive.
In fact, despite the great attention that this primitive hasre-
ceived in traditional and even multidimensional databases,
little has been done for general metric databases.

We consider a particular type of similarity join: Given
two sets of objects and a distance thresholdr, find all the
object pairs (one from each set) at distance at mostr. For
this sake, we devise a new metric index, coinedList of
Twin Clusters, which indexes both sets jointly (instead of
the natural approach of indexing one or both sets indepen-
dently). Our results show significant speedups over the ba-
sic quadratic-time naive alternative. Furthermore, we show
that our technique can be easily extended to other similarity
join variants, e.g., finding thek-closest pairs.

1. Introduction

Proximityorsimilarity searchingis the problem of, given
a data set and a similarity criterion, finding elements of the
set that arecloseor similar to a given query. This is a natu-
ral extension of the classical problem of exact searching. It
is motivated by data types that cannot be queried by exact
matching, such as multimedia databases containing images,
audio, video, documents, and so on. In this new framework
the exact comparison is just a type of query, while close or
similar objects can be queried as well. There exist several
computer applications where the concept of similarity re-
trieval is of interest. Some examples are machine learning
and classification, image quantization and compression, text
retrieval, computational biology and function prediction.

Proximity/similarity queries can be formalized using the
metric space model [4, 8, 12, 13]. There is a universeX
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of objectsand adistance functiond : X× X −→ R
+ ∪ {0}

defined among them. Objects inX do not necessarily have
coordinates (for instance, strings and images). In order to
compare any two different objects we can (only) use the dis-
tance functiond, which is a measure of object dissimilarity.
Therefore, the smaller the distance between two objects, the
more “similar” they are.

The distance satisfies the following properties that
make (X, d) a metric space: d(x, y) ≥ 0 (positiveness),
d(x, y) = d(y, x) (symmetry),d(x, x) = 0 (reflexivity) and
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The typical scenario of the metric space search problem
considers that there is a finitedatabaseor datasetU ⊂ X.
Then, given a new objectq ∈ X, a proximity query consists
in retrieving objects fromU relevant toq. There are two
basic proximity queries or primitives. The first is therange
query(q, r), which retrieves all the elements inU which are
within distancer to q. The second is thek-nearest neighbor
queryNNk(q), which retrieves thek closest elements inU
to q. These similarity queries can be trivially answered by
performing|U| distance evaluations. Yet, as the distance is
assumed to be expensive to compute, it is customary to de-
fine the complexity of the search as the number of distance
evaluations performed, disregarding other components such
as CPU time for side computations and even I/O time. Thus,
the goal is to structure the database so as to compute much
fewer distances when solving proximity queries.

Naturally, we can consider other proximity operations.
In fact, in this paper we focus on thesimilarity join prim-
itive. To illustrate the concept, let us consider a headhunt-
ing recruitment agency. On the one hand, the agency has
a dataset of resumes and profiles of many people looking
for a job. On the other hand, the agency has a dataset of
job profiles sought by several companies looking for em-
ployees. What the agency has to do is to to findall the
person-company pairs which share a similar profile. Simi-
larity joins have other applications such as data mining, data
cleaning and data integration, to name a few.

During this work, we consider a particular type of simi-
larity join: Given two sets of objectsA, B ⊂ X and a dis-



tance thresholdr ≥ 0, find all the object pairs (one from
each set) at distance at mostr. Formally, the similarity join
A ⊲⊳r B between two finite setsA =

{

a1, . . . , a|A|

}

and
B =

{

b1, . . . , b|B|

}

is the set of pairs

A ⊲⊳r B = {(ai, bj), ai ∈ A, bj ∈ B, d(ai, bj) ≤ r}.

If both sets coincide, we talk about thesimilarity self join.
The similarity joinA ⊲⊳r B essentially translates into

solving several range queries, where queries come from one
set and objects relevant for each query come from the other.
So, given the setsA andB, a natural approach to compute
A ⊲⊳r B consists in indexing one set and then solving range
queries for each element from the other set. Moreover, fol-
lowing this approach we can also try indexing both sets in-
dependently in order to speedup the whole process.

Instead, we propose toindex both sets jointly, which,
to the best of our knowledge, is the first attempt follow-
ing this simple idea. For this sake, based on Chávez and
Navarro’slist of clusters[3], we devise a new metric index,
coinedlist of twin clusters. We carry out some experiments
which show significant speedups over the basic quadratic-
time naive alternative. Furthermore, we show that our tech-
nique can be easily extended to other variants of similarity
join, for instance, finding thek-closest pairs.

2. Related work

2.1. List of clusters

Let us briefly recall what a list of clusters (LC) is [3].
The LC splits the space into zones. Each zone has a center
c and stores both its radiusrp and the bucketI of internal
objects, that is, the objects inside the zone.

We start by initializing the setE of external ob-
jects to U. Then, we take a centerc ∈ E and a
radius rp. The center ball of (c, rp) is defined as
(c, rp) = {x ∈ X, d(c, x) ≤ rp}. Thus, the bucketI of in-
ternal objects is defined asI = E ∩ (c, rp) and the setE is
updated toE = E − I. Next, the process is repeated recur-
sively insideE. The construction process returns a list of
triples(c, rp, I), as shown in Figure 1.

This data structure is asymmetric, because the first center
chosen has preference over the next ones in case of overlap-
ping balls (see Figure 1). All the elements inside the ball of
the first center (c1 in the figure) are stored in the first bucket
(I1 in the figure), despite that they may also lie inside buck-
ets of subsequent centers (c2 andc3 in the figure). In [3],
authors consider many alternatives to select both the next
center in the list and the zone radii. They have shown ex-
perimentally that the best performance is achieved when the
zone has a fixed number of elements, sorp is the covering
radius ofc —that is, the distance fromc towards the furthest
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Figure 1. The clusters obtained when the cen-
ters are chosen in this order: c1, c2 and c3, and
the resulting list of clusters.

element in its zone—, and the next center is selected as the
element maximizing the sum of distances to centers previ-
ously chosen. The brute force algorithm for constructing
the list takesO

(

n2/m
)

, wherem is the size of each zone.
For a range query(q, r) the list is visited zone by zone.

We first compute the distance fromq to the centerc, and
reportc if d(q, c) ≤ r. Then, ifd(q, c) − rp ≤ r we search
exhaustively the internal bucketI. Because of the asym-
metry of the structure,E (the rest of the list) is processed
only if rp− d(q, c) < r. The search cost has a form close
to O(nα) for someα ∈ (0.5, 1) [3].

Recently, M. Mamede proposes therecursive list of clus-
ters (RLC) [10], which can be seen as a dynamic version
of the LC. The construction of a RLC ofn objects takes
O(n logβ n) distance computations, for someβ ∈ (1, 2).
Experimental results show that the RLC’s search perfor-
mance slightly improves upon the LC’s in uniformly dis-
tributed vector spaces inRD, for D ≤ 12.

2.2. Similarity joins

Given two sets of elementsA, B ⊂ X, the naive ap-
proach to compute the similarity joinA ⊲⊳r B uses|A|·|B|
distances computations between all the pairs of objects.
This is usually called theNested Loop.

In the case of multidimensional vector spacesR
D, an im-

portant subclass of metric space, there are some alternatives
[2, 1, 9]. In [2], authors solve similarity joins inR2 or R
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by indexing both datasetsA andB with two R-trees, and
then traverse both indices simultaneously to find the set of
pairs of objects matching each other. In [1], authors present
theEGO-joinstrategy. It divides the space with anǫ-grid, a
lattice of hypercubes whose edges have sizeǫ, and uses dif-
ferent methodologies to traverse the grid. They show results
for dimensionsD ≤ 16. In [9], authors give theGrid-join
and theEGO∗-join, whose performances are at least one or-
der of magnitude better than that of EGO-join in low dimen-
sion spaces. However, none of these alternatives is suitable



for general metric spaces as they use coordinate information
(unavailable in some metric spaces).

In metric spaces, a natural approach to solve this prob-
lem consists in indexing one or both sets independently (by
using any metric index [4, 8, 12, 13]) and then solving range
queries for all the involved elements over the indexed sets.
In fact, this is the strategy proposed in [6], where authors
use the D-index [5] in order to solve similarity self joins.
Later, they present the eD-index, an extension of the D-
index, and study its application to similarity self joins [7].

Finally, in [11], we give subquadratic algorithms to con-
struct thek-nearest neighbor graph of a setU, which can be
seen as a variant of self similar join where we look for the
k-nearest neighbors of each object inU.

3. List of twin clusters

The basic idea of our proposal to solve the similarity join
A ⊲⊳r B is to index the datasetsA andB jointly in a single
data structure. This is because we want to combine objects
from different sets, and not to perform distance computa-
tions between objects of the same set.

We devise thelist of twin clusters(LTC), a new metric in-
dex specially focused on the similarity join problem. As the
name suggests, the LTC is based on Chávez and Navarro’s
list of clusters[3]. In spite of their experimental results,
we have chosen to use clusters with fixed radius. Note that,
if we had used the option of fixed size clusters, we would
have obtained clusters of very different radii, especiallyin
the case when the dataset sizes differ considerably.

Essentially, our data structure considers two list of over-
lapping clusters, which we call twin clusters (see Figure 2).
So, when solving range queries, most of relevant objects
would belong to the twin cluster of the object we are query-
ing for. We also consider additional structures in order to
speed up the whole process. The LTC’s data structures are:

1. Two list of twin clustersCA andCB. Cluster centers
of CA (resp.CB) belong to datasetA (resp.B) and ob-
jects in its inner buckets belong to datasetB (resp.A).
Each cluster is a triple (center, internal bucket, radius).

2. A matrixDca,cb
with the distances computed from the

centers of datasetA towards the centers of datasetB.

3. Four arraysdAmax, dAmin, dBmax and dBmin
storing the cluster identifier and the maximum or min-
imum distance for each object from a dataset towards
all the cluster centers from the other dataset.

In order to compute the similarity joinA ⊲⊳r B it suffices
with solving range queries for objects from one dataset re-
trieving relevant objects from the other. Thus, without loss
of generality, let us suppose that we are computing range
queries for elements inA, and|A| ≥ |B|.
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Figure 2. The twin clusters.

In Section 3.1, we show how to solve range queries using
the LTC’s structures. Next, in Section 3.2, we give the LTC
construction algorithm. Finally, in Section 3.3, we give the
LTC-join algorithm for computingA ⊲⊳r B.

3.1. Solving range queries with the LTC index

We have to process three kinds of objects:cluster cen-
ters; regular objects, the ones indexed in any internal
bucket; andnon-indexed objects, the ones which are neither
cluster centers nor regular ones.

Solving cluster centers. Let
(

ci
a, Ii

a, Ri
a

)

denote thei-th
cluster fromCA, andci

b the ci
a’s twin center. After con-

structing the LTC, each centerci
a ∈ A will has computed

the distance towards all the objectsb ∈ B stored both inside
its own internal bucket

(

Ii
a

)

and inside the internal buckets
of following centers. So, if the similarity join radiusr is
lower than or equal to the LTC radiusR (that is, ifr ≤ R),
in order to finish the range query forci

a, it is enough to ver-
ify whether there are relevant objects in the internal buckets
Ij
a of previous clusters, that is, forj < i.

Otherwise, asr > R, we need to review all the clusters
in the listCA to finish the range query forci

a. However, this
can be seen as a particular case of solving a regular object,
which we discuss soon.

Note that solving the cluster centerci
a is equivalent

to solve a range query
(

ci
a, r

)

in the previous clusters
of CA. Yet, we can avoid some distance computa-
tions using the LTC and the triangle inequality. We
have to check the previous clustersj < i in CA only if
∣

∣d
(

cj
a, ci

b

)

− d
(

ci
a, ci

b

)
∣

∣ ≤ Rj
a + r, where Rj

a denotes the
effective radius of thej-th cluster inCA. Otherwise, it
is not relevant forci

a. Figure 3 illustrates. Inside a rel-
evant cluster, we can still use the triangle inequality to
avoid a direct comparison. Given an objectb in the clus-
ter

(

cj
a, Ij

a, Rj
a

)

, if
∣

∣d
(

cj
a, ci

b

)

− d
(

ci
a, ci

b

)∣

∣− d
(

cj
a, b

)

> r,
thenb is not relevant. Figure 4 depicts the algorithm. The
distancesd(cj

a, ci
b) andd(ci

a, ci
b) come from matrixDca,cb

,
and distancesd(ci

a, b) andd(cj
a, b) from arraydBmin.
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Figure 3. Solving the cluster center ci
a.

rqCenter (Integeri, Radiusr)
1. For eachb ∈ Ii

a Do // own cluster
2. If dBmin[b].distance ≤ r Then Report (ci

a, b)
3. For each(cj

a, Ij
a, Rj

a) ∈ CA, j = 1 to i− 1 Do
4. d1 ← Dca,cb

(ci
a, ci

b), d2 ← Dca,cb
(cj

a, ci
b)

5. If |d2 − d1| ≤ Rj
a + r Then For eachb ∈ Ij

a Do
6. lb← |d2 − d1| − dBmin[b].distance
7. If lb ≤ r AND d(ci

a, b) ≤ r Then Report (ci
a, b)

Figure 4. Range query for cluster centers.

Solving regular objects. Assume that we are solving the
range query for a regular objecta ∈ A. Using the array
dAmin, we determine which cluster(ci

b, I
i
b, R

i
b) objecta

belongs to. Let(ci
a, Ii

a, Ri
a) beci

b’s twin cluster. Due to the
LTC construction algorithm, it is likely that many objects
relevant toa belong to the twin internal bucketIi

a. Thus,
we start by checkingIi

a. As usual, we try to avoid distance
computations by using the generalized triangle inequality.

Next, we check other clusters(cj
a, Ij

a, Rj
a) in CA. Once

again, we check whether the distances between the centers
allow us to neglect the cluster, that is, we only visit thej-th
cluster if |Dca,cb

(cj
a, ci

b)− d(a, ci
b)| ≤ Rj

a + r. Otherwise,
thej-th cluster does not contain relevant elements. We also
use the triangle inequality to obtain a lower bound of the
distances. The algorithm is depicted in Figure 5.

Whenr > R, rqRegular does not change. However, we
process cluster centers with a variant ofrqRegular which
initializes the distance between an object to a center (d1) to
zero, as we are computing the range query for a center.

Solving non-indexed objects. As like the previous algo-
rithms, we use distances between centers, distances to the
closest and furthest center and the triangle inequality to
lower bound distances, avoiding direct comparisons if we
can. Figure 6 depicts the algorithm when non-indexed ob-
jects come from datasetA, where we only use the arrays
dAmax anddAmin. If they come from datasetB we use
arraysdBmax anddBmin and the situation is symmetric.

rqRegular (Objecta, Radiusr)
1. (ci

b, d1)← dAmin[a] // ci
b is the center of objecta

2. d2 ← Dca,cb
(ci

a, ci
b) // ci

a is ci
b’s twin

3. For eachb ∈ Ii
a Do // checking the twin cluster

4. d3 ← dBmin[b].distance, ds ← d1 + d2 + d3

5. If ds ≤ r Then Report (a, b)
6. Else
7. lb← 2 max{d1, d2, d3} − ds

8. If lb ≤ r AND d(a, b) ≤ r Then Report(a, b)
// checking other clusters,d1 has not changed

9. For eachcj
a ∈ CA, j 6= i Do

10. d2 ← Dca,cb
(cj

a, ci
b), lb← |d2 − d1|

11. If lb ≤ Rj
a + r Then

// we check objects in bucketIj
a of cj

a

12. For eachb ∈ Ij
a Do

13. lb← |d2 − d1| − dBmin[b].distance
14. If lb ≤ r AND d(a, b) ≤ r Then Report(a, b)

Figure 5. Range query for regular objects.

rqNonIndexedA (Objecta, Radiusr)
1. (cmin

b , dmin)← dAmin[a]
2. (cmax

b , dmax)← dAmax[a]
3. For eachci

a ∈ CA Do // checking all the centers
4. d1 ← Dca,cb

(ci
a, cmin

b ), d2 ← Dca,cb
(ci

a, cmax
b )

5. lb← max{|d1 − dmin|, |d2 − dmax|}
6. If lb ≤ Ri

a + r Then For eachb ∈ Ii
a Do

7. d3 ← dBmin[b].distance
8. lb1 ← 2 max{d1, d3, d

min} − d1 − d3 − dmin

9. lb2 ← 2 max{d2, d3, d
max} − d2 − d3 − dmax

10. If max{lb1, lb2} ≤ r AND d(a, b) ≤ r Then
11. Report(a, b)

Figure 6. Range query for non-indexed ob-
jects.

3.2. Construction of the list of twin clusters

We have assumed that the construction of the LTC index
is independent of the radiusr of the similarity join. LetR
be the nominal radius of each cluster in the LTC. The LTC
construction process is as follows.

We start by initializing both lists of clustersCA andCB
to empty, and for each objecta ∈ A we initializedA[a] to
zero. We use the arraydA to choose cluster centers for the
LTC (from the second to the last cluster).

Next, we choose the first centerca from the dataset
A at random and we add to its internal bucketIa all the
elementsb ∈ B such thatd(ca, b) ≤ R. Then, we
use the elementcb ∈ Ia which minimizes the distance
to ca as the center of theca’s twin cluster and add to



its internal bucketIb all the elementsa ∈ A such that
d(a, cb) ≤ R. (Figure 2 illustrates the concept of twin
clusters.) For the other objects inA we increase their
dA values byd(cb, a), that is, we update their sum of
distances to centers inB. Once we process the datasets
A andB we add the clusters(ca, maxb∈Ia

{d(ca, b)}, Ia)
and (cb, maxa∈Ib

{d(a, cb)}, Ib) (center, effective radius,
bucket) into the listsCA andCB, respectively. Both cen-
tersca andcb, and elements inserted into the bucketsIa and
Ib are removed from the datasetsA andB. From now on,
we use the element maximizingdA as the new centerca,
but we continue using the objectcb ∈ Ia which minimizes
the distance toca as the center of theca’s twin cluster. We
continue the process until one of the datasets gets empty.

During the process, we compute the distance to the
closest and furthest cluster center for all the objects. For
this sake we progressively update arraysdAmin, dAmax,
dBmin anddBmax with the minimum and maximum dis-
tances known up to then. Note that for regular objects,
dAmin anddBmin store the distance from the object to
its respective center and the center identifier. Note also that
we have to store and maintain the matrixDca,cb

to filter
out elements when actually performing the similarity join.
As these distances are computed during the LTC construc-
tion process, we can reuse them to fill this matrix. At the
end, we only keep the maximum distances to cluster centers
of non-indexed elements. Thus, if they come from dataset
A (resp. B), we discard the whole arraydBmax (resp.
dAmax), and the distances for cluster centers and regular
objects fromdAmax (resp.dBmax). Figure 7 depicts the
construction algorithm.

According to the analysis performed in [3], the cost of
constructing the LTC isO((max{|A|, |B|})2/p∗), wherep∗

is the expected bucket size.

3.3. Computing the LTC-join

Given the datasetsA andB, and a radiusR, we compute
the LTC index by callingLTC (A, B, R).

Later, given a thresholdr we actually compute the join
A ⊲⊳r B. To do so, for each objecta ∈ A which is a cluster
center or a regular object we solve the range query(a, r). If
a is thei-th cluster center, we callrqCenter(i, r). If a is a
regular object, we callrqRegular(a, r). Finally, as all the
matching pairs considering non-indexed objects are not yet
reported, for each of them we callrqNonIndexedA (resp.
rqNonIndexedB) if they come from datasetA (resp.B).

4. Experimental results

For the experiments we have selected three different
pairs of databases containing real data from two kinds of

LTC (DatasetA, DatasetB, RadiusR)
1. CA← ∅, CB ← ∅ // the lists of twin clusters
2. For eacha ∈ A Do
3. dA[a]← 0 // sum of distances to centers inB

// (closest and furthest center inB, distance)
4. dAmin[a]← (NULL ,∞), dAmax[a]← (NULL , 0)
5. For eachb ∈ B Do

// (closest and furthest center inA, distance)
6. dBmin[b]← (NULL ,∞), dBmax[b]← (NULL , 0)
7. While min(|A|, |B|) > 0 Do
8. ca ← argmaxa∈A{dA}, A← A− {ca}
9. cb ← NULL , dc,c ←∞, Ia ← ∅, Ib ← ∅
10. For eachb ∈ B Do
11. dc,b ← d(ca, b)
12. If dc,b ≤ R Then
13. Ia ← Ia ∪ {(b, dc,b)}, B ← B − {b}
14. If dc,b < dc,c Then dc,c ← dc,b, cb ← b
15. If dc,b < dBmin[b].distance Then
16. dBmin[b]← (ca, dc,b)
17. If dc,b > dBmax[b].distance Then
18. dBmax[b]← (ca, dc,b)
19. For eacha ∈ A Do
20. da,c ← d(a, cb)
21. If da,c ≤ R Then
22. Ib ← Ib ∪ {(a, da,c)}, A← A− {a}
23. ElsedA[a]← dA[a] + da,c

24. If da,c < dAmin[a].distance Then
25. dAmin[a]← (cb, da,c)
26. If da,c > dAmax[a].distance Then
27. dAmax[a]← (cb, da,c)

// (center, effective radius, bucket)
28. CA← CA ∪ {(ca, maxb∈Ia

{d(ca, b)}, Ia)}
29. CB ← CB ∪ {(cb, maxa∈Ib

{d(a, cb)}, Ib)}
30. For eachca ∈ centers(CA), cb ∈ centers(CB) Do
31. Dca,cb

[ca, cb]← d(ca, cb) // this distance has
// already been computed, so we can reuse it

Figure 7. LTC construction algorithm.

metric spaces. The results on these databases are represen-
tative of other metric spaces and databases we tested.

Face images:a set of 1,016 761-dimensional feature vec-
tors from a database of face images. Any quadratic
form can be used as a distance, so we chose Euclidean
distance as the simplest meaningful alternative.

The set have four face images from 254 people, thus
we divide the set in two databases: one of them with
three face images for each person (FACES762 for
short, because it has 762 face images) and the other
database with the fourth one (FACES254 for short).

Strings: a dictionary of words, where the distance is the



edit distance, that is, the minimum number of char-
acter insertions, deletions and replacements needed to
make two strings equal. This distance is useful in text
retrieval to cope with spelling, typing and optical char-
acter recognition errors.

For this metric space we consider two pairs of
databases: a subset of English words with a subset of
Spanish words and the same subset of English words
with a subset of the vocabulary of terms from a col-
lection of documents. We use random selected subsets
with 69,069 English words and 89,061 Spanish words
from dictionaries of English and Spanish respectively,
and 494,048 words from the vocabulary.

As we mention previously, we work with a particular
similarity join: A ⊲⊳r B. In all cases, we built the index
with 100% of the objects considered for each database. All
our results are averaged over 10 index constructions using
different permutations of the datasets.

For the face images we have considered thresholds
that retrieve on average 1, 5 or 10 relevant images from
FACES762 per range query, when queries came from
FACES254. This corresponds to radiir equal to0.27017,
0.3567 and0.3768, respectively. Due to the edit distance is
discrete, for the strings we have used radiir equal to 1, 2
and 3. In the joins between dictionaries this retrieve 0.05,
1.5 and 26 Spanish words per English word on average, re-
spectively. In the joins between English dictionary and the
vocabulary this retrieve 7.9, 137 and 1593 vocabulary term
per English word on average, respectively.

If we have one database indexed with a metric index, we
can trivially obtain the similarity joinA ⊲⊳r B by executing
a range query with thresholdr for each element from the
other database. Because our join index is based on the LC,
we also show the results obtained with this simple join al-
gorithm having a LC built for one database. We named this
join algorithm as LC-join.

If we have both databases indexed with metric indices,
although we could apply the same trivial solution (that is,
ignoring one of the indices), we can do better avoiding some
distance calculations by using all the information we have
from both indices. In order to compare our proposal with an
example from this kind of algorithm, we consider to index
both databases with LC with a join algorithm that uses all
the information from the indices to improve the join cost.
We named it as LC2-join.

Because we need to fix the radius before building the LC
and LTC indices, we consider in each case different radii
and we choose the radius which obtains better join cost for
each alternative. In all cases, the radii considered should
be greater than or equal to the largestr used inA ⊲⊳r B.
Therefore, for face images we show radii0.38, 0.40, 0.60
and0.80, and for strings we show radii 3 to 6.

Figure 8 illustrates the behavior of LTC-join consider-
ing the different radii, in all pairs of databases. We do not
include the construction costs of the LTC and LC indices,
as we consider that they would be amortized among several
join evaluations between the databases considering different
thresholds. Besides, we verify that the construction costsof
the LTC and the LC over one of the databases are similar.
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Figure 8. Comparison among the different
radii considered for the construction of the
LTC index, for the face image databases (up-
per), the Spanish and English dictionaries (in
the middle), and the English dictionary and
the vocabulary (lower).

The better results are obtained with the building radius
R closest to the greatest value ofr considered in each case.



Similar behavior have the LC2-join, but in case of LC-join
the better radius can vary a little, for example the better ra-
dius for the join between both dictionaries is 5.

Figure 9 depicts a comparison among the three similar-
ity join algorithms (without construction costs) for the three
pairs of databases, using the better value of the building ra-
diusR determined experimentally for each join algorithm.
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Figure 9. Comparison among all the join al-
gorithms considered, using in each case the
better value experimentally determined for
the building radius of the index. For face im-
age databases (upper), the Spanish and En-
glish dictionaries (in the middle), and the En-
glish dictionary and the vocabulary (lower).

We can observe that the LTC-join algorithm outperforms
largely the other join algorithms considered in two of the
pairs of databases used. For the join between the English
dictionary and the vocabulary, LC-join and LC2-join beat
us, despite LTC-join improves significantly over Nested
Loop in all the thresholds used.

We suspect that this non-intuitive behavior showing that
the simplest algorithm, LC-join, outperforms our LTC-join
between the vocabulary and the English dictionary can be
explained by taking into account the amount of non-indexed
objects. In this case there is a 39% of non-indexed vocabu-
lary terms, whereas in the others cases where the LTC-join
is the best method, the percentage of non-indexed objects
is lower. For instance, in the experiment of face images
there is just a 2% of non-indexed faces and in the experi-
ment of Spanish and English dictionaries there is a 23% of
non-indexed words.

Table 1 gives the performance ratios of distance com-
putations for the three pairs of databases. The values are
computed according to this formula:join−LTC-join

join · 100.

Table 1. Performance ratio of the LTC-join for
the three databases in all the thresholds used
with respect to the other join methods.

(a) Join between face image databases.

Threshold LC-join LC2-join Nested Loop
0.27017 38% 38% 47%
0.35670 44% 44% 47%
0.37680 45% 45% 47%

(b) Join between the Spanish and English dictionaries.

Threshold LC-join LC2-join Nested Loop
1 -11% 12% 89%
2 19% 39% 88%
3 45% 55% 87%

(c) Join between the English dictionary and the vocabulary.

Threshold LC-join LC2-join Nested Loop
1 -159% -62% 67%
2 -124% -76% 51%
3 -94% -69% 38%

5. Conclusions

In this work we show a new approach for similarity join
algorithms consisting in indexing both datasets jointly. For
this sake, we propose a new metric index, coinedlist of
twin clusters(LTC). Our results not only show significant
speedups over the basic quadratic-time naive alternative but



also over the other two join algorithms, like LC-join and
LC2-join, for two of the pairs of databases considered.

Our new LTC index stands out as a practical and efficient
data structure to solve a particular case of similarity joinas
A ⊲⊳r B, that can be used for pairs of databases in any met-
ric space and therefore having a wide range of applications.

As work in progress, already being carried out within our
research group, we studying:

• The similarity self join: although in this case it has no
sense to build a LTC index, we plan to obtain another
variant of LC designed specially for this kind of join.

• Optimization of LTC by evaluating internal distances:
at construction time of the LTC index and when we
evaluating the similarity join, we do not calculate any
distance between elements from the same database.
But, we have to analyze if we can improve the join
costs if we calculate some internal distances in order to
obtain better lower bounds of external distances (that
is, distances between elements from both databases).

• The center selection: the best way to choose the twin
center of one center is choosing the nearest object in
the other database, yet we could study other ways to
select a new center from the last twin center in order to
represent the real dataset clustering by using the min-
imum number of cluster centers as possible. Further-
more, we suspect that choosing better centers we can
reduce significantly the memory needed for the matrix
of distances among centers.

• Different kinds of joins: we are developing algorithms
to solve other kinds of similarity join over the LTC in-
dex or its variants. For instance, in order to find thek-
closest pairs of objects from the datasetsA andB, (one
from each set), it is enough to consider an additional
k-element max-priority-queueheap initialized with k
triples (NULL , NULL ,∞) sorted by the third compo-
nent. We start by replacing triples inheap with all the
precomputed distances in the LTC index such that they
are smaller than the maximum distance stored inheap.
Next, we continue by computing a similarity join of
decreasingradius given by the maximum distancer′

in heap, and each time we find a pair of objectsa ∈ A
andb ∈ B such thatd(a, b) ≤ r′, we modifyheap by
extracting its maximum and then inserting the triple
(a, b, d(a, b)). When the computation finishes,heap
stores thek pairs of the result.

• When using clusters of fixed radius, we experimentally
observe that the first clusters are much more populated
than the following ones. Moreover, we also can in-
clude the study of dynamic LTCs. Therefore, we also
consider developing a version of the LTC similar to
Mamedes’srecursive list of clusters[10].

• Due to in some cases there exist many non-indexed ob-
jects, and apparently this harms the performance of the
LTC-join, we also consider researching on alternatives
to manage the non-indexed objects.
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