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Abstract of objectsand adistance functiod : X x X — Rt U {0}

defined among them. Objectsihdo not necessarily have
The metric space model abstracts many proximity or coordinates (for instance, strings and images). In order to
similarity problems, where the most frequently considered compare any two different objects we can (only) use the dis-
primitives are range and-nearest neighbor search, leav- tance functioni, which is a measure of object dissimilarity.
ing out thesimilarity join, an extremely important primitive.  Therefore, the smaller the distance between two objeds, th
In fact, despite the great attention that this primitive has more “similar” they are.
ceived in traditional and even multidimensional databases  The distance satisfies the following properties that
little has been done for general metric databases. make (X,d) a metric space d(z,y) > 0 (positiveness),
We consider a particular type of similarity join: Given d(z, y) = d(y, 2) (symmetry)d(z, z) = 0 (reflexivity) and
two sets of objects and a distance threshaldind all the d(z,z) < d(z,y) + d(y, z) (triangle inequality).
object pairs (one from each set) at distance at mosfor The typical scenario of the metric space search problem
this sake, we devise a new metric index, coihst of considers that there is a finitlatabaseor datasetU C X.
Twin Clusters which indexes both sets jointly (instead of Then, given a new objegte X, a proximity query consists
the natural approach of indexing one or both sets indepen-j, retrieving objects fromlJ relevant tog. There are two
dently). Our results show significant speedups over the ba-p55ic proximity queries or primitives. The first is trege
sic quadratic-time naive alternative. Furthermore, wewho query(q, r), which retrieves all the elementslihwhich are
that our technique can be easily extended to other simylarit yithin distance- to q. The second is thi-nearest neighbor
join variants, e.g., finding thé-closest pairs. query NNy (q), which retrieves thé closest elements it/
to ¢. These similarity queries can be trivially answered by
performing|U| distance evaluations. Yet, as the distance is
1. Introduction assumed to be expensive to compute, it is customary to de-
fine the complexity of the search as the number of distance
Proximityor similarity searchings the problem of, given  evaluations performed, disregarding other components suc
a data set and a similarity criterion, finding elements of the as CPU time for side computations and even I/O time. Thus,
set that areloseor similar to a given query. This is a natu- the goal is to structure the database so as to compute much
ral extension of the classical problem of exact searching. | fewer distances when solving proximity queries.
is motivated by data types that cannot be queried by exact Naturally, we can consider other proximity operations.
matching, such as multimedia databases containing imagesn fact, in this paper we focus on thsmilarity join prim-
audio, video, documents, and so on. In this new frameworkitive. To illustrate the concept, let us consider a headhunt
the exact comparison is just a type of query, while close or ing recruitment agency. On the one hand, the agency has
similar objects can be queried as well. There exist severala dataset of resumes and profiles of many people looking
computer applications where the concept of similarity re- for a job. On the other hand, the agency has a dataset of
trieval is of interest. Some examples are machine learningjob profiles sought by several companies looking for em-
and classification, image quantization and compressigh, te ployees. What the agency has to do is to to faldthe
retrieval, computational biology and function prediction person-company pairs which share a similar profig&mi-
Proximity/similarity queries can be formalized using the larity joins have other applications such as data mininta da
metric space model [4, 8, 12, 13]. There is a univéfse cleaning and data integration, to name a few.

*Supported in part by Millennium Nucleus Center for Web Rezea _Du.rir)g thi_s work, we considgr a particular type of _Simi'
Grant P04-067-F, Mideplan, Chile; and AECI A/8065/07. larity join: Given two sets of objectd, B ¢ X and a dis-




tance thresholad > 0, find all the object pairs (one from
each set) at distance at mestFormally, the similarity join
A >, B between two finite setd = {a1,...,a/4} and

B = {by,...,bp } is the set of pairs
A >, B = {(ai,bj), a; € A,bj (S B,d(ai,bj) < T}.

If both sets coincide, we talk about teenilarity self join
The similarity join A <,. B essentially translates into

B B
(c1,mp1, 1) — (c2, 72, I2) — (c3,7p3, I3)

solving several range queries, where queries come from one

set and objects relevant for each query come from the other.

So, given the setd and B, a natural approach to compute
A <, B consists in indexing one set and then solving range
gueries for each element from the other set. Moreover, fol-
lowing this approach we can also try indexing both sets in-
dependently in order to speedup the whole process.
Instead, we propose timdex both sets jointlywhich,
to the best of our knowledge, is the first attempt follow-
ing this simple idea. For this sake, based on Chavez an
Navarro’slist of clusterq3], we devise a new metric index,
coinedlist of twin clusters We carry out some experiments
which show significant speedups over the basic quadratic
time naive alternative. Furthermore, we show that our tech-
nigue can be easily extended to other variants of similarity
join, for instance, finding thé-closest pairs.

2. Related work
2.1. List of clusters

Let us briefly recall what a list of clusters (LC) is [3].

dously chosen.

Figure 1. The clusters obtained when the cen-
ters are chosen inthisorder:  ¢1, ¢cp and c3, and
the resulting list of clusters.

element in its zone—, and the next center is selected as the
element maximizing the sum of distances to centers previ-
The brute force algorithm for constructing
the list takesD (n? /m), wherem is the size of each zone.

For a range queryg, r) the list is visited zone by zone.
We first compute the distance frogto the center, and
reportc if d(q,c) < r. Then, ifd(q,c) — rp < r we search
exhaustively the internal buckét Because of the asym-
metry of the structureF (the rest of the list) is processed
only if rp — d(q, ¢) < r. The search cost has a form close
to O(n®) for somea € (0.5, 1) [3].

Recently, M. Mamede proposes tieeursive list of clus-
ters (RLC) [10], which can be seen as a dynamic version
of the LC. The construction of a RLC of objects takes
O(nloggn) distance computations, for somee (1,2).
Experimental results show that the RLC’s search perfor-

The LC splits the space into zones. Each zone has a centefance slightly improves upon the LC’s in uniformly dis-

¢ and stores both its radiup and the buckef of internal
objects, that is, the objects inside the zone.

We start by initializing the setF of external ob-
jects to U. Then, we take a centetec £ and a
radius rp.  The center ball of (¢,rp) is defined as
(c,rp) = {x € X, d(c,z) < rp}. Thus, the buckef of in-
ternal objects is defined ds= E N (¢, rp) and the sef is
updated toil = FE — I. Next, the process is repeated recur-
sively insideE. The construction process returns a list of
triples(c, rp, I), as shown in Figure 1.

This data structure is asymmetric, because the first cente

tributed vector spaces R”, for D < 12.
2.2. Similarity joins

Given two sets of elementd, B C X, the naive ap-
proach to compute the similarity joia <, B usegA|-|B|
distances computations between all the pairs of objects.
This is usually called thdlested Loop

In the case of multidimensional vector spaBé$, an im-
portant subclass of metric space, there are some altegsativ
2, 1, 9]. In [2], authors solve similarity joins iR? or R?

chosen has preference over the next ones in case of overlaghy indexing both datasetd and B with two R-trees, and

ping balls (see Figure 1). All the elements inside the ball of
the first centerd; in the figure) are stored in the first bucket
(I; in the figure), despite that they may also lie inside buck-
ets of subsequent centers @ndcs in the figure). In [3],

then traverse both indices simultaneously to find the set of
pairs of objects matching each other. In [1], authors priesen
theEGO-joinstrategy. It divides the space with agrid, a
lattice of hypercubes whose edges have sjand uses dif-

authors consider many alternatives to select both the nexferent methodologies to traverse the grid. They show result

center in the list and the zone radii. They have shown ex-

for dimensionsD < 16. In [9], authors give th&rid-join

perimentally that the best performance is achieved when theand theEGO*-join, whose performances are at least one or-

zone has a fixed number of elements;gads the covering
radius ofc —that s, the distance fromtowards the furthest

der of magnitude better than that of EGO-join in low dimen-
sion spaces. However, none of these alternatives is seitabl



for general metric spaces as they use coordinate informatio
(unavailable in some metric spaces).

In metric spaces, a natural approach to solve this prob-
lem consists in indexing one or both sets independently (by
using any metric index [4, 8, 12, 13]) and then solving range
queries for all the involved elements over the indexed sets.
In fact, this is the strategy proposed in [6], where authors
use the D-index [5] in order to solve similarity self joins.
Later, they present the eD-index, an extension of the D-
index, and study its application to similarity self joing.[7

Finally, in [11], we give subquadratic algorithms to con-
struct thek-nearest neighbor graph of a §&twhich can be Figure 2. The twin clusters.
seen as a variant of self similar join where we look for the
k-nearest neighbors of each objectin

In Section 3.1, we show how to solve range queries using
] ] the LTC's structures. Next, in Section 3.2, we give the LTC
3. List of twin clusters construction algorithm. Finally, in Section 3.3, we give th
LTC-join algorithm for computingd <, B.
The basic idea of our proposal to solve the similarity join
A<, B istoindex the dataset$ and B jointly in a single 3.1. Solving range queries with the LTC index
data structure. This is because we want to combine objects
from different sets, and not to perform distance computa- We have to process three kinds of objeathister cen-
tions between objects of the same set. ters regular objects the ones indexed in any internal
We devise théist of twin cluster{LTC), anew metricin-  bucket; anchon-indexed objectshe ones which are neither
dex specially focused on the similarity join problem. As the cluster centers nor regular ones.
name suggests, the LTC is based on Chavez and Navarro’s

list of clusters[3]. In spite of their experimental results, solying cluster centers. Let (i, Ii, R:) denote the-th

a’a?

we have chosen to use clusters with fixed radius. Note that,q|,ster fromCA, andci the ci’s twin center. After con-

if we had used the option of fixed size clusters, we would sirycting the LTC, each centef € A will has computed
have obtained clusters of very different radii, especially  the distance towards all the objests B stored both inside
the case when the dataset sizes differ considerably. its own internal bucketI) and inside the internal buckets
Essentially, our data structure considers two list of over- ¢ following centers. So, if the similarity join radiusis
lapping clusters, which we call twin clusters (see Figure 2) |qwer than or equal to the LTC radius(that is, ifr < R),
So, when solving range queries, most of relevant objectsjn order to finish the range query fof, it is enough to ver-
would belong to the twin cluster of the object we are query- ify whether there are relevant objects in the internal btscke
ing for. We also consider additional structures in order to IJ of previous clusters, that is, fgr< i.
speed up the whole process. The LTC’s data structures are: = otherwise, ag > R, we need to review all the clusters

1. Two list of twin clusters”A andCB. Cluster centers  in the listCA to finish the range query faf,. However, this
of CA (resp.CB) belong to dataset (resp.B) and ob- can be seen as a particular case of solving a regular object,
jects in its inner buckets belong to datasefresp.A). which we discuss soon.

Each cluster is a triple (center, internal bucket, radius). ~ Note that solving the cluster centef, is equivalent
to solve a range queryci,r) in the previous clusters

2. Amatrix D., ., with the distances computed fromthe of CA. Yet, we can avoid some distance computa-
centers of dataset towards the centers of dataget tions using the LTC and the triangle inequality. We

. . have to check the previous clusteis< i in CA only if

3. Four arraysdAmax, dAmin,dBmax and dBmin |d(cg,c§)) —d(Cfl,Cf,)| < Ri +r, where BRI denotes the

storing the cluster identifier and the maximum or min- ) ; : . .
. 9° . effective radius of thej-th cluster inCA. Otherwise, it
imum distance for each object from a dataset towards. P : .

is not relevant forc!,. Figure 3 illustrates. Inside a rel-
all the cluster centers from the other dataset.

evant cluster, we can still use the triangle inequality to
In order to compute the similarity joiA 0, B it suffices avoid a direct comparison. Given an objédn the clus-
with solving range queries for objects from one dataset re-ter (¢, I, R), if |d(cd,c}) —d(c%, c})| — d(c,b) > r,
trieving relevant objects from the other. Thus, withouslos thenb is not relevant. Figure 4 depicts the algorithm. The
of generality, let us suppose that we are computing rangedistancesi(c},, ¢;) andd(c;,, ¢;) come from matrixD,,, .,
queries for elements id, and|A| > |B|. and distanced(c!,, b) andd(c?, b) from arrayd Bmin.



rqRegular (Objecta, Radiusr)
(¢i,dv) < dAmin[a] Il ¢} is the center of object

i R (3
\>d(c] b BId(Cact\)}a / x\
e >dll e e o

L

,,,,,,,,,, B SR (SR 2. dy < Dq, o, (ct,cb) Il ¢ is ch's twin
‘d(cgcb' ) 3. Foreachb € I’ Do/l checking the twin cluster
, 4, ds — dBminlb].distance, ds — dy + da + d3
N ) 5. If ds <r Then Report (a,b)
6. Else
Figure 3. Solving the cluster center ¢, 7. Ib — 2max{dy,dy,ds} — ds
8. If Ib <r AND d(a,b) < r Then Report(a, b)
/I checking other clusterd; has not changed

rqCenter (Integeri, Radiusr) 9. Foreachc) € CA,j #iDo
1. Foreachb € I Do/l own cluster 10.  dy  De, ¢, (ch,¢), 1b  |dy — di|
2. If dBmin[b].distance < r Then Report (¢!, b) 1. If b < R} +r Then _ _
3. Foreach(c),I?,R}) € CA,j =1toi—1Do /I we check objects in buckéj of ¢
4. di < De, ¢, (%, ch), do — Dq, o, (c2, ch) 12. For eachb € I Do
5. If |dy —di| < RI +r Then For eachb € I} Do 13. b« |d2 — di| — dBmin[b].distance
6. Ib — |dy — di| — dBminlb].distance 14. If Ib <7 AND d(a,b) < r Then Report(a, b)
7. If 1b <r AND d(ci,b) < r Then Report (¢, b)

Figure 5. Range query for regular objects.
Figure 4. Range query for cluster centers.

rgNonindexedA (Objecta, Radiusr)
(cin, d™im) — dAmin[a)
(egre, d™*) «— dAmax]a)

[

Solving regular objects. Assume that we are solving the 2 , ]
range query for a regular objeate A. Using the array 3 Foreachc;, € CA Do// checking all the centers
dAmin, we determine which clusteii, I, Ri) objecta 4 @1 Doy (¢ar ™) d2 = De, e, (€, ¢57%)
belongs to. Letc!, I! | Ri) beci’s twin cluster. Duetothe 5 (b« max{[dy —d™"],[dz —d™*"|}
LTC construction algorithm, it is likely that many objects 6 If Ib < R, +r Then For eachb ¢ I; Do
relevant toa belong to the twin internal buckef. Thus, 7. ds < dBminb].distance ‘
8. 1by 2max{d1, ds, dmzn} —dy —dz —d™™"
9.

we start by checking?. As usual, we try to avoid distance " i
computations by using the generalized triangle inequality Iby — 2max{dy,ds, d™**} —dy — d3 — d
heck other clustets], I3, R}) in CA. O 0. If max{iby, lb2} < r AND d(a,b) < r Then
Next, we check other cluste(s},, I, R?) in CA. Once Report(a, b)

a’—a’
again, we check whether the distances between the centers L
allow us to neglect the cluster, that is, we only visit jhth
cluster if | D., ., (cl,ci) — d(a,c})| < RJ + r. Otherwise,
the j-th cluster does not contain relevant elements. We also
use the triangle inequality to obtain a lower bound of the

distances. The algorithm is depicted in Figure 5.

Whenr > R, rqRegular does not change. However, we 3.2. Construction of the list of twin clusters

process cluster centers with a variantrgRegular which
initializes the distance between an object to a centgrtd We have assumed that the construction of the LTC index
zero, as we are computing the range query for a center.  is independent of the radiusof the similarity join. LetR

be the nominal radius of each cluster in the LTC. The LTC

construction process is as follows.

We start by initializing both lists of clustersA andCB

Solving non-indexed objects. As like the previous algo-  to empty, and for each objeate A we initialize dA[a] to
rithms, we use distances between centers, distances to theero. We use the arrayA to choose cluster centers for the
closest and furthest center and the triangle inequality toLTC (from the second to the last cluster).
lower bound distances, avoiding direct comparisons if we  Next, we choose the first centey, from the dataset
can. Figure 6 depicts the algorithm when non-indexed ob- A at random and we add to its internal bucKgtall the
jects come from dataset, where we only use the arrays elementsb € B such thatd(c,,b) < R. Then, we
dAmaxz anddAmin. If they come from datasdB we use use the element;, € I, which minimizes the distance
arraysd Bmax anddBmin and the situation is symmetric. to ¢, as the center of the,’s twin cluster and add to

Figure 6. Range query for non-indexed ob-
jects.



its internal bucketl, all the elements: € A such that
d(a,cy) < R. (Figure 2 illustrates the concept of twin 1,
clusters.) For the other objects i we increase their o
dA values byd(cy,a), that is, we update their sum of 3
distances to centers iB. Once we process the datasets

A and B we add the clusterée,, maxper, {d(cq,b)}, 1) a.
and (cp, max,cr, {d(a,cp)}, Ip) (center, effective radius,
bucket) into the lists”A andCB, respectively. Both cen-
tersc, andcy, and elements inserted into the buckgtand 6.
I, are removed from the datasetsand B. From now on,
we use the element maximizinty as the new centet,, 8.
but we continue using the objegt € I, which minimizes 9.

the distance te, as the center of the,’s twin cluster. We 10.
continue the process until one of the datasets gets empty. 11,

During the process, we compute the distance to the 12.
closest and furthest cluster center for all the objects. For 13.
this sake we progressively update arrdyBnin, dAmazx, 14.
dBmin andd Bmax with the minimum and maximum dis- 15,
tances known up to then. Note that for regular objects, 1s.
dAmin anddBmin store the distance from the object to 17
its respective center and the center identifier. Note alab th 18,
we have to store and maintain the matfix, ., to filter 19.
out elements when actually performing the similarity join. 20.
As these distances are computed during the LTC construc-21.
tion process, we can reuse them to fill this matrix. At the 22.
end, we only keep the maximum distances to cluster centers23.
of non-indexed elements. Thus, if they come from dataset 24.

LTC (Datasetd, DatasetB, RadiusR)
CA «— (), CB « 0/l the lists of twin clusters
For eacha € A Do
dAla] «+ 0// sum of distances to centersih
I (closest and furthest center B, distance)
dAmin|a] < (NULL, 00), dAmaz[a] — (NULL,0)
5. Foreachb € B Do
I (closest and furthest center ih distance)
dBmin[b] « (NULL, c0), dBmazx[b] « (NULL,0)
7. While min(|4],|B|) > 0 Do
Cq — argmax,e 4 {dA}, A — A —{cq}
¢p — NULL,d¢c— 00, Iy — 0,1, — 0
For eachb € B Do

dep — d(ca,b)
If depy < R Then
I, — I, U{(b,dep)}, B— B —{b}
If dc,b < dc,c Then dc7c — dc,b, cp— b
If dep < dBmin[b].distance Then
dBmin[b] « (ca,dep)
If dep > dBmazb.distance Then
dBmazxz[b] — (cq,dep)

For eacha € A Do

dg,c — d(a,cp)
If dg,c < R Then
Iy — LU{(a,dg.c)}, A— A—{a}
ElsedAla] — dA[a] + da,c
If dg,. < dAmin[a].distance Then

A (resp. B), we discard the whole arrayBmax (resp. 25.
dAmaz), and the distances for cluster centers and regular 26.
objects fromd Amax (resp.dBmazx). Figure 7 depicts the 27
construction algorithm.

dAminla] — (cp, dg,c)
If doc > dAmax[a].distance Then
dAmaz|a] — (cp,dq.c)
I (center, effective radius, bucket)
According to the analysis performed in [3], the cost of 28. CA «— CAU {(cq, maxper, {d(ca,b)}, 1)}
constructing the LTC i®)((max{|A|, | B|})?/p*), wherep* 29. OB« CBU {(cp, maxqer,{d(a,cp)}, Ip)}
is the expected bucket size. 30. For eachc, € centers(CA), ¢, € centers(CB) Do
31. D¢, ¢ lca, ] < d(cq,cp) I this distance has

3.3. Computing the LTC-join /I already been computed, so we can reuse it

Given the datasetd andB, and a radiusk, we compute Figure 7. LTC construction algorithm.

the LTC index by callind-TC (A, B, R).

Later, given a threshold we actually compute the join  metric spaces. The results on these databases are represen-

A<, B. To do so, for each objeatc Awhichisacluster  iaiive of other metric spaces and databases we tested.
center or a regular object we solve the range query). If

a is thei-th cluster center, we caltjCenter(i, 7). If ais a
regular object, we caligRegular(a, r). Finally, as all the
matching pairs considering non-indexed objects are not yet
reported, for each of them we catfiNonIindexedA (resp.
rgNonindexedB) if they come from dataset (resp.B).

Face images:a set of 1,016 761-dimensional feature vec-
tors from a database of face images. Any quadratic
form can be used as a distance, so we chose Euclidean
distance as the simplest meaningful alternative.

The set have four face images from 254 people, thus
we divide the set in two databases: one of them with
three face images for each person (FACES762 for
short, because it has 762 face images) and the other
database with the fourth one (FACES254 for short).

4. Experimental results

For the experiments we have selected three different
pairs of databases containing real data from two kinds of Strings: a dictionary of words, where the distance is the



edit distance that is, the minimum number of char- Figure 8 illustrates the behavior of LTC-join consider-
acter insertions, deletions and replacements needed tang the different radii, in all pairs of databases. We do not
make two strings equal. This distance is useful in text include the construction costs of the LTC and LC indices,
retrieval to cope with spelling, typing and optical char- as we consider that they would be amortized among several
acter recognition errors. join evaluations between the databases consideringeliffer
thresholds. Besides, we verify that the construction cafsts

For this metric space we consider wo pairs of fthe LTC and the LC over one of the databases are similar.

databases: a subset of English words with a subset o

SpanISh Words and the same SUbset Of EngIISh Words Join Costs between FACES762 and FACES254 feature vectors

with a subset of the vocabulary of terms from a col- zoooooéa : ]
lection of documents. We use random selected subsets 190000 ¥ # a
with 69,069 English words and 89,061 Spanish words , ooweor
from dictionaries of English and Spanish respectively, g zzzgg LTC o, s 0.40 -]
and 494,048 words from the vocabulary. ER T e oa0 &
§ 140000
As we mention previously, we work with a particular 2 130000
similarity join: A <,. B. In all cases, we built the index 120000 -
with 100% of the objects considered for each database. All 110000 -
our results are averaged over 10 index constructions using 100000 == P oa
different permutations of the datasets. Threshold used for join
For the face images we have considered thresholds Join Costs between Spanish and English dictionaries
that retrieve on average 1, 5 or 10 relevant images from 6000 e

FACES762 per range query, when queries came from
FACES254. This corresponds to radiequal t00.27017,
0.3567 and0.3768, respectively. Due to the edit distance is
discrete, for the strings we have used radéqual to 1, 2
and 3. In the joins between dictionaries this retrieve 0.05,
1.5 and 26 Spanish words per English word on average, re-
spectively. In the joins between English dictionary and the
vocabulary this retrieve 7.9, 137 and 1593 vocabulary term
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LTC, radius 3 —+—
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Distance evaluations x 1,000,000

1000

per English word on average, respectively. 1 2 3
If we have one database indexed with a metric index, we Threshold used forjoin
can trivially obtain the similarity joiA <, B by executing Join Costs between Vocabulary and English dictionary

35000

a range query with thresholdfor each element from the
other database. Because our join index is based on the LC,
we also show the results obtained with this simple join al-
gorithm having a LC built for one database. We named this
join algorithm as LC-join.

If we have both databases indexed with metric indices,
although we could apply the same trivial solution (that is,
ignoring one of the indices), we can do better avoiding some Lo, radius 4 -
distance calculations by using all the information we have 10000 | . LTCHoin, radius 6 0
from both indices. In order to compare our proposal with an ' Tiveshold Lsed for foin :
example from this kind of algorithm, we consider to index
both databases with LC with a join algorithm that uses all  Figure 8. Comparison among the different
the information from the indices to improve the join cost. radii considered for the construction of the
We named it as LC2-join. LTC index, for the face image databases (up-

Because we need to fix the radius before buildingthe LC  per), the Spanish and English dictionaries (in
and LTC indices, we consider in each case different radii  the middle), and the English dictionary and
and we choose the radius which obtains better join cost for  the vocabulary (lower).
each alternative. In all cases, the radii considered should
be greater than or equal to the largesised inA <, B.
Therefore, for face images we show ra@li3g, 0.40, 0.60 The better results are obtained with the building radius
and0.80, and for strings we show radii 3 to 6. R closest to the greatest valuerofonsidered in each case.

30000 | B [
iz e

25000 P

20000 |

Distance evaluations x 1,000,000

15000 LTC-join, radius 3 —+— o




Similar behavior have the LC2-join, but in case of LC-join We can observe that the LTC-join algorithm outperforms
the better radius can vary a little, for example the better ra largely the other join algorithms considered in two of the
dius for the join between both dictionaries is 5. pairs of databases used. For the join between the English
dictionary and the vocabulary, LC-join and LC2-join beat
us, despite LTC-join improves significantly over Nested
Loop in all the thresholds used.

We suspect that this non-intuitive behavior showing that
the simplest algorithm, LC-join, outperforms our LTC-join
between the vocabulary and the English dictionary can be
explained by taking into account the amount of non-indexed
objects. In this case there is a 39% of non-indexed vocabu-

Figure 9 depicts a comparison among the three similar-
ity join algorithms (without construction costs) for theek
pairs of databases, using the better value of the building ra
dius R determined experimentally for each join algorithm.

Join Costs between FACES762 and FACES254 feature vectors

190000 T — . .

180000 - P i lary terms, whereas in the others cases where the LTC-join

170000 | ] is the best method, the percentage of non-indexed objects
£ ool | is lower. For instance, in the experiment of face images

2 150000 - | there is just a 2% of non-indexed faces and in the experi-

5 140000 - Lg;:;g;g; :gg;g: o5 8 ment of Spanish and English dictionaries there is a 23% of

é 130000 - LTC-join, radius 0.38 % non'indexed WOI’dS.

% 120000 | 1 Table 1 gives the performance ratios of distance com-
110000 1 putations for the three pairs of databases. The values are
100000 X computed according to this formul@"=tr<ion . 10,

0.27 0.36 0.38 join
Threshold used for join
Join Costs between Spanish and English dictionaries
1800 LC-join, radius 4~ Table 1. Performance ratio of the LTC-join for
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§ 10| P with respect to the other join methods.
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Figure 9. Comparison among all the join al-

gorithms considered, using in each case the 5. Conclusions

better value experimentally determined for

the building radius of the index. For face im- In this work we show a new approach for similarity join
age databases (upper), the Spanish and En- algorithms consisting in indexing both datasets jointlgr F
glish dictionaries (in the middle), and the En- this sake, we propose a new metric index, coitistof
glish dictionary and the vocabulary (lower). twin clusters(LTC). Our results not only show significant

speedups over the basic quadratic-time naive alternative b



also over the other two join algorithms, like LC-join and e Due to in some cases there exist many non-indexed ob-

LC2-join, for two of the pairs of databases considered. jects, and apparently this harms the performance of the
Our new LTC index stands out as a practical and efficient LTC-join, we also consider researching on alternatives
data structure to solve a particular case of similarity gén to manage the non-indexed objects.

A<, B, that can be used for pairs of databases in any met-
ric space and therefore having a wide range of applications.peferences
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