
Using the k-Nearest Neighbor Graph for

Proximity Searching in Metric Spaces ⋆

Rodrigo Paredes1 and Edgar Chávez2

1 Center for Web Research, Dept. of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile.

raparede@dcc.uchile.cl
2 Escuela de Ciencias F́ısico-Matemáticas, Univ. Michoacana, Morelia, Mich. México.

elchavez@fismat.umich.mx

Abstract. Proximity searching consists in retrieving from a database,
objects that are close to a query. For this type of searching problem,
the most general model is the metric space, where proximity is defined
in terms of a distance function. A solution for this problem consists in
building an offline index to quickly satisfy online queries. The ultimate
goal is to use as few distance computations as possible to satisfy queries,
since the distance is considered expensive to compute. Proximity search-
ing is central to several applications, ranging from multimedia indexing
and querying to data compression and clustering.
In this paper we present a new approach to solve the proximity searching
problem. Our solution is based on indexing the database with the k-
nearest neighbor graph (knng), which is a directed graph connecting
each element to its k closest neighbors.
We present two search algorithms for both range and nearest neighbor
queries which use navigational and metrical features of the knng graph.
We show that our approach is competitive against current ones. For
instance, in the document metric space our nearest neighbor search al-
gorithms perform 30% more distance evaluations than AESA using only
a 0.25% of its space requirement. In the same space, the pivot-based
technique is completely useless.

1 Introduction

Proximity searching is the search for close or similar objects in a database. This
concept is a natural extension of the classical problem of exact searching. It
is motivated by data types that cannot be queried by exact matching, such as
multimedia databases containing images, audio, video, documents, and so on.
In this new framework the exact comparison is just a type of query, while close
or similar objects can be queried as well. There exists a large number of com-
puter applications where the concept of similarity retrieval is of interest. This
applications include machine learning and classification, where a new element

⋆ This work has been supported in part by the Millennium Nucleus Center for Web
Research, Grant P04-067-F, Mideplan, Chile, and CYTED VII.19 RIBIDI Project.

must be classified according to its closest existing element; image quantization

and compression, where only some samples can be represented and those that
cannot must be coded as their closest representable one; text retrieval, where we
look for words in a text database allowing a small number of errors, or we look
for documents which are similar to a given query or document; computational

biology, where we want to find a DNA or protein sequence in a database allowing
some errors due to typical variations; and function prediction, where past be-
havior is extrapolated to predict future behavior, based on function similarity.
See [6] for a comprehensive survey on proximity searching problems.

Proximity/similarity queries can be formalized using the metric space model,
where a distance function d(x, y) is defined for every object pair in X. Objects
in X do not necessarily have coordinates (for instance, strings and images).

The distance function d satisfies the metric properties: d(x, y) ≥ 0 (posi-
tiveness), d(x, y) = d(y, x) (symmetry), d(x, y) = 0 iff x = y (reflexivity), and
d(x, y) ≤ d(x, z)+d(z, y) (triangle inequality). The distance is considered expen-
sive to compute (for instance, when comparing two documents or fingerprints).

We have a finite database of interest U of size n, which is a subset of the
universe of objects X and can be preprocessed to build a search index.

A proximity query consists in retrieving objects from U which are close to a
new object q ∈ X. There are two basic proximity queries:

Range query (q, r)d: Retrieve all elements in U which are within distance r to
q ∈ X. This is, (q, r)d = {u ∈ U / d(q, u) ≤ r}.

Nearest neighbor query NNk(q)d: Retrieve the k closest elements in U to
q ∈ X. This is, |NNk(q)d| = k, and ∀ u ∈ NNk(q)d, v ∈ U − NNk(q)d,
d(u, q) ≤ d(v, q).

There are some considerations about NNk(q)d. In case of ties we choose any k-
element set that satisfies the query. The query covering radius crq is the distance
from q towards the farthest neighbor in NNk(q)d. Finally, a NNk(q)d algorithm
is called range-optimal if it uses the same number of distance evaluations than
a range search with radius the distance to the k-th closest element [11].

An index is a data structure built offline over U to quickly solve proximity
queries online. Since the distance is considered expensive to compute the goal of
an index is to save distance computations. Given the query, we use the index to
discard as many objects from the database as we can to produce a small set of
candidate objects. Later, we check exhaustively the candidate set to obtain the
query outcome.

There are three main components in the cost of computing a proximity query
using an index, namely: the number of distance evaluations, the CPU cost of
side computations (other than computing distances) and the number of I/O
operations. However, in most applications the distance is the leader complexity
measure, and it is customary to just count the number of computed distances to
compare two algorithms. This measure applies to both index construction and
object retrieval. For instance, computing the cosine distance [3] in the document
metric space takes 1.4 msecs in our machine (Pentium IV, 2 GHz), which is
really costly.

An important parameter of a metric space is its intrinsic dimensionality.
In R

D with points distributed uniformly the intrinsic dimension is simply D.
In metric spaces or in R

D where points are not chosen uniformly, the intrin-
sic dimensionality can be defined using the distance histogram [6]. In practice,
the proximity query cost worsens quickly as the space dimensionality grows. In
fact, an efficient method for proximity searching in low dimensions may become
painfully slow in high dimensions. For large enough dimensions, no proximity
search algorithm can avoid comparing the query against all the database.

1.1 A Note on k-Nearest Neighbor Graphs

The k-nearest neighbors graph (knng) is a directed graph connecting each el-
ement to its k nearest neighbors. That is, given the element set U the knng

is a graph G(U, E) such that E = {(u, v, d(u, v)), v ∈ NNk(u)d}, where each
NNk(u)d represent the outcome of the nearest neighbor query for each u ∈ U.

The knng is interesting per se in applications like cluster and outlier detec-
tion [9, 4], VLSI design, spin glass and other physical process simulations [5],
pattern recognition [8], and query or document recommendation systems [1, 2].
This contribution starts with the knng graph already built, we want to prove
the searching capabilities of this graph. However, we show some specific knng

construction algorithms for our present metric space application in [14].
Very briefly, the knng is a direct extension of the well known all-nearest-

neighbor (ann) problem. A näıve approach to build knng uses n(n−1)
2 = O(n2)

distance computations and O(kn) memory. Although there are several alterna-
tives to speed up the procedure, most of them are unsuitable for metric spaces,
since they use coordinate information that is not necessarily available in general
metric spaces. As far as we know, there are three alternatives in our context.

Clarkson generalized the ann problem for general metric spaces solving the
ann by using randomization in O(n(log n)2(log Γ (U))2) expected time, where
Γ (U) is the distance ratio between the farthest and closest pair of points in U

[7]. The technique described there is mainly of theoretical interest, because the
implementation requires o(n2) space.

Later, Figueroa proposes build the knng by using a pivot-based index so as
to solve n range queries of decreasing radius [10]. As it is well known, the per-
formance of pivot-based algorithms worsen quickly as the space dimensionality
grows, thus limiting the applicability of this technique.

Recently, we propose two approaches for the problem which exploit several
graph and metric space features [14]. The first is based on recursive partitions,
and the second is an improvement over the Figueroa’s technique. Our construc-
tion complexity for general metric spaces is around O(n1.27k0.5) for low and
medium dimensionality spaces, and O(n1.90k0.1) for high dimensionality ones.

1.2 Related Work

We have already made another attempt about using graph based indices for
metric space searching by exploring the idea of indexing the metric space with a

t-spanner [12, 13]. In brief, a t-spanner is a graph with a bounded stretch factor
t, hence the distance estimated through the graph (the length of the shortest
path) is at most t times the original distance. We show that the t-spanner based
technique has better performance searching real-world metric spaces than the
obtained with the classic pivot-based technique. However, the t-spanner can
require much space. With the knng we aim at similar searching performance
using less space.

In the experiments, we will compare the performance of our searching algo-
rithms against the basic pivot-based algorithm and AESA [15]. It is known that
we can trade space for time in proximity searching in the form of more pivots in
the index. So, we will compare our knng approach to find out how much memory
a pivot-based algorithm need to use to be as good as the knng approach. Note
that all the pivot-based algorithms have similar behavior in terms of distance
computations, being the main difference among them the CPU time of side com-
putations. On the other hand, we use AESA just like a baseline, since its huge
O(n2) memory requirement makes this algorithm suitable only when n is small.
See [6] for a comprehensive explanations of these algorithms.

1.3 Our Contribution

In this work we propose a new class of proximity searching algorithms using the
knng as the data structure for searching U. This is the first approach, up to the
best of our knowledge, using the knng for metric searching purposes.

The core of our contribution is the use of the knng to estimate both an
upper bound and a lower bound of the distance to the query from the database
elements. Once we compute d(q, u) for some u we can upper bound the distance
from q to many database objects (if the graph is connected, we upper bound
the distance to all the database objects). We can also lower bound the distance
from the query to the neighbors of u. The upper bound allows the elimination
of far-from-the-query elements whilst the lower bound can be used to test if an
element can be in the query outcome.

As we explain later (Sections 2 and 3), this family of algorithms have a large
number of design parameters affecting its efficiency (not the correctness). We
tried to explore all the parameters experimentally in Section 4.

We selected two sets of heuristics rising two metric range query algorithms,
and building on top of them we designed two nearest neighbor search algorithms.

The experiments confirm that our algorithms are efficient in distance eval-
uations. For instance, in the document metric space with cosine distance our
nearest neighbor query algorithms just perform 30% more distance evaluations
than AESA, but only using a 0.25% of its space requirement. In the same space,
the pivot-based technique is completely useless.

2 knng-based Range Query Algorithms

Given an arbitrary subgraph of the distance matrix of U, one can upper bound
the distance between two objects by using the shortest path between them.

G(u,v)

vu

d

d(u,v)

(a) We upper bound the dis-
tance d(u, v) with the length
of the shortest path dG(u, v).

pq

cr
p

r

d
p

q

(b) If the ball (p, crp) covers
(q, r), we make C = (p, crp).

p

q

(c) If we find an object
p ∈ (q, r)d, we check its
neighborhood.

Fig. 1. Using the knng features. In 1(a), approximating the distance in the graph. In
1(b), using the container. In 1(c), checking the neighborhood.

Formally, d(u, v) ≤ dG(u, v) where dG(u, v) is the distance in the graph, that is,
the length of the shortest path between the objects. Figure 1(a) shows this.

A generic graph-based approach for solving range queries consists in starting
with a set of candidate nodes C of the provable smallest set containing (q, r)d. A
fair choice for an initial C is the whole database U. Later, we iteratively extract
an object u from C and if d(u, q) ≤ r we report u as part of (q, r)d. Otherwise,
we delete all the objects v such that dG(u, v) < d(u, q)−r. Figure 2(a) illustrates
this, we discard all the gray nodes because their distance estimations are small
enough. We repeat the above procedure as long as C have candidate objects. In
this paper we improve this generic approach using the knng properties.

Using Covering Radius. Notice that each node in knng has a covering radius
cru (the distance towards its k-th neighbor). If the query ball (q, r)d is contained
in (u, cru)d we can make C = (u, cru)d, and proceed iteratively from there.
Furthermore, we can keep track of the best fitted object, considering both its
distance to the query and its covering radius using the equation cru−d(u, q). The
best fitted object will be the one having the largest difference, we call container

this difference. Figure 1(b) illustrates this. So, once the container is larger than
the searching radius we can make C = (u, cru)d as stated above. The probability
of hitting a case to apply the above heuristic is low; but it is simply to check and
the low success rate is compensate with the dramatic shrink of C when applied.

Propagating in the Neighborhood of the Nodes. Since we are working over a graph
built by an object closeness criterion, if an object p is in (q, r)d it is likely that
some of its neighbors are also in (q, r)d. Moreover, since the out-degree of a knng

is a small constant, spending some extra distance evaluations on neighbors of
processed nodes do not add a large overhead to the whole process.

So, when we found an object belonging to (q, r)d, it is worth to examine its
neighbors, and, as with any other examination update the container. Note that
every time we hit an answer we recursively check all of its neighbors. Special care
must be taken to avoid multiple checks or cycles. Figure 1(c) illustrates this.

Note also that since we can lower bound the distance from the query to the
neighbors of a processed object, we can discard some neighbors without directly
computing the distance. Figure 2(b) illustrates this.

Working Evenly in All Graph Regions. Since we use path expansions from some
nodes it is important to choose them scattered in the graph to avoid concen-
trating efforts in the same graph region. Otherwise, we will compute a path
several times. A good idea is to select elements far apart from q and the previ-
ous selected nodes, because these nodes would have major potential of discarding
non-relevant objects. Unfortunately, the selection of distant objects cannot be
done by directly computing the distance to q. However, we can estimate “how
visited” is some region. In fact, our two range query algorithms differ essentially
in the way we select the next node to review.

2.1 First Heuristic for Metric Range Query (knngRQ1).

In this heuristic we prefer to start shortest path computations from nodes with
few discarded neighbors, since these nodes have major discarding potential. Ad-
ditionally, we also consider two criteria so as to break ties. The second criterion
is to use nodes with small covering radius, and the third is that we do not want
to restart elimination in an already visited node, and between two visited nodes
we will choose the least traversed. So, to select a node, we consider the following:

1. How many neighbors already discarded has the node. Nodes with few dis-
carded neighbors have major discarding potential, so they can reduce heavily
the number of distance computations performed to solve the query.

2. The size of the covering radius. Objects having small covering radius, that
is, very close neighbors, have major chance of discarding them (since if cru <
d(u, q) − r, all its neighbors are discarded). Moreover, it is also likely that
distance estimations computed from u would have tighter upper bounds.

3. The number of times the node was checked in a path expansion (when com-
puting the graph distance). We prefer a node that it had been checked few
times in order to scatter the search effort on the whole graph.

The above heuristics are condensed in Eq. (1).

p = argminu∈C{|U| · (dnu + f(u)) + #visit} (1)

With f(u) ∈ [0, 1], f(u) = cru−crmin

crmax−crmin

, and crmin = minu∈U{cru}, crmax =
maxu∈U{cru}, and dnu represents the number of discarded neighbors of u. Note
that in Eq. (1) the leading term selects nodes with few discarded neighbors, the
second term is the covering radius and the last term the number of visits.

The equation is computed iteratively for every node in the graph. For each
node we save the value of Eq. (1) and every time we visit a node we update the
heuristic value accordingly. Figure 2(a) illustrates this. Note that when we start
a shortest path expansion we can discard some nodes (the gray ones), but for
those that we cannot discard (the white nodes) we update their value of Eq. (1).

Please note that when we compute the graph distance (the shortest path
between two nodes), we use a variation of Dijkstra’s all shortest path algorithm
which limits the propagation up to an estimation threshold, since a distance
estimation grater that d(u, q) − r cannot be used to discard nodes.

d

−r
d

pq

pq

crp r

qp

(a) The balls do not intersect each other.

pqd

d
pq−r

dpq+r

q
p

rpcr

(b) The balls intersect each other.

Fig. 2. In 2(a), we extract gray objects which have a distance estimation lower that
dpq − r and count visits to the white ones which have estimations lower than dpq . In
2(b), we use p as a pivot discarding its gray neighbors when the distance from p towards
them is not in [dpq − r, dpq + r], else, we count the visit to the white nodes.

2.2 Second Heuristic for Metric Range Query (knngRQ2).

A different way to select a scattered element set is by using the graph distance.
More precisely we assume that if two nodes are far apart according to the graph
distance, they are also far apart using the original distance. The idea is to select
the object with the largest sum of graph distances to all the previously selected
objects. From other point of view, this heuristic tries to start shortest path
computations from outliers.

3 knng-based Nearest Neighbor Queries

Range query algorithms naturally induce nearest neighbor searching algorithms.
To this end, we use the following ideas:

– We simulate the nearest neighbor query using a range query of decreasing
radius, which initial radius crq is ∞.

– We manage an auxiliary set of nearest neighbor candidates of q known up to
now, so the radius crq is the distance from q to its furthest nearest-neighbor
candidate.

– Each non-discarded object reminds its own lower bound of the distance from
itself to the query. For each node its initial lower bound is 0.

Note that, each time we find and object u such that d(u, q) < crq, we re-
place the farthest nearest-neighbor candidate by u, so this can reduce crq. Note
also that, if d(u, q) < crq it is likely that some of the neighbors of u can also
be relevant to the query, so we check all the u neighbors. However, since the
initial radius is ∞ we change a bit the navigational schema. In this case, instead
of propagating in the neighborhood, we start the navigation from the node u
towards the query q by jumping from one node to another if the next node is
closer to q to than the previous one. Figure 3 illustrates this. In the figure, we
start in p, and we navigate towards q until we reach pc.

crq2

u
LB

[u
]

pf

pc

p

cr

q

q1

Fig. 3. If we find an object p ∈ NNk(q)d we traverse through the graph towards q.
Later, as crq decreases, it is possible to discard the node u when LB[u] ≥ crq.

On the other hand, unlike range queries, we split the discarding process in
two stages. In the first, we compute the lower bound of all the non-discarded
nodes. In the second, we extract the objects such that their lower bound are big
enough, that is, we discard u if LB[u] > crq. This is also illustrated in Figure
3. Note that, when we start in p the covering radius is crq1. However, upon we
reach pc the covering radius has been reduced to crq2 < LB[u], so we discard u.

LB[u] is computed as the maxp{d(p, q) − dG(p, u)}, where p is any of the
previously selected nodes. Note that LB[u] allows us to delay the discarding of
u until crq is small enough, even if we only update LB[u] once.

With these modifications we produce the algorithms knngkNNQ1 which
selects the next node according to Eq. (1), and knngkNNQ2 which selects
nodes far apart from each other.

4 Experimental results

We have tested our algorithms on synthetic and real-world metric spaces. The
synthetic set consists of 32,768 points distributed uniformly in the D-dimensional
unitary cube [0, 1]D, under the Euclidean distance. This space allows us to mea-
sure the effect of the space dimension D on our algorithms. Of course, we have
not used the coordinates for discarding purposes, but just treated the points as
abstract objects in an unknown metric space.

We also included two real-world examples. The first is a string metric space
using the edit distance (the minimum number of character insertions, deletions
and replacements needed to make two strings equal). The strings came from an
English dictionary, where we index a random subset of 65,536 words. The second
is a document metric space of 25,000 objects under the cosine distance. Both
spaces are of interest in Information Retrieval applications.

Each point in the plots represents the average of 50 queries q ∈ X − U.
For shortness we have called RQ the range query and NNQ the nearest neigh-
bor query. We have compared our algorithms against AESA and a pivot-based
algorithm (only in this case have we used range-optimal NNQs). For a fair com-
parison, we provided the same amount of memory for the pivot index and for
our knng index (that is, we compare a knng index against a 1.5k pivot set size).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 28 24 20 16 12 8 4

D
is

ta
nc

e
E

va
lu

at
io

ns

dimension

Vector space: Range Query, retrieving 1 object, n = 32,768

8nngRQ1
8nngRQ2
8Eq Pivot

32nngRQ1
32nngRQ2
32Eq Pivot

AESA

(a) Vectors, RQ varying dimension.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 28 24 20 16 12 8 4

D
is

ta
nc

e
E

va
lu

at
io

ns

dimension

Vector space: 1-Nearest Neighbor Query, n = 32,768

8nng1NNQ1
8nng1NNQ2

8Eq Pivot k=1
32nng1NNQ1
32nng1NNQ2

32Eq Pivot k=1
AESA k=1

(b) Vectors, 1NNQ varying dimension.

 512

 1024

 2048

 4096

 8192

 16384

 32768

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per vector in the graph

Vector space dim 16: Range Query retr. 1 and 10 vectors, n = 32,768

knngRQ2 r=0.66
Pivot r=0.66

AESA r=0.66
knngRQ2 r=0.78

Pivot r=0.78
AESA r=0.78

(c) Vectors, RQ varying index size.

 512

 1024

 2048

 4096

 8192

 16384

 32768

 1 2 4 8 16

D
is

ta
nc

e
E

va
lu

at
io

ns
k nearest vector retrieved

Vector space: 32 Near Neighbor Graph, n = 32,768

dim 16, 32nngkNNQ2
dim 16, 32Eq Pivot

dim 16, AESA
dim 24, 32nngkNNQ2

dim 24, 32eq Pivot
dim 24, AESA

(d) Vectors, NNQ in dim 16 and 24.

Fig. 4. Distance evaluations in the vector space for RQ (left) and NNQ (right).

With our experiments we tried to measure the behavior of our technique
varying the vector space dimension, the query outcome size (by using different
radii in RQs or different number of retrieved neighbors in NNQs), and the graph
size (that is, number of neighbors per object) to try different index size.

Figure 4 shows results in the vector space. Figure 4(a) shows RQs using radii
that retrieve 1 object per query in average indexing the space with 8nng and
32nng graphs versus the dimension; and the Figure 4(b) shows the equivalent
experiment for NNQs retrieving 1 neighbor. As can be seen from these plots,
even though our NNQ algorithms are not range-optimal per se, they behave as
if they were. Due to both RQ knng based variants behave very similar, we only
show the better of them in the following plots in order to simplify the reading.
We do the same in the NNQ plots.

Figure 4(c) shows RQs retrieving 1 and 10 vector in average per query versus
the index size. Figure 4(d) shows NNQs over a 32nng in dimension 16 and 24,
versus the size of the query outcome. It is very remarkable that knng based
algorithms are more resistant to both the dimension effect (Figures 4(a) and
4(b)) and the query outcome size (Figures 4(c) and 4(d)). As we can expect, the
bigger the index size (that is, the more the neighbors in the knng), the better
the searching performance (Figure 4(c)). Furthermore, all the plots in Figure 4

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per string in the graph

String space: Range Query, n = 65,536

knngRQ2 r = 1
Pivot r = 1

knngRQ2 r = 2
Pivot r = 2

knngRQ2 r = 3
Pivot r = 3

(a) Strings, RQ for r = 1, 2 and 3.

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per string in the graph

String space: k-Near Neighbor Query k = 2 and 16, n = 65,536

knng2NNQ1
Pivot k=2

knng16NNQ2
Pivotk=16

(b) Strings, kNNQ for k = 2 and 16.

Fig. 5. Distance evaluations in the string space for RQ (left) and NNQ (right). In RQs,
AESA needs 25, 106 and 713 distance evaluations for radii r = 1, 2 and 3 respectively. In
NNQs, AESA needs 42 and 147 evaluations to retrieve 2 and 16 neighbors respectively.

show that our algorithms have better performance than the classic pivot based
approach for medium and high dimension metric spaces, that is D > 8.

Figure 5 shows results in the string space. Figure 5(a) shows RQs using
radii r = 1, 2, and 3, and Figure 5(b) shows NNQs retrieving 2 and 16 nearest
neighbors, both of them versus the index size. They confirm that knng based
search algorithms are resistant against the query result size, as expected from the
synthetic space experiments. With radii r = 1, 2 and 3, we retrieve approximately
2, 29 and 244 strings per query in average, however the performance of our
algorithms do not degrade so strongly as the pivot-based one. With radius 1 the
pivot based technique has better performance than our algorithms. However,
with radius r = 2 and 3, our algorithms outperform the pivot-based algorithm.
In this figures, we do not plot the AESA results because it uses too few distances
evaluations, however recall that the AESA index uses O(n2) memory which is
impractical in most of the scenarios. Note that the difference between pivot range
queries of radius 1 and the 2-nearest neighbor queries appears because there are
strings that have much more than 2 neighbors at distance 1, for example the
query word “cams” retrieves “jams”, “crams”, “cam” and seventeen others, so
these words distort the average for radius 1. We also verify that, the bigger the
index size, the better the performance.

Figure 6 shows results in the document space. Figure 6(a) shows RQs using
radii r = 0.61 and 0.91 versus the index size. Figure 6(b) shows NNQs over
a 32nng versus the query outcome size. This space is particularly difficult to
manage, please observe that the pivot-based algorithms check almost all the
database. Even in this difficult scenario, our algorithms handle to retrieve object
checking a fraction of the database. It is remarkable that in NNQs, our algorithms
perform 30% more distance evaluation than AESA using only a 0.25% of its space
requirement.

Note that in the three spaces, the grater the knng index size, the better the
behavior of our algorithms. However, the search performance improves strongly

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per document in the graph

Document space: Range Query retrieving 1 and 10 docs, n = 25,000

knngRQ1 r=0.61
Pivot r=0.61

AESA r=0.61
knngRQ1 r=0.91

Pivot r=0.91
AESA r=0.91

(a) Documents, RQ for r = 0.61 and 0.91.

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 1 2 4 8 16

D
is

ta
nc

e
E

va
lu

at
io

ns

k nearest document retrieved

Document space: 32 Near Neighbor Graph, n = 25,000

32nngkNNQ1
32Eq Pivot

64nngkNNQ1
64Eq Pivot

AESA

(b) Documents, kNNQ over a 32nng.

Fig. 6. Distance evaluations in the document space for RQ (left) and NNQ (right).

as we add more space to the graph only when we use small indices, that is, knng

graphs with few neighbors. Fortunately, our algorithms behave better than the
classic pivot technique in low memory scenarios with medium or high dimension-
ality. According to our experiments for k ≤ 32 we obtain better results than the
equivalent memory space pivot-based algorithm in D-dimensional vector spaces
of D > 8 and the document space. In the string space we obtain better results
in RQ using radii r > 2 or in NNQ retrieving more than 4 nearest strings.

5 Conclusions

We have presented four metric space searching algorithms that use the k-nearest
neighbor graph knng as a metric index.

Our algorithms have practical applicability in low memory scenarios for met-
ric spaces of medium or high dimensionality. For instance, in the document met-
ric space with cosine distance our nearest neighbor algorithm uses just 30% more
distance computations than AESA only using a 0.25% of its space requirement.
In same space, the pivot-based technique is completely useless.

The future work involves the development of range-optimal nearest neighbor
queries and the researching of knng optimizations tuned for our metric appli-
cations. For instance, we want to explore other local graphs, like the all range

r graph where we assign to each node all the nodes within distance r. This way
also allow us to control the size of the neighbor ball.

Since our data structure can efficiently search for nearest neighbor queries, it
is natural to explore an incremental construction of the graph itself. To do this
end we need to solve reverse nearest neighbor problem with this data structure.
Incremental construction is very realistic in many real-world applications.

References

1. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query clustering for boosting web
page ranking. In Proc. AWIC’04, LNCS 3034, pages 164–175, 2004.

2. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation usign query
logs in search engines. In Proc. EDBT Workshops’04, LNCS 3268, pages 588–596,
2004.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley, 1999.

4. M. Brito, E. Chávez, A. Quiroz, and J. Yukich. Connectivity of the mutual k-
nearest neighbor graph in clustering and outlier detection. Statistics & Probability

Letters, 35:33–42, 1996.
5. P. Callahan and R. Kosaraju. A decomposition of multidimensional point sets with

applications to k nearest neighbors and n body potential fields. JACM, 42(1):67–
90, 1995.

6. E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

7. K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Computational

Geometry, 22(1):63–93, 1999.
8. R. O. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.
9. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal poly-

topes. Discrete & Computational Geometry, 11:321–350, 1994.
10. K. Figueroa. An efficient algorithm to all k nearest neighbor problem in metric

spaces. Master’s thesis, Universidad Michoacana, Mexico, 2000. In Spanish.
11. G. Hjaltason and H. Samet. Incremental similarity search in multimedia databases.

Technical Report TR 4199, Dept. of Comp. Sci. Univ. of Maryland, Nov 2000.
12. G. Navarro and R. Paredes. Practical construction of metric t-spanners. In Proc.

ALENEX’03, pages 69–81, 2003.
13. G. Navarro, R. Paredes, and E. Chávez. t-Spanners as a data structure for metric

space searching. In Proc. SPIRE’02, LNCS 2476, pages 298–309, 2002.
14. R. Paredes and G. Navarro. Practical construction of k

nearest neighbor graphs in metric spaces. Technical Report
TR/DCC-2005-6, Dept. of Comp. Sci. Univ. of Chile, May 2005.
ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/knnconstr.ps.gz.

15. E. Vidal. An algorithm for finding nearest neighbors in (approximately) constant
average time. Pattern Recognition Letters, 4:145–157, 1986.

