
Practical Construction of Metric t-Spanners ∗

Gonzalo Navarro † Rodrigo Paredes †

Abstract

Let G(V, A) be a connected graph with a nonnegative
cost function d : A → R

+. Let dG(u, v) be the
cost of the cheapest path between u, v ∈ V . A t-
spanner of G is a subgraph G′(V, E), E ⊆ A, such
that ∀ u, v ∈ V, dG′(u, v) ≤ t · dG(u, v), t > 1. We
focus on the metric space context, which means that
A = V ×V , d is a metric, and t ≤ 2. Several algorithms
to build t-spanners are known, but they do not seem
to apply well to our case. We present four practical
algorithms to build t-spanners with empirical time costs

of the form Ct · n
2+ 0.1...0.2

t−1 and number of edges of the

form Ce · n
1+ 0.1...0.2

t−1 . These algorithms are useful on
general graphs as well.

1 Introduction

Let G be a connected graph G(V, A) with a nonnegative
cost function d(e) assigned to its edges e ∈ A. The
shortest path among every pair of vertices u, v ∈ V is
the one minimizing the sum of the cost of the edges
traversed, dG(u, v). This can be computed with Floyd’s
algorithm or with |V | iterations of Dijkstra’s algorithm
considering each vertex as the origin node [18]. A
t-spanner it is a subgraph G′(V, E), with E ⊆ A,
which permits to compute paths with stretch t, that
is, ensuring that ∀ u, v ∈ V, dG′(u, v) ≤ t ·dG(u, v) [13].
We call this the t-condition.

In this work we are interested in using t-spanners
as tools for searching metric spaces [6]. A metric
space is a set of objects X and a distance function
d defined among objects, which satisfies the metric
properties (positiveness, reflexivity, symmetry, triangle
inequality). Given a finite subset U ⊆ X, of size n, the
goal is to build a data structure over U such that later,
given a query object q ∈ X, one can find the elements
of U close to q with as few distance computations as
possible.

∗This work has been supported in part by the Millenium
Nucleus Center for Web Research, Grant P01-029-F, Mideplan,
Chile and MECESUP Project UCH0109 (Chile).

†Center for Web Research, Dept. of Computer Science,
University of Chile. Blanco Encalada 2120, Santiago, Chile.
{gnavarro,raparede}@dcc.uchile.cl

One of the best existing algorithms to search metric
spaces is AESA [17]. AESA precomputes and stores
the matrix of n(n − 1)/2 distances among elements of
U. This huge space requirement makes it unsuitable for
most applications, however.

This matrix can be seen as a complete graph
G(V, A) where the set of vertices V = U corresponds
to the objects of the metric space, and the set of edges
A corresponds to the n(n− 1)/2 distances among these
objects. A t-spanner G′ of G would represent all these
distances using a small number of edges E, E ⊆ A, and
still would be able to approximate all the distances with
a maximum error t, that is:

d(u, v) ≤ dG′(u, v) ≤ t · d(u, v)(1.1)

In most metric spaces the distance histogram fol-
lows a distribution that becomes concentrated as the
dimension increases [6]. This means that in practice we
are interested in the range t ∈ (1, 2].

We pursue this line in [12], where we focus on
the search process but not on t-spanner construction.
In that paper we show that the search algorithm is
competitive against current approaches, e.g., we need
1.09 times the time cost of AESA using only 3.83% of
its space requirement, in a metric space of documents;
and 1.5 times the time cost of AESA using only 3.21%
of its space requirement, in a metric space of strings.
We also show that t-spanners provide better space-time
tradeoffs than classical alternatives such as pivot-based
indexes.

There are metric spaces where computing the dis-
tance evaluation among the objects is highly expensive.
For instance, in the metric space of documents under
the cosine distance [3], in order to compute the distance
numerous disk accesses and million of basics arithmetics
operations are required. In this case the distance evalu-
ation could take hundredths of seconds, which is really
expensive even compared against the operations intro-
duced by the graph. In particular, the cost of the dis-
tance evaluation absorbs the cost of the shortest paths
computation using Dijkstra’s algorithm.

Hence our interest in this paper is in building t-
spanners over metric spaces which work well in practice.
Few algorithms exist apart from the basic O(mn2)
technique (m = |E|), which inserts the edges needed

one by one and recomputes all the shortest paths to
every edge inserted.

Four t-spanner construction algorithms are pre-
sented in this paper, with the goals of decreasing CPU
and memory cost and of producing t-spanners of good
quality, i.e., with few edges. Our four algorithms are:

1. An optimized basic algorithm, where we limit the
propagation of edge insertions.

2. A massive edge insertion algorithm, where we
amortize the cost of recomputing distances across
many edge insertions.

3. An incremental algorithm, where nodes are added
one by one to a correct t-spanner.

4. A recursive algorithm applying a divide and con-
quer technique.

Table 1 shows the complexities obtained. We obtain
empirical time costs of the form Ct · n2.24 and number
of edges of the form Ce · n1.13. This shows that good
quality t-spanners can be built in reasonable time (just
the minimum spanning tree computation needs O(n2)
time). We take no particular advantage of the metric
properties of the edge weights, so our algorithms can be
used on general graphs too. As far as we know, there
has not been previous work on comparing, in practice,
t-spanner construction algorithms on metric spaces.

CPU Memory Distance
time evaluations

Basic O(mn2) O(n2) O(n2)
Basic O(mk2) O(n2) O(n2)

optimized
Massive edge O(nm log m) O(m) O(nm)

insertion
Incremental O(nm log m) O(m) O(n2)
Recursive O(nm log m) O(m) O(n2)

Table 1: t-Spanner algorithm complexities comparison.
The value k refers to the number of nodes that have
to be checked when updating distances due to a new
inserted edge.

2 Previous Work

Several studies on general graph t-spanners have been
undertaken [8, 13, 14]. Most of them resort to the
basic O(mn2) time construction approach detailed in
the next section, where n = |V | and m = |E| refer to
the resulting t-spanner. It was shown in [1, 2] that this

technique produces t-spanners with n1+O(1

t−1
) edges on

general graphs of n nodes.
More sophisticated algorithms have been pro-

posed in [7], producing t-spanners with guaran-
teed O(n1+(2+ε)(1+log

n
m)/t) edges in worst case time

O(mn(2+ε)(1+log
n

m)/t), where in this case m refers to
the original graph. In a metric space m = Θ(n2), which
means worst case time O(n5). Additionally, the algo-
rithms in [7] work for t ∈ [2, log n], unsuitable for our
application. (Some of these algorithms could be adapted
to work heuristically for smaller t, but to the best of our
knowledge, this has not been done so far.) Other recent
algorithms [16] work only for t = 1, 3, 5, . . . also un-
suitable for us. Parallel algorithms have been pursued
in [11], but they do not give new sequential algorithms.

As it regards to Euclidean t-spanners, i.e., the sub-
class of metric t-spanners where the objects are points in
a D-dimensional space with Euclidean distance, much
better results exist [8, 1, 2, 10, 9, 15], showing that one
can build t-spanners with O(n) edges in O(n logD−1 n)
time. These results, unfortunately, make heavy use of
coordinate information and cannot be extended to gen-
eral metric spaces.

Other related results refer to probabilistic approxi-
mations of metric spaces using tree metrics [4, 5]. The
idea is to build a set of trees such that their union makes
up a t-spanner with high probability. However, the t
values are of the form O(log n log log n).

Hence the need to find practical algorithms that
allow building appropriate t-spanners for metric spaces,
that is, with t ≤ 2, for complete graphs, and taking
advantage of the triangle inequality.

3 Basic t-Spanner Construction Algorithm

The intuitive idea to solve this problem is iterative.
We begin with an initial t-spanner that contains all
the vertices and no edges, and calculate the distance
estimations among all vertex pairs. These are all infinite
at step zero, except for the distances between a node and
itself (d(u, u) = 0). The edges are then inserted until
all the distance estimations fulfill the t-condition.

The edges are considered in ascending cost order,
so we start by sorting them. Using smaller-cost edges
first is in agreement with the geometric idea of inserting
edges between near neighbors and making up paths from
low cost edges in order to use few edges overall.

Hence the algorithm uses two matrices. The first,
real, contains the true distance between all the objects,
and the second, estim, contains the distance estimations
obtained with the t-spanner under construction. The t-
spanner is stored in an adjacency list.

The insertion criterion is that an edge is added to
the set E only when its current estimation does not

satisfy the t-condition. After inserting the edge, it is
necessary to update all the distance estimations. The
update mechanism is similar to the distance calculation
mechanism of Floyd’s algorithm, but considering that
edges, not nodes, are inserted into the set. Figure 1
depicts the basic t-spanner construction algorithm.

t-Spanner0 (Stretch t, Vertices U)

real ← real distance matrix

estim← estimated distance matrix

t-Spanner ← ∅ // t-spanner edge structure

for e = (eu, ev) ∈ real chosen in increasing

cost order do

if estim(e) > t · real(e)
// e is not well t-estimated
t-Spanner ← t-Spanner ∪ {e}
for vi, vj ∈ U

d1 ← estim(vi, eu) + estim(vj , ev)
d2 ← estim(vj, eu) + estim(vi, ev)
estim(vi, vj)← min(estim(vi, vj),

min(d1, d2)+real(e))

Figure 1: Basic t-spanner construction algorithm (t-
Spanner 0).

This algorithm makes O(n2) distance evaluations,
like AESA [17]; O(mn2) CPU time (recall that n = |V |
and m = |E|); and O(n2 + m) = O(n2) memory. Its
main deficiencies are excessive edge insertion cost and
too high memory requirements.

4 Optimized Basic Algorithm

Like the basic algorithm (Section 3), this algorithm
considers the use of real and estim matrices, choosing
the edges in increasing weight order. The optimization
focuses on the distance estimation update mechanism.

The main idea is to control the propagation of
the computation, that is, only updating the distance
estimations that are affected by the insertion of a new
edge. Figure 2 shows the insertion of a new edge. In
the first update we must modify only the edge that was
inserted, between nodes a1 and a2. The computation
then propagates to the neighbors of the ai nodes,
namely the nodes {b1, b2, b3}; then to the nodes {c1, c2}
and finally d1. The propagation stops when a node does
not improve its current estimation or when it does not
have further neighbors.

In order to control the propagation, the algorithm
uses two sets, ok and check.

• ok: The nodes that already have updated their

Figure 2: Propagation of distance estimations.

shortest path estimations due to the inserted edge.

• check: The adjacency of ok, check =
adyacency(ok) − ok = {u ∈ U, ∃v ∈ ok, (u, v) ∈
E} − ok. These are the nodes that we still need to
update.

Note that it is necessary to propagate the compu-
tation only to the nodes that improve their estimation
to a1 or a2. The complete algorithm reviews all the
edges of the graph. For each edge, it iterates until no
further propagation is necessary. Figure 3 depicts the
optimized basic algorithm.

t-Spanner1 (Stretch t, Vertices U)

real ← real distance matrix

estim← estimated distance matrix

t-Spanner ← ∅ // t-spanner edge structure

for e = (eu, ev) ∈ real chosen in increasing

cost order do

if estim(e) > t · real(e)
// e is not well t-estimated
t-Spanner ← t-Spanner ∪ {e}
ok ← {eu, ev}
check← adjacency(ok) − ok
for c ∈ check
if (estim(c, ev) + real(e) ≤ estim(c, eu) or

(estim(c, eu) + real(e) ≤ estim(c, ev)
for o ∈ ok

d1 ← estim(c, eu) + estim(o, ev)
d2 ← estim(c, ev) + estim(o, eu)
estim(c,o) ← min(estim(c,o),

min(d1,d2) + real(e))
check← check ∪ (adjacency(c) - ok)

ok ← ok ∪ {c}
check← check − {c}

Figure 3: Optimized basic algorithm (t-Spanner 1).

This algorithm takes O(n2) distances evaluations.
In terms of CPU time it takes O(mk2), where k is
the number of neighbors to check when inserting an
edge. In the worst case this becomes O(mn2) just like
the basic algorithm, but the average is much better.
From the point of view of the memory it still takes
O(n2 + m) = O(n2). This algorithm reduces the CPU
time used, but even so this is still very high, and the
memory requirements are still too high.

A good feature of this algorithm is that, just like
the basic algorithm, it produces good-quality t-spanners
(few edges). So we have used its results to predict the
expected number of edges per node in order to speed up
other algorithms that rely on massive edge insertion.
We call Et−Spanner1(n, d, t) the expected number of
edges in a metric space of n objects, distance function
d, and stretch t. In Section 8 we show some estimations
obtained, see Table 2.

5 Massive Edges Insertion Algorithm

This algorithm tries to reduce both the CPU process-
ing time and memory requirements. To reduce the
CPU time, the algorithm updates the distance estima-
tions only after performing many edge insertions, using
an O(m log n)-time Dijkstra’s algorithm to update dis-
tances. To reduce the memory requirement, it computes
the distances between objects on the fly.

Since we insert edges less carefully than before, the
resulting t-spanner is necessarily of lower quality. Our
effort is in minimizing this effect.

The algorithm has three stages. In the first one,
it builds the t-spanner backbone by inserting whole
minimum spanning trees (MSTs), and determines the
global wrongly t-estimated edge list (pending); in the
second one, it refines the t-spanner by adding more
edges to improve the wrongly t-estimated edges; and in
the third one, it inserts all the remaining “hard” edges.

This algorithm uses two heuristic values:

H1 determines the expected number of edges per node,
and it is obtained from the t-Spanner 1 edge
model: H1 = |Et−Spanner 1(n, d, t)|/n . With H1

we will define thresholds to determine whether
or not to insert the remaining edges (those still
wrongly t-estimated) of the current node. Note
that |Et−Spanner 1(n, d, t)| is an optimistic predictor
of the resulting t-spanner estimated size using the
massive edges insertion algorithm, so we can use
H1 = |Et−Spanner 1(n, d, t)|/n as a lower bound of
the number of edges per node.

H2 is used to determine the pending list size and
will give a criterion to determine when to insert
an additional MST. The maximum pending list

size is H2 = 1.2 · |E|, where E refers to the t-
spanner under construction. We made preliminar
experiments in order to fix this value. With values
lower than 1.2 the algorithm takes more processing
time without improving the number of edges, and
with higher values the algorithm inserts more edges
than necessary and needs more memory to build the
t-spanner.

The algorithm stages are:

1. We insert successive MSTs to the t-spanner. The
first MST follows the basics Prim algorithm [18],
but the next MSTs are built using Prim over the
edges that have not been inserted yet.

We traverse the nodes sequentially, building the list
of pending edges (wrongly t-estimated). At the
same time, we insert successive MSTs and remove
pending edges accordingly. Additionally, when the
current node has no more than H1/2 pending edges,
we just insert them (since we only need a small set
of edges in order to correct the distance estimations
of this node). The insertion of MSTs continues as
long as there are more than H2 pending edges (note
that H2 depends on the current t-spanner size |E|).

This stage continues until we review all the nodes.
The output is the t-spanner backbone (t-Spanner)
and the gobal list of pending edges (pending).

2. In the second stage we reduce the pending list. For
this sake, we traverse the list of nodes with pending
edges (pendingNodes), from more to less pending
edges. For each such node, we check which edges
have to improve their t-estimation and which do
not (edges originally in the pending list may have
become well t-estimated along the process). From
the still wrongly t-estimated edges, we insert a set
of the smaller cost edges of size H1/4 and proceed
to the next node (we need to insert more edges
in order to improve the distance estimation; with
values lower than H1/4 the algorithm takes more
processing time without improving the number of
edges and with higher values the algorithm inserts
more edges than necessary).

This allows us to review in the first place the nodes
that require more attention, without concentrating
all the efforts in the same node.

The process considers two special cases. The
first one is that we have inserted more than n
edges, in which case we regenerate and re-sort the
pendingNodes list and restart the process. The
second one is that the pending list of the current
node is so small that we simply insert its elements.

The output condition of the second stage is that
the pending list size is smaller than n/2 (we made
preliminar experiments in order to fix this value,
and we obtained the best results with n/2).

3. We insert the pending list to the t-spanner.

Figure 4 depicts the massive edges insertion algo-
rithm. This algorithm takes O(nm) distance evalua-
tions, O(nm log m) CPU time (since we run Dijkstra’s
algorithm once per node), and O(n+m) = O(m) mem-
ory. It is easy to see that the space requirement is O(m):
the pending list is never larger than O(m) because at
each iteration of stage 1 it grows at most by n, and as
soon as it becomes larger than 1.2 ·m (H2) we take out
edges from it by adding a new MST, until it becomes
short enough. The CPU time comes from running Dijk-
stra’s algorithm once per node at stage 1. At stage 2 we
insert edges in groups of O(m/n), running Dijkstra’s
algorithm after each insertion, until we have inserted
|pending| − n/2 = O(m) edges overall. This accounts
for other n times we run Dijkstra’s algorithm. Hence
the O(nm log m) complexity.

This algorithm reduces both CPU time and memory
requirements, but the amount of distance evaluations is
very high (O(nm) ≥ O(n2)).

6 Incremental Node Insertion Algorithm

This version reduces the amount of distance evaluations
to just n(n − 1)/2, while preserving the amortized
update cost idea.

This algorithm, unlike the previous ones, makes
a local analysis of nodes and edges, that is, it makes
decisions before having knowledge of the whole edge
set. We insert the nodes one by one, not the edges.
The invariant is that for nodes 1 . . . i− 1 we have a well
formed t-spanner, and we want to insert the i-th node to
the growing t-spanner. Since the insertion process only
locally analyzes the edge set, the resulting t-spanner is
suboptimal.

For each new node i, the algorithm makes two
operations: the first is to connect the node to the
growing t-spanner using the cheapest edge (towards a
node < i); the second one is to verify that the distance
estimations satisfy the t-condition, adding some edges
to node i until the invariant is restored. We repeat this
process until we insert the whole node set.

We also use the H1 heuristic, with the difference
that we recompute H1 at every iteration (since the t-
spanner size changes). We fixed that the number of
edges to insert at a time should be δ = H1/(5 · i) in
order to reduce the processing time and the amount of
edges inserted to the t-spanner. Inserting more edges at
a time obtains lower processing time but the size of the

t-spanner is increased; inserting less edges at a time,
increases the processing times whitout decreasing the
t-spanner size.

For the distance verification we use an incremental
Dijkstra’s algorithm with limited propagation, that is,
the first time, Dijkstra’s algorithm takes an array with
precomputed distances initialized at t·d(ui, uj)+ε, with
ε > 0, j ∈ [1, i − 1]. This is because, if a distance to
node i is not well t-estimated, we do not really need to
know how bad estimated it is. For the next iterations,
Dijkstra’s algorithm reuses the previously computed
array, because there is no need to propagate distances
from nodes whose estimation has not improved.

Figure 5 depicts the incremental node insertion al-
gorithm. This algorithm takes O(n2) distance evalua-
tions, O(nm log m) CPU time, and O(n + m) = O(m)
memory. The CPU time comes from the fact that every
node runs Dijkstra’s algorithm n/δ = O(1) times.

t-Spanner3 (Stretch t, Vertices U)

t-Spanner ← ∅ // t-spanner edge structure

for i ∈ [1, n]
// incremental H1

δ ← |Et−Spanner1(i, d, t)| / (i · 5)
k ← argminj∈[1,i−1]{d(nodei, nodej)}
// inserting the cheapest edge

t-Spanner ← t-Spanner ∪ {(nodei, nodek)}
// defining the propagation limit

distances← {(nodej , t · d(nodei, nodej) + ε)/
j ∈ [1, i− 1]}

while nodei has wrongly t-estimated edges

// incremental Dijkstra

distances← Dijkstra(t-Spanner, u,
distances)

pendingi ← {(nodei, nodej), j < i/
distance(nodej) > t · d(nodei, nodej)}

smallest← δ cheapest edges in pendingi

t-Spanner ← t-Spanner ∪ smallest

Figure 5: Incremental node insertion algorithm (t-
Spanner 3).

7 Recursive Algorithm

The incremental algorithm is an efficient approach to
construct t-spanners, but it does not consider spatial
proximity (or remoteness) among the objects. A way
to solve this is that the set in which the t-spanner
is incrementally built is made up of near objects.
Following this principle, we present a solution that
recursively divides the object set into two compact

t-Spanner2 (Stretch t, Vertices U)

t-Spanner ← MST // t-spanner edge structure, initially has the first MST

pending← ∅ // global pending egde list

H1 ← |Et−Spanner1(n, d, t)| / n

Stage 1: generating t-Spanner and pending
for u ∈ U

if |pending| > 1.2 · |t-Spanner | // using H2

t-Spanner ← t-Spanner ∪ MST // built over the non-inserted edges

distances← Dijkstra(t-Spanner, u) // distances(v) = dt-Spanner(u, v)
for v ∈ U

if distance(v) ≤ t · d(u, v) pending ← pending − {(u, v)}
else pending ← pending ∪ {(u, v)}

if |pending(u)| ≤ H1/2
t-Spanner ← t-Spanner ∪ pending(u)
pending ← pending − pending(u)

Stage 2: Reducing pending
while |pending| > n/2

pendingNodes← nodes sorted in decreasing number of pending edges

for u ∈ pendingNodes
if more than n edges have been inserted break // special case 1

if |pending(u)| < H1/4 // special case 2

t-Spanner ← t-Spanner ∪ pending(u)
pending ← pending − pending(u)

else

distances← Dijkstra(t-Spanner, u)
for v ∈ pending(u)
if distances(v) ≤ t · d(u, v) pending← pending − {(u, v)}

smallest← H1/4 smallest edges ∈ pending(u)
t-Spanner ← t-Spanner ∪ smallest
pending ← pending − smallest

Stage 3: t-Spanner ← t-Spanner ∪ pending

Figure 4: Massive edges insertion algorithm (t-Spanner 2), pending(u) denotes {e ∈ pending, ∃v, e = (u, v)}.

subsets, builds sub-t-spanners in the subsets, and then
merges them.

For the initial set division we take two far away
objects, p1 and p2, that we call representatives, and then
generate two subsets: objects nearer to p1 and nearer
to p2. Figure 6 shows the concept graphically. For the
recursive divisions we reuse the representative as one of
the two objects, and the element farthest to it as the
other. The recursion finishes when we have less than 3
objects.

The merge step also takes into account the spatial
proximity among the objects. When we merge the sub-
t-spanners, we have two node subsets V1 and V2, where
|V1| ≥ |V2| (otherwise we swap the subsets). Then, in

Figure 6: We select p1 and p2, and then divide the set.

the sub-t-spanner represented by p2 (stsp2), we choose
the object closest to p1 (u), and insert it into the sub-t-
spanner represented by p1 (stsp1) verifying that all the

distances towards V1 are well t-estimated. Note that
this is equivalent to consider that we use the incremental
algorithm, where we insert u into the growing t-spanner
stsp1. We continue with the second closest and repeat
the procedure until all the stsp2 nodes are inserted into
stsp1. Figure 7 illustrates. Note that the edges already
present in stsp2 are conserved.

Figure 7: The merge step takes the objects according
to their distances towards p1.

This algorithm also uses an incremental Dijkstra’s
algorithm with limited propagation, but this time we
are only interested in limiting the propagation towards
stsp1 nodes (because we know that towards stsp2 we
already satisfy the t-condition). Hence, Dijkstra’s
algorithm takes an array with precomputed distances
initialized at t · d(ui, uj) + ε for (ui, uj) ∈ V2 × V1, and
∞ for (ui, uj) ∈ V2 × V2, where ε is a small positive
constant. For the next iterations, Dijkstra’s algorithm
reuses the previously computed array.

Figure 8 depicts the recursive algorithm and the
auxiliary functions used to build and merge sub-t-
spanners. This algorithm takes O(n2) distance evalu-
ations, O(nm log m) CPU time, and O(n + m) = O(m)
memory. The cost of dividing the sets does not affect
that of the underlying incremental construction.

8 Experimental Results

We have tested our algorithms on synthetic and real-
life metric spaces. The synthetic set is formed by 2,000
points in a 20-dimensional space with coordinates in the
range [−1, 1], with Gaussian distribution forming 256
randomly placed clusters. We consider three different
standard deviations to make more crisp or more fuzzy
clusters (σ = 0.1, 0.3, 0.5). Of course, we have not
used the fact that the space has coordinates, but have
treated the points as abstract objects in an unknown
metric space.

Two real-life data sets were tested. The first
is a string metric space using the edit distance (a
discrete function that measures the minimum number of
character insertions, deletions and replacements needed
to make the strings equal). The strings form an English
dictionary, where we index a subset of n = 24,000 words.

The second is a space of 1,215 documents under the
Cosine similarity, which is used to retrieve documents
more similar to a query under the vector space model.
In this model the space has one coordinate per term and
documents are seen as vectors in this high dimensional
space. The similarity corresponds to the cosine of the
angle (inner product) among the vectors, and a suitable
distance measure is the angle itself. Both spaces are of
interest to Information Retrieval applications [3].

The experiments were run on an Intel Pentium IV
of 2 GHz, with 512 MB of RAM and a local disk.
We are interested in measuring the CPU time needed
and the amount of edges generated by each algorithm.
For shortness we have called t-Spanner 1 the optimized
basic algorithm, t-Spanner 2 the massive edges insertion
algorithm, t-Spanner 3 the incremental algorithm, and
t-Spanner 4 the recursive algorithm.

Figures 9 and 10 show a comparison among the four
algorithms on the Gaussian data set where we vary the
stretch t and the amount of nodes, respectively. As it
can be seen, all the algorithms produce t-spanners of
about the same quality, although the optimized basic
algorithm is consistently better, as explained. It is
interesting to note that in the case of σ = 0.1 the t-
spanner 2 has the worst edge performance. This is
because, in its first stage, the algorithm inserts a lot
of intra-cluster edges and then it tries to connect both
inner and peripheral objects among the clusters. Since
we need to connect just the peripheral objects, there
are a lot of redundant edges that do not improve other
distance estimations in the resulting t-spanner.

In the construction time, on the other hand, there
are large differences. The optimized basic algorithm
is impractically costly, as expected. Also, the massive
edges insertion algorithm is still quite costly in compar-
ison to the incremental and recursive algorithms. This
is due to its large number of distance computations.
This reinforces the idea that the t-spanner 2 is not suit-
able for metric spaces with highly expensive distance
evaluation functions. However, we notice that, unlike
all the others, this algorithm improves instead of de-
grading as the clusters become more fuzzy, becoming
a competitive choice on uniformly distributed datasets.
The quality of the t-spanner also varies from (by far)
the worst t-spanner on crisp clusters to the second best
on more fuzzy clusters. This could be due to two phe-
nomena. The first is that there are less redundant edges
among the clusters, and the second is that, on an uni-
form space, the t-spanner 2 inserts “better” edges since
they come from MSTs (that usies the shortest possible
edges).

The incremental and recursive algorithms are quite
close in both measures, being by far the fastest al-

t-Spanner4 (Stretch t, Vertices U)

t-Spanner ← ∅ // t-spanner edge structure

(p1, p2) ← two distant objects

(V1, V2) ← U divided according to distances towards (p1, p2)

stsp1 ← makeSubtSpanner(p1,V1)

stsp2 ← makeSubtSpanner(p2,V2)

t-Spanner ← mergeSubtSpanner(stsp1, stsp2)

makeSubtSpanner(representative p, Vertices V)

if |V | = 1 return t-spanner (nodes = {p}, edges = ∅)
else if |V | = 2 return t-spanner (nodes = V = {v1, v2}, edges = {(v1, v2)})
else

premote ← argmaxv∈V {d(p, v)}
(V , Vremote) ← V divided according to distances towards (p, premote)

stspp ← makeSubtSpanner(p,V)
stspremote ← makeSubtSpanner(premote,Vremote)

return mergeSubtSpanner(stspp, stspremote)

mergeSubtSpanner (t-Spanner stsp1, t-Spanner stsp2)

if |nodes(stsp1)| ≤ |nodes(stsp2)| stsp1 ⇔ stsp2

nodes ← nodes(stsp1) ∪ nodes(stsp2)

edges ← edges(stsp1) ∪ edges(stsp2)

δ ← |Et−Spanner1(|nodes|, d, t)| / (i · 5) // incremental H1

p1 ← representative(stsp1)

for u ∈ nodes(stsp2) in increasing order of d(u, p1)
// defining the propagation limit towards stsp1

for v ∈ nodes(stsp1) do distances(v)← t · d(u, v) + ε
for v ∈ nodes(stsp2) do distances(v)←∞
while u has wrongly t-estimated edges towards stsp1

distances← Dijkstra(edges, u, distances) // incremental Dijkstra

pendingu ← {(u, v), v ∈ stsp1/distance(v) > t · d(u, v)}
smallest← δ cheapest edges ∈ pendingu

edges← edges ∪ smallest
return t-Spanner (nodes = nodes, edges = edges)

Figure 8: Recursive algorithm (t-Spanner 4).

gorithms. The recursive algorithm usually produces
slightly better t-spanners thanks to the more global edge
analysis. Note that, for t as low as 1.5, we obtain t-
spanners whose size is 5% to 15% of the full graph.

It is interesting to notice that, for crisp clusters,
there is a big jump in the construction time and t-
spanner size when we move from t = 1.5 to t = 1.4.
The effect is much smoother for more fuzzy clusters. A
possible explanation is that, for crisp clusters and large
enough t, a single edge among cluster centers is enough
to obtain a t-spanner. However, when t is reduced
below 1.5, this becomes suddenly insufficient and we
start having many edges across cluster pairs.

We show in Table 2 our least squares fittings on

the data using the model |E| = an1+ b

t−1 and time =

an2+ b

t−1 microseconds. This model has been chosen
according to the analytical results of [1, 2]. As it can
be seen, t-spanner sizes are slightly superlinear and
times are slightly superquadratic. This shows that our
algorithms represent in practice a large improvement
over the current state of the art.

We show now some results on the metric space of
strings, this time focusing on the behavior in terms of
the database size n. Since these tests are more mas-
sive, we leave out the optimized basic and the mas-
sive edge insertion algorithms: They were really slow
even for small subsets. This means, in particular for
the massive edges insertion algorithm, that this space

0

50

100

150

200

250

300

350

400

450

500

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1, stdev = 0.1
t-Spanner 2, stdev = 0.1
t-Spanner 3, stdev = 0.1
t-Spanner 4, stdev = 0.1

1

10

100

1000

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
ec

]

t

t-Spanner 1, stdev = 0.1
t-Spanner 2, stdev = 0.1
t-Spanner 3, stdev = 0.1
t-Spanner 4, stdev = 0.1

0

50

100

150

200

250

300

350

400

450

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1, stdev = 0.3
t-Spanner 2, stdev = 0.3
t-Spanner 3, stdev = 0.3
t-Spanner 4, stdev = 0.3

10

100

1000

10000

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
ec

]

t

t-Spanner 1, stdev = 0.3
t-Spanner 2, stdev = 0.3
t-Spanner 3, stdev = 0.3
t-Spanner 4, stdev = 0.3

0

100

200

300

400

500

600

700

800

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1, stdev = 0.5
t-Spanner 2, stdev = 0.5
t-Spanner 3, stdev = 0.5
t-Spanner 4, stdev = 0.5

10

100

1000

10000

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
ec

]

t

t-Spanner 1, stdev = 0.5
t-Spanner 2, stdev = 0.5
t-Spanner 3, stdev = 0.5
t-Spanner 4, stdev = 0.5

Figure 9: t-Spanner construction in the synthetic metric space of 2,000 nodes, as a function of t. On the left, edges
generated (t-spanner quality). On the right, construction time. Each row corresponds to a different variance.

0

50

100

150

200

250

300

350

400

450

500

200 400 600 800 1000 1200 1400 1600 1800 2000

|E
| x

 1
,0

00

nodes

1.4-Spanner 1, stdev = 0.1
1.4-Spanner 2, stdev = 0.1
1.4-Spanner 3, stdev = 0.1
1.4-Spanner 4, stdev = 0.1
1.8-Spanner 1, stdev = 0.1
1.8-Spanner 2, stdev = 0.1
1.8-Spanner 3, stdev = 0.1
1.8-Spanner 4, stdev = 0.1

0.01

0.1

1

10

100

1000

200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e[

se
c]

nodes

1.4-Spanner 1, stdev = 0.1
1.4-Spanner 2, stdev = 0.1
1.4-Spanner 3, stdev = 0.1
1.4-Spanner 4, stdev = 0.1
1.8-Spanner 1, stdev = 0.1
1.8-Spanner 2, stdev = 0.1
1.8-Spanner 3, stdev = 0.1
1.8-Spanner 4, stdev = 0.1

0

50

100

150

200

250

300

350

400

450

200 400 600 800 1000 1200 1400 1600 1800 2000

|E
| x

 1
,0

00

nodes

1.4-Spanner 1, stdev = 0.3
1.4-Spanner 2, stdev = 0.3
1.4-Spanner 3, stdev = 0.3
1.4-Spanner 4, stdev = 0.3
1.8-Spanner 1, stdev = 0.3
1.8-Spanner 2, stdev = 0.3
1.8-Spanner 3, stdev = 0.3
1.8-Spanner 4, stdev = 0.3

0.01

0.1

1

10

100

1000

10000

200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e[

se
c]

nodes

1.4-Spanner 1, stdev = 0.3
1.4-Spanner 2, stdev = 0.3
1.4-Spanner 3, stdev = 0.3
1.4-Spanner 4, stdev = 0.3
1.8-Spanner 1, stdev = 0.3
1.8-Spanner 2, stdev = 0.3
1.8-Spanner 3, stdev = 0.3
1.8-Spanner 4, stdev = 0.3

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200 1400 1600 1800 2000

|E
| x

 1
,0

00

nodes

1.4-Spanner 1, stdev = 0.5
1.4-Spanner 2, stdev = 0.5
1.4-Spanner 3, stdev = 0.5
1.4-Spanner 4, stdev = 0.5
1.8-Spanner 1, stdev = 0.5
1.8-Spanner 2, stdev = 0.5
1.8-Spanner 3, stdev = 0.5
1.8-Spanner 4, stdev = 0.5

0.01

0.1

1

10

100

1000

10000

200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e[

se
c]

nodes

1.4-Spanner 1, stdev = 0.5
1.4-Spanner 2, stdev = 0.5
1.4-Spanner 3, stdev = 0.5
1.4-Spanner 4, stdev = 0.5
1.8-Spanner 1, stdev = 0.5
1.8-Spanner 2, stdev = 0.5
1.8-Spanner 3, stdev = 0.5
1.8-Spanner 4, stdev = 0.5

Figure 10: t-Spanner construction in the synthetic metric space of 2,000 nodes, as a function of the number of
nodes. On the left, edges generated (t-spanner quality). On the right, construction time. Each row corresponds
to a different variance.

Basic Massive edge Incremental Recursive
optimized insertion

Stdev 0.1

CPU time 17.8 n2+ 0.09

t−1 1.67 n2+ 0.24

t−1 0.670 n2+ 0.10

t−1 0.909 n2+ 0.08

t−1

Edges 5.76 n1+ 0.10

t−1 6.50 n1+ 0.18

t−1 6.17 n1+ 0.13

t−1 5.77 n1+ 0.14

t−1

Stdev 0.3

CPU time 25.0 n2+ 0.16

t−1 1.52 n2+ 0.22

t−1 0.771 n2+ 0.13

t−1 0.865 n2+ 0.13

t−1

Edges 5.69 n1+ 0.18

t−1 5.41 n1+ 0.19

t−1 6.52 n1+ 0.19

t−1 6.50 n1+ 0.18

t−1

Stdev 0.5

CPU time 21.0 n2+ 0.19

t−1 1.33 n2+ 0.25

t−1 0.587 n2+ 0.17

t−1 0.650 n2+ 0.17

t−1

Edges 4.89 n1+ 0.21

t−1 4.50 n1+ 0.22

t−1 5.20 n1+ 0.22

t−1 5.37 n1+ 0.21

t−1

Table 2: Empirical complexities of our algorithms, as a function of n and t. Time is measured in microseconds.

is far from uniform. Figure 11 shows that, also for
strings, the number of edges generated is slightly super-

linear (8.03 n1+ 0.16

t−1 for the incremental algorithm and

8.45 n1+ 0.15

t−1 for the recursive one), and the construction

time is slightly superquadratic (1.46 n2+ 0.10

t−1 microsec-

onds for the incremental algorithm and 1.67 n1+ 0.09

t−1 for
the recursive one). The recursive algorithm is almost
always a bit better than the incremental algorithm in
both aspects.

Finally, Figure 12 shows experiments on the space
of documents. We have excluded the massive edges
insertion algorithm, which was too slow. The reason
this time is that it is the algorithm that makes, by
far, more distance computations, which was clearly the
dominant term in this space (comparing two document
vocabularies takes several milliseconds). We can see
again that, although all the algorithms produce t-
spanners of about the same quality, the optimized basic
algorithm is much more expensive than the other two,
which are rather similar.

9 Conclusions

We have presented several algorithms for t-spanner
construction when the underlying graph is the complete
graph representing distances in a metric space. This is
motivated by our recent research on searching metric
spaces and shows that t-spanners are well suited as data
structures for this problem. For this sake, we need
practical construction algorithms for 1 < t ≤ 2. To
the best of our knowledge, no existing technique has
been shown to work well under this scenario (complete
graph, metric distances, small t, practical construction
time) and no practical study has been carried out on the
subject. However, our algorithms are also well suited to
general graphs.

Our focus has been on practical algorithms. We

have shown that it is possible to build good quality
t-spanners in reasonable time. We have empirically

obtained time costs of the form Ct · n
2+ 0.1...0.2

t−1 and
number of edges of the form Ce · n

1+ 0.1...0.2

t−1 . Note that
just computing the minimum spanning tree requires
O(n2) time. Moreover, just computing all the distances
in a general graph requires O(n3) time. Compared to
the existing algorithms, our contribution represents in
practice a large improvement over the current state of
the art. Note that in our case we do not provide a
guarantee in the number of edges. Rather, we show
that in practice we generate t-spanners with few edges
with fast algorithms.

It is possible to add and remove elements from the
t-spanner in reasonable time while preserving its qual-
ity. The incremental algorithm permits adding new ele-
ments. Remotion of a node can be arranged by adding a
clique among its neighbors and periodically reconstruct-
ing the t-spanner with the recursive algorithm.

Future work involves using t-spanners where t de-
pends on the actual distance between the nodes. Ba-
sically, we are more interested in approximating well
short rather than long distances. On the other hand,
we are investigating on fully dynamic t-spanners, which
means that the t-spanner allows object insertions and
deletions while preserving its quality. This is important
when we use t-spanners in order to build an index for
metric databases in real applications. Another trend
is probabilistic t-spanners, where distances are well t-
estimated with high probability, so that with much less
edges we find most of the results.

Acknowledgement

The second author wishes to thank AT&T LA Chile for
the use of their computer to run the experiments and
for letting him continue his doctoral studies.

0

1

2

3

4

5

6

7

8

9

10

4000 8000 12000 16000 20000 24000

|E
| x

 1
,0

00
,0

00

nodes

1.4-Spanner 3
1.8-Spanner 3
1.4-Spanner 4
1.8-Spanner 4

(a)

0

2000

4000

6000

8000

10000

12000

14000

4000 8000 12000 16000 20000 24000

tim
e

[s
ec

]

nodes

1.4-Spanner 3
1.8-Spanner 3
1.4-Spanner 4
1.8-Spanner 4

(b)

Figure 11: t-Spanner construction on the space of
strings, for increasing n. (a) number of edges generated,
(b) construction time.

References

[1] I. Althöfer, G. Das, D. Dobkin, and D. Joseph.
Generating sparse spanners for weighted graphs. In
Proc. 2nd Scandinavian Workshop on Algorithm The-
ory (SWAT’90), LNCS 447, pages 26–37, 1990.

[2] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs. Dis-
crete Computational Geometry, 9:81–100, 1993.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[4] Y. Bartal. On approximating arbitrary metrics by tree
metrics. In Proc. 30th Symposium on the Theory of
Computing (STOC’98), pages 161–168, 1998.

[5] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. Plotkin. Approximating a finite metric by a small
number of tree metrics. In Proc. 39th Symp. on
Foundations of Computer Science (FOCS’98), pages
379–388, 1998.

[6] E. Chávez, G. Navarro, R. Baeza-Yates, and J.L.
Marroquin. Proximity searching in metric spaces.

0

50

100

150

200

250

300

1.4 1.5 1.6 1.7 1.8 1.9 2

|E
| x

 1
,0

00

t

t-Spanner 1
t-Spanner 3
t-Spanner 4

(a)

300

400

500

600

700

800

900

1000

1100

1.4 1.5 1.6 1.7 1.8 1.9 2

tim
e

[s
ec

]

t

t-Spanner 1
t-Spanner 3
t-Spanner 4

(b)

Figure 12: t-Spanner construction on the set of docu-
ments, as a function of t. (a) number of edges generated,
(b) construction time.

ACM Computing Surveys, 33(3):273–321, September
2001.

[7] E. Cohen. Fast algorithms for constructing t-spanners
and paths with stretch t. SIAM J. on Computing,
28:210–236, 1998.

[8] D. Eppstein. Spanning trees and spanners. In Hand-
book of Computational Geometry, pages 425–461. Else-
vier, 1999.

[9] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan.
Improved greedy algorithms for constructing sparse
geometric spanners. In Proc. 7th Scandinavian Work-
shop on Algorithm Theory (SWAT 2000), LNCS v.
1851, pages 314–327, 2000.

[10] J.M. Keil. Approximating the complete Euclidean
graph. In Proc. 1st Scandinavian Workshop in Algo-
rithm Theory (SWAT’88), LNCS 318, pages 208–213,
1988.

[11] W. Liang and R. Brent. Constructing the spanners
of graphs in parallel. Technical Report TR-CS-96-01,
Dept. of CS and CS Lab, The Australian National
University, January 1996.

[12] G. Navarro, R. Paredes, and E. Chávez. t-Spanners
as a data structure for metric space searching. In
Proceedings of the 9th International Symposium on
String Processing and Information Retrieval (SPIRE
2002), LNCS 2476, pages 298–309. Springer, 2002.

[13] D. Peleg and A. Schaffer. Graph spanners. Journal of
Graph Theory, 13(1):99–116, 1989.

[14] D. Peleg and J. Ullman. An optimal synchronizer for
the hypercube. SIAM J. on Computing, 18:740–747,
1989.

[15] J. Ruppert and R. Seidel. Approximating the d-
dimensional complete Euclidean graph. In 3rd Cana-
dian Conference on Computational Geometry, pages
207–210, 1991.

[16] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 183–192.
ACM Press, 2001.

[17] E. Vidal. An algorithm for finding nearest neighbors
in (approximately) constant average time. Patt. Recog.
Lett., 4:145–157, 1986.

[18] Mark Allen Weiss. Data Structures and Algorithm
Analysis. Addison-Wesley, 2nd edition, 1995.

