
Rapidely Generating Different Meshing Tools

Maŕıa Cecilia Bastarrica, Nancy Hitschfeld-Kahler, Pedro O. Rossel, César Castro
CS Department, Universidad de Chile, {cecilia,nancy,prossel,ccastro}@dcc.uchile.cl

Developing meshing tools is hard and com-
plex. However there are several meshing tools
that have been developed over the years dif-
fering in their modeling elements, the algo-
rithms applied, the data structures used for
implementing the meshes, the application do-
mains, etc. [2]. Most of them are different but
they still share similarities: generate an ini-
tial mesh from a geometry description, refine
and/or improve the mesh, evaluate it, and vi-
sualize it, among others. Developing each of
these features is hard, and defining the right
combination is hard too. We propose to apply
Model Driven Engineering [1] to encapsulate
and reuse already developed software compo-
nents, reducing the effort of building meshing
tools to the process of choosing the features
that will be included. This is achieved through
a user interface that guides the configuration
process, a data base (DB) of meshing tool soft-
ware components, an underlying set of consis-
tency rules that determines when a configura-
tion is reasonable, and a generic structure that
is configured with the chosen components in
order to generate the tool.

Components. We extracted meshing tool
code components from tools we have developed
and also from open source tools, and we stored
and classified them in a DB so that they can
be found. For example, we have used Flexmg
as a source of 21

2
D meshing data structures

and algorithms. Thus we obtained a Mesh
class that represents a surface mesh and sev-
eral components representing algorithms that

interact with the mesh such as Refine, Evalu-
ate and GenerateMesh. We also store partic-
ular implementations for these classes such as
LeppRefine and LongestEdgeBisection for the
Refine class. This component DB can be incre-
mentally grown by incorporating new particu-
lar implementations. In this way the potential
meshing tools that may be built also grows.
Structure and Constraints Once the fea-
tures we want the meshing tool to exhibit, they
are combined using a product line architecture
(PLA), i.e. the architecture that all meshing
tools share. The PLA design is embedded in
the configuration tool and the interfaces of all
components must conform to this PLA. Not
any component combination is possible. For
example, if we choose to have a Refine algo-
rithm, we should choose a particular imple-
mentation for it. Also if we have a 3D rep-
resentation of the mesh, the chosen algorithms
for managing it must be also designed for 3D
meshes. All these constraints are defined in a
Feature Model [1] and the configuration tool
uses it for guiding the decisions the user must
make while designing the meshing tool.

References

[1] K. Czarnecki and U. W. Eisenecker. Genera-
tive Programming. Methods, Tools, and Appli-
cations. Addison Wesley, May 2000.

[2] S. J. Owen. http://www.andrew.cmu.edu-
/user/sowen/mesh.html. Accessed on January
2009.


