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Basic Cryptographic Notions

 How to define security?
This is one of the cryptographer’s hardest 

task.
A good definition should capture intuition…

… and more!
Community had to wait until 1984 with [GM84] 

for a satisfactory definition of (computational) 
“secure encryption”.



Basic Cryptographic Notions

 Adversary
With unlimited computational power

 One Time Pad, Secret Sharing
Computationally Bounded 

(Probabilistic Polynomial Time = PPT)
 Key Agreement, Public Key Encryption, Digital 

Signatures, Hash Functions, Commitments,…



Basic Cryptographic Notions

 Cryptographic Assumptions
Most of cryptographic constructions rely on 

complexity assumptions.
 Factoring is hard.
 Computing Discrete Logarithm is hard.
 Existence of functions with “good” properties

 One-way functions
 Collision-Resistant Hash functions

 …
All these assumptions require that P ≠ NP.



Basic Cryptographic Notions

 How to prove security?
What we want:

 Assumption X holds => protocol P is secure.
 No adversary can break X => No adversary can break P.

What we do:
 Suppose protocol P is insecure => X does not hold.
 Let A the adversary that breaks P => We can build an adversary 

B that breaks X.

This method is sometimes called 
“Provable Security” or “Reductionist Security”.



Basic Cryptographic Notions
 Let’s get into the details…

 We need to quantify the probability that an adversary can 
compute some values.

 Asymptotic notion 
 The running time of the adversary depends 

on the security parameter.
 E.g: size of the secret key in the case of encryption, size of the 

primes for the factoring assumption.

 Definition: (negligible function)
A function ε : N → [0,1] is negligible if for 
every polynomial q: N → N, for k sufficiently large:

 ε(k) < 1/q(k)



Basic Cryptographic Notions

 RSA
 Initialization

 n=pq , p,q safe primes , Φ(n) = (p-1)(q-1) = |Zn*| 
 e є ZΦ(n)* (encryption) 
 d є ZΦ(n)* (decryption)
 ed = 1 mod Φ(n)  (Euclidian Algorithm)

Encryption / Decryption
 x є Zn* plaintext
 Encrypt: c = xe mod n
 Decrypt: y = cd mod n  = xed mod n = x mod n



Basic Cryptographic Notions
 Assumptions 

 RSA Instance generator
(n,p,q,e,d) ← I(k)

 Factoring Assumption
       Pr [(p,q)←A(n) : n=pq]  < ε(k)

 RSA Assumption
   Pr [yєRZn* ; x←A(n,y,e) : y=xe mod n] < ε(k)

 Strong RSA Assumption [BarPfi97]
       Pr [uєRZn* ; (x,e)←A(n,u) :  u=xe mod n, e  ≠ 1] < ε(k)

 Strong RSA => RSA => Factoring
(note the direction <= is open)



Basic Cryptographic Notions

Assumptions and efficiency
We know how to build encryption schemes 

based on
 RSA Assumption
 Factoring Assumption

However encryption algorithms based on the 
RSA Assumption are much faster than those 
based only on the Factoring Assumption.



Basic Cryptographic Notions

 Collision-Resistant Hash Functions
H:{0,1}* →{0,1}k

 Given x, it is easy to compute H(x).
 Given y, hard to compute x such that H(x)=y.
 Given x, hard to compute x’≠x such that 

H(x)=H(x’).
 Hard to compute x≠x’ such that H(x)=H(x’).

This definition is not formal. Just an intuition.



Basic Cryptographic Notions

 Formal definition for 
Collision-Resistant Hash Functions 

 Definition: (1st attempt)
A function H is collision-resistant iff: 
For all A:  Pr[x,x’←A ():x ≠x’ and H(x)=H(x’)] < ε(k)

 Why does the previous definition not work?
 A():

  return (x,x’) // Where (x,x’) is a collision-pair



Basic Cryptographic Notions

 Definition: 
(family of collision-resistant hash functions)

{Fk}kєN  where  Fk={Hj,j єJk} is a family of collision 
resistant hash functions iff:
 For all j, Hj can be selected efficiently, 
 Prj є Jk

 [x,x’←A(j,k): x≠x’ , Hj(x)=Hj(x’)] < ε(k)



Basic Cryptographic Notions

 Assumption: 
Collision-Resistant Hash Functions 
Families (CRHF) exist.
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Factoring Industry in Chile

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.
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e invoice
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The Problem
 A malicious provider could send the 

same invoice to various Factoring 
Entities.

 Then he leaves to a far away country 
with all the money.

 Later, several Factoring Entities will try 
to charge the invoice to the same client. 
Losts must be shared…



Solution with Factoring Authority

Factoring 
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack 

(4) Is there 
the invoice?

(5) YES / NO



Caveat

 This solution is quite simple.

 However
Trusted Factoring Authority is needed.

 Can we remove this requirement?



Notion of accumulator

 Problem
A set X.
Given an element x we wish to prove that this 

element belongs or not to X.
 Let X={x1,x2,…,xn}:

X will be represented by a short value Acc.
Given x and w (witness) we want to check 

if x belongs to X.



Notion of accumulator

 Participants
Manager

 Computes the accumulated value …
 … and the witnesses.

User
 Tests for (non)membership of a given element 

using the accumulated value and a witness 
provided by the manager.



Properties

 Dynamic 
 Allows insertion/deletion of elements. 

 Universal 
 Allows proofs of membership and nonmembership.

 Strong 
 No need to trust in the Accumulator Manager.



Applications

 Time-Stamping [BeMa94]
 Certificate Revocation List  [LLX07]
 Anonymous Credentials [CamLys02]
 E-Cash [AWSM07]
 Broadcast Encryption [GeRa04]
 …
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[AWSM07] Pairings O(1)
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[CHKO08] Collision-Resistant 
Hashing O(ln(n)) Our work

Prior work



Prior work

Dynamic Accumulators [CamLys02]

 Security Model

Scheme secure iff:
      

      Pr[(w,x)←AO(): Belongs(w,x,Acc)=1 and x є X] < ε(k)

Insert/Delete x1

Acc1

Insert/ Delete  x2

Acc2

Oracle

(Manager)

….

Witness for x

wx



Prior work

Dynamic Accumulators [CamLys02]

 Initialization
 n = pq , u є Zn

*

 Set
 X={x1,x2,…,xl} (primes)

 Accumulated value
 Acc = ux

1
.x

2
…x

l mod n
 Witness for xi 

 w = ux
1
…x

i-1
.x

i+1
…x

l mod n
 Membership test

 wxi mod n = Acc



Prior work

Dynamic Accumulators [CamLys02]
 Adding elements

 Acc’:= Accx mod n
 w’:= wx mod n

 To delete elements
 Recompute the accumulated value with all the elements of the new set.
 Doing the same for the witnesses (without the element we want to test).
 O(|X|) => not efficient.

 To delete elements efficiently
 Manager knows Φ(n)

 We want to delete x:
 Acc = ux

1
 . x

2
 . … x … x

l mod n 

 Compute y=x-1 mod Φ(n)
 Accnew = Acc1/x mod n = Accy mod n

 The manager must be trusted because 
he can compute fake witnesses for any x:

 w=Acc1/x mod n



Prior work

Dynamic Accumulators [CamLys02]

 Theorem:  if the Strong RSA Assumption 
holds, the dynamic accumulator is secure.



Prior work

Dynamic Accumulators [CamLys02]

 Lemma: Let n be an integer, given u,v є Zn
* and 

a,b є Z such that ua = vb mod n and gcd(a,b) = 1, 
we can compute efficiently x є Zn

* 
such that xa=v mod n.

 Proof:
 gcd(a,b)=1 => bd = 1 + ac 
 x := udv-c => xa = udav-ca = (ua)dv-ca 

= vbdv-ca = v



Prior work

Dynamic Accumulators [CamLys02]

 Proof of the theorem:

B

A

If there exists an adversary A 
that can break our scheme

We can build an adversary B 
that can break the 

Strong RSA Assumption

n, u 

(x,e) :  u = xe mod n

X={x1,…,xl}

e element not in 
X

w witness

X,w,e

n=pq,   u єR Zn*



Prior work

Dynamic Accumulators [CamLys02]

 Proof of the theorem:
X = {x1,…,xl} , 
Acc = ux

1
…x

l mod n = uv mod n
e does not belong to X
we mod n = Acc = uv mod n 
gcd(v,e) = 1 and we=uv mod n 

=> by the lemma we can conclude
(we can find easily x s.t. xe=u mod n)



Our Construction

Notation
 H: {0,1}*→{0,1}k

 Function randomly chosen from a 
family of collision-resistant hash functions.

 x1,x2,x3,…є {0,1}k

  x1  <  x2  <  x3  < … where < is the lexicographic order on binary 
strings.

 -∞,∞
 Special values such that 

 For all x є {0,1}k :    -∞ < x <  ∞

 || denotes the concatenation operator.



Our Construction

Public Data Structure

 Manager owns a public data structure called 
“Memory”.

 Compute efficiently the accumulated value and 
the witnesses.

 In our construction the Memory M will be a 
binary tree.



Our Construction

Accumulator Operations

UserOK, ┴ ← CheckUpdate(Accbefore,Accafter,wup)

ManagerAccafter,Mafter,wup ← Updateadd/del(Mbefore,x)

UserTrue,False,┴  ← Belongs(x,w,Acc)

Managerw ← Witness(M,x)

ManagerAcc0, M0 ← Setup(1k)

Who runs it?Operation



Our Construction

Checking for (non)membership
Accumulator ManagerUser

Does x belong

to X?

w

Belongs(x,w,Acc) = True  x є X

w = Witness(M,x)



Our Construction

Update of the accumulated value
Accumulator ManagerUser

Insert or 
Delete x

Accafter, wup

CheckUpdate(Accbefore,Accafter,wup)

Accafter,Mafter, wup     =          
UpdateAdd/Del(Mbefore,x)



Our Construction

Ideas
 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value: 

Represents 
the set 
{x1,…,x8}



Our Construction

Ideas
 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

O(ln(n))
Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value: 

Represents 
the set 
{x1,…,x8}



Our Construction

Ideas
 How to prove nonmembership?

Kocher’s trick [Koch98]: store pair of 
consecutive values
 X={1,3,5,6,11}
 X’={(-∞,1),(1,3),(3,5),(5,6),(6,11),(11, ∞)}
 y=3 belongs to X  (1,3) or (3,5) belongs to X’.
 y=2 does not  belong to X  (1,3) belongs to X’.



Our Construction

How to insert elements?
(-∞,∞)

X=Ø, next: x1



Our Construction
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Our Construction

How to insert elements?
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Our Construction

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x5)

(x5, ∞)

X={x1,x2,x5}, next: x3



Our Construction

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x5)

X={x1,x2,x3,x5}, next: x4



Our Construction

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x4) (x4, x5)

X={x1,x2,x3,x4,x5}, next: x6



Our Construction

How to insert elements?

X={x1,x2,x3,x4,x5,x6}

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)



Our Construction

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

X={x1,x2,x3,x4,x5,x6} 
element to be deleted: x2



Our Construction

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

(x1,x3)



Our Construction

How to delete elements?
(-∞,x1)

(x1, x3) (x6, ∞)

(x5, x6) (x3, x4) (x4, x5)



Our Construction

How to compute the accumulated 
value? (-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

ProofN=H(Proofleft||Proofright||value)

ProofNil= “”

Acc = ProofRoot

A pair (xi,xj)



Our Construction

How to update the accumulated 
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

x8 to be inserted.



Our Construction

How to update the accumulated 
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

We will need to recompute proof node values.
x8



Our Construction

How to update the accumulated 
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

New element:  x8.

ProofN stored in each node. 

Dark nodes do not require recomputing ProofN.

Only a logarithmic number of values need recomputation.

(x8, x9)



Our Construction

Security

 Definition: an accumulated value Acc 
represents the set X={x1,x2,…,xn}, if it has 
been computed from a tree T containing 
node values {(- ∞,x1),(x1,x2),…,(xn,∞)}, 
where each pair appears only once.



Our Construction

Security

 Definition: (Consistency)
Given Acc that represents X, it is hard to find 

witnesses that allow to prove inconsistent 
statements.
 X={1,2}.
 Hard to compute a membership witness for 3.
 Hard to compute a nonmembership witness for 2.



Our Construction

Security

 Definition: (Update)
Guarantees that the accumulated value Acc 

represents the set X after insertion/deletion of 
x.

Every update must be checked by users but it 
is not needed to store the sequence of 
insertion/deletion.



Our Construction

Security

 Theorem: if CRHF exist the accumulator 
is secure (i.e. satisfies consistency and 
update).



Our Construction

Security
 Lemma: Given a tree T with accumulated value ProofT, 
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Our Construction

Security
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finding a tree T’, T≠T’ such that ProofT = ProofT’ is 
difficult.

 Proof (Sketch):  ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)
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Collision for H



Our Construction

Security (Consistency)
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)
Witness: blue nodes and the (x3,x4) pair, size in O(ln(n))

Checking that x belongs (or not) to X: 

    1) compute recursively the proof P and verify that P=Acc

    2) check that:  x=x3 or x=x4 (membership)

  x3 < x < x4 (nonmembership)

                   



Our Construction

Security (Update)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Before After

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

Insertion of x8

(x8, x9)

Accbefore Accafter



Conclusion & Open Problem
 First dynamic, universal, strong accumulator
 Simple
 Security

 Existence of CRHF
 Solves the e-Invoice Factoring Problem
 Less efficient than other constructions 

 Size of witness in O(ln(n))
 Open Problem

“Is it possible to build an efficient 
strong,dynamic and universal 
accumulator with witness size lower 
than O(ln(n))?”



Thank you!



Distributed solutions?

 Complex to implement
 Hard to make them robust
 High bandwith communication
 Need to be online – synchronization 

problems
 That’s why we focus on a centralized 

solution.



Invoice Factoring using 
accumulator
 We need a secure broadcast channel

 If a message m is published, every participant 
sees the same m.

 Depending on the security level required
Trusted http of ftp server
Bulletin Board [CGS97]



Invoice Factoring using 
accumulator

Factoring 
Authority

FE 2 FE n…

Provider Client

FE1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack 

(4) Is there 
the invoice?

(5) YES / NO

We need to 
see in detail 
this step



Invoice Factoring using 
accumulator
 Step 5 (Details)

FE Factoring Authority
Have you got
 invoice x?

YES/NO, w

If NO, insert x

Accafter,wup,IDFE

Belongs(x,w,Accbefore)

CheckUpdate(Accbefore,Accafter,wup)

All tests pass  => I can buy 
x.

Accafter,Mafter,wup = 

UpdateAdd(Mbefore,x)

w = Witness(Mbefore,x)



Basic Cryptographic Notions

 Secure encryption [GM84]

Adversary Oracle

M0,M1

bєR{0,1}

E(Mb,r)

Try to guess b

b’

Adversary wins if Pr[b=b’] > ½ + 1/q(n)
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