Strong Accumulators from

Collision-Resistant Hashing

Philippe Camacho (university of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

B Basic Cryptographic Notions

B Motivation
e-Invoice Factoring

B Notion of Accumulator
B Qur Construction
B Open Problem

Basic Cryptographic Notions

B How to define security?

This is one of the cryptographer’s hardest
task.

A good definition should capture intuition...
... and more!

Community had to wait until 1984 with [GM84]
for a satisfactory definition of (computational)
“secure encryption”.

Basic Cryptographic Notions

B Adversary

With unlimited computational power
" One Time Pad, Secret Sharing

Computationally Bounded
(Probabilistic Polynomial Time = PPT)

= Key Agreement, Public Key Encryption, Digital
Signatures, Hash Functions, Commitments, ...

Basic Cryptographic Notions

B Cryptographic Assumptions
Most of cryptographic constructions rely on
complexity assumptions.
® Factoring is hard.
= Computing Discrete Logarithm is hard.

" Existence of functions with “good” properties
One-way functions
Collision-Resistant Hash functions

|

All these assumptions require that P # NP.

Basic Cryptographic Notions

B How to prove security?

What we want:

= Assumption X holds => protocol P is secure.
® No adversary can break X => No adversary can break P.

What we do:

® Suppose protocol P is insecure => X does not hold.

" et A the adversary that breaks P => We can build an adversary
B that breaks X.

This method is sometimes called
“Provable Security” or “Reductionist Security”.

Basic Cryptographic Notions

B |et’s get into the details...

We need to quantify the probability that an adversary can
compute some values.

Asymptotic notion

® The running time of the adversary depends
on the security parameter.

m E.g: size of the secret key in the case of encryption, size of the
primes for the factoring assumption.

Definition: (negligible function)

A function € : N — [0,1] is negligible if for

every polynomial q: N — N, for k sufficiently large:
e(k) < 1/q(k)

Basic Cryptographic Notions

B RSA

Initialization
" n=pq, p,q safe primes , ®(n) = (p-1)(g-1) = |Z,*
mee’l,, (encryption)
mdeZ,," (decryption)
" ed =1 mod ®(n) (Euclidian Algorithm)
Encryption / Decryption

mx e Z " plaintext
" Encrypt: ¢ = x* mod n
® Decrypt: y=c?mod n =x*®mod n=x mod n

Basic Cryptographic Notions

B Assumptions

RSA Instance generator
(n,p,q,e,d) < I(k)

Factoring Assumption
Pri(p,q)—A(n) : n=pq] < &(k)

RSA Assumption
Priye.Z.* ; x<—A(n,y,e) : y=x® mod n] < g(k)

Strong RSA Assumption [BarPfi97]
PriueZ.*; (x,e)<—A(n,u) : u=x*mod n, e # 1] <¢g(k)

Strong RSA => RSA => Factoring

(note the direction <= is open)

Basic Cryptographic Notions

B Assumptions and efficiency

We know how to build encryption schemes
based on

= RSA Assumption

® Factoring Assumption

However encryption algorithms based on the
RSA Assumption are much faster than those
based only on the Factoring Assumption.

Basic Cryptographic Notions

B Collision-Resistant Hash Functions
H:{0,1}* —{0,1}
® Given x, it is easy to compute H(x).
® Given y, hard to compute x such that H(x)=y.

® Given X, hard to compute x'#x such that
H(x)=H(x’).
" Hard to compute x#x’ such that H(x)=H(x’).

Basic Cryptographic Notions

B Formal definition for
Collision-Resistant Hash Functions

Definition: (15t attempt)
A function H is collision-resistant iff:

For all A: Prx,x'«<—A():x #x" and H(x)=H(x")] < €(k)

Why does the previous definition not work?

" A():
return (X,X’) // Where (x,x’) 1s a collision-pair

Basic Cryptographic Notions

B Definition:
(family of collision-resistant hash functions)

{F.}..n Where F ={Hj,j €d,} is a family of collision
resistant hash functions iff:
= For all j, H; can be selected efficiently,

m Pr ., [XX<A(,K): x#X, H(x)=H,(x)] < (k)

Basic Cryptographic Notions

B Assumption:
Collision-Resistant Hash Functions
Families (CRHF) exist.

Notealedto
Number Theory!

V
Factoring Industry in Chile

Factoring
Entity S‘J

Provider)
| £ Client _,

Factoring Industry in Chile

Factoring
Entity \SE

Provider 1) I want (a lot of) milk now *.

<
«

Client

(*) but I do not want to pay yet.

Factoring Industry in Chile

Factoring
Entity \SE

Provider 1) I want (a lot of) milk now *.

<
«

Client
2) Here is your milk. & §

v
ot

(*) but I do not want to pay yet.

Factoring Industry in Chile

Factoring
Entity \::J

1) I want (a lot of) milk now *.

<
«

Client
2) Here is your milk.

\4

(*) but I do not want to pay yet.

Factoring Industry in Chile

Factoring
Entity \‘:E

1) I want (a lot of) milk now *.

A

Client
2) Here is your milk. f

\4

(*) but I do not want to pay yet.
(**) minus a fee.

Factoring Industry in Chile

Factoring
Entity \‘:E

1) I want (a lot of) milk now *.

A

Client
2) Here is your milk. f

\4

(*) but I do not want to pay yet.
(**) minus a fee.

Factoring Industry in Chile

Factoring
Entity \‘:E

1) I want (a lot of) milk now *.

A

Client
2) Here is your milk. f

\4

(*) but I do not want to pay yet.
(**) minus a fee.

The Problem

B A malicious provider could send the
same invoice to various Factoring
Entities.

® Then he leaves to a far away country
with all the money.

® | ater, several Factoring Entities will try
to charge the invoice to the same client.
Losts must be shared...

V=
A

Solution with Factoring Authority

Factoring H
Authority

the invoice?
FE, FE, FE, . FE ,
¢
W
(1) Invoice R

i L
- % -
Provider gﬁ 2) Ack Client

<
<

Caveat

B This solution is quite simple.

® However
Trusted Factoring Authority is needed.

B Can we remove this requirement?

Notion of accumulator

B Problem

A set X.

Given an element x we wish to prove that this
element belongs or not to X.

B et X={X,,X,,...,X }:
X will be represented by a short value Acc.

Given x and w (witness) we want to check
iIf x belongs to X.

Notion of accumulator

B Participants

Manager
" Computes the accumulated value ...
® .. and the witnesses.

User

® Tests for (non)membership of a given element
using the accumulated value and a witness
provided by the manager.

Properties

® Dynamic
Allows insertion/deletion of elements.

® Universal
Allows proofs of membership and nonmembership.

B Strong

No need to trust in the Accumulator Manager.

Applications

B Time-Stamping [BeMa94]

B Certificate Revocation List [LLX07]
B Anonymous Credentials [CamLys02]
® E-Cash [AWSMO7]

B Broadcast Encryption [GeRa04]

Prior work

Dynamic Strong Universal Security Efficiency Note
(witness size)
[BeMa94] _ ' : RSA + RO First definition
v
BarPfi97 : Strong RSA -
e v
CamLys02 : Strong RSA First dynamic
[ys02] / accumulator
[LLXO07] : — ' Strong RSA First universal
/ / accumultor
AWSMO07 : : Pairings
[] / E-cash

Prior work

Dynamic Strong Universal Security Efficiency Note
(witness size)
[BeMa94] ' = RSA + RO First definition
X /
[BarPfi97] ' =v3 Strong RSA -
X v
CamLys02 : Strong RSA First dynamic
[ys02] / accumulator
LLXO07 : ' Strong RSA First universal
[: / / accumultor
[AWSMO07] / Pairings e cash
[CHKOO08] ! ' ' Collision-Resistant
/ / / Hashing Our work

'_-' S
Prior work

Dynamic Accumulators [CamLys02]

B Security Model

<

<
P
«

Scheme secure iff:

Insert/Delete x,

Insert/ Delete x,

Witness for x >

Pr(w,x)«A°(): Belongs(w,x,Acc)=1 and x g X] < g(k)

Prior work

Dynamic Accumulators [CamLys02]

B |nitialization
n=pq,uel’
B Set
X={X,,X,,...,X} (primes)
B Accumulated value
Acc = u**ymod n
m \Witness for x
W = UX1"'Xi-1'Xi+1“'X| mOd N
B Membership test
wX mod n = Acc

Prior work

Dynamic Accumulators [CamLys02]

B Adding elements
Acc’:= Acc*xmod n
w:=w*mod n

B To delete elements
Recompute the accumulated value with all the elements of the new set.

Doing the same for the witnesses (without the element we want to test).
O(|X]) => not efficient.

B To delete elements efficiently

Manager knows ®(n)
= We want to delete x:
ACC = UX1 .x2.... x...xI mOd n
Compute y=x" mod ®(n)
Acc,, = Acc”mod n=Accy mod n
The manager must be trusted because
he can compute fake witnesses for any x:
w=Acc"mod n

Prior work

Dynamic Accumulators [CamLys02]

B Theorem: if the Strong RSA Assumption
holds, the dynamic accumulator is secure.

Prior work

Dynamic Accumulators [CamLys02]

® Lemma: Let n be an integer, given u,v € Z_ "~ and
a,b € Z such that u? = v> mod n and gcd(a,b) = 1,
we can compute efficiently x € Z
such that x2=v mod n.

" Proof:
gcd(a,b)=1=>bd =1+ ac
X = udV-C => Xa = udav-ca — (ua)dv-ca
= ybdy-ca = vy

Prior work

Dynamic Accumulators [CamLys02]

B Proof of the theorem:

n=pgq, ue;Z*

l If there exists an adversary A
that can break our scheme

n, u @
X w.e e element not in
)) X
W witness We can build an adversary B
that can break the
(x,e): u=xemod n Strong RSA Assumption

!

Prior work

Dynamic Accumulators [CamLys02]

B Proof of the theorem:

X={X,,....X},
Acc = u*-Xymod n = uvmod n
e does not belong to X
we mod n = Acc =u'mod n
gcd(v,e) = 1 and we=u'mod n
=> by the lemma we can conclude

(we can find easily x s.t. x=u mod n)

Our Construction

Notation

m H: {0,1}*—{0,1}
Function randomly chosen from a
family of collision-resistant hash functions.

B X, X,,Xs,...€ {0,1}

X; < X, < X; <... where < s the lexicographic order on binary
strings.

[| _oo,oo

Special values such that
" Forallxe {0,1}k: -0o<x<

® || denotes the concatenation operator.

Our Construction

Public Data Structure

® Manager owns a public data structure called
“Memory”.

B Compute efficiently the accumulated value and
the witnesses.

B |n our construction the Memory M will be a
binary tree.

Our Construction

Accumulator Operations

Operation Who runs it?
Acc,, M, — Setup(1¥) Manager
w «— Witness(M,x) Manager
User

True,False, L < Belongs(x,w,Acc)

ACCafter’MafterW Updateadd/del(Mbefore’) Manager

User

OK, 1L « CheckUpdate(Acc ACC, s W,,)

before?’ after?

Our Construction

Checking for (non)membership

User Accumulator Manager

Does x belong
to X?

w = Witness(M,x)

Belongs(x,w,Acc) = True < x e X

Our Construction

Update of the accumulated value

User Accumulator Manager

Insert or

Delete x

—
ACCafter’Mafter’ Wup =
UpdateAdd/Del(Mbefore’X)

4—

ACCafter’ Wup
CheckUpdate(AcC, oo ACC, e W,p)

Our Construction

|ldeas

B Merkle-trees

P=H(Z,l|Z,)
/Y”YZ) Z,=H(Y,|IY.)
Root value: /\ /\

Represents Y =H(x,[Ix,) YaHX) YEHGlX) YEHGlX)

"¢ A A A A

Our Construction

|ldeas

® Merkle-trees

P=H(Z,]|Z,)
Z=H(Y,]1Y>) Z,=H(Y,]1Y.)
Root value: /\ /\

Represents Y =H(x,[1x,) Y,=H(X4|[%s) Y,=H(x,]|x,) Y, =H(x,||x,)

the set

A VAN A
N T

O(In(n))

Our Construction

|ldeas

B How to prove nonmembership?

Kocher’s trick [Koch98]: store pair of
consecutive values
" X={1,3,5,6,11}
" X'={(-,1),(1,3),(3,5),(5,6),(6,11),(11, =)}
" y=3 belongs to X & (1,3) or (3,5) belongs to X..
m y=2 does not belong to X < (1,3) belongs to X'.

Our Construction

How to insert elements?
(-0,)

X=@, next: x,

Our Construction

How to insert elements?

('OO’X1)

(X,)

X={x,}, next: x,

Our Construction

How to insert elements?

('OO’X1)

(X1’ X2) (X2’ oo)

X={X;,X,}, next: x.

Our Construction

How to insert elements?

('OO’X1)

(X1, X5) (X2 X5)

(X5,)

X={X;,X5, X5}, next: x,

Our Construction

How to insert elements?

('OO’X1)

(X1, Xz) (Xza X3)

(X5,) (X5, Xs)

X={X;,X,,X5,X}, next: x,

Our Construction

How to insert elements?

('OO’X1)
(X1’ XZ) (X2’ X3)
(X5, =) (X3 X;) (Xgs X5)

X={X;,X5,X3,X,, X}, N€Xt: Xg

Our Construction

How to insert elements?

('OO’X1)

X={X,,X5,X3, X4, X5,Xg}

Our Construction

How to delete elements?

('OO’X1)

X={X;,X,,X3,X4,X5, X5}
element to be deleted: x,

Our Construction

How to delete elements?

(Xs; Xe) (X3, X,) (X4 (Xg>)

Our Construction

How to delete elements?

('OO’X1)

(X1, X3) (Xe: =)

(X5’ X6) (X3’ X4) (X4’ XS)

Our Construction

How to compute the accumulated

value? (=%,
(X4, Xz)/\(Xz’ X3)
(X5, Xo) (X3, X4) (xé)\(xﬁ, X;)
(Xgs) (X7, Xo)

A pair (x;,X;)
Proof,=H(Proof||Proof . |[value)

Proofy;,=

Acc = Proof,,,

Our Construction

How to update the accumulated
value? (Insertion)

('OO’X1)

X, to be inserted.

Our Construction

How to update the accumulated
value? (Insertion)

('OO’X1)

T

(X4, X;) (X5, X5)

N O

(X5’ X6) (X3’ X4) (X4’ XS) (XG’ X7)

(Xg, @) (X75 Xo)

We will need to recompute proof node values.

Our Construction

How to update the accumulated
value? (Insertion)

(-°°,X1)

(X4,)(2)/\()(2, X3)
(Xs; Xs) (X35 X,) (xé)\(xs, X;)

an

(Xg)) (72 Xg) (Xgs Xo)
New element: x,.
Proof stored in each node.
Dark nodes do not require recomputing Proof.

Only a logarithmic number of values need recomputation.

Our Construction

Security

B Definition: an accumulated value Acc
represents the set X={x,,x,,...,x }, if it has

been computed from a tree T containing
node values {(- «,X,),(X,X,),...,(X.,%)},

where each pair appears only once.

Our Construction

Security

B Definition: (Consistency)

Given Acc that represents X, it is hard to find
witnesses that allow to prove inconsistent
statements.

" X={1,2}.

" Hard to compute a membership witness for 3.

® Hard to compute a nonmembership witness for 2.

Our Construction

Security

B Definition: (Update)
Guarantees that the accumulated value Acc

represents the set X after insertion/deletion of
X.

Every update must be checked by users but it
IS not needed to store the sequence of
insertion/deletion.

Our Construction

Security

® Theorem: if CRHF exist the accumulator
IS secure (i.e. satisfies consistency and
update).

Our Construction

Security

® Lemma: Given a tree T with accumulated value Proof-,
finding a tree T', T#T" such that Proof; = Proof. is
difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

(-°°,X1) ('°°’X1) %
/\ /\

(X1’ Xz) (X2’ X3) > (Xw Xz) (Xz’ X3)

A\ N

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) (X4 X7) (X6, X7)

Our Construction

Security

Lemma: Given a tree T with accumulated value Proof_,

finding a tree T', T#T" such that Proof; = Proof. is
difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

Collision for H

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) (X4 X7) (X6, X7)

Our Construction

Security

Lemma: Given a tree T with accumulated value Proof_,

finding a tree T', T#T" such that Proof; = Proof. is
difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

e

(X5, X5)

Collisilon for H

(_oo x.) .. (' 0 X,)

/\ e

(X1’ Xz) (X2’ X3) E— (X1, Xz)

A\ N

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) (X4 X7) (X6, X7)

»

Our Construction

Security

Lemma: Given a tree T with accumulated value Proof_,

finding a tree T', T#T" such that Proof; = Proof. is
difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

Collisﬁiﬂon for H

(X4, X,) (X, X3) — (x1X2) (X5, X3)

/\

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) o (X4 X7) (X6, X7)

Our Construction

Security (Consistency)

(-oo,x1)
(X1, X2) (xza X3)
(XS’ XG) (X3, _4) (X4, X XG, X7)
(Xg,) (X7, %)

Witness: blue nodes and the (x;,x,) pair, size in O(In(n))

Checking that x belongs (or not) to X:
1) compute recursively the proof P and verify that P=Acc

2) check that: X=X, Or X=X, (membership)

X; < X < X, (honmembership)

Our Construction

Security (Update)

Before After

ACCbefore e (-°°,X1)

SN SN

(X4 X;) (%5 X;) /(X1< (K
(x5 XG) (X3, X4) X4% X7 (X5, XG) (xs! X4) X4 X5 X6 X7
(Xg5) (X7. X,) (Xg, @) (X7.Xg) (Xgs Xo)

Insertion of x,

Conclusion & Open Problem

B First dynamic, universal, strong accumulator
B Simple
B Security
Existence of CRHF
B Solves the e-Invoice Factoring Problem

B | ess efficient than other constructions
Size of witness in O(In(n))

® Open Problem

“Is it possible to build an efficient
strong,dynamic and universal
accumulator with witness size lower
than O(In(n))?”

Thank you!

Distributed solutions?

B Complex to implement
® Hard to make them robust
B High bandwith communication

® Need to be online — synchronization
problems

® That’s why we focus on a centralized
solution.

Invoice Factoring using
accumulator

® \\Ne need a secure broadcast channel

If a message m is published, every participant
sees the same m.

® Depending on the security level required

Trusted http of ftp server
Bulletin Board [CGS97]

Invoice Factoring using
accumulator

Factorir_lg H We need to
Authority see in detail
/ this step
(4) Is there [l (5) YES / NO
the invoice?
FE, FE, | ... FE, . FE,
\&)

(1) Invoice

i L
] % =
Provider gﬁ 2) Ack Client

<
<

Invoice Factoring using
accumulator

B Step 5 (Detalls)

FE Factoring Authority
Have you got
invoice x?
w = Witness(M, ;e X)
YES/NO, w
Belongs(x,w,Acc,....) If NO, insert x

.
>

ACCafter’ M Wy, =

after’ " "up

ACCafter’Wup’IDFE

A

Update, (M X)

before?

CheckUpdate(Acc, ;o ACC 100, W,p)

All tests pass => | can buy
Y

-
Basic Cryptographic Notions

B Secure encryption [GM84]

Q|

Adversary wins if Pr[b=b’] > 2 + 1/q(n)

T
Bibliography

[GM84] Probabilistic Encryption Shafi Goldwasser and Silvio Micali 1984
[BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

%%Sl‘\llla94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,

[189a9rPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Bari¢ and Birgit Pfitzmann
7

H%SSW] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
>

[Koch98] On certificate revocation and validation P.C. Kocher 1998
[CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998
[Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

[GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

[CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

[GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan
2004

I
Bibliography

® [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007
= [AWSMO07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007

m [CKHOO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

