Security challenges in DNS

Philippe Camacho

Department of Computer Science University of Chile

Workshop on Formal Methods in Cryptography 27-30 april 2009 / Campinas - Brazil

Outline

- DNS
- DNSSEC
 - Basics
 - Key Rollover
 - Problems and Limitations
- How to improve the Security of DNS?
 - Threshold Cryptography
 - Identity Based Cryptography

DNS A (brief) history

- ARPANET in the 70's
 - Small, friendly network of a few hundreds of hosts.
 - A centralized HOSTS.TXT file was used to map host names to network adresses.
 - This file was updated once or twice a week.
- BUT, with the growth of ARPANET this scheme became unpracticable
 - Traffic Load
 - Name Collision
 - Consistency

DNS Basics

- Domain Name System (DNS)
 - Maps IP adresses to human friendly computer hostnames
 www.google.com ⇔ 64.233.163.104
 - But also manages other type of information such as the list of mail servers associated to a domain
 - Distributed, Replicated, Fault Tolerant
 - Developped by the IETF (Internet Engineering Task Force) at the beginning of 1980's

DNS Type of Resource Records (RR)

Α	Host Addresses
PTR	Reverse address name mapping
CNAME	Aliases
MX	Mail exchange for the domain
NS	Authoritative Name Servers

DNS Caching

- DNS uses cache to improve performance
 - e.g: In the case of iterative resolving
 - What is the IP for www.dcc.uchile.cl?
 - I know the IP for the name server of the zone uchile.cl.
 - I can ask this server directly without starting from the root.
 - Time To Live (TTL)
 - Tradeoff between *consistency* and *efficiency*

- Many attacks on the DNS (references)
 - Man in the Middle
 - Cache poisoning
 - (Distributed) Denial of Service
- Major problem
 - Lack of integrity / authenticity
- Consequences are HUGE
 - Phishing
 - Defacements
 - Internet is down

• Man in the Middle

• Cache Poisoning (AlterNIC 1997)

- (Distributed) Denial of Service
 - Such as every internet service, DNS is exposed to (D)DoS
 - However the specificity of the protocol allows amplification attacks
 - (D)DoS is really hard to avoid
 - As we shall see DNSSEC do not pretend to solve this problem and could possibly make it worse...

- A new attack [Kaminsky 08]
 - Presented at Black Hat 2008

- Previous attack only allows to forge only one (url,ip) mapping.
- Kaminsky's attack is far more devastating
 - Allows to control a whole domain (.cl)
- This is scary...
 - Many certificate authorities validate a user's certificate by sending an email... So in this case even SSL is useless!

DNSSEC Basics

- What it is for?
 - Authenticate data exchanged between the participants of the protocol
- What it is NOT for?
 - Guarantee **privacy** (except for NSEC3)
 - Ensure availability

DNSSEC Basics

Core RFCs that describe DNSSEC

- DNS Security Introduction and Requirements (4033)
- Resource Records for the DNS Security Extensions (4034)
- Protocol Modifications for the DNS Security Extensions (4035)

• Another important RFC

- DNSSEC Operational Practices (4641)
- Web
 - http://www.dnssec.net

- Time
 - Assumption: *global clock*.
 - Every signed information has a *limited lifetime*.
 - This also applies to *keys*.

- Two types of Keys
 - Zone Signing Keys (ZSK)
 - Are used to sign all the information of the zone
 - Key Signing Keys (KSK)
 - Are used to sign the ZSK
 - ZSK are used to sign the KSK of the child

- Motivation of the use of KSK/ZSK
 - No parent/child interaction is required when ZSKs are updated.
 - The KSK can be made stronger.
 - KSK is only used to sign a set of keys. It can be stored in a safer place.
 - KSK have longer effectivity period.

- KEY ROLLOVER
 - It is necesarry to change the keys from time to time
 - As to make cryptanalysis harder
 => Scheduled Rollover
 - Private keys may be stolen or cracked
 => Unscheduled Rollover

- Scheduled Key Rollover
 - How do name servers/resolvers know this new public key?
 - Pre-Publish Key Rollover
 - Double Signature Rollover
 - ZSK Rollover
 - No interaction needed
 - KSK Rollover
 - Interaction needed between child and parent

initial	New DNSKEY	New Signatures	DNSKEY Removal
KSK	KSK	KSK	KSK
ZSK1	ZSK1	ZSK1	
	ZSK2	ZSK2	ZSK2
{ZSK1} _{KSK}	{ZSK1} _{KSK}	{ZSK1} _{KSK}	
	{ZSK2} _{KSK}	{ZSK2} _{KSK}	{ZSK2} _{KSK}
{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

initial	New DNSKEY	New Signatures	DNSKEY Removal
KSK	KSK	KSK	KSK
ZSK1	ZSK1	ZSK1	
	ZSK2	ZSK2	ZSK2
{ZSK1} _{KSK}	{ZSK1} _{KSK}	{ZSK1} _{KSK}	
	{ZSK2} _{KSK}	{ZSK2} _{KSK}	{ZSK2} _{KSK}
{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

initial	New DNSKEY	New Signatures	DNSKEY Removal
KSK	KSK	KSK	KSK
ZSK1	ZSK1	ZSK1	
	ZSK2	ZSK2	ZSK2
{ZSK1} _{KSK}	{ZSK1} _{KSK}	{ZSK1} _{KSK}	
	{ZSK2} _{KSK}	{ZSK2} _{KSK}	{ZSK2} _{KSK}
{ZONE_DATA} _{zsk1}	{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

initial	New DNSKEY	New Signatures	DNSKEY Removal
KSK	KSK	KSK	KSK
ZSK1	ZSK1	ZSK1	
	ZSK2	ZSK2	ZSK2
{ZSK1} _{KSK}	{ZSK1} _{KSK}	{ZSK1} _{KSK}	
	{ZSK2} _{KSK}	{ZSK2} _{KSK}	{ZSK2} _{KSK}
{ZONE_DATA} _{zsk1}	{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

• ZSK Double Signature Rollover

initial	New DNSKEY	DNSKEY Removal
KSK	KSK	KSK
ZSK1	ZSK1	
	ZSK2	ZSK2
{ZSK1} _{κsκ}	{ZSK1} _{KSK}	
	{ZSK2} _{KSK}	{ZSK2} _{κsκ}
{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK1}	
	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

• ZSK Double Signature Rollover

initial	New DNSKEY	DNSKEY Removal
KSK	KSK	KSK
ZSK1	ZSK1	
	ZSK2	ZSK2
{ZSK1} _{KSK}	{ZSK1} _{кsк}	
	{ZSK2} _{KSK}	{ZSK2} _{KSK}
{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK1}	
	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

• ZSK Double Signature Rollover

initial	New DNSKEY	DNSKEY Removal
KSK	KSK	KSK
ZSK1	ZSK1	
	ZSK2	ZSK2
{ZSK1} _{KSK}	{ZSK1} _{KSK}	
	{ZSK2} _{KSK}	{ZSK2} _{κsκ}
{ZONE_DATA} _{ZSK1}	{ZONE_DATA} _{ZSK1}	
	{ZONE_DATA} _{ZSK2}	{ZONE_DATA} _{ZSK2}

- Pros and Cons
 - Prepublish Key Rollover
 - + Does not involve signing all the zone data twice.
 - Process requires 4 steps.
 - Double Signature
 - + Process requires 3 steps.
 - The number of signatures in the zone doubles.
 Prohibitive for big zones.

- KSK Rollover
 - Same idea
 - Now the data to sign are (zone signing) keys
 - However
 - Double Signature Rollover seems better as the data signed is only a set of key
 - The child needs to warn the parent securely that the keys have changed.
 - The way to do this is left to the DNSSEC administrators.

Unscheduled Key Rollover

• PANIC!

Unscheduled Key Rollover

- Keep the chain of trust intact
 - Resign with the compromised key the new set of keys with a very short lifetime, then make a rollover
 - **Problem:** DOMAIN DISPUTE
 - The adversary controls the compromised key, so he can also make a keyrollover...
 - At the end who should we believe?
- Break the chain of trust
 - Say to the clients that there is a problem
 - Fix the problem
 - Interact with the clients to distribute the new public key
 - **Problem:** DNSSEC is down for a while

NSEC 3

DNSSEC

- not only provides an authenticated mapping between IP and domains
- but also provides proofs of non existence (membership)
 - e.g: Q: <u>www.doesnotexist.com</u> ?
 - A: this domain does not exist
- For efficiency
 - As to avoid signing dynamically the response the consecutive pair of domains ordered in alphabetic order are signed. All proofs are *precomputed*.
 - [a.com, c.com], [c.com, e.com], [e.com,g.com], [g.com,z.com]
 - hello.com does not exist ⇔ g.com < hello.com < z.com

NSEC 3

• Problem: Zone Walking

- An attacker can collect all the domains of a zone, by asking for domain that lies inside of every succesive intervals.
- Is that a problem? After all the information is public...
- Yes but in some case knowing all the domain names for a given level can be a useful information to build an attack for example.

NSEC 3

Solution

 Applying a hash function H to the domain names as to hide the information of the domain and still be able get nonmembership proofs.

- First proposal 1999 (RFC 2535) but still no current implementation at root level 2009
- Only a few of the Top Level Domains (.com, .org, countries...) run DNSSEC
 - Chile is working hard at this moment to implement it!
- Why?
 - Who signs the root?
 - Practical Experiences (Netherlands,...) have been painful
 - DNSSEC is complex
 - People may not see the immediate benefit
 - ...

DNSSEC is a "Non End to End" Protocol

- How to set the public keys life-time?
 - Too big => gives more time to the Adversary
 - Too short => inefficient
 - Need to rollover key very often

- How to detect (automaticaly) that a private key has been stolen?
 - Users generally don't notice they have been victim of a phishing attack.
 - Defacement
 - When obtained by DNS cache poisoning, the owner of the website is not aware of it.
- So in practice can we really detect that a key has been compromised?

- Key Rollover/Revocation Problem
 - There is no real satisfactory solution for Key Revocation
 - Key Rollver is complex
 - Lack of specification
 - No precise procedure in case of key compromise.
 - How does the child warn its parent?

- There is no definition for the Adversary
 - What can or cannot do the adversary
 - Steal private keys?
 - Only forge some signatures?
 - Intercept any packet?
 - Control a DNS Name Server?
 - Create a Zone / Domain?
 - Injection attack in Registrars Databases

- Use of Threshold Cryptography [Cachin, Samar 04]
 - What is Threshold Cryptography (very short)?
 - N participants
 - T participants can jointly sign
 - T-1 participant cannot do anything
 - =>Adversary must control T servers to perform an attack

N=4 T=2 participants required to sign

- Use of Threshold Cryptography [Cachin, Samar 04]
 - Concrete proposal
 - They use standard RSA signature
 - Need to change the server implementation but not the client
 - Benchmark
 - Stealing private key is harder
 - It can be effective against internal attacks.
 - However
 - If the servers that hold the share have got the same configuration, a same vulnerability can be enough to compromise all the servers.
 - More Complex

- Identity Based Cryptography [Chan 03]
 - Master Thesis work.
 - Analyzes the possibility to use IBC to improve the security of DNS instead of using standard public key cryptography.
 - Original approach to solve this problem.

IBC

• Idea

- A Trusted Authority (TA) generates (SK,PK) and distributes securely the private keys to every participant.
- Then the TA publishes a public key PK
- The public key of every participant can be computed from PK and a public information
 - Email, Name, Passport Number, Biometric data

- [Shamir, 84] First introduction of the concept.
- [Boneh, Franklin 01]

First efficient scheme for IBC using bilinear maps.

• Many other works, this is a very active field.

IBC

- Advantages
 - No need to store public keys
 - No need to sign/verify public keys
 - No need to manage certificates

- Problem: Key Escrow
 - The TA knows (generates) all the private keys of users.
 - Is that really a problem?
 - ANSWER
 - NO: in our setting, a parent can always create new children with their respective private keys.

- Key Rollover
 - Add timestamp to the identity
 - dcc.uchile.cl || 28-4-2009::29-4-2009
- Key Revocation
 - Still hard
 - We could use a database of revocated keys but we would loose the good properties of IBC...

- Problem of scalability
 - A single authority has to generate all the private keys. This is not reasonable in the case of DNS.
- Solution
 - Use of Hierchical Identity Based Cryptography
 - The private key generation can be delegated to subauthorities [Gentry, Silverberg 02]

• How to sign?

- Efficiency
 - The size of a signature grows *linearly* in the *depth* of the hierarchy.
 - So we do not win to much (even we may loose) compared to the classical DNSSEC verification procedure.

- So at the end, is HIBC useful?
 - HIBC has attractive properties
 - No need to manage public key/certificates
 - Simplifies the scheduled key rollover
 - However some problems remain unsolved
 - Key revocation (unscheduled key rollover)
 - Verification time proportional to the depth of the domain name tree.
 - Not clear that how to adapt the *Recursive Resolving Algorithm*
 - In practice developping standards for pairings and HIBC takes time.

Conclusion

- DNS is essential for Internet
- DNS is not secure and this is a big problem
- DNSSEC adds integrity/authenticity to DNS
- DNSSEC raises some practical problems
 - Key Rollover
 - All or Nothing security / Not Point to Point
 - Administrative problem: who signs the root?
- But DNSSEC is to the date the only concrete proposal to make DNS more secure. Can we do better?

