
Strong Accumulators from
Collision-Resistant Hashing

ISC 2008
Taipei - Taiwan

Philippe Camacho (University of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

 Notion of accumulator
 Motivation

e-Invoice Factoring
 Our construction
 Conclusion

Notion of accumulator

 Problem
A set X.
Given an element x we wish to prove that this

element belongs or not to X.
 Let X={x1,x2,…,xn}:

X will be represented by a short value Acc.
Belongs(Acc,x,w) = True x belongs to X.

Witness

Notion of accumulator

 Accumulator Manager
Computes setup values.
Computes the accumulated value Acc.
Computes the witness wx for a given x.

 Accumulator Users
Check that an element belongs or not to the

set, using Acc, wx and x.

Applications

 Time-stamping [BeMa94]
 Certificate Revocation List [LLX07]
 Anonymous credentials [CamLys02]
 E-Cash [AWSM07]
 Broadcast Encryption [GeRa04]
 …

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

2) Here is your milk.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

2) Here is your milk.

3) P
lease pay th

e invoice
.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

4) H
ere is

your m
oney (

**)
.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is
your m

oney (
**)

.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is
your m

oney (
**)

. 6) Here is the money.

Nothing to see with
Number Theory!

The Problem
 A malicious provider could send the

same invoice to various Factoring
Entities.

 Then he leaves to a far away country
with all the money.

 Later, several Factoring Entities will try
to charge the invoice to the same client.
Losts must be shared…

Solution with Factoring Authority

Factoring Authority

FE 2 FE n…

Provider Client

FE 1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

Caveat

 This solution is quite simple.

 However
Trusted Factoring Authority is needed.

 Can we remove this requirement?

Properties

 Dynamic
 Allows insertion/deletion of elements.

 Universal
 Allows proofs of membership and nonmembership.

 Strong
 No need to trust in the Accumulator Manager.

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

[WWP08] eStrong RSA
Paillier O(1) Batch Update

Prior work

Batch UpdateO(1)
eStrong RSA

Paillier
[WWP08]

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

[CHKO08] Collision-Resistant
Hashing O(ln(n)) Our work

Prior work

Notation
 H: {0,1}*→{0,1}k

 randomly chosen function from a family of collision-resistant
hash functions.

 x1,x2,x3,…є {0,1}k

 x1 < x2 < x3 < … where < is the lexicographic order on binary
strings.

 -∞,∞
 Special values such that

 For all x є {0,1}k : -∞ < x < ∞

 || denotes the concatenation operator.

Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:

Represents
the set
{x1,…,x8}

Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

O(ln(n))
Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:

Represents
the set
{x1,…,x8}

Ideas

 How to prove non-membership?
Kocher’s trick [Koch98]: store pair of

consecutive values
 X={1,3,5,6,11}
 X’={(-∞,1),(1,3),(3,5),(5,6),(6,11),(11, ∞)}
 y=3 belongs to X (1,3) or (-∞,1) belongs to X’.
 y=2 does not belong to X (1,3) belongs to X’.

Public Data Structure

 Called “Memory”.

 Compute efficiently the accumulated value and
the witnesses.

 In our construction the Memory will be a binary
tree.

How to insert elements?
(-∞,∞)

X=Ø, next: x1

How to insert elements?
(-∞,x1)

(x1, ∞)

X={x1}, next: x2

How to insert elements?
(-∞,x1)

(x1, x2) (x2, ∞)

X={x1,x2}, next: x5

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x5)

(x5, ∞)

X={x1,x2,x5}, next: x3

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x5)

X={x1,x2,x3,x5}, next: x4

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x4) (x4, x5)

X={x1,x2,x3,x4,x5}, next: x6

How to insert elements?

X={x1,x2,x3,x4,x5,x6}

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

How to compute the accumulated
value?

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

ProofN=H(Proofleft||Proofright||value)

ProofNil= “”

Acc = ProofRoot
A pair (xi,xj)

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Next element to be inserted: x8

We will need to recompute proof node values.

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

New element: x8.

ProofN stored in each node.

Dark nodes do not require recomputing ProofN.

Only a logarithmic number of values needs recomputation.

(x8, x9)

Security

 Consistency
 Difficult to find witnesses that allow to prove

inconsistent statements.
 X={1,2}
 Hard to compute a membership witness for 3.
 Hard to compute a nonmembership witness for 2.

 Update
 Guarantees that the accumulated value represents

the set after insertion/deletion of x.

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security (Consistency)
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)
Witness: blue nodes and the (x3,x4) pair, size in O(ln(n))

Checking that x belongs (or not) to X:

 1) compute recursively the proof P and verify that P=Acc

 2) check that: x=x3 or x=x4 (membership)

 x3 < x < x4 (nonmembership)

Security (Update)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Before After

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

Insertion of x8

(x8, x9)

Accbefore Accafter

Conclusion & Open Problem
 First dynamic, universal, strong accumulator.
 Simple.
 Security

 Existence of collision-resistant hash functions.
 Solves the e-Invoice Factoring Problem.
 Less efficient than other constructions

 Size of witness in O(ln(n)).
 Open Problem

“Is it possible to build a strong,dynamic
and universal accumulator with witness
size lower than O(ln(n))?”

Thank you!

Invoice Factoring using
accumulator
 We need a secure broadcast channel

 If a message m is published, every participant
sees the same m.

 Depending on the security level required
Trusted http of ftp server
Bulletin Board [CGS97]

Invoice Factoring using
accumulator

Factoring Authority

FE 2 FE n…

Provider Client

FE 1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

We need to
see in detail
this step

Invoice Factoring using
accumulator
 Step 5 (Details)

FE Factoring Authority
Have you got
 invoice x?

YES/NO, wx

If NO, insert x

Accnew,wup,IDFE

Check(Accbefore,wx,x)

CheckUpdate(Accbefore,Accafter,wx)

All tests pass => I can buy x.

Accnew,wup = UpdateAdd(mbefore,x)

wx = Witness(mbefore,x)

Distributed solutions?

 Complex to implement
 Hard to make them robust
 High bandwith communication
 Need to be online – synchronization

problems
 That’s why we focus on a centralized

solution.

Checking for (non-)membership
Accumulator ManagerUser

Does x belong

to X?

wx

Belongs(Acc,wx) = True x є X

If wx is not valid Belongs returns ┴.

wx = Witness(m,x)

Memory

Update of the
accumulated value

Accumulator ManagerUser

Insert or
Delete x

Accafter, wup

CheckUpdate(Accbefore,Accafter,wup)

mafter, Accafter,wup

 = UpdateAdd/Del(mbefore,x)

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

X={x1,x2,x3,x4,x5,x6}
element to be deleted: x2

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

(x1,x3)

How to delete elements?
(-∞,x1)

(x1, x3) (x6, ∞)

(x5, x6) (x3, x4) (x4, x5)

Bibliography
 [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

 [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,
1994

 [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann
1997

 [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
1997

 [Koch98] On certificate revocation and validation P.C. Kocher 1998

 [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998

 [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

 [GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

 [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

 [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan
2004

 [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007

 [AWSM07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007

 [WWP08] A new Dynamic Accumulator for Batch Updates Peishun Wang, Huaxiong Wang and Josef Pieprzyk 2008

 [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

