Strong Accumulators from
Collision-Resistant Hashing

Philippe Camacho (university of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

B Notion of accumulator

B Motivation
e-Invoice Factoring

® Qur construction
B Conclusion

Notion of accumulator

B Problem
A set X.

Given an element x we wish to prove that this
element belongs or not to X.

B | et X={x,,X,,....,X }:

X will be represented by a short value Acc.
Belongs(Acc,x,w) = True < x belongs to X.

Witness

Notion of accumulator

® Accumulator Manager
Computes setup values.
Computes the accumulated value Acc.
Computes the witness w, for a given x.

B Accumulator Users

Check that an element belongs or not to the
set, using Acc, w, and x.

Applications

B Time-stamping [BeMa94]

B Certificate Revocation List [LLX07]
B Anonymous credentials [CamLys02]
® E-Cash [AWSMO7]

B Broadcast Encryption [GeRa04]

- ... Nothing to see with —
WerTheory!
Factoring Industry in Chile

g Notnng osee il |
Number Theory!

V
Factoring Industry in Chile

- 1) | want (a lot of) milk now *. -

(*) but | do not want to pay yet.

g Notnng osee il |
Number Theory!

V
Factoring Industry in Chile

1) | want (a lot of) milk now *.
2) Here is your milk.

(*) but | do not want to pay yet.

g Notnng osee il |
Number Theory!

V
Factoring Industry in Chile

1) | want (a lot of) milk now *.

2) Here is your milk.

(*) but | do not want to pay yet.

g Notnng osee il |
Number Theory!

Factorinﬁdustry in Chile

1) | want (a lot of) milk now *.

A

2) Here is your milk.

\4

(*) but | do not want to pay yet.
(**) minus a fee.

g Notnng osee il |
Number Theory!

Factorinﬁdustry in Chile

1) | want (a lot of) milk now *.

A

2) Here is your milk.

\4

(*) but | do not want to pay yet.
(**) minus a fee.

g Notnng osee il |
Number Theory!

Factoring%dustry in Chile

1) | want (a lot of) milk now *.

A

2) Here is your milk.

\4

(*) but | do not want to pay yet.
(**) minus a fee.

The Problem

B A malicious provider could send the
same invoice to various Factoring
Entities.

® Then he leaves to a far away country
with all the money.

® | ater, several Factoring Entities will try
to charge the invoice to the same client.
Losts must be shared...

V=
A

o B

Solution with Factoring Authority

the invoice?
(1) Invoice
(2) Ack

M

Caveat

B This solution is quite simple.

® However
Trusted Factoring Authority is needed.

B Can we remove this requirement?

Properties

® Dynamic
Allows insertion/deletion of elements.

® Universal
Allows proofs of membership and nonmembership.

B Strong

No need to trust in the Accumulator Manager.

Prior work

Dynamic Strong Universal Security
[BeMa94] / RSA + RO
[BarPfi97] / Strong RSA
[CamLys02] / Strong RSA
[LLX07] / / Strong RSA
[AWSMO7] / Pairings
[WWP08] / eStrong RSA

Paillier

Efficiency

(witness size)

Note

First definition

First dynamic
accumulator

First universal
accumultor

E-cash

Batch Update

Prior work

Hashing

Dynamic Strong Universal Security Efficiency Note
(witness size)
[BeMa94] ' = RSA + RO First definition
X /
[BarPfi97] ' =v3 Strong RSA -
X v
CamLys02 : Strong RSA First dynamic
[ys02] / accumulator
LLXO07 : ' Strong RSA First universal
[: / / accumultor
[AWSMO07] / Pairings e cash
WWPO08 ' eStrong RSA
|] / Paillier Batch Update
[CHKOO08] / ' / / Collision-Resistant

Our work

Notation

H: {0,1}*—{0,1}k
randomly chosen function from a family of collision-resistant
hash functions.

X1,X5,X3,...€ {0,171}k
X; < X, < X; <... where < s the lexicographic order on binary
strings.

_O0,00
Special values such that

" Forallxe {0,1}k: -0o<x<

|| denotes the concatenation operator.

|ldeas

B Merkle-trees

P=H(Z|Z,)
Z.=H(Y.|IY,) Z,=H(Y3|[Y,)
Root value: /\ /\
Represents Y =H(x,[Ix,) YaHX) YEHGlX) YEHGlX)

"¢ A A A A

|ldeas

® Merkle-trees

P=H(Z,]Z,) .
Z=H(Y,|]Y,) Z,=H(Y,|]Y,)
Root value:
O(In(n))

Represents Y =H(x,|x,) YaHX %) Ys=H(%]IX,) Y, =H(x,||x,)

the set

S ANV AN
O . @ on x|

|ldeas

B How to prove non-membership?

Kocher’s trick [Koch98]: store pair of
consecutive values
" X={1,3,5,6,11}
" X'={(-,1),(1,3).(3,9),(5,6),(6,11),(11, <)}
® y=3 belongs to X & (1,3) or (-~,1) belongs to X'.
= y=2 does not belong to X < (1,3) belongs to X'.

Public Data Structure

® Called “Memory”.

B Compute efficiently the accumulated value and
the witnesses.

B |n our construction the Memory will be a binary
tree.

How to insert elements?

(-oo’oo)

X=@, next: x,

How to insert elements?

('OO’X1)

(X,)

X={x,}, next: x,

How to insert elements?

('°°’X1)

(X1’ X2) (X2’ oo)

X={X;,X,}, next: x.

How to insert elements?

('°°’X1)

(X1, X5) (X2 X5)

(X5,)

X={X;,X5, X5}, next: x,

How to insert elements?

('°°’X1)

(X1, Xz) (Xza X3)

(X5,) (X5, Xs)

X={X;,X,,X5,X}, next: x,

How to insert elements?

('°°’X1)
(X1’ XZ) (X2’ X3)
(X5, =) (X3 X4) (Xgs X)

X={X;,X5,X3,X,, X}, N€Xt: Xg

How to insert elements?

('°°’X1)

X={X,,X5,X3, X4, X5,Xg}

How to compute the accumulated
value?

K
(X1’ X2) (X2’ X3)
(X5, X) (X3, X,) (Xé)\(xe, X7)

(Xgs) (X7, Xo)

Proof\=H(Proof,||Proof . [[value)

Proof,=

Acc = Proofy, A pair (x;)

B
How to update the accumulated

value? (Insertion)

('OO’X1)

T

(X4, X;) (X5, X5)
(X5, %) (X5, X,) (Xé)\(xs’ X7)

(Xg, @) (X75 Xo)

Next element to be inserted: x,

We will need to recompute proof node values.

How to update the accumulated
value? (Insertion)

(-°°,X1)

(X4,)(2)/\()(2, X3)
(Xs; Xs) (X35 X,) (xé)\(xs, X;)

an

(Xg)) (72 Xg) (Xgs Xo)
New element: x,.
Proof stored in each node.
Dark nodes do not require recomputing Proof.

Only a logarithmic number of values needs recomputation.

Security

B Consistency

Difficult to find witnesses that allow to prove
Inconsistent statements.

= X={1,2}

® Hard to compute a membership witness for 3.

® Hard to compute a nonmembership witness for 2.

B Update

Guarantees that the accumulated value represents
the set after insertion/deletion of x.

Security

® Lemma: Given a tree T with accumulated value Acc-,
finding a tree T', T#T" such that Acc; = Acc.. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

(-°°,X1) ('°°’X1) %
/\ /\

(X1’ Xz) (X2’ X3) > (Xw Xz) (Xz’ X3)

A\ N

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) (X4 X7) (X6, X7)

Security

® Lemma: Given a tree T with accumulated value Acc-,
finding a tree T', T#T" such that Acc; = Acc.. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

Collision for H

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) (X4 X7) (X6, X7)

Security

® Lemma: Given a tree T with accumulated value Acc-,
finding a tree T', T#T" such that Acc; = Acc.. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

Collisilon for H (\ :

(X5, X5)

(_oo x.) .. (' 0 X,)

/\ e

(X1’ Xz) (X2’ X3) E— (X1, Xz)

A\ N

(Xs: Xg) (X3, X,) (X4 X5) (Xes X7) (X5, Xg) (X, X,) (X4 X7) (X6, X7)

»

Security

® Lemma: Given a tree T with accumulated value Acc-,
finding a tree T', T#T" such that Acc; = Acc.. is difficult.

m Proof (Sketch): Proofy = H(Proof ||Proof, . ||value)

Collisﬁiﬂon for H

(X4, X,) (X, X3) — (x1X2) (X5, X3)

/\

(%er %) (% X0) (Ko %) (K60 %) (Ko %) (K Xe) (K %) (K X))

Security (Consistency)

(-oo,x1)
(X1, X2) (xza X3)
(XS’ XG) (X3, _4) (X4, X XG, X7)
(Xg,) (X7, %)

Witness: blue nodes and the (x;,x,) pair, size in O(In(n))

Checking that x belongs (or not) to X:
1) compute recursively the proof P and verify that P=Acc

2) check that: X=X, Or X=X, (membership)

X; < X < X, (honmembership)

Security (Update)

Before After
/ (-OO,X1) (-OO’X1) \
ACCbefore /\ /\ ACCafter
(X1, xz) (xzy x3) /< (XZ’ X3)
(X5, X) (x5, %,) (&m X5) (X5, Xe) (X35 X,) (X4 X5) (Xg» X7)
(Xg5) (X7. X,) (Xg, @) (X7.Xg) (Xgs Xo)

Insertion of x,

Conclusion & Open Problem

® First dynamic, universal, strong accumulator.
B Simple.
B Security

Existence of collision-resistant hash functions.

B Solves the e-Invoice Factoring Problem.

B | ess efficient than other constructions
Size of witness in O(In(n)).

® Open Problem

“Is it possible to build a strong,dynamic
and universal accumulator with withess
size lower than O(In(n))?”

Thank you!

Invoice Factoring using
accumulator

® \\Ne need a secure broadcast channel

If a message m is published, every participant
sees the same m.

® Depending on the security level required

Trusted http of ftp server
Bulletin Board [CGS97]

g B
Invoice Factoring using
accumulator

We need to
see in detail
this step

M

(1) Invoice
(2) Ack

the invoice?

Invoice Factoring using
accumulator

B Step 5 (Details)

FE Factoring Authority
Have you got
invoice x?
w, = Witness(m, .0, X)
YES/NO, w,
CheCk(ACCbefore’Wx’X) .
If NO, insert x

v

ACCneW’Wup = UpdateAdd(mbefore,x)
ACC, oW, s Dee

A

CheckUpdate(Acc, .., ACC e W,)

All tests pass => | can buy x.

Distributed solutions?

B Complex to implement
® Hard to make them robust
B High bandwith communication

® Need to be online — synchronization
problems

® That’s why we focus on a centralized
solution.

Checking for (non-)membership

User Accumulator Manager

Does x belong
to X?

Memory

| |

w, = Witness(m,x)

Belongs(Acc,w,) = True < xe X

If w, is not valid Belongs returns | .

..
Update of the

accumulated value

User Accumulator Manager

Insert or
Delete x

[
>

m AcC.. W

after? after, " " up

= Update4pe(MpetoresX)

ACCafter’ Wup

CheckUpdate(ACC,q o6 ACC, e W,,)

How to delete elements?

('OO’X1)

X={X;,X,,X3,X4,X5, X5}
element to be deleted: x,

How to delete elements?

°°X)
o \W

(Xs; Xe) (X3, X,) (X4 (Xg>)

How to delete elements?

('°°’X1)

(X1, X3) (Xe: =)

(X5’ X6) (X3’ X4) (X4’ XS)

I
Bibliography

[BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

5%3Ma94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,
4

[1%a9rPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Bari¢ and Birgit Pfitzmann
7

2%8897] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
&

[Koch98] On certificate revocation and validation P.C. Kocher 1998
[CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998
[Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

[GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

[CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

[2%84Ra04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan

[LLXO07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007
[AWSMO07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007
[WWPO08] A new Dynamic Accumulator for Batch Updates Peishun Wang, Huaxiong Wang and Josef Pieprzyk 2008

[CKHOO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

