
Strong Accumulators from
Collision-Resistant Hashing

ISC 2008
Taipei - Taiwan

Philippe Camacho (University of Chile)
Alejandro Hevia (University of Chile)
Marcos Kiwi (University of Chile)
Roberto Opazo (CEO Acepta.com)

Outline

 Notion of accumulator
 Motivation

e-Invoice Factoring
 Our construction
 Conclusion

Notion of accumulator

 Problem
A set X.
Given an element x we wish to prove that this

element belongs or not to X.
 Let X={x1,x2,…,xn}:

X will be represented by a short value Acc.
Belongs(Acc,x,w) = True  x belongs to X.

Witness

Notion of accumulator

 Accumulator Manager
Computes setup values.
Computes the accumulated value Acc.
Computes the witness wx for a given x.

 Accumulator Users
Check that an element belongs or not to the

set, using Acc, wx and x.

Applications

 Time-stamping [BeMa94]
 Certificate Revocation List [LLX07]
 Anonymous credentials [CamLys02]
 E-Cash [AWSM07]
 Broadcast Encryption [GeRa04]
 …

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

2) Here is your milk.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.

2) Here is your milk.

3) P
lease pay th

e invoice
.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

4) H
ere is

your m
oney (

**)
.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is
your m

oney (
**)

.

Nothing to see with
Number Theory!

Factoring Industry in Chile
Factoring

Entity

Provider
(Milk seller)

Client
(Supermarket)

1) I want (a lot of) milk now *.

(*) but I do not want to pay yet.
(**) minus a fee.

2) Here is your milk.

3) P
lease pay th

e invoice
.

5) It’s time to pay.
4) H

ere is
your m

oney (
**)

. 6) Here is the money.

Nothing to see with
Number Theory!

The Problem
 A malicious provider could send the

same invoice to various Factoring
Entities.

 Then he leaves to a far away country
with all the money.

 Later, several Factoring Entities will try
to charge the invoice to the same client.
Losts must be shared…

Solution with Factoring Authority

Factoring Authority

FE 2 FE n…

Provider Client

FE 1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

Caveat

 This solution is quite simple.

 However
Trusted Factoring Authority is needed.

 Can we remove this requirement?

Properties

 Dynamic
 Allows insertion/deletion of elements.

 Universal
 Allows proofs of membership and nonmembership.

 Strong
 No need to trust in the Accumulator Manager.

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

[WWP08] eStrong RSA
Paillier O(1) Batch Update

Prior work

Batch UpdateO(1)
eStrong RSA

Paillier
[WWP08]

Dynamic Strong Universal Security Efficiency
(witness size)

Note

[BeMa94] RSA + RO O(1) First definition

[BarPfi97] Strong RSA O(1) -

[CamLys02] Strong RSA O(1) First dynamic
accumulator

[LLX07] Strong RSA O(1) First universal
accumultor

[AWSM07] Pairings O(1)
E-cash

[CHKO08] Collision-Resistant
Hashing O(ln(n)) Our work

Prior work

Notation
 H: {0,1}*→{0,1}k

 randomly chosen function from a family of collision-resistant
hash functions.

 x1,x2,x3,…є {0,1}k

 x1 < x2 < x3 < … where < is the lexicographic order on binary
strings.

 -∞,∞
 Special values such that

 For all x є {0,1}k : -∞ < x < ∞

 || denotes the concatenation operator.

Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:

Represents
the set
{x1,…,x8}

Ideas

 Merkle-trees

Z1=H(Y1||Y2)

Y1=H(x4||x1)

x4 x1 x5 x6 x2 x8 x7 x3

O(ln(n))
Y2=H(x5||x6) Y3=H(x2||x8) Y4=H(x7||x3)

Z2=H(Y3||Y4)

P=H(Z1||Z2)

Root value:

Represents
the set
{x1,…,x8}

Ideas

 How to prove non-membership?
Kocher’s trick [Koch98]: store pair of

consecutive values
 X={1,3,5,6,11}
 X’={(-∞,1),(1,3),(3,5),(5,6),(6,11),(11, ∞)}
 y=3 belongs to X  (1,3) or (-∞,1) belongs to X’.
 y=2 does not belong to X  (1,3) belongs to X’.

Public Data Structure

 Called “Memory”.

 Compute efficiently the accumulated value and
the witnesses.

 In our construction the Memory will be a binary
tree.

How to insert elements?
(-∞,∞)

X=Ø, next: x1

How to insert elements?
(-∞,x1)

(x1, ∞)

X={x1}, next: x2

How to insert elements?
(-∞,x1)

(x1, x2) (x2, ∞)

X={x1,x2}, next: x5

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x5)

(x5, ∞)

X={x1,x2,x5}, next: x3

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x5)

X={x1,x2,x3,x5}, next: x4

How to insert elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, ∞) (x3, x4) (x4, x5)

X={x1,x2,x3,x4,x5}, next: x6

How to insert elements?

X={x1,x2,x3,x4,x5,x6}

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

How to compute the accumulated
value?

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

ProofN=H(Proofleft||Proofright||value)

ProofNil= “”

Acc = ProofRoot
A pair (xi,xj)

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Next element to be inserted: x8

We will need to recompute proof node values.

How to update the accumulated
value? (Insertion)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

New element: x8.

ProofN stored in each node.

Dark nodes do not require recomputing ProofN.

Only a logarithmic number of values needs recomputation.

(x8, x9)

Security

 Consistency
 Difficult to find witnesses that allow to prove

inconsistent statements.
 X={1,2}
 Hard to compute a membership witness for 3.
 Hard to compute a nonmembership witness for 2.

 Update
 Guarantees that the accumulated value represents

the set after insertion/deletion of x.

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security

 Lemma: Given a tree T with accumulated value AccT,
finding a tree T’, T≠T’ such that AccT = AccT’ is difficult.

 Proof (Sketch): ProofN = H(Proofleft||Proofright||value)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x7) (x6, x7)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

Collision for H

Security (Consistency)
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)
Witness: blue nodes and the (x3,x4) pair, size in O(ln(n))

Checking that x belongs (or not) to X:

 1) compute recursively the proof P and verify that P=Acc

 2) check that: x=x3 or x=x4 (membership)

 x3 < x < x4 (nonmembership)

Security (Update)

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x9)(x9, ∞)

Before After

(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, x7)

(x7, x8)(x9, ∞)

Insertion of x8

(x8, x9)

Accbefore Accafter

Conclusion & Open Problem
 First dynamic, universal, strong accumulator.
 Simple.
 Security

 Existence of collision-resistant hash functions.
 Solves the e-Invoice Factoring Problem.
 Less efficient than other constructions

 Size of witness in O(ln(n)).
 Open Problem

“Is it possible to build a strong,dynamic
and universal accumulator with witness
size lower than O(ln(n))?”

Thank you!

Invoice Factoring using
accumulator
 We need a secure broadcast channel

 If a message m is published, every participant
sees the same m.

 Depending on the security level required
Trusted http of ftp server
Bulletin Board [CGS97]

Invoice Factoring using
accumulator

Factoring Authority

FE 2 FE n…

Provider Client

FE 1 FE i…

(1) Invoice

(2) Ack

(3) Invoice, Ack

(4) Is there
the invoice?

(5) YES / NO

We need to
see in detail
this step

Invoice Factoring using
accumulator
 Step 5 (Details)

FE Factoring Authority
Have you got
 invoice x?

YES/NO, wx

If NO, insert x

Accnew,wup,IDFE

Check(Accbefore,wx,x)

CheckUpdate(Accbefore,Accafter,wx)

All tests pass => I can buy x.

Accnew,wup = UpdateAdd(mbefore,x)

wx = Witness(mbefore,x)

Distributed solutions?

 Complex to implement
 Hard to make them robust
 High bandwith communication
 Need to be online – synchronization

problems
 That’s why we focus on a centralized

solution.

Checking for (non-)membership
Accumulator ManagerUser

Does x belong

to X?

wx

Belongs(Acc,wx) = True  x є X

If wx is not valid Belongs returns ┴.

wx = Witness(m,x)

Memory

Update of the
accumulated value

Accumulator ManagerUser

Insert or
Delete x

Accafter, wup

CheckUpdate(Accbefore,Accafter,wup)

mafter, Accafter,wup

 = UpdateAdd/Del(mbefore,x)

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

X={x1,x2,x3,x4,x5,x6}
element to be deleted: x2

How to delete elements?
(-∞,x1)

(x1, x2) (x2, x3)

(x5, x6) (x3, x4) (x4, x5) (x6, ∞)

(x1,x3)

How to delete elements?
(-∞,x1)

(x1, x3) (x6, ∞)

(x5, x6) (x3, x4) (x4, x5)

Bibliography
 [BeMa92] Efficient Broadcast Time-Stamping Josh Benaloh and Michael de Mare 1992

 [BeMa94] One-way Accumulators: A decentralized Alternative to Digital Signatures Josh Benaloh and Michael de Mare ,
1994

 [BarPfi97] Collision-Free Accumulators and Fail-Stop Signature Schemes Without Trees Niko Barić and Birgit Pfitzmann
1997

 [CGS97] A secure and optimally efficient multi-authority election scheme R. Cramer, R. Gennaro, and B. Schoenmakers
1997

 [Koch98] On certificate revocation and validation P.C. Kocher 1998

 [CGH98] The random oracle methodoly revisited R. Canetti, O. Goldreich and S. Halevi 1998

 [Sand99] Efficient Accumulators Without Trapdoor Tomas Sanders 1999

 [GoTa01] An efficient and Distributed Cryptographic Accumulator Michael T. Goodrich and Roberto Tamassia 2001

 [CamLys02] Dynamic Accumulators And Application to Efficient Revocation of Anonymous Credentials Jan Camenisch
Anna Lysyanskaya 2002

 [GeRa04] RSA Accumulator Based Broadcast Encryption Craig Gentry and Zulfikar Ramzan
2004

 [LLX07] Universal Accumulators with Efficient Nonmembership Proofs Jiangtao Li, Ninghui Li and Rui Xue 2007

 [AWSM07] Compact E-Cash from Bounded Accumulator Man Ho Au, Qianhong Wu, Willy Susilo and Yi Mu 2007

 [WWP08] A new Dynamic Accumulator for Batch Updates Peishun Wang, Huaxiong Wang and Josef Pieprzyk 2008

 [CKHO08] Strong Accumulators from Collision-Resistant Hashing Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo 2008

