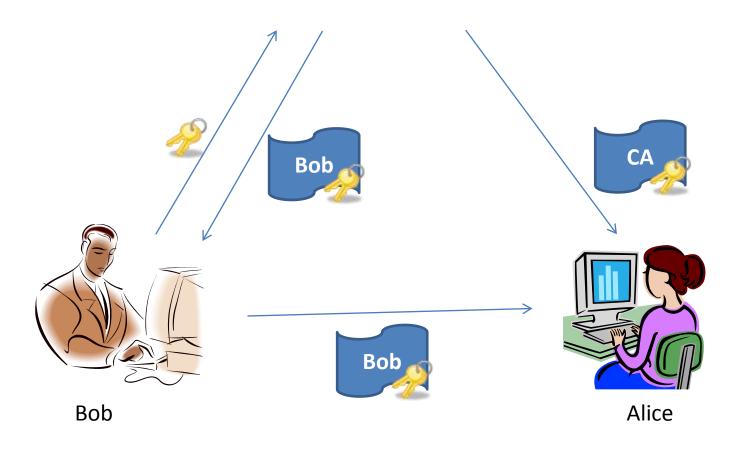


On the Impossibility of Batch Update for Cryptographic Accumulators

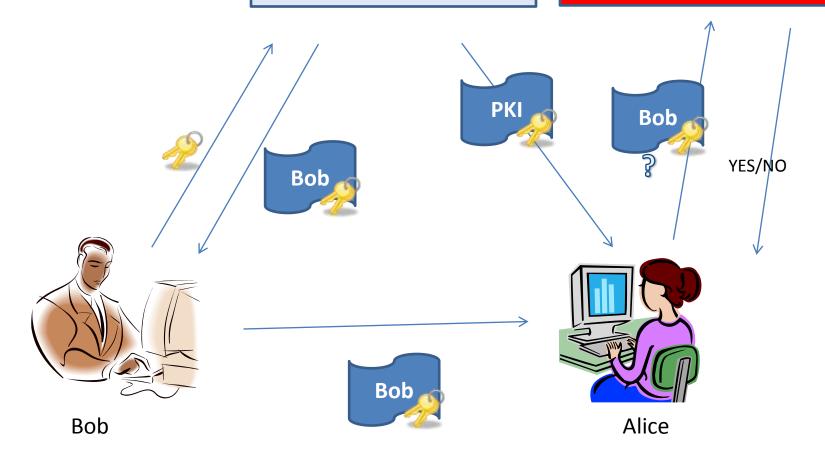
Philippe Camacho and Alejandro Hevia
University of Chile

Certificate Authority



Certificate Authority

CRL/OSCP



Central Authority

Owns a **Set** of valid certificates $X = \{x_1, x_2, ...\}$

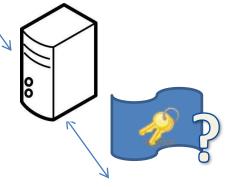
Insert/ Delete

Bob

Alice

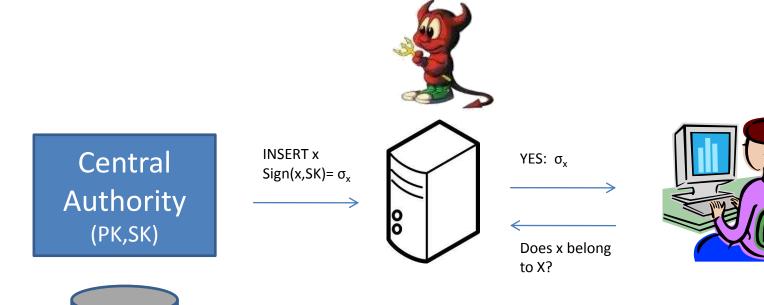
Central Authority

Owns a **Set** X={x₁,x₂,...}

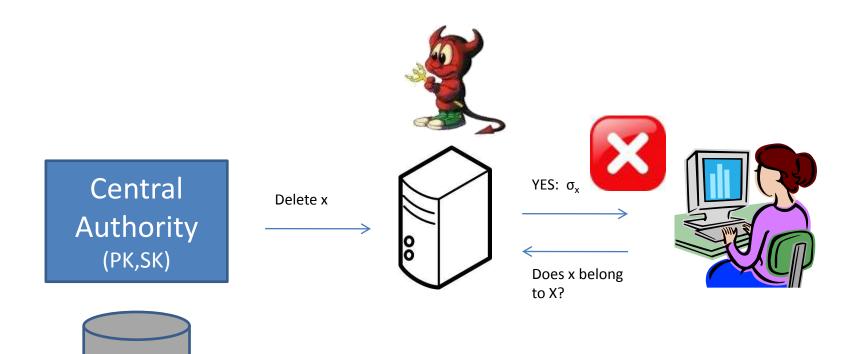


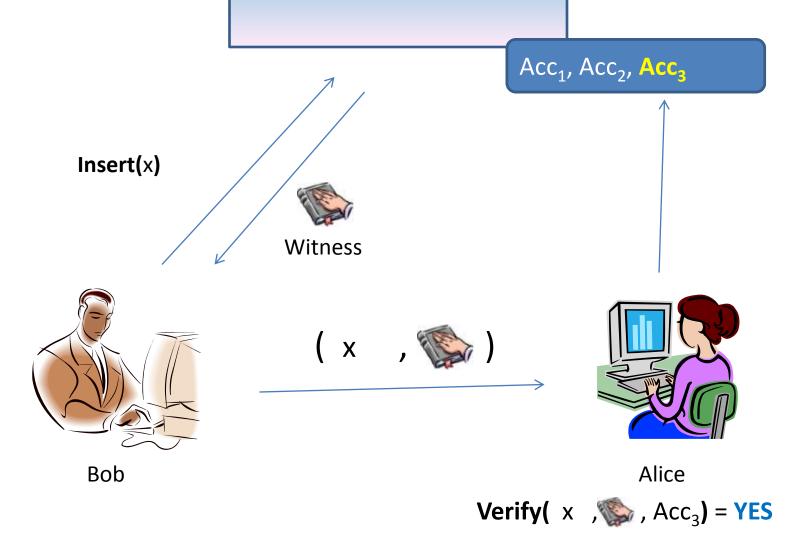
Bob

Replay Attack



Replay Attack





Acc₁, Acc₂, Acc₃, Acc₄

Delete(x)

ОК

Alice

Verify(x $, \otimes$, Acc_4) = FAIL

 Acc_1 , Acc_2 , Acc_3 ,...

Cryptographic

Accumulates Accumulates

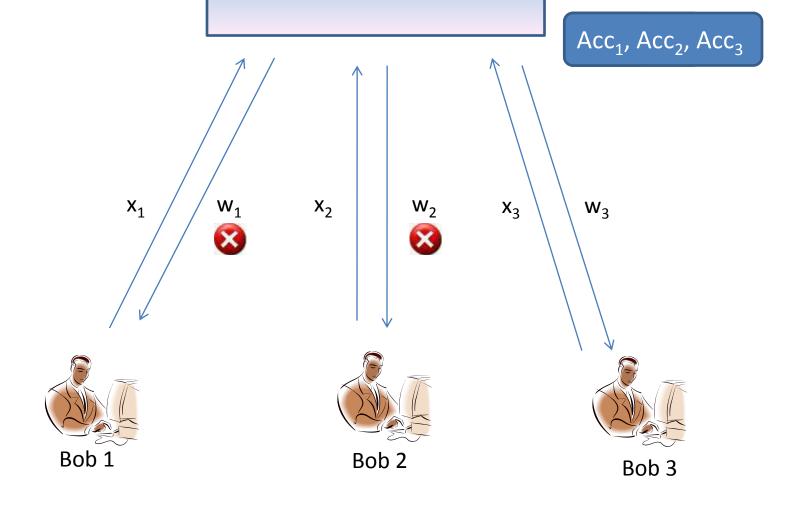
Bob

Alice

Verify(x , (x), Acc₃) = YES

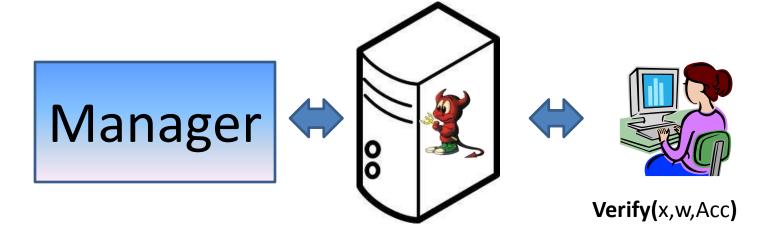
Main constructions

	Security	Note
[BeMa94]	RSA + RO	First definition
[BarPfi97]	Strong RSA	-
[CamLys02]	Strong RSA	First dynamic accumulator
[LLX07]	Strong RSA	First universal accumultor
[Ngu05]	Pairings	E-cash, ZK-Sets,
[WWP08]	eStrong RSA Paillier	Batch Update
[CHKO08]	Collision-Resistant Hashing	Untrusted Manager
[CKS09]	Pairings	Group multiplication



Problem: after each update of the accumulated value it is necesarry to recompute all the witnesses.

Delegate Witness Computation?

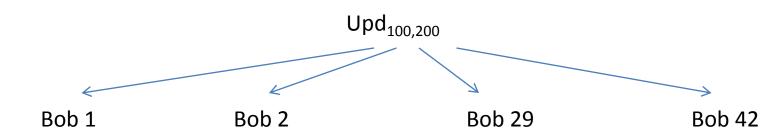


Constructions	Replica (Compute a <mark>single</mark> witness)	User (Verify)
[CL02]	O(X)	O(1)
[GTT09]	$O(X ^{1/\epsilon})$	Ο(ε)
[CHK08]	O(log X)	O(log X)

Batch Update [FN02]

Manager

..., Acc₉₉, Acc₁₀₀, Acc₁₀₁,..., Acc₂₀₀,...



 (x_1, w_1, Acc_{100}) (x_2, w_2, Acc_{100}) (x_6, w_6, Acc_{100})

 $(x_{36}, w_{36}, Acc_{100})$ $(x_{87}, w_{87}, Acc_{100})$

 (x_1, w_1, Acc_{100}) $(x_{20}, w_{20}, Acc_{100})$ $(x_{69}, w_{68}, Acc_{100})$ $(x_{64}, w_{64}, Acc_{100})$

(x₁,w₁,Acc₁₀₀) (x₂,w₂,Acc₁₀₀) (x₆,w₆,Acc₁₀₀)

..

Batch Update [FN02]

Manager

...,Acc₉₉, Acc₁₀₀, Acc₁₀₁,..., Acc₂₀₀,...

Bob 1

 (x_1, w_1', Acc_{200}) (x_2, w_2', Acc_{200}) (x_6, w_6', Acc_{200}) Bob 2

 $(x_{36}, w_{36}', Acc_{200})$ $(x_{87}, w_{87}', Acc_{200})$ **Bob 29**

(x₁,w₁',Acc₂₀₀) (x₂₀,w₂₀',Acc₂₀₀) (x₆₉,w₆₈',Acc₂₀₀) (x₆₄,w₆₄',Acc₂₀₀) Bob 42

 (x_1, w_1', Acc_{200}) (x_2, w_2', Acc_{200}) (x_6, w_6', Acc_{200})

..

Batch Update [FN02]

Trivial solution:

 $Upd_{X_i,X_i} = \{list of all witnesses for X_j\}$

More interesting:

 $|\mathsf{Upd}_{\mathsf{X}_{\mathsf{i}},\mathsf{X}_{\mathsf{i}}}| = \mathsf{O}(1)$

What happens with [CL02]?

- PK=(n,g) with n=pq and $g \in \mathbf{Z}_n^*$
- $Acc_{\emptyset} := g \mod n$
- Insert(x,Acc) := Acc^x mod n /* x prime */
- **Delete(**x,Acc**)** := Acc^{1/x} mod n
- WitGen(x,Acc) := $Acc^{1/x}$ mod n
- Verify(x,w,Acc): $w^x = Acc$
- |Upd_{Xi,Xi}| = O(|{list of insertions / deletions}|)

Syntax of B.U. Accumulators

Algorithm	Returns	Who runs it
KeyGen(1 ^k)	PK,SK,Acc _ø	Manager
AddEle(x,Acc _x ,SK)	$Acc_{X \cup \{x\}}$	Manager
DelEle(x,Acc _x ,SK)	$Acc_{X\setminus\{x\}}$	Manager
WitGen (x,Acc _x ,SK)	Witness w relative to Acc _x	Manager
Verify(x,w,Acc _x ,PK)	Returns Yes whether x \varepsilon X	User
UpdWitGen(X,X',SK)	$Upd_{X,X'}$ for elements $x \in X \cap X'$	Manager
UpdWit(w,Acc _x ,Acc _x ,Upd _{x,x'} ,PK)	New witness w' for x ∈ X'	User

Correctness

Definition

The scheme is correct iff:

```
w := WitGen(x,Acc<sub>x</sub>,SK) \Rightarrow Verify(x,w,Acc<sub>x</sub>,PK) = Yes
```

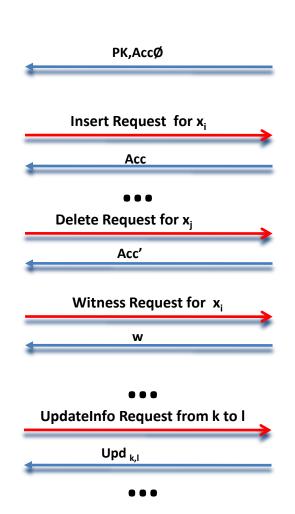
 $w := WitGen(x,Acc_x,SK)$

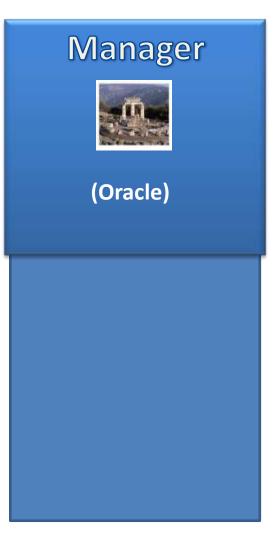
 $Upd_{X,X'} := UpdWitGen(X,X',SK)$

 $w' := WitGen(w,Acc_X,Acc_X,Upd_{X,X'},PK)$

Verify(x,w', $Acc_{x'}$,PK**)** = Yes

Security Model [CL02,WWP08]





(x,w) such that w is valid but x ∉ X

Batch Update Construction [WWP08]

Construction. Wang et al.'s accumulator relies on the Paillier cryptosystem [8] which we recall in Appendix A.2. In the following, λ will denote the value lcm(p-1,q-1) where n=pq is a product of large-enough safe primes p,q, and $F: u \to \frac{u-1}{n}$ is Paillier's L function [8].

- KeyGen(1^k): given the security parameter k in unary, compute a safe-prime product n=pq that is k-bits long and create an empty set V. Let $\mathcal{C}=\mathbb{Z}_{n^2}^*\setminus\{1\}$ and $T'=\{3,...,n^2\}$. Let $\beta\stackrel{\mathcal{E}}{\leftarrow}\mathbb{Z}_{\varphi(n^2)}^*$ and $\sigma\stackrel{\mathcal{E}}{\leftarrow}\mathbb{Z}^+$ be two random numbers. The public key PK is set to (n,β) and the private key SK to (σ,λ) . The output is the parameter $\mathcal{P}=(PK,SK)$.
- AccVal (X, \mathcal{P}) : given a set $X = \{c_1, ..., c_m\}$ with $X \subset \mathcal{C}$, and the parameter \mathcal{P} , take $c_{m+1} \stackrel{R}{\leftarrow} \mathcal{C}$ and compute

$$\begin{split} x_i &= F(c_i^\lambda \bmod n^2) \bmod n \ \, (\text{for } i=1,...,m+1) \\ Acc_X &= \sigma \sum_{i=1}^{m+1} x_i \bmod n \\ y_i &= c_i^{\lambda\sigma\beta^{-1}} \bmod n^2 \ \, (\text{for } i=1,...,m+1) \\ a_c &= \varPi_{i=1}^{m+1} y_i \bmod n^2 \end{split}$$

Output the accumulated value Acc_X and the auxiliary information a_c .

- WitGen (a_c, X, \mathcal{P}) : given the auxiliary information a_c , a set $X = \{c_1, ..., c_m\}$, and the parameter \mathcal{P} , choose uniformly at random a set of m numbers $T = \{t_1, ..., t_m\} \subset T' \setminus \{\beta\}$ (for i = 1, ..., m) and compute

$$w_i = a_c c_i^{-t_i \beta^{-1}} \mod n^2 \text{ (for } i = 1, ..., m)$$

Output the witness $W_i = (w_i, t_i)$ for c_i (for i = 1, ..., m).

- AddEle(X^{\oplus} , a_c , Acc_X , \mathcal{P}): given a set $X^{\oplus} = \{c_1^{\oplus}, ..., c_l^{\oplus}\}(X^{\oplus} \subseteq \mathcal{C} \setminus X)$, to be inserted, the auxiliary information a_c , the accumulated value Acc_X , and the parameter \mathcal{P} , choose $c_{l+1}^{\oplus} \stackrel{\mathcal{R}}{\leftarrow} \mathcal{C}$ and a set of l numbers $T^{\oplus} = \{t_1^{\oplus}, ..., t_l^{\oplus}\} \stackrel{\mathcal{R}}{\leftarrow} T' \setminus (T \cup \{\beta\})$, and compute

$$\begin{split} x_i^{\oplus} &= F((c_i^{\oplus})^{\lambda} \bmod n^2) \bmod n \pmod n \pmod i = 1,...,l+1) \\ Acc_{X \cup X^{\oplus}} &= Acc_X + \sigma \sum_{i=1}^{l+1} x_i^{\oplus} \bmod n \\ y_i^{\oplus} &= (c_i^{\oplus})^{\lambda \sigma \beta^{-1}} \bmod n^2 \pmod i = 1,...,l+1) \\ a_u &= \Pi_{i=1}^{l+1} y_i^{\oplus} \bmod n^2 \\ w_i^{\oplus} &= a_c a_u (c_i^{\oplus})^{-t_i^{\oplus}\beta^{-1}} \bmod n^2 \pmod i = 1,...,l) \end{split}$$

Set $a_c = a_c a_u \mod n^2, T = T \cup T^{\oplus}$, and $V = V \cup \{a_u\}$. Then output the new accumulated value $Acc_{X \cup X \oplus}$ corresponding to the set $X \cup X^{\oplus}$, the witness

 $W_i^{\oplus}=(w_i^{\oplus},t_i^{\oplus})$ for the new added elements c_i^{\oplus} (for i=1,...,l), and the auxiliary information a_u and a_c .

DelEle $(X^{\ominus}, a_c, Acc_X, \mathcal{P})$: given a set $X^{\ominus} = \{c_1^{\ominus}, ..., c_l^{\ominus}\}(X^{\ominus} \subset X)$ to be deleted, the auxiliary information a_c , the accumulated value Acc_X , and the parameter \mathcal{P} , choose $c_{l+1}^{\ominus} \stackrel{R}{\leftarrow} \mathcal{C}$ and compute

$$\begin{split} x_i^\ominus &= F((c_i^\ominus)^\lambda \bmod n^2) \bmod n \text{ (for } i=1,...,l+1)\\ Acc_{X\backslash X\ominus} &= Acc_X - \sigma \sum_{i=1}^l x_i^\ominus + \sigma x_{l+1}^\ominus \bmod n\\ y_i^\ominus &= (c_i^\ominus)^{\lambda\sigma\beta^{-1}} \bmod n^2 \text{ (for } i=1,...,l+1)\\ a_u &= y_{l+1}^\ominus \Pi_{l=1}^l (y_l^\ominus)^{-1} \bmod n^2 \end{split}$$

Set $a_c = a_c a_u \mod n^2$ and $V = V \cup \{a_u\}$. Then output the new accumulated value $Acc_{X\setminus X^{\ominus}}$ corresponding to the set $X\setminus X^{\ominus}$ and the auxiliary information a_u and a_c .

- Verify (c, W, Acc_X, PK) : given an element c, its witness W = (w, t), the accumulated value Acc_X , and the public key PK, test whether $\{c, w\} \subset C$, $t \in T'$ and $F(w^{\beta}c^t \mod n^2) \equiv Acc_X(\mod n)$. If so, output Yes, otherwise output \bot .
- UpdWit(W_i, a_u, PK): given the witness W_i , the auxiliary information a_u and the public key PK, compute $w'_i = w_i a_u \mod n^2$ then output the new witness $W'_i = (w'_i, t_i)$ for the element c_i .

In the following section we show that Wang et al.'s construction is not secure.

Attack on [WWP08]

User		Manager
		$X_0 := \emptyset$
	Insert x ₁	
	Delete x ₁	$X_{\mathtt{1}} \coloneqq \{x_{\mathtt{1}}\}$
	Please send Upd_{X1,X2} >	$X_2 := \emptyset$
	Upd _{X1,X2} ←	
With Upd _{X₁,X₂} I can update my witness w _{x₁}		

But x₁ does not belong to X₂!

Batch Update is Impossible

Theorem:

Let **Acc** be a secure accumulator scheme with deterministic **UpdWit** and **Verify** algorithms.

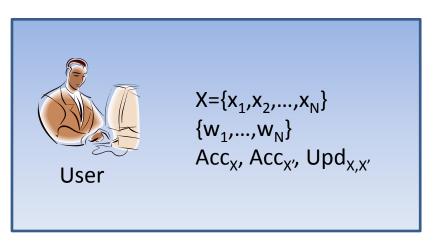
For an update involving \mathbf{m} delete operations in a set of \mathbf{N} elements, the size of the update information $\mathbf{Upd}_{\mathbf{X},\mathbf{X}'}$ required by the algorithm \mathbf{UpdWit} is $\Omega(\mathbf{m} \log(\mathbf{N/m}))$.

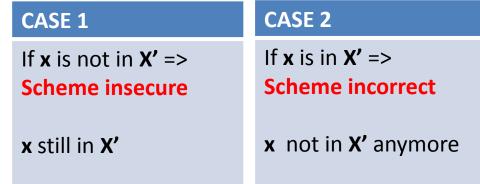
In particular if m=N/2 we have $|Upd_{X,X'}| = \Omega$ (m) = Ω (N)

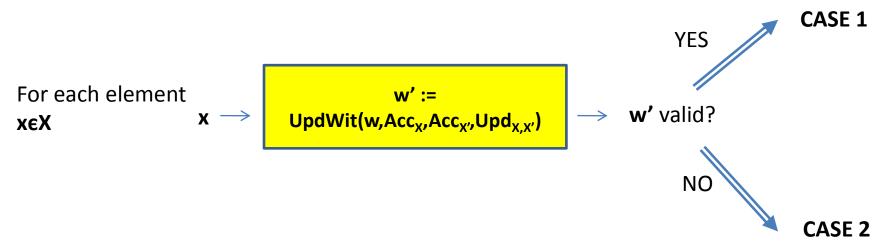
Proof 1/3

User		Manager
$X = \{x_1, x_2,, x_N\}$		$X = \{x_1, x_2,, x_N\}$
	Acc _X , {w ₁ ,w ₂ ,,w _N }	Compute Acc_X , $\{w_1, w_2,, w_N\}$
		Delete $X_d := \{x_{i_1}, x_{i_2},, x_{i_m}\}$ $X' := X \setminus X_d$
	Acc _{X′} , Upd _{X,X′}	Compute Acc _{x′,} Upd _{x,x′}

Proof 2/3







User can reconstruct the set X_d

Proof 3/3

• There are $\binom{N}{m}$ subsets of m elements in a set of N elements

 We need log(^N_m) ≥ m log(N/m) bits to encode X_d

(See updated version at eprint soon for a detailed proof)

Conclusion

• Batch Update is impossible.

 Batch Update for accumulators with few delete operations?

Improve the lower bound in a factor of k.

Thank you!

Correction

With negligible probability
 Bob could obtain a fake witness
 (and the scheme would still be secure)

=> The number of "good" subsets X_d is less than $\binom{N}{m}$

A more careful analysis

• $Pr[X_d | leads to a fake witness] \le \varepsilon(k)$

=> #"Good X_d sets" ≥
$$\binom{N}{m}$$
 (1- ε(k))

$$=> |Upd_{X,X'}| \ge m \log(M/m) + \log(1-\varepsilon(k))$$

$$=> |Upd_{X,X'}| \ge m \log(M/m) -1$$

$$\Rightarrow$$
 |Upd_{X,X'}| = Ω (m log(M/m))