On the Impossibility
of Batch Update for
Cryptographic Accumulators

Philippe Camacho and Alejandro Hevia

University of Chile

Certificate
Authority

Certlflc:f\te CRL/OSCP
Authority

Owns a Set of
valid certificates

Central el
Authority

Insert/ a a?
Delete

(AP il ¢
L . -
\J/@%\ |

e

Bob

Alice

Central
Authority

INSERT/ a
DELETE

Replay Attack

INSERT x ' :
Central Sign(x,SK)= o, e
Authority
(PK,SK) Does x belong
to X?

Replay Attack

Central

Delete x ‘ l ‘ l

Does x belong
to X?

Authority
(PK,SK)

Acc,, Acc,, Accg

Insert(x)

&

Witness

@
& =
W
T —
C~_T

Bob

Alice
Verify(x , &, Acc;) = YES

Acc,, Acc,, Acc;, Accd

Delete(x)

OK

@
& =
W
T —
C~_T

Bob

Alice
Verify(x & , Acc,) = FAIL

/ Manager
| |
Cryptographic

Ac,c um u la
& eTEs

Main constructions

Security Note
[BeMa94] RSA + RO First definition
[BarPfi97] Strong RSA -
First dynamic
[CamLys02] Strong RSA accumulator
[LLXO7] Strong RSA First universal
accumultor
[Ngu05] Pairings E-cash, ZK-Sets, ...
[WWPO08] estrong RSA Tefiel Lpoifiiie
Paillier
CHKOO08 Collision-Resistant Hashin Untrusted Manager
[] g g

[CKSO09]

Pairings

Group multiplication

Acc,, Acc,, Acc,

Delegate Witness Computation?

Manager | @ | |

(o]
Verify(x,w,Acc)
Replica
Constructions (Compute User (Verify)
a witness)
[CLO2] O(|X]) 0O(1)
[GTTO9] O(|X|) O(g)

[CHKOS] O(log |X]) O(log |X])

Batch Update

[FNO2] Manager

|

Upd 100,200

e N T

Bob 1 Bob 2 Bob 29 Bob 42

A
¥ — &
®. @&

(4
& — I~
LA 1
2 W ==
= c~_"
(X1:W1r':ccloo) (X3, W36,ACC10) (X1, W1,ACC40) (X1, Wy,ACC)
(X2,W2,ACC100) (Xg7,Wg7,ACC;00) (X0, W0,ACC10) (X5,W,,ACC;g0)
(Xg,Wg,ACC140) (Xge,Wgg,ACC;gg) (X6, Wg,ACC;)

(Xg4/Weg4,ACC0)

Batch Update

(FNO2] Manager

Bob 1 Bob 42
2 §
LA &, L
i 2P T
e Py
(X1, W4’,ACCy00) (x1,W,’,ACC,00)

(X5, W,’,ACC,00)

(%5, W,",ACCy00)
(X5, Wg',ACC,00) Zoar 200

(Xg,Wg',ACC,00)

Batch Update [FNO2]

Trivial solution:
Updxi’Xj = {list of all witnesses for X}

More interesting:
| Updxi,xj | =0(1)

What happens with [CLO2]?

PK=(n,g) with n=pgandgeZ_*

Accy :=gmod n

Insert(x,Acc) := Accxmod n /* x prime */
Delete(x,Acc) := Acc* mod n
WitGen(x,Acc) .= AccY* mod n
Verify(x,w,Acc): w* = Acc

|Updxi’xj| = O(|{list of insertions / deletions}|)

Syntax of B.U. Accumulators

KeyGen(1¥) PK,SK,Accg Manager
AddEle(x,Acc,,SK) Accy 1y Manager
DelEle(x,Acc,,SK) Accy\ig Manager
WitGen(x,Acc,,SK) Witness w relative to Accy Manager
Verify(x,w,Acc,,PK) Returns Yes whether x € X User

UpdWitGen(X,X’,SK) Upd, , for elements x e X N X’ Manager

UpdWit(w,Accy,Accy,Updy 4, PK) New witness w’ for x € X’ User

Correctness

Security Model [CLO2 WWPOS]

Mlanager
PK,Acc®
*
Insert Request for x;
e e 3
Acc
(Adversary) $ (Oracle)
see
Delete Request for x;
>
Acc’
k:
Witness Request for x;
2
1 w
[X N]
Updateinfo Request from k to |
>
B Upd K|
T
[X N]

(x,w) such that w is valid but x £ X

Batch Update Construction [WWPO08]

ConsTrucTioN. Wang et al.’s acemmmlator relies on the Paillier eryptosystem
[8] which we recall in Appendix A.2. In the following, A will denote the value
lem(p—1.g — 1) where n = pg is a product of large-enough safe primes p. ¢, and

F:u— =L s Paillier’s L function [8].

— KeyGen(1*): given the security parameter k in unary, compute a safe-prime
product n = pg that 15 k-bits long and ereate an empty set V. Let C =
Z* A\ {1} and T" = {3,..,n%}. Let 3 & L (ny
nurnbers. The public key PK is set to (n.) and the private key SK to
(o, A). The output is the parameter P = (PK,SK).

— AccVal(X, P): given a set X = {ey,..., ¢, | with X C C, and the parameter

fad
P, take ¢,41 — C and compute

i’
and o < ZT be two random

r; = Fle} mod n?) med n (for i = 1.....m + 1)
Aecey crz:ltl x; mod 1

Y = r-?qﬁ_l mod n* (fori=1,..,m 4 1)

ae = Iy mod n?

Output the accumulated value Aeey and the auxiliary information a,.

— WitGen(a., X,P): given the anxiliary imformation a., a set X = {e1,0m },
and the parameter P, choose uniforrmly at random a set of m mumbers T =
et} C TN {3 (for i = 1, ..., m) and compute

b3

— ! 2 .
Wi = 0 mod n- (fori=1,...,m)

Output the witness W; = (w;, #;) for e; (for i = 1,...,m).

— AddEle(X®. a.. Acex,P): given a set X% = [F, . ¢f }(X® C €\ X), to be
inserted, the auxiliary information a,., the accnmulated value Aeey, and the
parameter P, choose f::,if"_1 £ € and a set of | numbers T® = {+¥ p‘.?} fad
T\ (TU{3}), and compute

¥ = F((¢2)* med n®) mod n (for i = 1....,0 4+ 1)

Aeey i yve = Aoy + JZi:]l' .rjp mod n

y® = (27 mod n? (for i = 1.0+ 1)
a, = 21y mod n?

w® fi(.fi-ﬂ(f:?}l_rf”"a_I mod n” (for i = 1,....1)

Set . = apia, mod 15,3_. T= TUT@_. and V=V {a,(}. Then output the new
acemmlated value Acey ye corresponding to the set X U X%, the witness

W2 = (w®, tF) for the new added elements ¢ (foré = 1,...,1), and the

auxiliary mformation a, and a,..

DelEle{ X©, a,, Acex, P): given a set XZ = {ef, ... 1 (X® € X) to be

deleted, the anxiliary information a., the accumulated value Aecx . and the
b4

parameter P, choose f:ﬁ_1 — C and eompute

2 = F((e2)* mod n?) mod n (for i = 1,....0 + 1)
Aceyy yo = Aecy — G’Z:=1 J‘? + UJ‘ﬁ_L mod =

?;? = (ff)"”-‘"’_l mDod n? (for i: ...l +1)

ay = Y, ey (y5) " mod w®

Set i, = aeay mod 2 and V=V U {ay}. Then output the new accurnu-
lated value Acey yo corresponding to the set X Y X and the anxiliary
information a, and a..

Verify(e, W, Aecy, PR): given an element e, its witness W = (w, #), the accu-
mulated value Aeey, and the public key PR, test whether {c.w} CC.f € T'
and F' (u-"?-r:F med n°) = Aeccx(mod n). If so, output Yes, otherwise output
1.

UpdWit(1¥;, a,,. PK) @ given the witness 1, the auxiliary information a,
and the public key PK, compute w! = w;a, med n? then ountput the new
witness W/ = (wl. ;) for the element e;.

In the following section we show that Wang et al.’s construction is not secure.

Attack on [WWPO0S8]

i User

X,:=@
Insert x, N
Delete x, X,:= {x;}
Please send Updy_ y, X, =0

Updxl'x2

With Upd, y, | can
update my witness w,

But x, does not belong to X,! 3

Batch Update is Impossible

e Theorem:

Let Acc be a secure accumulator scheme with deterministic UpdWit
and Verify algorithms.

For an update involving m delete operations in a set of N elements,
the size of the update information Updy ,. required by the algorithm

UpdWit is Q(m log(N/m)).

In particular if m=N/2 we have [Updy .| =Q (m) = Q(N)

Proof 1/3

v
§ B[user Manager
X={X1,X5,...,.Xn} X={X1,X5,...,Xn}

Accy , {wW,,W,,..., Wy}

Compute
Accy, {wy,w,,...,wy}

Delete
Xg:={Xi XX}

|2'"" i

X = X\X,

Accy. , Updy

Compute
Accy. Updy 5

Proof 2/3

@

y <

@,

User

X={X1,X5,....Xn}
{wy,...,wy}

Accy, Accy, Updy x still in X’

For each element
xeX

’

W

X —= | UpdWit(w,Accy,Accy,Updy)

CASE 1 CASE 2

If X is not in X’ =>
Scheme insecure

If xisin X’ =>
Scheme incorrect

X not in X’ anymore

CASE 1
YE/

—> w’ valid?

NO

CASE 2

User can reconstruct the set X,

Proof 3/3

* There are (:) subsets of m elements in a set
of N elements

* We need Iog(,':'1) > m log(N/m) bits
to encode X,

(See updated version at eprint soon for a detailed proof)

Conclusion

e Batch Update is impossible.

e Batch Update for accumulators with few
delete operations?

* Improve the lower bound in a factor of k.

Thank you!

Correction

* With negligible probability
Bob could obtain a fake witness
(and the scheme would still be secure)

=>The number of “good”subsets X, is less than (:1)

A more careful analysis

Pr[X, leads to a fake witness] < &(k)

=> #"Good Xy sets” 2 (m) (1- £(k))
=> |Updy | 2 m log(M/m) + log(1- £(k))
=> |Updy .| 2 m log(M/m) -1

=> |Updy | = Q(m log(M/m))

