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PHILIPPE CAMACHO CORTINA

PROFESOR GUÍA:
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JÉRÉMY BARBAY

MIEMBROS DE LA COMISIÓN:
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Resumen

Se estudian funciones de hash resistentes a colisiones (FHRC) que permiten validar

eficientemente predicados sobre las entradas, usando solamente los valores de hash y

certificados cortos. Para los predicados, consideramos conjuntos y cadenas de carac-

teres.

La idea de computar el valor de hash de un conjunto con el fin de demostrar

(no)pertenencia aparece en la literatura bajo el nombre de acumuladores criptográficos

(Benaloh y De Mare, CRYPTO 1993). En esa tesis se propone primero un acumu-

lador criptográfico que permite manipular conjuntos dinámicos (es decir donde es

posible insertar y borrar elementos) y cuya seguridad no depende de ninguna autori-

dad de confianza. Luego mostramos que no existe ningún acumulador criptográfico

que permite la actualización de todos los certificados en tiempo constante después

de varias modificaciones. Este resultado resuelve un problema abierto propuesto por

Nicolisi y Fazio en su estado del arte sobre acumuladores criptográficos (2002). La

siguiente contribución de esa tesis es una FHRC que permite la comparación de cade-

nas largas según el orden lexicográfico. Usamos esa FHRC para construir un esquema

de firma digital transitivo que permite autenticar árboles dirigidos. Esa construcción

es la más eficiente a la fecha, y mejora de forma sustancial el resultado de Gregory

Neven (Theoretical Computer Science 396). Finalmente usamos una FHRC similar

para demostrar que una cadena corresponde a la expansión binaria de un cierto valor.

Con la ayuda de técnicas de pruebas de nula divulgación usamos esa construcción

para implementar un protocolo que permite revelar gradualmente un secreto. Luego

este protocolo se usa para poder intercambiar de forma equitativa firmas cortas de

Boneh-Boyen (EUROCRYPT 2004) sin la necesidad de recurrir a una autoridad de

confianza.
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Abstract

We study Collision-Resistant Hash Functions (CRHF) that allow to compute proofs

related to some predicate on the values that are hashed. We explore this idea with

predicates involving sets (membership) and strings (lexicographical order, binary de-

composition). The concept of hashing a set in order to prove (non)membership first

appears in the literature under the name of cryptographic accumulators (Benaloh and

De Mare, CRYPTO 1993). In this thesis we start by introducing a cryptographic

accumulator that handles dynamic sets (it is possible to insert and delete elements)

and whose security does not involve a trusted third party. Then we show that no

cryptographic accumulator can have the property of batch update (efficient refresh

of all the proofs after several updates to the set via a single operation) and thus

solve an open problem stated by Nicolisi and Fazio in their survey on cryptographic

accumulators (2002).

We then describe a CRHF that enables efficient comparison of large strings through

their lexicographical order. We use this CRHF to build a practical transitive signa-

ture scheme to authenticate directed trees. To the best of our knowledge, this is the

first practical construction for signing directed trees. In particular, signatures for

paths in the tree are of constant size. This dramatically improves the previous better

bound by Gregory Neven (Theoretical Computer Science 396).

Finally we use a similar CRHF to prove that a binary string corresponds to the

binary expansion of some other value. Using zero-knowledge techniques we build

upon this construction to obtain a protocol for releasing a secret gradually. This tool

is then used to fairly exchange Boneh-Boyen short signatures (EUROCRYPT 2004)

without relying on a trusted third party.
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Chapter 1

Introduction

1.1 Predicate-Preserving Collision-Resistant Hash-

ing

Collision-Resistant Hash Functions (CRHFs) are widely used in the design of crypto-

graphic schemes or protocols to improve efficiency [HW09], avoid interaction [FS86],

or build other primitives [BK12]. A common CRHF like SHA-256 has the property

of compressing possibly large input strings into small ones. Moreover, because of

collision-resistance, in practice, CRHFs are considered injective. This makes them

useful constructs to manipulate shorter strings without losing much security. In that

context, proving some relations or predicates on pre-images using only the corre-

sponding hash values (and perhaps an additional short proof) may help to simplify

and improve the efficiency of a large class of protocols, especially those where it is

required to authenticate structured data.

More concretely, assume that H : {0, 1}∗ → {0, 1}κ is a CRHF (see Figure 1.1).

Let X = 10001 be the input and y = H(X) the output. Assume Bob wants to

convince Alice that y is such that the pre-image X starts with the string 100. If H

is a common CRHF like the one mentioned above, there are two ways to solve the

problem:

� Using recent techniques like the one introduced by Groth at Asiacrypt 2010

[Gro10]: Here the idea is to compute a proof of knowledge of the pre-image X

of y and also show that this pre-image satisfies the predicate. This solution

is not very practical as it involves reducing the hash function as well as the

predicate to boolean circuits which may have millions of gates.

� Giving Alice the pre-image X . In this case, Alice will check that X starts with

1



Figure 1.1: Conceptual view of a predicate-preserving CRHF: The input X
is hashed in order to obtain y = H(x). The same input is used to compute a proof π
through the algorithm ProofGen. Finally one can check that the pre-image X verifies
some predicate by running the algorithm ProofCheck on y and π. Note that the hash
function H, and the algorithms ProofGen and ProofCheck depend on the predicate P
that must be preserved.

a z = 100 and also that y = H(X). This alternative is not satisfying either,

especially when the pre-image is large (several gigabytes for instance) or the

rest of the string X must be kept secret.

In this thesis we study CRHF that enable to efficiently prove some predicate about

the input X given the output y and some small proof π. In particular, such functions

could be such that |π| ≪ |X|. Note however that efficiency is not the only goal: In

some cases, as shown in Chapter 7, we may consider hash functions with short inputs

(κ bits), especially when we are interested in controlling the information leakage of

the proofs.

More generally we consider the following setting:

� Hi : {0, 1}∗ → {0, 1}κ is a CRHF for 1 ≤ i ≤ q, q ∈ N.

� P : ({0, 1}∗)q → {0, 1} is a predicate computable in polynomial-time.

2



g = H(e||f)

e = H(a||b)

a b

f = H(c||d)

c d

Figure 1.2: Merkle tree for sequence (a, b, c, d). The hash function induced by the
tree and a CRHF H takes the set (a, b, c, d) as input and returns the root hash value
g as output. A proof that a belongs to the set is composed by the nodes containing
values (b, f) which are the siblings of the node on the path from a to the root g.
Checking the proof consists of computing e′ = H(a||b), then computing g′ = H(e′||f)
and finally checking that g = g′.

� There exists an efficient (e.g. linear time) algorithm ProofGen that given

X1, . . . , Xq such that Hi(Xi) = yi outputs a proof π.

� There exists an efficient (e.g. logarithmic or constant time) algorithm ProofCheck

such that if yi = Hi(Xi) then ProofCheck(y1, y2, . . . , yq, π) = 1 if, and only if,

P(X1, . . . , Xq) = 1.

Intuitively, the security of such a scheme has to guarantee that no adversary is

able to forge a proof that would invalidate the predicate P on some inputs (X∗i )i∈[1..q]:

That is, it should be hard to compute π∗, X∗1 , . . . , X
∗
q such that yi = Hi(X

∗
i ),

ProofCheck(y1, . . . , yq, π
∗) = 1, and P(X∗1 , . . . , X∗q ) = 0. If for CRHFs Hi there exist

algorithms ProofGen and ProofCheck associated to a predicate P, then we will say

that (Hi)i∈[1..q] preserve the predicate P.

A simple example: time stamping scheme using Merkle Trees. To illus-

trate the concept previously introduced, let us consider the problem of time stamping.

The goal of a time stamping scheme is to prove that a document, like a contract be-

tween two parties, has been created within a given time round (e.g. a day, an hour).

A solution proposed by Benaloh and De Mare [BdM91] (subsequently improved by

Bayer and Haber [BH92]) consists of building for each time round a binary tree, also

called Merkle tree [Mer87], where the value of a node is computed recursively by

taking the hash of both children (see Figure 1.2).

3



In this scheme the documents are placed at the leaves and the hash value obtained

at the root is published. This value stands for the state or representation of the time

round when these documents have been submitted. To prove that a document belongs

to this time round, one needs to consider the nodes on the path from the leaf to the

root and collect the siblings of these nodes. The verification procedure consists of

recomputing the root hash value from the authentication path which is formed by

the sibling nodes. On a more abstract level, this construction corresponds to a pair

of predicates preserving CRHFs:

� The predicate preserved is set membership (“the document belongs to the time

round”).

� The first hash function for the set is induced by the Merkle tree. In particular,

the input is the set of documents (collection of leaves), and the output is the

hash value at the root of the tree.

� The second hash function for the element is the identity function.

� The proof is the authentication path that connects the root (hash value of the

set) to the leaf (other input of the predicate checking algorithm).

There exist other ways to implement CRHF that preserve the set-membership

predicate. Challenging problems arise when we try to perform updates on the set

that is hashed. The first part of this thesis (chapter 4 and 5), focuses on the security

model and the limitations of such constructions. Then, in chapters 6 and 7, CRHFs

that preserve predicates related to strings are described, and it is shown how to apply

these hash functions for building an efficient signature scheme for directed trees and

a fair exchange protocol for Boneh-Boyen signatures [BB08].

In the following we detail the contributions of this thesis.

1.2 Sets

In chapters 4 and 5 we study CRHFs where the input encodes a set X1 of values

belonging to some universe U = {0, 1}κ. We will denote by 2U the collection of sets

4



whose elements are in U . These CRHFs are used to preserve the membership and

non-membership predicates for an element in X2 ∈ U . Thus we have P∈ : 2U × U →
{0, 1} such that for X1 ∈ 2U , X2 ∈ U , P∈(X1, X2) = 1 ⇔ X2 ∈ X1 and similarly

P/∈(X1, X2) = 1 ⇔ X2 /∈ X1. The hash functions are H1 (a CRHF) and H2, the

identity function on U . Hash functions (H1,H2) that preserve such predicates are

known in the literature as cryptographic accumulators [BdM93]. There exist many

applications for this primitive, in particular, accumulators can be used to implement

revocation for anonymous-credentials schemes [ATSM09, Ngu05, CKS09, CL02], e-

cash protocols [ASM08] and broadcast encryption protocols [GR04]. Cryptographic

accumulators can naturally serve to implement authenticated dictionaries [CHKO08,

PTT08, GTT08].

Strong Accumulators [CHKO08]. In chapter 4, we propose a simple construc-

tion based on standard CRHF that handles insertions and deletions of elements and

that does not require a trusted third party1. Our main contribution is to strengthen

the standard security definition for accumulators, by allowing the adversary to cor-

rupt the owner of the set. We show that our construction, though not optimal, is

efficient enough to solve a multi-party computational problem of practical relevance,

the e-Invoice Factoring Problem.

Batch Update is Impossible [CH10]. In their survey on cryptographic accu-

mulators, Fazio and Nicolisi asked whether it was possible to refresh all the proofs

for each element after several updates to the set using a single short value. Such an

accumulator scheme would be said to have the batch update property. In Chapter 5,

we show that batch update for cryptographic accumulators is impossible.

We then tried to solve the following open problem:

Is it possible to build an optimal authenticated dictionary where the time to com-

pute a proof would be logarithmic in the size of the set, while at the same time keeping

proof of (non)membership of constant size?

1A similar idea appeared previously in a work by Buldas et al. (CCS ’00) [BLL00]. This work,
however, focused on static sets, and did not propose a formalization nor a security proof for dynamic
operations.

5



While this question was not answered, by trying to use other techniques (tran-

sitive signatures) it became clear that the idea of accumulators (hashing a set and

then proving (non)membership) could be generalized to other data structures. Some-

how surprisingly, we discovered some connection between transitive signatures and

authenticated dictionaries:

1. As a partial result for the problem of optimal data authentication (see section

3.4.3) we showed [Cam11] that optimal authenticated dictionaries can be built

using transitive signatures for directed graphs. However, transitive signatures

are only known to exist for undirected graphs. The case of directed graph is still

open and would imply the existence of groups with infeasible inversion [Hoh03].

2. Using cryptographic accumulators, it is possible to improve the size of the sig-

natures in the transitive signature scheme for directed trees proposed by Neven

[Nev08]. This straightforward application of accumulators is described in Sec-

tion 3.4.2.

Our study on transitive signatures lead us to investigate CRHFs that enable to

the design of efficient transitive signature schemes for directed trees. These functions

are in fact predicate preserving CRHFs where the predicate is the lexicographical

order between two strings. Thus, the second class of predicates we analyze in this

work is related to strings.

1.3 Strings

Short Signatures for Directed Trees [CH12]. In Chapter 6 we show how

to build a practical transitive signature scheme for directed trees improving Neven’s

result [Nev08].

Our scheme is practical and is the most efficient one to the best of our knowl-

edge. Our scheme also provides a flexible tradeoff between signature computation

and verification. More precisely, our construction is such that, for any λ ≥ 1, (a)

signing or verifying an edge signature requires O(λ) cryptographic operations, and

6



(b) computing (without the secret key) an edge signature in the transitive closure of

the tree requires O(λ(N
κ
)1/λ) cryptographic operations, where κ is the security param-

eter and N is the size of the tree. To achieve this goal, we design an efficient CRHF

that preserves the following predicate: PCommonPrefix : {0, 1}∗ × {0, 1}∗ × N → {0, 1}
with PCommonPrefix(X1, X2, i) = 1 ⇔ X1[1..i] = X2[1..i] where X [1..i] denote the first

i symbols of X . This predicate is interesting in itself as it can be used to build

other predicates, for example, string comparison with respect to the lexicographical

order. In Section 6.2, we show how to build a CRHF that preserves the predicate

P≺(X1, X2) = 1⇔ X1 ≺ X2, where ≺ is the lexicographical order for strings.

Fair Exchange of Short Signatures without Trusted Third Party

[Cam13]. In Chapter 7 we show how to adapt the previously mentioned CRHF so

that the following predicate is preserved: PEquiv(X1, X2) = 1⇔ X2 =
∑κ

i=1X1[i]2
i−1

where X [i] is the ith bit of the binary string X and κ is the security parameter. This

construction enables the design of a fair-exchange protocol for Boneh-Boyen short

signatures [BB04b, BB08] that does not rely on a trusted third party. To the best of

our knowledge, this protocol is the first of its sort: The number of rounds is κ + 5,

the communication complexity is 16κ2 + 12κ bits, and the protocol requires a linear

number of cryptographic operations.

Moreover, we introduce a new non-interactive zero-knowledge (NIZK) argument

to prove that a commitment encodes a bit vector. We combine this argument with

another NIZK argument that allows proving a commitment to a bit vector corresponds

to the binary decomposition of some value θ which is hidden as the discrete logarithm

of some other group element. We think these arguments may lead to other useful

applications. We also revisit the notion of partial fairness [GK10, GMPY06] by

introducing a new and simple definition that captures the fact that an adversary

while having more computing power than the honest participant will not have a

significant advantage in obtaining the expected signature.

Publications. The results presented in this thesis yielded the following publications:

� Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong
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Accumulators from Collision-Resistant Hashing. In Tzong-Chen Wu, Chin-

Laung Lei, Vincent Rijmen, and Der-Tsai Lee, editors, Information Security

Conference, volume 5222 of LNCS, pages 471–486. Springer Berlin / Heidelberg,

September 2008.

� Philippe Camacho and Alejandro Hevia. On the Impossibility of Batch Update

for Cryptographic Accumulators. In Michel Abdalla and Paulo S. L. M. Barreto,
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Overview. We introduce notations and fundamental cryptographic concepts in

Chapter 2. In Chapter 3 we introduce the problem of designing a secure and effi-

cient authenticated dictionary and review related techniques. Our results related to

cryptographic accumulators are introduced in chapters 4 and 5. Chapter 6 is ded-

icated to our scheme for transitive signatures for directed trees. We show how to

apply the CRHFs that preserve the predicate PEquiv to the problem of fair exchange

of digital signatures in Chapter 7.
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Chapter 2

Preliminaries

Contents

1.1 Predicate-Preserving Collision-Resistant Hashing . . . . 1

1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Notations

Let κ ∈ N be the security parameter. We denote by 1κ the unary string with κ ones.

An algorithm is called PPT if it is probabilistic and runs in polynomial time in κ.

Let neg : N → N denote a negligible function, that is, for every polynomial q(·)
and any large enough integer κ, neg(κ) < 1/q(κ).

We denote x ← v the assignation of value v to variable x. We write x
R← X for

an element x chosen uniformly at random from a set X . When R is a randomized

algorithm, a
R← R() denotes the process of choosing a according to the probability

distribution induced by R. We also denote by 〈R()〉 the set of all possible values

a returned by R with positive probability. Let AlgH(·) be a (PPT) algorithm that

computes a function H, then when AlgH(·) is fed with input x and returns y, we write

x = H−1(y).

For m,n ∈ N with m < n, [m..n] denotes the set of integers {m,m+1, ..., n−1, n}
and [n] stands for the set of integers {1, ..., n}. A vector of n components and values

vi is denoted ~v = (vi)i∈[n]. If the vector contains elements of Zp we may also represent

its components as an array B[·] = (B[1], B[2], ..., B[n]). For any θ ∈ Zp, where p is

a prime of κ bits, we denote by θ[·] the binary decomposition (vector) of θ. That is

θ[·] = (θ[1], ..., θ[κ]) and in particular θ =
∑

i∈[κ] θ[i]2
i−1. When P (·) is a polynomial
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with coefficients in Zp, P [] will denote the vector of its coefficients. This yields the

expression P (X) =
∑

i∈[d+1] P [i]X i−1 where d = deg(P (·)) is the degree of polynomial

P (·).
Let x ∈ N be an integer such that 0 ≤ x < 2κ, we denote by 〈x〉κ its encoding as

a κ-bit string. In this thesis log refers to the logarithm in base two function.

Strings. A string S of size m = |S| is a sequence of symbols S[1], S[2], ..., S[m] from

some alphabet Σ. We assume there is a total order relation < over Σ. If m = 0 then

S = ǫ is the empty string. S[i..j] denotes the substring of S starting at position i and

ending at position j (both S[i] and S[j] are included). In particular, if A = S[1..j] for

some j ≥ 0, then we say that A is a prefix of S (by convention A[1..0] for any string A

is the empty string ǫ). The concatenation operator on strings is denoted as ||. We say

a string C is a common prefix of A and B if C is prefix of A and also of B. String C

is said to be the longest common prefix of A and B if C is a common-prefix of A and

B, but C||σ is not a common prefix of A and B for any symbol σ ∈ Σ. We denote by

< the (standard) lexicographical order on {0, 1}∗. We single out $ as a special symbol

that is used only to mark the end of a string, and satisfies 0 < $ < 1. We define

the extended lexicographical order ≺ on {0, 1}∗ as following: Let X, Y ∈ {0, 1}∗ and
X ′ = X||$, Y ′ = Y ||$ strings obtained by appending the end marker to X, Y . We say

that X ≺ Y if, and only if, X ′ < Y ′.

Graphs. G = (V,E) denotes a graph G with set of vertices V and set of edges E.

If A ∈ V is a vertex of G, then A∗ is the transitive closure of A, that is the set of

vertices: {Q ∈ V : there exists a path from A to Q }. Similarly, the transitive closure

of a graph G, denoted G∗, is the union of the transitive closures of every vertex of G.

A path from vertex R to vertex H is written R→ H .

Trees. In the case where T is a binary tree, we consider the following conventions.

The root node of a tree T will be denoted root(T ). The left subtree (respectively

right subtree) rooted at the left (respectively right) child node of T will be denoted

Left(T ) (respectively Right(T )). The node root(T ) is said to be the parent of Left(T )
and Right(T ). Each node N of T will be labeled by a string henceforth denoted ℓ(N).

Sometimes we identify the tree T with its root N = root(T ) and we write ℓ(T )

10



to denote ℓ(root(T )). We denote by Nil an empty node. As usual, a leaf of T
corresponds to a node of T that has no children (or two empty nodes as children). If

T consists in only one node, then we say that T has depth 0 and denote it as d(T ) = 0.

Otherwise, let d(T ) = 1+ max{d(Left(T )), d(Right(T ))}. A tree T is balanced if, and

only if, for every node N we have |d(Left(N))− d(Right(N))| ≤ 1. It is a well known

fact that a balanced tree with N nodes has maximum depth O(log(N)).

Let R be the root of the tree. If bi ∈ {0, 1}, and 0 ≤ i ≤ l ≤ d − 1, then Rb0b1...bl

denotes the node reachable from R by taking the path b0b1...bl, where 0 means left

child and 1 means right child. By R[b0b1...bl] we denote the path from R to Rb0b1...bl

formed by the nodes R,Rb0 , Rb0b1 , ..., Rb0b1...bl−1
, Rb0b1...bl. If we index the leaves from

left to right starting from 0 until N − 1 = 2d − 1 we note that Li, the ith leaf of

the tree with root R, is such that Li = Rb0b1...bd−1
where i = Σd−1

j=0bd−1−j2
j . In other

words, (b0, ..., bd−1) is the binary decomposition of i where b0 is the bit of strongest

weight.

Our construction for transitive signatures (see Chapter 6) makes use of binary

tries [Fre60], a type of binary tree, which associates labels to each node as follows.

First, for each node, the edge going to the left (resp. right) child is tagged 0 (resp. 1).

Then, the label for the node is obtained by concatenating the tags on the edges in a

path from the root to the node. This way, any node x in the trie B can be identified

by its associated label X ∈ {0, 1}∗. Given some label X , we denote by node(X) the

corresponding node in B if it exists. We say a node x′ ∈ B is a descendant of x if

x′ belongs to the subtree rooted at x or equivalently if there is a path from x to x′.

The lowest common ancestor of two nodes x, y of B is the node z such that x and y

belong to the subtree rooted at z, and for any child z′ of z, x or y is not a descendant

of z′. In Chapter 6) we will consider two types of depth-first tree traversals:

� Pre-order: recursively (1) visit the root, (2) traverse the left subtree, and (3)

traverse the right subtree.

� Post-order: recursively (1) traverse the left subtree, (2) traverse the right sub-

tree, and (3) visit the root.
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2.2 Collision-Resistant Hashing

We recall here some standard definitions for collision-resistance.

Definition 1 Let κ be the security parameter. A hash-function family is a function

Hκ : K × U → Y where K = {0, 1}κ, Y = {0, 1}κ and U = {0, 1}∗.

The family of functions Hκ is said to be collision-resistant (CRHF ) if, for

H : {0, 1}∗ → {0, 1}κ uniformly chosen at random inHκ, any computationally bounded

adversary can not find two different messages m and m′ such that H(m) = H(m)′ ex-

cept with negligible probability.

Definition 2 (Collision-Resistance) Let Hκ : K×X → Y be a hash-function family.

Then Hκ is collision-resistant if, and only if, for any PPT algorithm A we have:

Pr
[

k
R← K;m,m′ ← A(1κ, k) : m 6= m′ ∧ H(m) = H(m′)

]

= neg(κ)

where H := Hκ(k, ·) and the probability is taken over K and the random coins of

A.

When the context is clear we will write H instead of Hκ.

2.3 Bilinear Maps

In his seminal paper [Jou00] Joux showed that the Weil and Tate pairing (bilinear

maps) could be used not only for cryptanalytic purposes but also to design efficient

cryptosystems. Since this breakthrough, many works followed. The main reason

is that the bilinearity property of these functions enables the construction of cryp-

tographic schemes or protocols that are more efficient when compared to their im-

plementation with more standard techniques like RSA, or simply cannot be built

(considering actual knowledge) without this new primitive.

In this section we introduce the abstract definition for bilinear maps, and the re-

lated computational assumptions we rely on for our constructions described in Chap-

ter 6 and Chapter 7.
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2.3.1 Definition

Let G and GT , be cyclic groups of prime order p. We consider a map e : G×G→ GT

which is

� bilinear : ∀a, b ∈ G, x, y ∈ Zp : e(a
x, by) = e(a, b)xy.

� non-degenerate: let g be a generator of G then e(g, g) also generates GT .

� efficiently computable: There exists a polynomial time algorithm BMGen with

parameter 1κ that outputs (p, Ĝ, ĜT , ê, g) where Ĝ, ĜT is the representation of

the corresponding groups of size p (p being a prime number of κ bits), g is a

generator of G, and ê is an efficient algorithm to compute the map. For the

sake of simplicity, we will not distinguish between G,GT , e, and Ĝ, ĜT , ê.

2.3.2 Computational assumptions

Let N ∈ N. For the following computational assumptions, the common public pa-

rameter is PP = 〈(p,G,GT , e, g), (g0, g1, g2, · · · , gN)〉 where s is chosen randomly in

Zp and gi = gs
i
for i ∈ [0..N ].

Definition 3 N-Diffie-Hellman Inversion (N-DHI) assumption, [MSK02].

The N-Diffie-Hellman Inversion problem consists in computing g
1
s given PP. We say

the N-DHI assumption holds if for any PPT adversary A we have

AdvN-DHI(A, κ, N) = Pr
[

g
1
s ← A(1κ, PP)

]

= neg(κ)

The following bilinear variant of the previous assumption was introduced in [BB04a]:

Definition 4 N-Bilinear Diffie-Hellman Inversion assumption (N-BDHI),

[BB04a]. The N- Bilinear Diffie-Hellman Inversion problem consists in computing

e(g, g)
1
s given PP. We say the N-BDHI assumption holds if for any PPT adversary

A we have

AdvN-BDHI(A, κ, N) = Pr
[

e(g, g)
1
s ← A(1κ, PP)

]

= neg(κ)
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Definition 5 N-Strong Diffie-Hellman assumption (N-SDH), [BB08]. The

N-Strong Diffie-Hellman (N-SDH) problem consists in computing (c, g
1

s+c ) given PP.

We say the N-SDH assumption holds if for any PPT adversary A we have

AdvN-SDH(A, κ, N) = Pr
[

(c, g
1

s+c )← A(1κ, PP)
]

= neg(κ)

As mentioned in [BB08], the N -SDH assumption is equivalent to the N -DHI

assumption when c is fixed.

The following assumption can be considered as a particular case of the poly-Diffie-

Hellman assumption [KZG10], or a generalization of the N+1-Exponent assumption

introduced in [ZSNS04].

Definition 6 N+i-Diffie-Hellman Exponent(N+i-DHE) assumption. The

N+i-Diffie-Hellman Exponent problem consists in computing gs
N+i

, for 1 ≤ i ≤ N

given PP. We say the N+i-DHE assumption holds if for any PPT adversary A we

have

AdvN+i-DHE(A, κ, N) = Pr
[

gs
N+i ← A(1κ, PP)

]

= neg(κ)

In [ZSNS04], the N -DHI was shown to be equivalent to the N+1-Exponent as-

sumption (N+1-DHE). We prove here the following implication following the idea of

[ZSNS04].

Proposition 1 N-BDHI ⇒ N+i-DHE.

Proof. Let A be a PPT adversary that breaks the N+i-DHE assumption. We

build the following adversary B. Algorithm B receives the challenge tuple g, gs, gs
2
, ...,

gs
N
and then it sets h = gs

N
. Then if we consider t = 1

s
, we have: (h, ht, ht2 , · · · , htN ) =

(gs
N
, gs

N−1
, gs

N−2
, · · · , g). B sends the tuple (h, ht, ht2 , · · · , htN ) to A who outputs

h′ = htN+i
where 1 ≤ i ≤ N . We have that h′ = htN+i

= gs
N−N−i

= g
1

si . Finally, B
outputs e(h′, gs

i−1
) = e(g, g)s

−i+i−1
= e(g, g)

1
s
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2.4 Digital Signatures

2.4.1 Standard Digital Signatures

We denote by SSig = (SKG, SSig, SVf) a standard signature scheme. A pair of

private/public keys is created by running SKG(1κ). Given a message m ∈ {0, 1}∗, a
signature on m under pk is σm = SSig(sk,m). A signature σ on m is deemed valid

if and only if SVf(pk,m, σ) returns valid. Regarding security, we use the standard

notion of existential unforgeability under chosen message attack [GMR88].

2.4.2 Boneh and Boyen Signature Scheme [BB08]

We recall here the short signature scheme [BB08] introduced by Boneh and Boyen.

The setup algorithm BMGen(1κ) generates the public parameters of the scheme

(p,G,GT , e, g)
1. The key generation algorithm SKG(1κ) selects random integers x, y

R←
Zp and sets u = gx and v = gy. The secret key is sk = (g, x, y) and the public key is

pk = (g, u, v). Given a message m and sk, the signing algorithm SSig(sk,m) works

as follows. It selects rσ
R← Zp such that rσ − (x + m)/y 6= 0 mod p and return the

(randomized) signature σ = (g
1

x+m+yrσ , rσ) = (σ′, rσ). Finally, in order to verify a

signature σ on message m, relative to the public key pk, the algorithm SVf(pk,m, σ)

consists in checking that e(σ′, ugmvrσ) = e(g, g).

The scheme is secure in the standard model under the N -SDH assumption [BB08].

2.5 Trapdoor commitments

Let R be the space of randomness, C the set where commitments belong and M,

the space for messages. A trapdoor commitment scheme is composed of the follow-

ing algorithms: K, Commit, Verify, TCommit, TOpen. Here K(1κ) is a randomized

algorithm that generates the common reference string CRS and an associated trap-

door τ . We denote by Commit(CRS, m, r) a deterministic algorithm that computes

1We use symmetric bilinear map for the sake of exposition.
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a commitment C to value m ∈ M using r ∈ R. Algorithm Verify(CRS, C,m, r) re-

turns valid if and only if C = Commit(CRS, m, r), otherwise it returns ⊥. We will

sometime use the notation open to denote the opening of the commitment C, that is

open = (m, r). TCommit(τ) is a randomized algorithm that returns an equivocal com-

mitment C along with an equivocation key ek given the trapdoor τ . TOpen(ek, C,m)

is a deterministic algorithm that returns the randomness r ∈ R of C with respect

to message m ∈ M. In order to simplify the notation, in the following the common

reference string CRS will be an implicit argument of algorithms Commit and Verify.

We say the commitment scheme is computationally binding if for all non-uniform

stateful PPT adversary A we have

Pr

[

(CRS, τ)← K(1κ); (m0, m1, r0, r1)← A(CRS) :
m0 6= m1 ∧ Commit(m0, r0) = Commit(m1, r1)

]

= neg(κ)

The scheme is said to be perfectly hiding if for all non-uniform stateful adversaries

A we have

Pr [ (CRS, τ)← K(1κ); (m0, m1)← A(CRS);C ← Commit(m0, r0) : A(C) = 1 ]

= Pr [ (CRS, τ)← K(1κ); (m0, m1)← A(CRS);C ← Commit(m1, r1) : A(C) = 1 ]

A commitment scheme is perfectly trapdoor if, for any stateful PPT adversary, we

have

Pr



















(CRS, τ)← K(1κ);
m← A(CRS);

r
R← R;

C ← Commit(m, r) :

A(m, r) = 1



















= Pr



















(CRS, τ)← K(1κ);
m← A(CRS);

(C, ek)← TCommit(τ);

r ← TOpen(ek, C,m) :

A(m, r) = 1



















As a commitment is perfectly indistinguishable from an equivocal commitment, a

perfect trapdoor commitment scheme is also perfectly hiding.

Our construction relies on a slight variant of the Pedersen2 commitment scheme

[Ped91] which we recall here. Let G be a cyclic group of prime order p ∈ N. We

2Note that this kind commitment was introduced earlier in [CDvdG87] (see page 98).
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consider the common reference string composed by g ∈ G and h ∈ G where g, h are

chosen randomly and the discrete logarithm s of h in base g remains secret. To commit

to a message m ∈ Zp with randomness r ∈ Zp we compute3 Commit(m, r) = grhm.

We denote by open = (m, r) the opening of the commitment. As shown in [Ped91],

this scheme is perfectly hiding and computationally binding, under the assumption

that computing the discrete logarithm in G is hard.

2.6 Non-interactive Zero-Knowledge

2.6.1 Arguments

In this section we follow the notation of [Gro10]. We are interested in statements

that are efficiently verifiable. Let R be a NP relation such that (C,w) ∈ R means the

statement is true and this can be verified with the witness w. We will consider RN , the

subset ofR where the statements are of size N = κO(1). For relation R we define a non-

interactive argument in the following way. An algorithm KeyGen(1κ, N) generates the

common reference string CRS. Then the prover P given as input (CRS, C, w), checks

first that (C,w) ∈ RN . If this is not the case it outputs ⊥. Otherwise it outputs an

argument π. The verifier V using CRS, C and π returns valid in case it accepts the

argument and ⊥ otherwise.

In our case, C will be a commitment and w its opening (the message and the ran-

domness). We will consider non-interactive zero-knowledge (NIZK) argument (proof)

systems (KeyGen,P,V) for the relation RN with the following properties.

Perfect Completeness. The argument is perfectly complete if an honest prover

can convince a honest verifier with probability 1 in case the statement is true. For

any PPT adversary A we have

Pr

[

CRS← KeyGen(1κ, N); (C,w)← A(CRS); π ← P(CRS, C, w) :
V(CRS, C, π) = valid ∧ (C,w) ∈ RN

]

= 1

3Note that we change a bit the convention as the message is “encoded” into the exponent of h,
instead that of g.
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Computational Soundness. The argument is said to be sound if no adversary

can convince a verifier of a false statement. For any PPT adversary A we have

Pr

[

CRS← KeyGen(1κ, N); (C, π)← A(CRS) :
V(CRS, C, π) = valid ∧ ∄w : (C,w) ∈ RN

]

= neg(κ)

Perfect witness-indistinguishability. The argument is said to be perfectly

witness-indistinguishable if the verifier does not learn which witness was used by the

prover in order to produce the proof. For all stateful interactive PPT adversaries A
we have

Pr









CRS← KeyGen(1κ, N); (C,w1, w2)← A(CRS);
π ← P(CRS, C, w1) :

((C,w1), (C,w2)) ∈ R2
N ∧A(π) = 1









= Pr









CRS← KeyGen(1κ, N); (C,w1, w2)← A(CRS);
π ← P(CRS, C, w2) :

((C,w1), (C,w2)) ∈ R2
N ∧A(π) = 1









Note that in case there is only one valid witness w for some statement C, then the

argument becomes perfectly witness-indistinguishable.

Perfect Zero-Knowledge. We say an argument is zero-knowledge if the verifier

learns nothing but the truth of the statement. To formalize this idea we consider two

simulators S1, S2 such that S1 generates the CRS and the trapdoor τ . The simulator

S2 uses the common reference string CRS, the statement C and the trapdoor τ to

output a simulated argument π. The argument is said to be perfect zero-knowledge

if for any stateful interactive PPT adversary A we have

Pr













CRS← KeyGen(1κ, N);

(C,w)← A(CRS);
π ← P(CRS, C, w) :

(C,w) ∈ RN ∧A(π) = 1













= Pr













(CRS, τ)← S1(1
κ, N);

(C,w)← A(CRS);
π ← S2(CRS, C, τ) :

(C,w) ∈ RN ∧A(π) = 1
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2.6.2 Proofs of Knowledge

Our protocol for fair exchange introduced in Chapter 7 uses zero-knowledge proofs of

knowledge (ZKPoK) relative to bit commitments. In order to simplify the description

of the fair exchange protocol we will use non-interactive zero-knowlege proofs of knowl-

edge. We note however that interactive ZKPoK would work as well, though adding

two rounds to our protocol. The most popular way to implement non-interactive

ZKPoK protocols is by using the Fiat-Shamir heuristic [FS86], trading non-interaction

for a security proof relying on the random oracle model.

Let G be a cyclic group of prime order p where the discrete logarithm is hard. Let

H : G → Zp be a randomly chosen function from a CRHF. Let g, h be two random

generators of G such that the discrete logarithm of h in base g is unknown.

We will need a ZKPoK of the discrete logarithm θ of some public value D = gθ.

Following the notation of [CS97], we have that the proof of knowledge for the discrete

logarithm θ of D in base g is PK{θ : gθ} = (c = H(gr), z = r − cθ) , where r
R← Zp.

The verifier checks that c = H(Dcgz). We will also use the following ZKPoK that

convinces a verifier that the prover knows the representation of a commitment C =

gαhβ in base (g, h) where α, β ∈ Zp. PK{(α, β) : C = gαhβ} = (c = H(gr1hr2), z1 =

r1 − cα, z2 = r2 − cβ) where r1, r2
R← Zp. The verifier checks that c = H(Ccgz1hz2).

An alternative to the Fiat-Shamir heuristic is the use of non-black-box assump-

tions that allow to look inside the adversary and extract some value that it “must”

already know, in order to perform some specific computation. An example of such

assumption is the one proposed by Groth[Gro10] called the N - power knowledge of

exponent assumption (N -PKE).

Definition 7 (N-PKE assumption,[Gro10]) Let PP be the public parameter com-

puted as follows: PP = 〈(p,G,GT , e, g), g
s, · · · , gsN , gα, gαs, · · · , gαsN 〉 where

(p,G,GT , e, g) and s are computed as described in Section 2.3.2 and α
R← Zp. We say

the N(κ)-PKE assumption holds if, for every non-uniform PPT adversary A, there
exists a non-uniform PPT extractor χA such that

Pr

[

(c, ĉ; a0, · · · , aN)← (A||χA)(PP) : ĉ = cα ∧ c 6=
N
∏

i=0

gais
i

]

= neg(κ)
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where (y; z) ← (A||χA)(x) means that adversary A returns y on input x and χA

returns z on input x and the random tape of A.

The intuition of the definition is as follows: If the adversary is able to compute

cα without knowing α and s, then it must know the representation of c in base

(g, gs, · · · , gsN ), that is the vector (a0, · · · , aN) such that c =
∏N

i=0 g
aisi. Note that

while this assumption is not falsifiable [Nao03] (i.e. no evidence that it is false can be

exhibited, like in the case of standard computational assumptions), this assumption

does not rely on the random-oracle heuristic.

Groth proposes in the same work [Gro10] a commitment scheme, called knowledge

commitment that, as its name suggests, is extractable. The idea to commit to a vector

of values a1, · · · , aN ∈ Zp is to compute values c = gr
∏N

i=1 g
ai
i and ĉ = ĝr

∏N
i=1 ĝi

ai

where r is the randomness of the commitment, ĝ = gα, and for all i : 1 ≤ i ≤ N , gi =

gs
i
and ĝi = gαi with α ∈ Zp random. The extractability of the commitment follows

directly from the N -PKE assumption. Moreover, by checking that e(c, ĝ) = e(ĉ, g), it

can be verified that the commitment (c, ĉ) has been computed correctly. While we do

not describe our construction of Chapter 7 using knowledge commitments, we note it

could be easily adapted to rely on Groth’s scheme.
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Suppose that some organization needs to replicate its database in order to improve

the availability of the data. As the organization has no control over the replicas,

there is no guarantee that the data provided by the delegated servers is authentic.

We consider the following scenario, also called three-party model [GTH02] which is

depicted in Figure 3.1. In this model, a Source wants to delegate the access to a data

structure through a Replica which may be corrupted. The final Client interacts with

the Replica to gain access to the data-structure. In order to prevent the Replica from

fooling the Client, the Source publishes some short value that represents the state

of the data-structure after each update as well as some extra cryptographic data for
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Figure 3.1: Three-party model: (1) The Source sends the updates of the database
to the Replica with additional cryptographic values. The Replica convinces the Client
that the answer to the query (2) is valid using a proof (3).

the Replica. Then, using this value and some proof computed by the Replica, the

Client gets the guarantee that the answer of the Replica is authentic. The challenge

in this model is related to efficiency. How can we enable authentic answers while at

the same time avoiding too much computation or bandwidth use? In this thesis we

are interested in the authentication of simple data structures which are dictionaries

and graphs.

Another model, called two-party model, considers two participants: a Client that

has only a small amount of storage and Server which is used to extend the memory

of the Client, but is not trusted. This problem also appears in the literature under

the name of memory checking [BEG+91, NR05, DNRV09].

3.1 Authenticated dictionaries

In an authenticated dictionary the operations to access and update the data involve

some guarantee that the answers are consistent with the actual state of the data

structure.

Let D be a dictionary. The owner of the dictionary or Source publishes the data

structure with some additional cryptographic information. Moreover, the Source also

publishes a short value corresponding to the current state of the dictionary. Using

this short value, a Client can ask a Replica for a proof that D[i] = v for some index i

and value v. The security requirement states that the Replica should only be able to

compute the proof if indeed D[i] = v, otherwise the verification algorithm run by the

Client should detect the forgery. When the dictionary is updated, the Source must
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publish a new state and also the necessary data to allow proof computations by the

Replica.

Next we define formally, the syntax, correctness, and security for an authenticated

dictionary.

Definition 8 (Authenticated dictionary in the 3-party model [GTH02])

Let κ ∈ N be the security parameter. An authenticated dictionary scheme AuthDict

consists of the following algorithms.

� KeyGen(1κ, N): This probabilistic algorithm takes κ in unary as input and N ,

a bound of the number of elements of the dictionary D. It returns a pair of

public and private keys (PK, SK), the initial state of the data structure m0 and

a short value m̂0 that represents m0. This short state is public and represents

the dictionary D which set of keys is {0, 1, ..., N − 1}.

� Verify(i, v, π, m̂, PK): Given an index i, a value v, a proof π, the short state

m̂ and the public key PK, return valid meaning that D[i] = v, or ⊥ otherwise.

This algorithm is run by a Client.

� ProofGen(i,m, PK): This algorithm returns a proof π associated with the value

v and index i such that D[i] = v where D is represented by m. This algorithm

is run by the Replica.

� Update(i, v,mbefore, PK, [SK]): This algorithm computes the new state of the

data structure mafter where D[i] = v and the rest of the dictionary remains un-

changed. Moreover, the short representation of the state m̂before is also updated

to m̂after. The Source publishes m̂before. The argument SK is optional as some

schemes, like the one introduced in Chapter 4, do not require the use of any

secret . Finally, the Source sends some update data to the Replica so that the

Replica can also update the full state of the dictionary and compute new proofs.

An authenticated dictionary is said to be correct if the Replica is always able to

compute valid proofs for pairs (i, v) such that D[i] = v.
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Definition 9 (Correctness) Let m1,m2, ...,mh be a sequence of updates, then we say

the scheme is correct if for any 0 ≤ i ≤ N − 1 and any 1 ≤ j ≤ h, we have that

Pr [ π = ProofGen(i,mj, PK) ∧ Verify(i, v, π, m̂j, PK) = valid ∧ D[i] = v ] = 1

where the probability is taken over the random coins of all the algorithms involved.

The authenticated dictionary is said to be secure if, for any PPTA, the probability
to compute a proof π for a pair (i, v′) that both passes the verification step and satisfies

D[i] 6= v′, is negligible.

Definition 10 (Security for authenticated data structures [GTH02])

Let AuthDict be an authenticated dictionary. We consider the notion of security

denoted UF−AD described by the following experiment: On input the security pa-

rameter κ, the adversary A has access to an oracle OAD(·) that replies to queries by

playing the role of the Source. Using the oracle, the adversary asks for updates to

the dictionary a polynomial number of times. The oracle OAD(·) replies with the new

state of the data structure and also the necessary data in order to compute proofs.

Finally, the adversary is required to output a tuple (i, v, π).

The advantage of the adversary A is defined by:

AdvUF−ADAuthDict(A, κ) = Pr [Verify(i, v, π, m̂, PK) = valid ∧ D[i] 6= v ]

where PK is the public key generated by KeyGen, and m̂ is the state of the dic-

tionary D at the end of the experiment. The scheme AuthDict is said to be secure if

for every PPT adversary A, AdvUF−ADAuthDict(A, κ) is negligible.

Note that a trivial construction can be obtained using standard digital signatures.

The idea is to time-stamp every element of the dictionary after each update and sign

these new values. Obviously, this solution is very inefficient for the Source and the

Replica who need to handle O(N) operations for each update. Another idea is to

hash all the dictionary using a standard CRHF and exhibit the whole dictionary as

the proof π. Here the problem becomes worse as even the Client will have to manage
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the O(N) values to check for a given item of the dictionary. In section 3.2 we will

describe a technique called incremental hashing that enables efficient updating of

the hash value so that in the previous solution the work of the Source is reduced

to constant time. This only solves a part of the problem of building an efficient

authenticated dictionary. However, this technique will be used in chapter 6.

All existing constructions for this model, in particular [CHKO08, CL02, BGG94,

Ngu05], involve a tradeoff between the size of the proof and the number of accesses

to update the data structure and compute the proof. More precisely, for some λ ≥ 1

for a proof of size O(λ), the time to update the data structure or compute the proof

will be O(λN1/λ).

Table 3.1 summarizes the complexities of the current constructions. An impor-

tant open problem is to know whether we can build optimal authenticated dictionaries

(OAD) where the time to update the data structure/compute the proof would involve

only O(logN) cryptographic operations and the size of the proof would remain con-

stant in N . In Section 3.4.3 we give a more precise definition of optimal authenticated

dictionaries and establish a relation between optimal authenticated dictionaries and

transitive signatures.

3.2 Incremental Hashing

As mentioned earlier, one of the challenges when authenticating data is that this data

may be subject to change. Trivial solutions consisting of rehashing/resigning all the

data are clearly inefficient, as shown in the previous section. However, changes to the

data generally involve a small portion of bits. For example, if we want to authenticate

successive video frames, clearly the difference between two consecutive images will be

“small”.

To solve this problem Bellare, Goldreich and Goldwasser [BGG94] introduced a

new kind of CRHF that allows efficient updates to hash values depending only on

the changes made to the data. They called this new primitive incremental hashing.
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Solution Assumption TUpdate TProofGen TVerify Bandwidth
Timestamps DSig O(N) O(N) O(1) O(1)
CRHF CRHF O(N) O(N) O(N) O(N)
Incremental
hashing
[BGG94]

DLog O(1) O(1) O(N) O(N)

[CHKO08] CHRF O(logN) O(logN) O(logN) O(logN)

[CL02] S-RSA O(λ ·N 1
λ ) O(λ ·N 1

λ ) O(λ) O(λ)
[Ngu05] q-SDH O(1) O(N) O(1) O(1)

Table 3.1: Tradeoffs for authenticated dictionaries.
Complexities are relatives to the number of cryptographic operations. The first row
is related to the trivial solution which consists in signing elements of the dictionary
with their timestamp. DSig refers to the existence of standard digital signatures.
The second and third row specifies the complexities for the trivial solutions using
standard CRHF and incremental CRHF respectively. TUpdate is the time to update
the data structure, TProofGen the time to compute a proof and TVerify is the time to
check the proof. The abbreviations DLog, S-RSA, q-SDH stand respectively for Dis-
crete Logarithm assumption, Strong RSA Assumption, and q-Strong Diffie-Hellman
Assumption.

The idea is the following: let G be a cyclic group of order p where the discrete

logarithm is assumed to be hard. Then for a message M = (M1, ...,MN ) where for

each i ∈ [N ] : Mi ∈ Zp, we define H(M) =
∏N

i=1 g
Mi
i where gi are random generators

of G. That is H is defined by (g1, . . . , gN).

Authenticated dictionary using incremental hashing. We can observe that

by using an incremental hashing scheme we can build an authenticated dictionary with

optimal update time. However, the time to verify a proof is still linear in the size of

the dictionary.

Construction 1 (Authenticated dictionary from incremental hashing)

� KeyGen(1κ, N): Let G a cyclic group of order p where the discrete logarithm

is hard. Select g
R← G a generator. Choose random s1, s2, ..., sN in Zp. Let

gi = gsi for i ∈ [N ]. The m0 data structure is simply the dictionary D which

set of keys is {0, 1, ..., N − 1}. That is for each i ∈ [0..N − 1] : m[i] = D[i− 1].
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We assume the dictionary has values in Zp (we can use a standard CRHF if we

need to work in a bigger universe). Return m̂0 =
∏N

i=1 g
D0[i−1]
i , where D0 is the

initial state of the dictionary (filled with 0 values for example). Here PK is the

description of the hash function. That is PK = (gi)i∈[N ]. In this scheme there

is no need of secret key or trapdoor.

� Verify(i, v, π, m̂, PK): Parse π as (αj)j∈[0..N−1]. Check that m̂ =
∏N

j=1 g
αj−1

j and

that αi = v.

� ProofGen(i,m, PK): this algorithm Return π = (D[j − 1])j∈[N ].

� Update(i, v,mbefore, PK): Update the memory to obtain mafter. Compute and

publish ˆmafter = v(g
mbefore[i]
i )−1g

mafter[i]
i .

Following directly from [BGG94] we have

Proposition 2 Under the discrete logarithm assumption the authenticated dictionary

described above is secure. The time complexities are : TUpdate = O(1), TProofGen =

O(1), TVerify = O(N).

3.3 Cryptographic accumulators

The notion of accumulator, first proposed by Benaloh and De Mare in [BdM93], is

quite intuitive: Given a set X = {x1, . . . , xN}, we wish to compute a short value that

represents this set, also called accumulated value, such that it is then possible to prove

that a given element x belongs to the accumulated set. Informally, an accumulator

scheme consists of at least the following polynomial-time algorithms:

� KeyGen(1κ): Generates the initial parameters, in particular the initial accumu-

lated value that represents the empty set.

� AccVal(X): Computes the accumulated value AccX of the set X .

� WitGen(X, x): For a given element x that has been accumulated, this algorithm

computes a witness that will serve as a parameter for the algorithm Verify.
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� Verify(Acc, x, π): From the accumulated value Acc, an element x, and a witness

value π, Verify returns valid if, and only if, π is a valid witness that guarantees

that x has been accumulated, or equivalently x ∈ X , the set represented by

AccX .

If we want to give a formalization of accumulators using predicate-preserving

hash functions, then we would say that an accumulator is a pair of CRHF (H1,H2)

where H1 is implemented by the AccVal algorithm and H2 is the identity function.

Moreover the predicate that is preserved by (H1,H2) is P∈ : 2U × U → {0, 1}, such
that P∈(X, x) = 1 ⇔ x ∈ X , where U is some universe and 2U is the collection of

sets with elements in U . A similar definition could be given for non-membership. In

this analogy, WitGen stands for ProofGen,Verify stands for ProofCheck and the proof

π is called witness.

From the above definition it is clear that it has to be difficult for the adversary to

compute a witness π′, for an element x′ /∈ X such that Verify(Acc, x′, π′) = valid.

As mentioned in the introduction, one can build a trivial accumulator scheme

using a standard CRHF H to implement AccVal and then using the whole set X as a

witness. The verification procedure Verify would consist in checking that x ∈ X and

also check that H(X) = AccX . Obviously, this construction is of little interest as it is

very inefficient (checking for membership requires O(N) computation). To be useful,

an accumulator scheme must allow for fast (non)membership checking (i.e.O(1) or

O(logN)).

3.3.1 Definitions

One-Way Accumulators. The first definition for cryptographic accumulators

[BdM93] focused on the algebraic property of the function used to compute the accu-

mulated value. Basically an accumulator was defined as a one-way hash function with

two parameters, one for the new element and another for the current accumulated

value that has the property of quasi-commutativity.

Definition 11 (One way hash functions [BdM93, FN02])
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A family of one-way hash functions is a function H : K ×X × Y → Z where1:

1. For any H = H(k, ·, ·) with k ∈ K, H(·, ·) is computable in polynomial time in

κ.

2. For any PPT A we have

Pr









k
R← K; x

R← X ; y, y′
R← Y ;

x′ ← A(1κ, x, y, y′, k) :
H(x, y) = H(x′, y′)









< neg(κ)

where the probability is taken over the random choice of k, x, y, y′ and random

coins of A.

Definition 12 (Quasi-commutative functions, [BdM93]) A function f : X×Y → X

is said to be quasi-commutative if for all x ∈ X and all y1, y2 ∈ Y ,

f(f(x, y1), y2) = f(f(x, y2), y1)

Definition 13 (One-way accumulators [BdM93]) A family of one-way accumulators

is a family of one-way hash functions each of which is quasi-commutative.

As mentioned in [FN02] this definition is simple, but restricts accumulator schemes

to a class of functions with some specific algebraic property. Moreover, the definition

of security does not capture the case where the adversary can choose to be involved

in the construction of the set for which it will try to forge an element. A definition

for this stronger model was introduced by Nyberg in [Nyb96b].

Definition 14 (Strongly one-way hash functions [Nyb96a]) A family of strongly one-

way hash functions is a family of one-way hash functions H : K ×X × Y → Z where

1Note that the sets K,X, Y and Z depend on κ. We do not make it explicit in the notation for
the sake of simplicity.
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additionally, for any PPT adversary A:

Pr









k
R← K; x

R← X ; y
R← Y ;

(x′, y′)← A(1κ, x, y, k) :
H(x, y) = H(x′, y′)









< neg(κ)

where the probability is taken over the random choices of k, x, y and the random coins

of A.

Collision-Freenes [BP97]. An even stronger security notion arises when the

adversary is able to choose every element of the set and can choose the specific value

on which the forgery will be computed. To take this case into consideration, Barić

and Pfitzmann proposed another security definition in [BP97] called collision-freeness

and introduced the abstract syntax for an accumulator.

Definition 15 (Syntax for accumulator schemes [BP97])

An accumulator scheme Acc is a 4-tuple of polynomial time algorithms

Acc = (KeyGen,AccVal,WitGen,Verify), where:

� KeyGen(κ,N) : This probabilistic algorithm takes as input a security parameter

κ, N , the maximum size of the set and returns a key k from the space K.

Intuitively this key represents the hash function for the set, which is implemented

by the next algorithm, AccVal. Some (private) auxiliary information SK is also

returned, which will be used by other algorithms.

� AccVal(k,X) : This probabilistic algorithm is used to compute the accumulated

value of set X = {x1, . . . , xN}. k is the accumulator key, that is AccVal(k, ·)
can be considered as a hash function for its argument X. AccVal returns an

accumulated (hashed) value AccX ∈ Z.

� WitGen(k, y, AccX, SK): This algorithm computes a witness for element y in

set X, which is such that AccX = AccVal(k,X). If y /∈ X, the special symbol

⊥ is returned. The auxiliary (private) value SK can be used to compute the

witness.
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� Verify(k, y, π, AccX) : This deterministic algorithm returns valid if the witness π

constitutes a valid proof that y has been accumulated within AccX . Otherwise it

returns ⊥.

Definition 16 (N-times collision-freenes [BP97])

An accumulator scheme is said to be N-times collision-free for any PPT A:

Pr













(k, SK)← KeyGen(1κ, N);

(x1, . . . , xN , y, π)← A(1κ, N, k);

AccX ← AccVal(k, x1, . . . , xN ) :

(y /∈ {x1, . . . , xN}) ∧ (Verify(k, y, π, AccX) = valid)













< neg(κ)

where the probability is taken over the random coins of KeyGen, AccVal and A.

Definition 17 (Collision-Freeness, [BP97]) An accumulator scheme is said to be

collision-free if it is P (κ)-times collision-free where P (·) is a polynomial.

Dynamic Accumulators. The previous definitions assume implicitly that the set

that is accumulated is static. Although such accumulators can be useful, consider-

ing dynamic accumulators where the set can evolve opens a wide range of applica-

tions in particular for building efficient authenticated dictionaries like for example

[GTH02, GTT08]. Because sets is a very general data structure, dynamic accumula-

tors have been used in very diverse contexts like broadcast encryption [GR04], e-cash

[AWSM07] and zero-knowledge sets [XLL07, CFM08, LY10]. Dynamic accumulators

were introduced in [CL02] with a non trivial application for anonymous credentials

with efficient revocation.

In the dynamic scenario we can consider two kinds of participants:

� The manager who has access to the set and is able to update the accumulated

value with some public or private information.

� The user who wants to check for (non)membership in the set. The user knows

the accumulated value along with the public parameters of the scheme.
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The next definition introduces the functionalities involved in a dynamic accumu-

lator.

Definition 18 (Syntax for dynamic accumulators, adapted from [CL02]) Let κ ∈
N be the security parameter. An accumulator scheme Acc consists of the following

algorithms.

� KeyGen(1κ): This probabilistic algorithm takes κ in unary as input and returns

a pair of public and private keys (PK, SK), and the initial accumulated value

for the empty set Acc∅.

� AccVal(X,Acc∅, PK, [SK]): Given a finite set of elements X (of at most poly-

nomial size in κ), a public key PK2 and the initial accumulated value Acc∅, this

algorithm returns the accumulated value AccX corresponding to the set X. De-

pending on the implementation, the secret key SK may also be given as optional

parameter, often to improve the efficiency3.

� Verify(x, π, AccX , PK, [SK]): Given an element x, a witness π, an accumulated

value AccX , and a public key PK (and possibly a secret SK as in the con-

struction by Papamanthou et al. [PTT10]), this deterministic algorithm returns

valid if the verification is successful, meaning that x ∈ X, or ⊥ otherwise. This

algorithm is run by a user.

� WitGen(x,AccX , PK, [SK]): This algorithm returns a witness π associated to

the element x of the set X represented by AccX . If x /∈ X and the accumulator

scheme provides non-membership proofs then returns π, the witness that proves

that x /∈ X. This algorithm is run by the manager.

� AddEle(x,AccX , PK, [SK]): This algorithm computes the new accumulated value

AccX∪{x} obtained after the insertion of x into set X. This algorithm is run by

the manager.

2In previous definitions this public key PK was the index k used to choose a hash function. In
other words, PK describes a CRHF for sets.

3The secret key may also be an optional parameter in the algorithms WitGen, AddEle, DelEle.
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� DelEle(x,AccX , PK, [SK]): This algorithm computes the new accumulated value

AccX\{x} obtained by removing the element x from the accumulated set X. This

algorithm is run by the manager.

� UpdWitGen(X,X ′, PK, [SK]): Suppose the set X is transformed into the set X ′

after several updates (insertions/deletions). The algorithm UpdWitGen returns

the information UpdX,X′ required to update all the witnesses (using the algorithm

UpdWit) of the elements of X that are still in X ′. This algorithm is run by the

manager.

� UpdWit(πx, AccX , AccX′, UpdX,X′ , PK): This algorithm recomputes the witness

πx for some element x that remains in the set X ′. It takes as parameters an

existent witness πx with respect to set X (represented by the accumulated value

AccX), some update information UpdX,X′, and the public key PK. It returns a

new witness π′x for the element x with respect to the new set X ′ represented by

some accumulated value AccX′. This algorithm is run by the user.

The above definition is slightly more general than the one proposed by Camenisch

and Lysyanskaya [CL02], as it does not depend on how these algorithms are imple-

mented, and it explicitly includes the update algorithms UpdWit and UpdWitGen in

the syntax.

Naturally, we say the scheme is correct if every valid witness leads to a successful

verification.

Definition 19 (Correctness) Let X, Y be sets, AccX , AccY their respective associated

accumulated values, PK a public key, SK the corresponding private key, and y ∈ Y .

Let πy a value (witness) that satisfies either

� πy ∈ {WitGen(y, AccY , PK, SK)}, or

� πy ∈ {UpdWit(π′y, UpdX,Y , PK)} with π′y witness of y with respect to AccX ,

and UpdX,Y ∈ {UpdWitGen(X, Y, PK, SK)}.

We say that an accumulator scheme Acc is correct if, and only if,

Verify(y, πy, AccY , PK) = valid, for every such y, πy, X, Y .
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The security of an accumulator scheme is captured by an experiment where the

adversary plays the role of a user and attempts to forge a witness (i.e. find a valid

witness for an element that does not belong to the set) while having access to an oracle

that implements the operations relative to the manager. Such adversary must succeed

with at most negligible probability on the security parameter. This experiment is very

similar to the one used to define the security of digital signatures [GMR88].

Definition 20 (Security for dynamic accumulators [CL02]) Let Acc be a dynamic

accumulator scheme. We consider the notion of security denoted UF−ACC described

by the following experiment: On input the security parameter κ, the adversary A has

access to an oracle OAcc(·) that replies to queries by playing the role of the manager.

Using the oracle, the adversary can insert and delete a polynomial number of ele-

ments of his choice. The oracle OAcc(·) replies with the new accumulated value. The

adversary can also ask for witness computations or update information. Finally, the

adversary is required to output a pair (x, π). The advantage of the adversary A is

defined by:

AdvUF−ACCAcc (A, κ) = Pr [Verify(x, π, AccX , PK) = valid ∧ x /∈ X ]

where PK is the public key generated by KeyGen, and AccX is the accumulated

value of the resulting accumulated set X. The scheme Acc is said to be secure if for

every PPT A we have:

AdvUF−ACCAcc (A, κ) = neg(κ)

Authenticated dictionaries using accumulators. Accumulators can be used

naturally to implement authenticated dictionaries. Here, the manager will be split

in two parts: (1) The Source that will update the accumulated value and possibly

compute some additional value to help compute or update the witnesses, and (2) the

Replica that will compute the witnesses from the state of the data structure and the

values sent by the Source.
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In chapter 4, we show that we can replace the Source by a public broadcast

channel meaning that the Replica can compute all the proofs without any trapdoor.

In other words, we formalize the security and instantiate an authenticated dictionary

that does not rely on any kind of secret.

3.3.2 Constructions

We introduce here the main constructions for cryptographic accumulators.

RSA Accumulators. The concept of cryptographic accumulators was first in-

troduced in [BdM93]. The idea of this construction relies on a quasi-commutative

one-way hash function f that “hashes” an element of the set to be accumulated with

a temporary accumulated value (that corresponds to the elements that have been

accumulated at the moment) into a single value. Then the quasi-commutativity of

the function f guarantees that the accumulated value does not depend on the order

of insertion of the elements. Let us consider for example the set X = {x1, x2, x3, x4}.
In this case, the accumulated value will be

AccX = f(f(f(f(v, x1),x2), x3),x4)

where v is some initial arbitrary value. As the order of insertion of elements does not

change the value Acc, given x2 ∈ X , we can swap the elements x2 and x4 and obtain

AccX = f(f(f(f(v, x1),x4), x3),x2)

Let π = f(f(f(v, x1),x4), x3), we have f(π, x2) = AccX . Our witness for x2 is π

and the algorithm Verify consists in verifying that f(π, x2) = Acc.

As f is a one-way hash function, given Acc and x ∈ X , it has to be difficult

to find πx such that f(πx, x) = Acc with x /∈ X considering that Acc is a random

value. However, in many applications, one-way hash functions are often too weak,

especially for handling the case of an adversary that would carefully select the values

to be accumulated, or equivalently, where Acc is not a random value. To fix this issue,
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Benaloh and de Mare use the random oracle model4: Instead of directly accumulating

the values of the set, the accumulated value is computed from the hash values of

the elements of X . The concrete instantiation of f proposed is the RSA modular

exponentiation: Let p, q be primes, n = pq, the function f is defined by: f(x, y) =

xy mod n. Note that these primes need to be safe, i.e. of the form p = 2r + 1 where

r is also prime, in order to resist to cryptanalytic attacks like Pollard’s p− 1 method

[Pol74].

In this case, f is clearly quasi-commutative. The one-way property of f relies on

the RSA Assumption, although special care must be taken as f is a one-way hash

function and does not necessarily imply that f composed many times is still one-way.

It is worth noting that the knowledge of the factorization of n allows a mali-

cious participant to compute inconsistent witnesses. A solution to keep the factoriza-

tion secret to all parties is to use a generic multi-party secure computation protocol

[GMW87]. Alternatively one can use Sander’s algorithm ([San99]) which returns an

integer n of the form pq, p, q primes with high probability, without revealing the fac-

tors. Lipmaa proposed recently [Lip12] a construction that does not require a trusted

setup and offers similar efficiency (constant-size witness).

Although the security properties of this construction is insufficient to handle dy-

namic sets, Benaloh and de Mare’s idea is a first important step for building accu-

mulators. Upcoming works will improve on this proposal, by adding new properties

and refining the security requirements. That is the case of [BP97] which is described

next.

The problem with the previous construction can be seen better with an example.

Let n = pq an integer where p and q are safe primes. Let f(x, y) = xy mod n and let

X = {2, 3, 5}. Let g
R← Zn. Then Acc = g2×3×5 mod n = g30 mod n. A witness for

5 is π = g6 mod n as π5 = Acc mod n. However, π′ = g5 mod n is a witness for 6

(π′6 = Acc) and so it can be proven that 6 belongs to X . We found a collision. The

fact that elements accumulated are not necessarily primes introduced a trivial flaw in

the scheme. Fixing this flaw is indeed quite simple: We need to accumulate only prime

4For a discussion on the limits of this model and how it can be “well implemented”, the reader
can refer to the work by Canetti et al. [CGH04].
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numbers. This is the idea of Barić and Pfitzmann who manage to strengthen Benaloh

and de Mare’s construction. They prove the security of the scheme without relying

on the random oracle model. To do so, a new (at that time) security assumption was

proposed. This is the Strong RSA Assumption. The Strong RSA Assumption states

that given a random z ∈ Z∗n, it is hard to find non trivial x, y such that yx = z mod n.

Definition 21 (Strong RSA Assumption) For any random integer n = pq, with p, q

safe primes such that |p| = |q| = 1
2
κ, and for every probabilistic polynomial time

algorithm A:

Pr
[

z
R← Z∗n; (x, y)← A(n, z) : yx = z mod n ∧ 1 < x < n

]

< neg(κ)

In the previous definitions the accumulator scheme is static, i.e. the set, once ac-

cumulated cannot evolve. Camenisch and Lysyanskaya showed how Barić and Pfitz-

mann’s construction could be used also to build dynamic accumulators. The idea is

quite simple too: Assuming that the manager is trusted, this one is given the knowl-

edge of the factorization of n = pq. Then, if the current accumulated set is X =

{x1, x2, . . . , xN} and its corresponding accumulated value is Acc = g
∏N

i=1 xi mod n

where g is chosen at random, to compute Accnew as to represent X ∪ {xN+1}, we
only need to raise Acc to power xN+1: Accnew = AccxN+1 mod n. Deletion of an

element xi ∈ X can be implemented efficiently too by the manager who knows

Φ(n) = (p − 1)(q − 1) and can compute x′ = x−1j mod Φ(n) using the extended

euclidean algorithm. We get Accnew = Accx
′
mod n = g(

∏N
i=1 xi)x

−1
j mod n =

g
∏N

i=1,i6=j xi mod n that represents X\{xj}. We can observe that the manager in-

deed needs to be trusted, because it is able to compute inconsistent witnesses for

every x: πx = Accx
−1 mod Φ(n) mod n⇒ πx

x = Accx
−1x mod n = Acc mod n. If x ∈ X ,

then the previous calculus can be used to obtain a (valid) witness efficiently.

An optimization to [CL02] was presented in [TX03] where instead of accumulating

prime numbers, elements to be inserted are composites. We can note that all the

operations (updating the accumulated value, the witnesses, and testing membership)

can be done in time O(1) in function of N , the size of the set.
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The accumulator proposed in [CL02] only implements membership proofs. How-

ever, the construction can be improved to handle non-membership proofs as well.

This was shown by Lie, Lie and Xue in [LLX07]. Membership witnesses are com-

puted as in [BP97, CL02] and the corresponding Verify algorithm remains the same.

The “trick” in proving non-membership is based on the following lemma:

Lemma 1 ([LLX07]) For any integer n, for any u, v ∈ Z∗n and a, b ∈ Z, such that

ua = vb mod n and gcd(a, b) = 1, one can efficiently compute x ∈ Z∗n such that

xa = v mod n.

Proof. As gcd(a, b) = 1, then using the extended euclidean algorithm, it is

possible to efficiently compute c, d ∈ Z such that bd = 1 + ac. Let x = udv−c mod n.

We can verify that xa = (udv−c)a = uadv−ac = vbd−ac = v mod n.

Then, the non-membership witness is defined as the following:

Let X = {x1, . . . , xN} the set to be accumulated and Acc = g
∏N

i=1 xi mod n the

corresponding accumulated value. The non-membership witness for x /∈ X is the

pair w = (a, d) such as Acca = dxg mod n. Computing (a, d) from x and Acc can

be done noting that gcd(u, x) = 1 with u =
∏N

i=1 xi and thus it is possible to find

efficiently a, b such that au + bx = 1. Then set π = (a, g−b). We can verify that

Acca = gua mod n = g1−bx mod n = (g−b)xg mod n.

As in [BP97, CL02] the security of the construction is based on the Strong RSA

Assumption.

Theorem 1 ([LLX07]) Under the Strong RSA Assumption, the construction de-

scribed above is a secure universal accumulator.

Proof. Let us assume there exists an adversary A that can output

X = {x1, . . . , xN} along with x, π1, π2 where x is an element (that belongs or not to

X), π1 is a witness of membership, and π2 is a witness of non-membership. Indeed, if

the adversary is able to find a witness of membership and a witness of non-membership

that works for the same x, that means that one of the witnesses is inconsistent. We

will prove then that the Strong RSA Assumption does not hold. That means given
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g
R← Z∗n, it is possible to build and adversary B which computes efficiently z, x with

1 < x < n such that zx = g mod n. Let u =
∏N

i=1 xi.

Let us suppose x /∈ X . Then gcd(x, u) = 1 (we remind the reader that all the xi

are primes) Moreover, π1 is a witness of membership, i.e. πx
1 = Acc = gu mod n. By

the lemma, it is possible to efficiently compute z such that zx = g mod n.

In the other case, let us consider that x ∈ X . Then π2 = (a, d) in that Acca =

dxg mod n or equivalently gua−1 = dx mod n. As x ∈ X ⇒ x|u, then gcd(au−1, x) = 1

and by the lemma it is possible to efficiently compute z such that zx = g mod n.

The next definition summarizes the algorithms involved in a RSA accumulator.

Construction 2 (RSA Accumulators construction [CL02, LLX07])

� KeyGen(1κ): Generate a safe RSA modulus n = pq where p, q which binary

representation has length κ. Choose a random g ∈ Z∗n. Set Acc = g. Let

Prime : N → P be an efficient map which associates to x ∈ N, the xth prime

number in the set of primes P.

Set PK = (n, g) and SK = (p, q, g).

� AccVal(X,Acc∅, PK, [SK]): Return AccX = g
∏

x∈X Prime(x).

� WitGen(x,AccX , PK, SK):

◦ (Membership)Check that x ∈ X. If this is the case return wx = Acc
1
y

X

where y = Prime(x).

◦ (Non-membership) Let u =
∏

v∈X yv where yv = Prime(v). As x /∈ X we

have that gcd(u, y) = 1 where y = Prime(x). Using the extended euclidean

algorithm, find (a, b) such that au+ by = 1. Then, return π = (a, d) where

d = g−b mod n.

� Verify(x, π, AccX , PK, [SK]): Parse π as (a, d). Let y = Prime(x). Return valid

if, and only if, AccaX = dyg mod n.

� AddEle(x,AccX , PK): Compute y = Prime(x) and return

AccX∪{x} = AccyX mod n.
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� DelEle(x,AccX , PK, SK): Compute y = Prime(x) and return

AccX\{x} = Acc
1
y

X mod n.

� UpdWitGen(X,X ′, PK, [SK]): Let UAdd be the list of elements that were added

between the moment when the set was X and the moment it becomes X ′. Let

UDel be the analog set corresponding to deletions. Return UpdX,X′ = (UAdd, UDel).

� UpdWit(π,AccX , AccX′, UpdX,X′ , PK): Parse UpdX,X′ as (UAdd, UDel). The al-

gorithm to update the witness π relative to element x after the addition of an

element x′ consists in raising π to y′ = Prime(x′). That is πnew = πy′ mod n.

The algorithm to update the witness π relative to element x after the deletion of

an element x′ consists in finding a, b such that ay+by′ = 1 where y′ = Prime(x′)

and y = Prime(x). This is possible as y, y′ are prime and distinct. Then,

πnew = AccaX′w
b mod n is the new witness for x. The update is correct since

πy
new = AccayX′w

by′ = AccayX′Acc
b
X = AccayX′Acc

by′

X′ = AccX′.

As mentioned in [FN02], the time to update a witness after m changes made to the

set is proportional to m for the construction introduced in [CL02]. It is natural to ask

whether this can be improved, that is, if one could update each witness after several

updates using only a value of constant size w.r.t. m. We answer in the negative in

chapter 5.

Constructions based on Collision-Resistant Hash Functions. The other

main type of accumulator is based on collision-resistant hash functions. In [BdM91],

although the concept of accumulator was not yet formulated, Benaloh and de Mare

proposed a hash-based linking scheme, also called Merkle trees [Mer87], that allows

to prove a given document (that is, an element) belongs to a given time-round (set).

This scheme solves the practical problem of time-stamping. The idea is to build a

binary tree where the leaves are the documents, and where internal nodes values are

computed recursively taking the hash of both children. The root value of the tree

represents the time-round value, and can be used to prove a document has been time-

stamped to this instant of time by giving a log-size sub-tree of the round tree. This

sub-tree clearly takes the role of the witness, and the root value can be considered
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as the accumulated value. In [LBLV98] an accumulator based on CRHF but with an

additional property is presented: It allows comparing the order of insertions of the

elements in the set.

In [CHKO08] (see chapter 4), we take this idea of using binary trees and hash

functions and we extend it to build an accumulator where the manager need not to

be trusted.

Pairing based constructions. The first pairing based construction for accu-

mulators was proposed by Nguyen [Ngu05]. This construction relies on the N -SDH

assumption. Nguyen’s construction has shown to be useful beyond its applications

to ring signatures and anonymous credentials. In particular it is a building block for

improving the efficiency of zero-knowledge sets [CFM08] or implementing short com-

mitments for polynomials [KZG10]. We use a similar idea in our fair exchange protocol

(see chapter 7). The idea of the construction is to represent X = {x1, x2, . . . , xN} ∈ Z∗p
by the polynomial PX(s) =

∏N
i=1(xi + s) where s is the trapdoor of the scheme. In

order to “hide” the secret, the polynomial is put in the exponent and the accumu-

lated value is set to AccX = gPX(s). A witness for an element x corresponds to the

polynomial PX(s)/(x+ s), that is πx = Acc
1

x+s

X . To compute such a witness without

knowing the trapdoor s, the N -SDH tuple (g, gs, gs
2
, . . . , gs

N
) is published. Then,

the computation of the formal polynomial PX(Y ) =
∏N

i=1(xi + Y ) =
∑N

i=1 aiY
i, in

the exponent can be performed if, and only if, (x + s)|PX(s), which means x ∈ X .

Checking that an element x ∈ X is done by taking advantage of the bilinear property

of e(·, ·) that allows to multiply the exponents once: That is x ∈ X if, and only if,

e(πx, g
(x+s)) = e(AccX , g).

The non-membership functionality was introduced in [DT08, ATSM09] and is

based on the dual idea that if an element y /∈ X , then there exist polynomials Z and

U with U 6= 0 such that PX(Y ) = (y + s)V (s) + U(s). Again, such polynomials can

be computed with the public parameters. Formally we have:

Construction 3 (Nguyen’s accumulator [Ngu05, DT08, ATSM09])

� KeyGen(1κ, N): Returns a pairing tuple (p,G,GT , e, g)← BMGen(1κ). Let s
R←

Z be the trapdoor of the scheme from which the public N-SDH tuple can be
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derived: (g, gs, gs
2
, . . . , gs

N
). N is an upper bound on the size of the set. The

initial accumulated value is defined simply as Acc∅ = g. The public key is defined

as PK =< (p,G,GT , e), (g, g
s, gs

2
, . . . , gs

N
) >.

� AccVal(X,Acc∅, PK): Given a finite set of elements X where |X| ≤ N , and the

public parameter PK return AccX = gPX(s) = g
∏

x∈X(x+s).

� WitGen(x,AccX , PK):

◦ Membership: Compute using the formal polynomial PX(Y ) the formal poly-

nomial W̄ (Y ) = PX(Y )/(x+ Y ). Then return π = g
PX(s)

x+s .

◦ Non-membership: If y /∈ X:

∗ Compute uy = −PX(y) mod p = −∏

x∈X(x− y)

∗ Compute wy = g
PX(s)−PX (y)

y+s

Return π̄ = (uy, wy).

� Verify(x, π, AccX , PK):

◦ Membership: Return valid if, and only if, e(π, g(x+s)) = e(AccX , g).

◦ Non-membership: Parse π as (wy, uy) return valid if, and only if,

e(wy, g
y · gs) = e(AccX · guy , g) and uy 6= 0.

� AddEle(x,AccX , PK): The new accumulated value AccX∪{x} = Acc
(x+s)
X .

� DelEle(x,AccX , PK): The new accumulated value AccX\{x} = Acc
1

(x+s)

X .

The security of the construction (according to definition 20) relies on the N -SDH

assumption.

Theorem 2 ([Ngu05]) If the N-SDH assumption holds, then Nguyen’s accumulator

is secure.
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Proof. (Membership) Assume the adversary A finds a set X = {x1, . . . , xl},
l ≤ N , an element y /∈ X and π such that e(π, y) = e(AccX , g). As y /∈ X , we have

that PX(s) = Q(s) · (y + s) + R(s) where Q,R are polynomials and R(s) 6= 0. This

means g
PX(s)

(y+s) = π = gQ(s)+
R(s)
(y+s) . As Q and R are computable from the public data,

the Adversary A can deduce g
1

(y+s) .

(Non-membership) Similarly, assume that the adversary A finds a set

X = {x1, . . . , xl}, and element y ∈ X and a witness of non-membership π̄ = (wy, uy)

such that uy 6= 0. We have w
(y+s)
y = gPX(s)+uy (i). Given that y ∈ X we also have

gQ(s)(y+s) = gPX(s) (ii) for some computable polynomial Q. From (i) and (ii) we can

deduce wy = gQ(s)+
uy

(y+s) . From this equation the Adversary can compute g
1

(y+s) .

In [CKS09], Camenisch et al. introduced another dynamic accumulator which like

Nguyen’s construction, is based on bilinear maps. The advantage of Camenisch et al.’s

construction is that the cost to update a witness, even though still linear in the size of

the set, now depends on the number of group multiplications instead of the number

of group exponentiations. The security of their construction relies on the N -Diffie-

Hellman Exponent assumption (N -DHE [BBG05]). Though based on a different

assumption and used to solve a different problem, in chapter 6, we introduced a

CRHF that has some similarities to Camenisch et al. construction: Indeed in both

cases, the bilinear map is used to “shift the data structure by a given number of

positions in the exponent”.

Definition 22 (N-DHE assumption [BBG05]) Let A be any PPT algorithm, let

s
R← Z∗p and let gi = gs

i
, i ∈ [0..2N ]. Assume the adversary is given

(g, g1, . . . , gN , gN+2, . . . , g2N). Then we have:

Pr [A(1κ, (g, g1, . . . , gN , gN+2, . . . , g2N)) = gN+1 ] < neg(κ)

There are two main ideas in Camenisch et al.’s construction:

� First all elements of the set are bound to points in {gi, 1 ≤ i ≤ N + 1} using
signed messages of the form x||i. Note that this implies that N is a bound on

the number of possible insertions made to the set which may be bigger than the

size of the set itself.
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� The manager keeps track of the set of indexes i ∈ [N ] that are turned on. That

is, if x is bent to some gi, then i has to be considered. In this case the values

of the accumulated set are in a small universe {1, . . . , N}.

Construction 4 (Camenisch et al.’s construction [CKS09])

� KeyGen(1κ, N): Generate a pairing tuple (p,G,GT , e, g)← BMGen(1κ). s
R← Z

is the trapdoor of the scheme from which the public N-DHE tuple can be derived:

(g, g1, g2, . . . , gN−1, gN+1, . . . , q2N) with ∀i ∈ {0, . . . , 2N}\{N} : gi = gs
i
where

N is an upper bound on number of insertions into the set. The initial accumu-

lated value is defined simply as Acc∅ = 1G. Generate a pair of public/private

keys (pk, sk) for a standard secure signature scheme. Set z = e(gN+1, g) =

e(gN , g1). The public parameter PK is defined as

PK = ((p,G,GT , e), (g, g1, g2, . . . , gq, gN+2, . . . , q2N ), z, pk)

Here the universe is the set {1, . . . , N}. That is the accumulated set X will be

such that X ⊆ {1, . . . , N}.

� AccVal(X,Acc∅, PK): Given a finite set of elements X where |X| ≤ N and the

public parameter PK return AccX =
∏

v∈X gN+1−v.

� WitGen(x,AccX , PK):

(Membership)5 Compute wi =
∏j 6=i

j∈X gN+1−j+i where i is the index associated

with x. Then return πx = (wi, σx) where σx = SSig(sk,Mx) with Mx = x||i.

� Verify(x, π, AccX , PK): (Membership): Parse π as (wi, σx) Check if σx is a valid

signature that binds x to the position i. Then check if e(gi,AccX)
e(g,wi)

= z.

� AddEle(x,AccX , PK): Choose a slot i that is free, compute the signature of

the message that binds x and position is that is σx = SSig(sk, x||i), Update

the accumulated value: AccX∪{i} = AccX · gN+1−i Compute the current witness

relative to i: wi =
∏j 6=i

j∈X gN+1−j+i

5Non-membership proofs are not described in this work.
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� DelEle(x,AccX , PK): 6 The new accumulated value is AccX\{i} = AccX/gN+1−i

where i is the index associated to x.

Correctness : Let AccX =
∏

j∈X gN+1−j be the accumulated value. For each i ∈ X ,

the (updated witness) is πi = (wi, σx, x) with wi =
∏j 6=i

j∈X gN+1−j+i. Then,

e(gi, AccX)

e(g, wi)
=

e(g, g)
∑

j∈X sN+1−j+i

e(g, g)
∑j 6=i

j∈X sN+1−j+i
= e(g, g)s

N+1

= z

Theorem 3 ([CKS09]) Under the N-DHE assumption the Camenisch et al.’s accu-

mulator is secure.

Proof. (Sketch) Let A be the adversary that breaks the security of the accumu-

lator. Let X be the set of accumulated indexes and π = (wi, σi, ĝi) be the witness of

the forgery. If ĝi 6= gi then we obtained a forgery for the signature scheme. In the

other case we have e(g, AccX) = e(g, wi)z = e(g, wi) · e(g, gN+1) from which we can

deduce e(g,
∏

j∈X gn+1−j+i) = e(g, wi · gN+1). Finally

gN+1 =

∏

i∈X gN+1−j+1

wi

Combinatorial accumulators [Nyb96b, YSL08]. Another technique to design

cryptographic accumulators was proposed by Nyberg in [Nyb96b]. This construction

considers an accumulator that does not require witness (that is the element, along

with the accumulated value is enough for (non)membership testing), and does not

rely on trapdoor either. On the flip side, the accumulated value has linear size in

|X|, the size of the accumulated set and it is not possible to perform deletions (only

insertions).

The idea is the following. Let ⊕ denote the xor operator for bit-strings, that is

x⊕ y = z where ∀i, i ∈ [|x|] : zi = xi ⊕ yi. To insert x a value into the accumulator,

compute its hash value y = H(x). Then consider y as bit string containing r blocks

6The authors of [CKS09] do not mention a DelEle algorithm, but instead they refer to an update
algorithm for the witnesses. The formulation presented here, however, is equivalent.
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of d bits. Compute a new hash value b of length r such that if the ith block of y is

equal to 0d then b[i] = 0 else b[i] = 1. Then compute AccX ⊕ b to obtain the new

accumulated value AccX∪b. To check that x ∈ X , we compute b = f(H(x)) and check

against the accumulated value that if b[i] = 0, then also that AccX [i] = 0 to accept

(x ∈ X) If not, it is rejected.

Construction 5 (Nyberg’s accumulator [Nyb96b])

� KeyGen(1κ): Choose a random function H : {0, 1}∗ → {0, 1}l, from a collision

resistant hash function family H. Assume N = 2d is an upper bound on the size

of the set X. W.l.o.g. we consider that l = rd for some r ∈ N.

Let f : {0, 1}l → {0, 1}r be the function that given a bit-string y[0..l − 1] com-

putes the bit string b[0..r − 1] where ∀i : 0 ≤ i < r:

◦ If y[id..(id+ d− 1)] = 0d then b[i] = 0,

◦ otherwise b[i] = 1.

� AccVal(X): Return ⊕x∈Xf(H(x)).

� Verify(x,AccX): Compute bx = f(H(x)).

Return valid if, and only if, ∀i : bx[i] = 0⇒ AccX [i] = 0.

Note that if x ∈ X, then we always have Verify(x,AccX) = valid. If x /∈ X,

there is some probability that Verify(x,AccX) = valid also (false positive).

� AddEle(x,AccX , PK, [SK]): Return AccX∪{x} = AccX ⊕ f(H(x)).

This construction brings some similarities with Bloom filters [Blo70] where mem-

bership can be efficiently tested, allowing some false positives for which their rate is

related to the size of the index. In Bloom filters, there is a tradeoff between error rate

and space occupied by the index: the bigger the space, the lower the error rate. We

can see that the security of Nyberg’s construction also relies on this tradeoff between

space and error rate.
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Theorem 4 ([Nyb96b]) Let bij and cj be independent binary random variables such

that Pr [ bij = 0 ] = Pr [ (cj = 0) ] = 2−d, for 1 ≤ i ≤ m and 1 ≤ j ≤ r. Let a =

(a1, . . . , ar) = ⊕m
i=1bi where bi = (bi1, . . . , bir). Then we have that ∀j : 1 ≤ j ≤ r:

Pr [ cj = 0⇔ aj = 0 ] = (1− 2−d(1− 2−d)m)r

Proof. For each j, 1 ≤ j ≤ r we have Pr [ cj = 0 ∧ aj = 1 ] = 2−d(1− 2d)m.

Assuming that H behaves as a random oracle, if we set m = N , the probability

of producing a forgery is such that Pforgery = Pr [x /∈ X ∧ Verify(x,AccX) = valid ] ≤
(1− 2−d(1− 2−d)N)r, and because N = 2d, it can be rewritten as

Pforgery ≤ (1− 1

N
(1− 1

N
)N)r ≈ (1− 1

eN
)r ≈ e

−r
eN

If we want to bound the probability of forgery by 2−κ, then we must set l = N logNκe
log e

as l = rd and N = 2d. Thus, the main problem of Nyberg’s construction is that the

size of the output of the hash function H is O(κN logN) and yields to an accumulated

value of size linear in κN . Note however that the trivial solution to authenticate the

set by signing each element would require κN logN bits, as pointers would be needed

to map the signatures to their respective elements.

If we replace e by its numeric value we obtain Pforgery ≈ 0.69
−r
N . In [YSL08], the

authors improve this bound to Pforgery ≈ 0.62
−r
N by using the following idea: Instead

of setting bx[i] = 0 with probability 2−d they choose some random i and set bx[i] = 0

with some probability α. They repeat the operation k times. So now the function f

is parametrized by k and α. Finally, by setting suitable values for α and k, one can

minimize the probability of forgery. The intuition behind this construction is that in

Nyberg’s construction, if an element has low hamming weight (many zeros), then the

probability of forgery increases. In [YSL08], the minimum Hamming weight of the

outputs of f can be controlled.
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3.4 Transitive Signatures

In this section we consider a graph that is also signed by a Source and we need

to enable an efficient mechanism to convince a Client that there is a path between

two nodes. Note that a trivial solution can be implemented by simply concatenating

standard signatures where the message is an edge. In this case the size of a signature

grows linearly with the length of the path and may reach O(Nκ) bits. Another trivial

solution consists in signing every path in the graph. This leads to small signatures,

but the work of the Source may become prohibitive for large N : O(N2) signature

computations.

3.4.1 Undirected Graphs

Transitive signatures is a primitive introduced by Micali and Rivest [MR02] which

aims to solve the problem mentioned above. The main property of such scheme is

that, given the signatures of edges (a, b) and (b, c), it is possible to compute - without

the knowledge of the secret - a signature for the edge (a, c). The operational model

for transitive signatures is similar to the one of authenticated dictionaries. There is

a signer who signs edges of the graph. The signer is the equivalent of the Source.

Then a combiner (playing a similar role as the Replica) will compute signatures

for paths without the help of the signer (that is only using public information).

Finally, a verifier (who would be the Client) will try to check the validity of path

signatures computed by the combiner. In their work [MR02], the authors propose

an efficient scheme to sign undirected graphs based on the difficulty of computing

discrete logarithm for large groups. Here we sketch out the construction. We use a

group G of order p and g, h, two random generators where the discrete logarithm of

h in base g is only known to the signer. To create a new vertex vi, the signer selects

xi, yi
R← Zp and sets vi = gxihyi. Then a message “vi represents the ith vertex of the

graph” is signed using a standard digital signature scheme. To sign an edge (i, j) that

is between the ith and jth vertex, the signer publishes (without signing) the following

quadruple: τ(i,j) = (i, j, αij, βij) where αij = xi−xj mod p and βij = yi−yj mod p. In

order to verify that there is an edge between vertices i, j the verifier will check that
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vi = vjg
αijhβij . Now, given a signature for edge (i, j) and a signature for edge (j, k),

the combiner can obtain the signature for the (composed) edge (i, k) as follows:

1. From τ(i,j) = (i, j, αij , βij) and τ(j,k) = (j, k, αjk, βjk), compute αik = αij−αjk =

xi − xk mod p and βik = βij − βjk = yi − yk mod p.

2. Return τ(i,k) = (i, k, αik, βik).

We can observe that this scheme is such that given a signature for an edge (a, b),

it is easy to obtain a signature for the edge (b, a), as αba = −αab and βba = −βab. This

means that this construction only works for undirected graphs. The authors left the

existence of a transitive signature scheme for directed graph (DTS) as a challenging

open question.

We next offer the syntax of a transitive signature scheme.

Definition 23 (Transitive Signature Scheme, [MR02, Nev08])

A transitive signature scheme is a tuple TS = (TSKG,TSign,TSComp,TSVf) where:

� TSKG(1κ) : returns a pair of private and public keys (tsk, tpk).

� TSign(tsk, a, b) : returns the signature τ(a,b) of edge (a, b).

� TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): returns a combined signature τ(a,c) on edge

(a, c). Note that the secret key is not required.

� TSVf((a, b), τ, tpk) : returns valid if τ is a valid signature for the path (a, b) and

⊥ otherwise.

A transitive signature scheme is correct if both original signatures (those gener-

ated honestly with TSign) and combined signatures (those generated honestly with

TSComp) do verify correctly with TSVf. Intuitively, a transitive signature scheme is

secure if, for any PPT adversary, it is infeasible to compute a signature for a path

outside the transitive closure of the graph G.

Definition 24 (Security of Transitive Signature Schemes, [MR02, Nev08]) Let TS be

a transitive signature scheme. Consider the following experiment. A PPT adversary
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A is given the public key tpk of the scheme. A may ask for a polynomial number of

edge signatures to the oracle OTSign(·). Finally A outputs (a, b) and τ where a, b are

nodes in the graph G formed by the successive validly signed edges. The advantage of

A is defined by:

AdvUF−T STS (A, κ) = Pr

[

(a, b) /∈ G∗∧
TSVf((a, b), τ, tpk) = valid

]

The scheme is said to be secure if we have AdvUF−T STS (A, κ) = neg(κ) for any PPT

adversary A.

Bellare and Neven in [BN05], as well as Shahandashti et al. in [SSM05], introduced

new schemes based on bilinear maps (but still for undirected graphs). Hohenberger

[Hoh03], showed that the existence of DTS implies the existence of abelian groups, for

which inversion is computationally infeasible, except when given a trapdoor. Such

groups are not known to exist either. Transitive signatures are a special case of

homomorphic signatures, a primitive introduced by Rivest and explored in [JMSW02,

BFKW09, BF11].

3.4.2 Directed Trees

The easier problem of transitive signatures for directed trees, TSDT, was first addressed

by Yi [Yi07]. Solutions for this case, even though it is a special kind of directed

graph, are still interesting in practice. For example they allow to implement efficient

military chains of command where the presence of a path between a and b means b

must execute orders of a. Yi’s construction, based on a special assumption for the

RSA cryptosystem, yields signatures of size roughly N log(N logN) bits, where N is

the number of nodes of the tree. Neven [Nev08], described a simpler solution based

only on the existence of standard digital signatures which reduces signature size to

N logN bits.

Note that Yi’s [Yi07] as well as Neven’s solutions are clearly better than the trivial

construction. We remark that both solutions need to maintain the state of the tree

to compute new edge signatures (as opposed to the initial definition [MR02]). In
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[Xu09], a stateless TSDT scheme with constant size signature is proposed, but without

security proof. In the following we show how we can improve Neven’s construction

using cryptographic accumulators in order to reduce the size of a signature from

N logN bits to O(κ) bits.

Transitive signature for directed trees using accumulators. We first

recall Neven’s signature scheme for directed trees. In [Nev08], Neven observes that

if the tree is such that the root r remains unchanged, then a trivial solution to

authenticate a path in the tree can be implemented simply by storing (and signing,

using a standard signature scheme) in each node j the nodes on the path from r to

j. Each of these lists will be at most N logN bits long. Thus, the signature for a

path will be N logN + κ bits long, κ being number of bits of the standard signature.

Verifying there is a path from i to j will consist of checking that i appears in the list

of ancestors of j and that the signature of this list is valid. In order to enable the

tree to grow, not only at the bottom, but also at the top (that is allowing changing

the root), Neven introduces two lists for each node: one list for the ancestors and

one list for the descendants. Using only a constant number of verifications for these

lists, this improvement is enough to let the tree grow in both directions while keeping

signatures of size O(N logN) bits.

Construction 6 (Neven’s scheme [Nev08])

� TSKG(1κ) : Returns a pair of private/public keys (tsk, tpk) for a standard digital

signature scheme.

� TSign(tsk, a, b) : The state of the tree is maintained by its description as a graph

G = (V,E), the current root r and two tables up[·] and down[·] To sign a new

edge we distinguish between the following cases:

1. V = ∅:
r ← a;V ← V ∪ {a, b};E ← E ∪ {(a, b)}
up[a]← ǫ; down[b]← ǫ; down[a] = b; up[b]← a
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2. a ∈ V and b /∈ V :

V ← V ∪ {b};E ← E ∪ {(a, b)}
up[b]← up[a]||a; down[b]← ǫ

3. a /∈ V and b = r:

r ← a;V ← V ∪ {b};E ← E ∪ {(a, b)}
up[a]← ǫ; down[a]← b||down[b]

In all other cases the signer rejects because the query does not preserve the

tree structure of the graph. The signer sets Ca ← (a, down[a]) and Cb ←
(b, up[b]), and computes two standard signatures σa = SSig(tsk, Ca) and σb ←
SSig(tsk, Cb). The transitive signature for the edge (a, b) is the tuple τ(a,b) ←
(Ca, σa, Cb, σb).

� TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): Parse τ(a,b) as (Ca, σa, Cb, σb) and τ(b,c) as

(Cb′, σb′ , Cc, σc). If b 6= b′, reject. Otherwise, return the composed signature for

edge (a, c) as τ(a,c) ← (Ca, σa, Cc, σc).

� TSVf((a, b), τ, tpk) : Parse τ as (Ca, σa, Cb, σb), and parse Ca as (a, down) and

Cb as (b, up). If SVf(tpk, σa) = ⊥ or SVf(tpk, σb) = ⊥ return ⊥. If b occurs in

down or a occurs in up or there exists some c that occurs both in down and up

then return valid else return ⊥.

The idea to shrink the size of edge signatures for Neven’s scheme is simply to

maintain an accumulator for each list up[·] and down[·]. The accumulated values are

signed using a standard signature scheme, and the combiner can convince a verifier

that a vertex belongs to some list by computing the appropriate witness. Using for

example one of the schemes introduced in [CL02, Ngu05, CKS09] the edge signature

will have constant size. Note that, compared to Definition 18, we modified the pa-

rameters for the WitGen algorithm: The combiner has no access to the private key

SK of the accumulator scheme and thus must rely on the list to compute the witness.

In Chapter 4, we explore more in details this case where the witness is computed by
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a non-trusted participant like the combiner. Without the private key SK the witness

can be computed in linear time in the size of the list. We describe Neven’s scheme

with accumulators.

Construction 7 (Neven’s scheme [Nev08] using accumulators)

� TSKG(1κ) : Returns a pair of private/public keys (tsk, tpk) for a standard digital

signature scheme SSig, and a pair of public and private keys (PK, SK) for the

accumulator scheme Acc as well. The accumulator value for the empty set is

denoted by Acc∅.

� TSign(tsk, a, b) : The state of the tree is maintained by its description as a graph

G = (V,E), the current root r and two tables up[·] and down[·]. In the following,

AccN,dir where N is a node and dir ∈ {up, down}, will denote the accumulated

value associated to the list of descendants (dir = down) and ancestors dir = up

for a node N.

To sign a new edge we distinguish between the following cases:

1. V = ∅:
r ← a;V ← V ∪ {a, b};E ← E ∪ {(a, b)}
up[a]← ǫ; down[b]← ǫ; down[a] = b; up[b]← a

The accumulated values are computed as follows:

◦ Acca,up ← Acc∅

◦ Acca,down ← AccVal({b}, Acc∅, PK)

◦ Accb,up ← AccVal({a}, Acc∅, PK)

◦ Accb,down ← Acc∅

2. a ∈ V and b /∈ V :

V ← V ∪ {b};E ← E ∪ {(a, b)}
up[b]← up[a]||a; down[b]← ǫ

The accumulator values are computed as follows:
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◦ Accb,up ← AddEle(a, Acca,up, PK)

◦ Accb,down ← Acc∅

3. a /∈ V and b = r:

r ← a;V ← V ∪ {b};E ← E ∪ {(a, b)}
up[a]← ǫ; down[a]← b||down[b]

The accumulator values are updated as follows:

◦ Acca,up ← Acc∅

◦ Acca,down ← AddEle(b, Accb,down, PK)

In all other cases the signer rejects because the query does not preserve the

tree structure of the graph. The signer sets Ca ← (a, Acca,down) and Cb ←
(b, Accb,up), and computes two standard signatures σa = SSig(tsk, Ca) and σb ←
SSig(tsk, Cb). Then, one of the following case occurs:

◦ a ∈ up[b]. In this case compute π = (a,WitGen(a, up[b], Accb,up, PK), Nil).

◦ b ∈ down[a]. In this case compute

π = (b,WitGen(b, down[a], Acca,down, PK), Nil).

◦ There exists c such that c ∈ down[a] and c ∈ up[b]. In this case, compute

π = (c,WitGen(c, down[a], Acca,down, PK),WitGen(c, up[b], Accb,up, PK)).

The transitive signature for the edge (a, b) is the tuple τ(a,b) ← (Ca, σa, Cb, σb, π).

� TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): Parse τ(a,b) as (Ca, σa, Cb, σb, π1) and τ(b,c)

as

(Cb′, σb′ , Cc, σc, π2). If b 6= b′, reject. Otherwise, return the composed signature

for edge (a, c) as τ(a,c) ← (Ca, σa, Cc, σc, π), where π is computed as in algorithm

TSign 7.

7Note that in this scheme the algorithm TSComp, run by the combiner , is stateful as algorithm
TSign. This means that the combiner cannot compose edge signatures without knowing the state
contrary to Neven’s construction [Nev08]. Despite this strong restriction, the scheme is still useful
because the private key of the signer is not required by the combiner. This means that the work
of combining edge signatures can be outsourced without exposing the private key. We will face a
similar limitation in Chapter 6.
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� TSVf((a, b), τ, tpk) : Parse τ as (Ca, σa, Cb, σb, π), and parse Ca as (a, Acca,down),

Cb as (b, Accb,up) and π as (w1, w2, w3). If SVf(tpk, σa) = ⊥ or SVf(tpk, σb) = ⊥
return ⊥.

If w3 = Nil then consider the following cases:

◦ w1 = a: return valid if, and only if, Verify(a, w2, Accb,up, PK) = valid.

◦ w1 = b: return valid if, and only if, Verify(b, w2, Acca,down, PK) = valid.

If w3 6= Nil then return valid if, and only if, Verify(w1, w2, Acca,down, PK) =

valid

and Verify(w1, w3, Accb,up, PK) = valid.

Return ⊥ otherwise.

Proposition 3 The transitive signature scheme for directed trees described above is

secure assuming that the standard digital signature scheme SSig and the accumulator

scheme Acc are secure. Moreover the size of an edge signature is O(κ), and the time

to compute a signature for an edge – whether directly or by composition – is O(N),

where N is the size of the tree.

Proof. Assume there exists an adversary A that breaks the security of the tran-

sitive signature scheme. We build the following adversary B that breaks the security

of SSig or Acc. Adversary B has access to the signing oracle OSSig(·) and the accu-

mulator oracle OAcc(·). Clearly adversary B can simulate the signer for the transitive

signature scheme.

As adversary A wins, this means that it is able to output τ(x,y) that passes suc-

cessfully TSVf but such that there is no path from x to y in the directed tree. Let

τ = (Cx, σ
∗
x, Cy, σ

∗
y , π), where Cx = (x,Acc∗x), Cy = (y, Acc∗y). As the verification

procedure passes this means in particular that σ∗x and σ∗y are valid signatures on Cx

and Cy respectively. If Cx or Cy was not produced by the simulator B, then B found

a forgery for the signature scheme SSig. Henceforth we assume that Cx and Cy have

been produced by B and thus are consistent with the directed tree T formed by the

successive queries of adversary A. Note that Cx and Cy may correspond to some
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older state of the directed tree. This is not an issue as the graph we consider can only

grow. In other words, if (x, y) is not a path in the last state of T , then (x, y) will not

be a path in some previous version of the tree either.

Moreover, τ(x,y) is a forgery, thus these three conditions are true.

� x /∈ up[y],

� y /∈ down[x], and

� there is no z such that z ∈ down[x] and z ∈ up[y].

As the verification passes, this means that π = (w1, w2, w3) is a forgery relative

to the accumulated value for the lists down[x] or up[y]. More precisely we have the

following two cases:

� w3 = Nil. Then either w2 is a valid witness of membership for w1 = x in the

set represented by Acc∗y or w2 is a valid witness of membership for w1 = y in

the set represented by Acc∗x.

� w3 6= Nil. In this case w2 is a valid witness of membership for w1 = z in the

set represented by Acc∗x and w3 is a valid witness of membership for w1 = z in

the set represented by Acc∗y.

In each of the previous cases, B has broken the security of the accumulator scheme

Acc. The time to compute a signature for an edge is bounded by the time to compute

the witness for a list of nodes that has at most size O(N). Thus, computing edge

signature requires at most O(N) cryptographic operations.

In Chapter 6 we will show that we can obtain signatures of the same size, but

with fewer cryptographic operations, that is O(N
κ
) instead of O(N).

3.4.3 Optimal Data Authentication from Directed Transitive

Signatures

In this section we show how to build an optimal authenticated dictionary (OAD) from

a directed transitive signature scheme DTS.
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Theorem 5 ([Cam11]) DTS⇒ OAD

Related work. In [PTT10] it is shown that multi-linear forms [BS02] can be used

to build an optimal dictionary in the two-party model. As no concrete implementation

for multi-linear forms is known to the date, an impossibility result for an OAD in the

two-party model would invalidate the complexity assumption for multi-linear forms

which was proposed in [PTT10].

Optimal Authenticated Dictionaries. We need now to define what the ex-

pression optimal authenticated dictionary means. The intuition is simply that the

time to perform an operation in an optimal authenticated dictionary should not be

much larger than the time required to run a non-authenticated dictionary. However,

precision is required as the size of an authenticated dictionary is related to the secu-

rity parameter, that is N ≤ q(κ), where N is the size of the authenticated dictionary

and q(·) is a polynomial.

Our definition for authenticated dictionary differs slightly from the one of [PTT10]

because it explicitly mentions the security parameter κ and allows KeyGen algorithm

to run in polynomial time in N . However both definitions are, in essence, equivalent.

Definition 25 Let N be the size of the dictionary. An authenticated dictionary

AuthDict scheme is optimal if and only if:

� It is correct and secure under definitions 9 and 10 respectively.

� There exist two polynomials m(·), l(·) such that:

◦ KeyGen runs in O(m(κ) · l(N)) time.

◦ Verify runs in O(m(κ)) time and the proof π has size O(κ) = O(1) w.r.t

N .

◦ ProofGen runs in O(m(κ) · log(N)) time, and involves at most O(logN)

accesses to the dictionary.

◦ Update runs in O(m(κ) · log(N)), and involves at most O(logN) accesses

to the dictionary.
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Let us comment and justify the definition. As N ≤ q(κ), for some polynomial

q(·), an authenticated data structure will be slower than the un-authenticated data

structure only by a factor of m(κ) which is fixed and does not depend on N . Moreover

the number of accesses to the dictionary will remain the same. In practice, m(κ) is the

time to perform some cryptographic operation (hash, signature,...), so it is reasonable

to consider that m(κ) ≪ N . Note that the trivial construction like the Merkle tree

of [MRK03] does not fit this definition. The reason is that although the algorithms

Verify,ProofGen,Update require O(m(κ)) time where m(κ) = κ2, the size of the proof

is O(κ2) = ω(κ) and the number of accesses to the data structure to compute a proof

is O(κ) = ω(log(N)).

Our construction. The idea of our construction (see Figure 3.2) is to build a

balanced binary tree of N = 2d leaves, where each leaf Li : 0 ≤ i ≤ N − 1 will store

the value D[i] of the dictionary. The edges will be signed by the DTS scheme and the

root Rh will “represent” D at some point of time h. To perform an update for the

index j, which corresponds to the leaf Lh
j (that is the leaf at position j reachable from

root Rh) a new root Rh+1 is created. Along with this new root, a parallel path P h+1

to the path P h = Rh
[b0b1...bd−1]

(i.e. the path from the old root Rh to the leaf Lh
j ) is

created. That is P h+1 = Rh+1
[c0c1...cd−1]

where ∀i : 0 ≤ i ≤ d− 1 : ci = bi.

Each internal node in P h+1 is assigned a random label and the leaf Rh+1
c0c1...cd

= Lh+1
j

will contain the new value v such that D[j] = v. Then, this new path will be linked

to the other nodes of the previous tree to maintain consistency of the dictionary, in

the sense that, except for the index k = j, all the leaves Lh
k must remain reachable

from the new root Rh+1. This is done by connecting each internal node of the new

path to the corresponding sibling of the node belonging to the old path. Again,

every new edge is signed using a transitive signature scheme. So now, proving that

D[i] = v is equivalent to exhibiting a signature for the path from the current root

Rh+1 to a leaf Lh+1
i such that its internal value, val(Lh+1

i ) is equal to v. We can then

note that the time to update the balanced binary tree requires O(logN) signature

computations and the proof consists only in a single signature of a path. The security

of the construction is based on the fact that the only directed path from a root Rh to

58



R1

R1
0

R1
00

R1
000 R1

001

R1
01

R1
010 R1

011

R1
1

R1
10

R1
100 R1

101

R1
11

R1
110 R1

111

D[0] = val(R1
000)

D[1] = val(R1
001)

D[2] = val(R1
010)

D[3] = val(R1
011)

D[4] = val(R1
100)

D[5] = val(R1
101)

D[6] = val(R1
110)

D[7] = val(R1
111)

R2

R1
0

R1
00

R1
000 R1

001

R1
01

R1
010 R1

011

R2
1

R2
10

R1
100 R2

101

R1
11

R1
110 R1

111

D[0] = val(R1
000)

D[1] = val(R1
001)

D[2] = val(R1
010)

D[3] = val(R1
011)

D[4] = val(R1
100)

D[5] = val(R2
101)

D[6] = val(R1
110)

D[7] = val(R1
111)

Figure 3.2: Update of the dictionary D using a DTS scheme. The tree at the
top represents the state of the dictionary at time h = 1. In order to set D[5] = v
we build a new tree (at the bottom) that will represent the state of the dictionary
at time h = 2. We first create a new root R2 and then a path (boxed nodes)
(R2, R2

1, R
2
10, R

2
101) which will replace the old path (R1, R1

1, R
1
10, R

1
101). Node R2

101

is a leaf that will host the new value of the dictionary in position 5 = (101)2. This
means that D[5] = val(R2

101) = v. In order to keep all the others leaves reachable
from the new root R2, it is necessary to create (and sign) the edges between the nodes
of the new path (in boxes) and its siblings (nodes underlined). Thus the new edges
are (R2, R2

1), (R2, R
1
0), (R

2
1, R

2
10), (R

2
1, R

1
11), (R

2
10, R

2
101), (R

2
10, R

1
100).
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a given leaf Lh
i will always correspond to the current value of the dictionary at time

h and index i.

In the following, we consider a graph where each node N is assigned a label ℓ(N).

This graph is the union of balanced binary trees such that:

� The label of an internal node N is ℓ(N) = (pos, r) where pos refers to the position

of the node and r is a random value. The position of the node is encoded by a

sequence of bits b0b1 . . . bl that represents the path from the root to the node N

as described in Section 2.1. In the following we will denote the node N by Npos.

� The label of a leaf L is set to ℓ(L) = (i, v, r). Value i corresponds to the position

of the leaf L at the last level starting from the left. If we consider the position

pos of a node mentioned above, we have that i = (pos)2. In the following we

will denote the node L by Li. The value v corresponds to the content of the

dictionary we are modeling in position i, that is D[i] = v. The value r is random

as for the internal nodes.

Finally, all the random values are κ-bit long, where κ is the security parameter.

We introduce now the construction of an optimal authenticated dictionary that

uses directed transitive signatures.

Construction 8 (Authenticated Dictionary from DTS) Let AuthDictDTS be the au-

thenticated dictionary defined by the following algorithms.

� KeyGen(1κ, N): Generates the parameters (sk, pk) for a standard signature

scheme SSig and the parameters (tsk, tpk) for the a directed transitive sig-

nature scheme DTS. Then we set SK = (sk, tsk) and PK = (pk, tpk). Let

N be the size of the dictionary D, and assume w.l.o.g. that N is a power of

2. Let h ∈ N be the number of updates made to the dictionary. Set h = 1.

Build a balanced binary tree m0 where each leaf Lh
i at position 0 ≤ i ≤ N − 1

has the label ℓ(Lh
i ) = (i, vhi , r

h
i )

8. Every internal node Nh
pos is filled with label

8Indeed it would be sufficient to handle vertices labels of the form (i, vh
i
, ch

i
) where ch

i
is a counter

as to guarantee that all labels are distinct. Note that this method would make the scheme stateful
and it also leaks some information about the history of updates of the dictionary.

60



ℓ(Nh
pos) = (pos, rhpos). Sign the labels for every leaf and internal node using algo-

rithm SSig. Then, sign the tree with the DTS scheme using the random values as

the identifiers of the nodes. Let R = Nh
ǫ be the root of the tree. Publish the root

node label along with the number of updates, that is m̂0 = (ℓ(Nh
ǫ ), h) = ((ǫ, r1ǫ ), 1)

as the short value (state)representing the dictionary.

� ProofGen(i,m, PK): Let h be the current number of updates of the dictionary.

Using m, compute the transitive signature τ for the path Rh → Lh
i where R is

the root with label (ǫ, rhǫ ) of the tree and ℓ(Lh
i ) = (i, vhi , r

h
i ) is the label at the

ith leaf. Return (σ, τ, rhi ) where τ = TSign(tsk, rhǫ , r
h
i ) and σ = SSig(sk,M), a

standard signature on message M = ℓ(Lh
i ).

� Verify(i, v, π, m̂, PK): Parse π as (σ, τ, r), then extract from m̂ the number of

updates h,and the label of root node R, ℓ(R) = (ǫ, rhǫ ).

Verify that σ is the signature of message M = (i, v, r) with public key pk.

Then check that τ is a valid signature for the path R → Li with public key

tpk, where R and Li are identified by rhǫ and r respectively, that is check that

TSVf((rhǫ , r), τ, tpk) returns valid.

� Update(i, v,m, PK, SK): Let h be the current number of updates.

◦ Create a new leaf Lh+1
i with label ℓ(Lh+1

i ) = (i, v, r) for a random value r.

Compute the signature σLh+1
i

= SSig(sk, ℓ(Lh+1
i )).

◦ Let R[b1b2...bd] be the path from the root Rh ∈ G (the graph corresponding to

m) to leaf Lh
i . Create a new root node Rh+1 and new intermediate nodes

Rh+1
b0

, Rh+1
b0b1

, . . . , Rh+1
b0...bd−1

= Lh+1
i .

The edges (Rh+1, Rh+1
b0

), (Rh+1
b0

, Rh+1
b0b1

), (Rh+1
b0b1

, Rh+1
b0b1b2

), . . ., (Rh+1
b0b1...bd−2

,

Rh+1
b0b1b2...bd−1

) are signed too using the algorithm TSign.

◦ Then the nodes of this path are connected (by signing edges) to the siblings

of the old path that has been replaced. That is, for every 0 ≤ i ≤ d−1 sign

edges (Rh+1
b0...bi

, Rh
b0...bi(1−bi+1)

) and also (Rh+1, Rh
1−b0

).

61



◦ Publish the new value m̂after = (ℓ(Rh+1), h + 1) as the new state of the

dictionary.

To prove correctness and the security of our construction we need the following

lemma.

Lemma 2 Let {Rh : h ∈ N} denote the sequence of root nodes generated by the

consecutive executions of the Update algorithm. Then, with probability at least P (q) =

1− q2

2κ+1 , the two following properties hold:

1. ∀h ∈ N, (Rh)∗ is a directed balanced binary tree with N leaves (Lh
0 , L

h
1 , ..., L

h
N−1),

2. if Dh denotes the state of the dictionary after the same sequence of updates,

then ∀i : 0 ≤ i ≤ N − 1 : Dh[i] = val(Lh
i ),

where q is the number of graph nodes created during the successive updates.

Proof. We assume first, that every node is filled with different values. The proof

is by induction on h. For h = 1 the claim is verified. Assume that for any h ∈ N, R∗h
is a directed balanced binary tree with N leaves and that ∀i : 0 ≤ i ≤ N −1 : Dh[i] =

val(Lh
i ). After the update (Rh+1)∗ is also a directed binary tree because it is formed

by the new nodes of the path Rh+1
[b1...bd]

that are connected to the nodes of (Rh)∗ which

are by induction roots of balanced directed binary trees of depth d − 1, d − 2, ..., 0

respectively. Let i be the index of the dictionary that is updated. Then we can also

see that ∀j : 0 ≤ j ≤ N − 1 ∧ j 6= i : Dh[j] = val(Lh+1
j ) as the only new nodes

that are reachable from Rh+1 are those on the new path Rh+1
b1...bd

where i = Σd−1
j=0bd−j2

j .

The other nodes, including the leaves (except Lh+1
i ) are still reachable from Rh. So

we have that the set of leaves that are reachable from Rh+1 is formed by the leaves

reachable from Rh except for Lh
i that is replaced by the new leaf Lh+1

i . Thus, if (Rh)∗

was the tree such that ∀i, 0 ≤ i ≤ N − 1 : Dh[i] = val(Lh
i ), we can deduce that the

leaves of (Rh+1)∗ represent Dh+1.

These two properties hold as long as all values in each node of the graph G =

G1∪G2∪· · ·∪Gh+1 are different. As by construction these values are chosen randomly

in a universe of size 2κ, we have that P (q), the probability that every two values are
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different after q nodes creation, is such that 1 − P (q) ≤ ∑q
i=1

1
2κ
≤ q2

2κ+1 . Thus both

properties are true with probability P (q) ≥ 1− q2

2κ+1 .

Note finally that the fact that the graph G = G1∪G2∪· · ·Gh+1 is directed is essen-

tial as otherwise every node would be reachable from any root Rj , thus invalidating

the lemma.

From the lemma we can directly deduce that

Proposition 4 The authenticated dictionary AuthDictDTS is correct.

Next we prove the security of our scheme.

Proposition 5 Let A be the adversary for the AuthDict, qAD the number of queries

made to the oracle OAD(·) by A, and N the size of the dictionary. The advantage of

adversary A is bounded by

AdvUF−ADAuthDict(A, κ) ≤ AdvUF−CMASSig (B1, κ) + AdvUF−T SDTS (B2, κ)
+ (2N−1+qAD(log(N)+1))2

2κ+1

where B1 and B2 are the best adversaries for the UF−CMA and the UF−T S security

games respectively.

Proof. Assume that there exists a PPT adversary A that breaks our scheme,

then we consider the following sequence of games.

Game 0. This is the attack game of definition 24. Let m̂ be the short state of the

dictionary at the end of the game, and let (i, v, π) the values computed by A such that

Verify(i, v, π, m̂, PK) returns valid. Let h be the number of updates performed on the

dictionary and G = G1 ∪ G2 ∪ · · ·Gh the union of directed trees that correspond to

the sequence of states of the dictionary. We define S0 to be the event that adversary

wins.

Game 1. This game is identical to the previous one except that adversary A is

not allowed to output a standard signature σ on a message that does not correspond

to a node label (computed by the signer).

Let S1 be the event that adversary adversary A wins. Applying the difference

lemma [Sho04], we get that |Pr [S0 ]−Pr [S1 ] | ≤ ǫ1 where ǫ1 = AdvUF−CMASSig (B1, κ) is
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an upper bound on the probability to break the standard signature scheme SSig for

any adversary B1.
Game 2. In this game A is only allowed to compute signature for edges that

are in the graph G. Let S2 be the event that adversary A wins. Applying lemma

2, we have that Pr [S2 ] ≤ q2

2κ+1 where q is the size of G. Moreover we have that

|Pr [S1 ] − Pr [S2 ] | ≤ ǫ2 where ǫ2 = AdvUF−T SDTS (B2, κ) is an upper bound on the

probability to break security of the transitive signature DTS for any adversary B2.
Combining the three games we can bound the advantage of adversary A as follows.

First we have that AdvUF−ADAuthDict(A, κ) = Pr [S0 ]. Secondly we have that:

|Pr [S0 ]− Pr [S2 ] | ≤ |Pr [S0 ]− Pr [S1 ] |+ |Pr [S1 ]− Pr [S2 ] |
|Pr [S0 ]− Pr [S2 ] | ≤ AdvUF−CMASSig (B1, κ) + AdvUF−T SDTS (B2, κ)

As Pr [S0 ]− Pr [S2 ] ≤ |Pr [S0 ]− Pr [S2 ] |, we can deduce that:

Pr [S0 ] ≤ |Pr [S0 ]− Pr [S2 ] |+ Pr [S2 ]

AdvUF−ADAuthDict(A, κ) ≤ AdvUF−CMASSig (B1, κ) + AdvUF−T SDTS (B2, κ) + q2

2κ+1

Finally we have that q = 2N−1+qAD(log(N)+1), as the initial tree contains 2N−1

nodes and each update of the dictionary triggers the creation of log(N) + 1 nodes.

By replacing q with 2N − 1 + qAD(log(N) + 1) we obtain the desired conclusion.

With respect to the complexity, we can observe that the update algorithm requires

O(logN) signature computations of the DTS scheme, the proof computation consists

in combining O(logN) DTS signatures and verifying the value of a dictionary at some

index requires a DTS signature verification. Thus, if DTS is a transitive signature

scheme for directed graphs, the authenticated dictionary is optimal and theorem 5 is

proved.

3.5 Summary

In this chapter we introduced the problem of dictionary authentication and several

techniques to implement such cryptographic data structures.
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The main open problem related to authenticated dictionaries involves the following

computational tradeoffs (see table 3.1): For any λ ≥ 1 we have that the time (in

cryptographic operations) required by the Replica to compute a proof is O(λN1/λ)

while the time to verify a witness is O(λ). Improving such tradeoff9 is an open

question. In particular, no concrete10 construction exists for implementing optimal

authenticated dictionaries where the time to compute (or update) the proofs for the

Replica would be O(logN) and the time to verify a proof for the Client would be

O(1).

We explored then useful techniques to build authenticated dictionaries. First,

with incremental hashing [BGG94] we observe that the time to update the state can

be made constant, however proofs are linear in the size of the dictionary.

Cryptographic accumulators invented by Benaloh and De Mare [BdM93] are a

powerful primitive to improve the efficiency of a variety of protocols and schemes.

Initial security definitions only considered static sets [BdM93, BP97] then dynamic

updates [CL02] have been proposed. We note that these definitions do not handle the

case (at least explicitly) where the manager is corrupted. In Chapter 4 we propose a

security definition and a practical construction based on (standard) CRHF that pre-

vent a malicious manager to forge witnesses. Moreover cryptographic accumulators

are a natural tool to design authenticated dictionaries. In particular, Camenisch and

Lysyanskaya’s construction allows the design of an authenticated dictionary which

enables the update of the proofs. In their survey on accumulators [FN02], Fazio and

Nicolosi pointed out that, in Camenisch and Lysyanskaya’s construction, the time

to recompute these proofs (witnesses) once the accumulated set has been modified

was proportional to m, the number of changes of the accumulated set. This raised

a natural question: “Is it possible to construct dynamic accumulators in which the

update of several witnesses can be performed in constant (independently of m) time?”

We show in Chapter 5 that accumulator with batch update do not exist.

9Papamanthou et al.[PTT08] manage to reduce the time to compute a proof by a factor of
logαλ−1 N for some α > 1/λ, but the complexity analysis considers expected time.

10Papamanthou et al. [PTT10] propose some partial solution, but the construction relies on the
existence of multi-near forms for which no instantiation is known to the date, and the construction
only works in the two-party model. Our construction based on DTS works in the three-party model
and could also be adapted to work in the two-party model.
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Chapter 4

Strong Accumulators from

Collision-Resistant Hashing

Contents

3.1 Authenticated dictionaries . . . . . . . . . . . . . . . . . . 22

3.2 Incremental Hashing . . . . . . . . . . . . . . . . . . . . . 25

3.3 Cryptographic accumulators . . . . . . . . . . . . . . . . . 27

3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Transitive Signatures . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Directed Trees . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Optimal Data Authentication from Directed Transitive Sig-

natures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Introduction

In this chapter we revisit the security model for dynamic accumulators: Our con-

struction is secure even in the presence of a corrupted manager. The security of our

scheme relies only on the existence of CRHF and the availability of a secure public

broadcast channel [CGS97] to ensure that every participant “sees” the same public

values.
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Our Approach. Our new accumulator scheme is based on hash trees similar to

those used in the design of digital time-stamping systems [BH92, BdM91]. Recall

that in hash trees, values are associated to leaves of a binary tree. The values of

sibling nodes are hashed in order to compute the value associated to their parent

node, and so on and so forth, until a value for the root of the tree is obtained. The

tree’s root value is defined as the accumulator of the set of values associated to the

leaves of the tree. We cannot directly use hash trees to obtain the functionality of

universal and dynamic accumulators. Indeed, we need to add and delete elements

from the accumulated set (tree node values if using hash trees) while at the same

time be able to produce non-membership proofs. We solve this last issue using a trick

due to Kocher [Koc98]; instead of associating values to the tree’s leaves, we associate

a pair of consecutive accumulated set elements. To prove that an element x is not in

the accumulated set now amounts to showing that a pair (xα, xβ), where xα < x < xβ ,

belongs to the tree.

A drawback of using a hash tree based scheme is that the size of witnesses and

the update time is logarithmic in the number of values accumulated. In contrast,

witnesses and updates can be computed in constant time in RSA modular exponen-

tiation based schemes [CL02, BdM93, BP97, LLX07]. We believe, nonetheless, that

this problem may in fact not exist for reasonable set sizes – a claim that we will later

support.

Overall, the main advantages of our scheme in comparison to the one by Li et

al. [LLX07] are: (1) the accumulator manager need not be trusted, and (2) since we

only assume the existence of cryptographic hash functions1 as opposed to the Strong

RSA Assumption, the underlying security assumption is (arguably) weaker (Indeed,

collision-resistance can be based on the intractability of factoring or computing dis-

crete logarithms [Dam88] while Strong-RSA is likely to be a stronger assumption than

factoring [BV98].).

1Note that using standard collision-resistant hash functions implies better performance for crypto-
graphic operations compared to RSA modular exponentiation. However, hash-based linking schemes
do not allow witnesses of constant size [TT02]. Thus, depending on the context, using construc-
tions based on a stronger assumption than the existence of collision-resistant hash functions may be
justified.

67



Our contributions. Our contribution is threefold. First, we strengthen the basic

definition of universal accumulators by allowing an adversary to corrupt the accumu-

lator manager. This gives rise to the notion of strong universal accumulators. Second,

we show how to build strong universal accumulators using only collision-resistant hash

functions and a variant of Merkle trees where the size of the set that is hashed is not

bounded. We call this new data-structure unbounded Merkle trees. Our construction

has interesting properties of its own. As in [CL02, LLX07], we use auxiliary informa-

tion to compute the (non)membership witness, but this information (called memory)

need not to be kept private, and does not allow an adversary to prove inconsistent

statements about the accumulated set. Indeed, the construction provides almost the

same functionality as the (dynamic) universal accumulators described in [LLX07],

namely:

� All the elements of the set are accumulated in one short value.

� It is possible to add and remove elements from the accumulated set.

� For every element of the input space there exists a witness that proves whether

the element has been accumulated or not.

Our last contribution is showing how to apply strong universal accumulators to

solve a multi-party computational problem of practical relevance which we name the

e-Invoice Factoring Problem. Solving this problem was indeed the original motivation

that gave rise to this work.

4.2 Definitions and Notations

Syntax. We formally define the syntax of a strong universal accumulator scheme

(with memory). Our definition differs from that of Li et al. [LLX07] as we consider an

algorithm to verify if the accumulator value has been updated correctly (by adding

or deleting a certain element), and we are not interested in hiding the order in which

the elements are inserted into the accumulated set.
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Definition 26 (Strong Universal Accumulators with Memory) Let U be a set

of values. A strong universal accumulator scheme (with memory) for universe U is a

tuple Acc = (KeyGen,WitGen,Verify, Update, CheckUpdate) where:

� KeyGen(ζ) is a randomized algorithm which on input some initialization param-

eter ζ, outputs a public data structure m0 (also called the memory), a creation

witness w, and an initial accumulator value Acc0 which is in the set Y = {0, 1}κ.
Value ζ is assumed to include at least a security parameter κ ∈ N in unary, but

it may also include some optional system-wide parameters possibly generated by

a trusted initialization process. An empty set X ⊆ U is associated to the exe-

cution of the scheme, and in particular, to Acc0. Both the accumulator value

Acc0 and the memory m0 will be typically held and updated by the accumulator

manager.

� Updateop(ζ, x, Accbefore ,mbefore) is a randomized algorithm that updates the ac-

cumulator value by either adding an element (op = add) to or removing an

element (op = del) from the accumulated set. The algorithm takes an element

x ∈ U , an accumulator and memory pair (Accbefore ,mbefore), and outputs an

updated accumulator, a memory pair (Accafter ,mafter), and an update witness

wop = (w, op).

� CheckUpdate(ζ, x, Accbefore , Accafter , wop) is a randomized algorithm that takes

as input a pair of accumulator values (Accbefore , Accafter), a value x ∈ U ∪ {⊥},
and an update witness wop = (w, op) where op ∈ {add, del, crt}, and returns

a bit b. Typically, this algorithm will be executed by parties other than the

accumulator manager in order to verify the correct update of the accumulator

by the manager. If x = ⊥, op = crt, and b = 1, then wop is deemed a valid

creation witness of the accumulated set X = ∅. If b = 1, wop is deemed a valid

witness that the update operation (for op ∈ {add, del}) which replaced Accbefore

with Accafter as the accumulator value, was valid. Otherwise, wop is deemed

invalid for the given accumulator pair.
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� WitGen(ζ, x,m) is a randomized algorithm that takes as input x ∈ U and mem-

ory m, and outputs a witness of membership w if x ∈ X (x has been accumu-

lated) or a witness of non-membership w′ if x 6∈ X.

� Verify(ζ, x, w, Acc) is a randomized algorithm which on input a value x ∈ U , a

witness w and the accumulator value Acc ∈ Y outputs a bit 1 if w is deemed a

valid witness that x ∈ X, outputs 0 if w is deemed a valid witness that x 6∈ X,

or outputs the special symbol ⊥ if w is not a valid witness of either statement.

All the above algorithms are supposed to have complexity polynomial in the security

parameter κ.

In the above definition, memory m is a public data structure which is computed

from set X . Although public, this structure only needs to be maintained (stored) by

the accumulator manager who requires it to update the accumulator, and to generate

membership and non-membership witnesses. In particular, this memory is not used

to verify correct accumulator updates nor to check the validity of (non)membership

witnesses.

Strong universal accumulators with memory as defined above are intended for use

in a multi-party protocol setting where procedures KeyGen, WitGen, and Updateop are

executed by a manager and Verify and CheckUpdate by the other participants of the

multi-party protocol.

Security. Universal accumulators, as defined in [LLX07], satisfy a basic consistency

property: It must be unfeasible to find both a valid membership witness and a valid

non-membership witness for the same value x ∈ U . As mentioned there, this is

equivalent to saying that given X ⊆ U it is computationally hard to find x ∈ X that

has a valid non-membership witness or to find x ∈ U\X that has a valid membership

witness.

In order to be able to cope with malicious accumulator managers, we first need

to guarantee that the accumulator value is consistent with the elements supposedly

added and removed by the manager. We need to introduce our main security notion

for accumulators.

70



We adapt the security definition in [LLX07] as follows. First, we let the adversary

control the computations of the accumulated values and the witnesses. However, we

restrict it so that it must choose a pair (Acc,X) for which there exists a sequence of

valid addition and delete operations yielding set X which accumulated value is Acc.

This last restriction can be justified by noticing that, in the scenario we consider,

parties other than the accumulator manager can externally verify the correctness of

each update operation by using the CheckUpdate algorithm. Finally, to capture most

setup assumptions, we parametrize the security definition with the following notion.

Definition 27 An oracle Ω is an initialization procedure that, if given a security

parameter κ ∈ N in unary generates a parameter ζ = (ζ0, 1
κ) where ζ0 is of length

polynomial in κ, chosen at random from the uniform distribution and is publicly

available. Invoking Ω will be assumed to take a single time step.

The initialization procedure will be used to model a setup process that is not

under adversarial control. Clearly, the case of no setup assumptions corresponds to

the special case when Ω(1κ) = 1κ.

In the following definition, we consider a consistent sequence of updates, which

means that an element can be inserted (resp. deleted) if it does not belong (resp.

belongs) the set that is updated.

Definition 28 (Security of Strong Universal Accumulators with Memory)

Let Acc be a strong universal accumulator scheme (with memory) for universe U ,

κ ∈ N be the security parameter, and Ω be an initialization procedure that returns ζ.

Let A be a PPT algorithm, q ∈ N a polynomial number in κ, we define the advantage

for the adversary A as follows:

Adv(A) = Pr













(Acci, xi, wi, opi)i∈[q], x, w ← A(ζ) :
∀i ∈ [q] : CheckUpdate(ζ, xi, Acci−1, Acci, (wi, opi)) = 1∧

((x ∈ X ∧ Verify(ζ, x, w, Accq) = 0)∨
(x /∈ X ∧ Verify(ζ, x, w, Accq) = 1))













where (xi, opi)i∈[q] is a consistent sequence of updates, (wi)i∈[q] are the update proofs,

X is the set resulting from the successives updates, that is X = (∪{j:op[j]=add}xj) \
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(∪{k:op[k]=del}xk), and the probability is taken on the random coins of A. The scheme

is said secure if the probability that any PPT algorithm A wins is negligible in κ.

The type of accumulators we consider in this work is not necessarily quasi-commuta-

tive [CL02, LLX07] as they may not hide the order in which the elements were added

to the set. More precisely, our definition tolerates that the value of the accumulator

may depend on a particular sequence of Updateadd and Updatedel operations that

produced a particular accumulator value Acc.

Our security definition (Definition 28) for the dynamic scenario (where addition

and deletion of elements are allowed) differs from the one in [CL02] where the adver-

sary is only able to add and delete elements by querying the accumulator manager,

who is incorruptible. In contrast, in our definition the adversary is allowed to control

the accumulator. However, we require that during each update at least an uncor-

rupted participant verifies the update with CheckUpdate to guarantee the consistency

between the accumulated value and the history of additions and deletions.

Other Differences with Previous Definitions. The standard definition of

dynamic accumulators (see for example the one in [CL02]) adds two requirements

which so far we have not considered. First, it requires the existence of an additional

algorithm that allows to publicly and efficiently update membership witnesses after

a change in the accumulator value so witnesses can be proven valid under the new

accumulator value. And secondly, it requires that both the accumulator updating

algorithm as well as the witness updating algorithm to run in time independent from

the size N of the accumulated set. In our construction, we only achieve logarith-

mic dependency on N . In practice, such dependency may be appropriate for many

applications.

4.3 Unbounded Merkle Trees

In this section, we introduce Merkle trees and show how to extend them so that they

can be used to hash unbounded sequences. We call these new constructs unbounded

Merkle trees (UMT).
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g = H(e||f)

e = H(a||b)

a b

f = H(c||d)

c d

Figure 4.1: Merkle tree for sequence (a, b, c, d). The hash function induced by
the tree and a CRHF H takes the sequence (a, b, c, d) as input and returns the root
hash value g as output. A proof that a belongs to the set is composed by the nodes
containing values (b, f) which are the siblings of the nodes on the path from a to
the root g. Checking the proof consists in computing e′ = H(a||b), then computing
g′ = H(e′||f) and finally checking that g = g′.

Merkle Trees. Let S = (v1, v2, · · · , vN) be a sequence of values in Y = {0, 1}κ.
Let H : K × {0, 1}∗ → Y be a CRHF. A (binary) Merkle Tree [Mer89] is defined as

follows:

� It has N leaves, where we assume for the sake of exposition that N is a power

of 2.

� The value of the ith leaf is set to vi ∈ Y .

� The value y ∈ Y for all internal node are computed recursively as follows: y =

H(yl||yr) where yl, yr ∈ Y are the values for the left and right node respectively.

If we consider the value obtained at the root as the final output, it is not hard to

see that this data structure defines a CRHF HS : K × Y N → Y where the input is

the sequence and the output is the hash value obtained at the root node.

A useful property of Merkle trees is that, given the final hash value y, one can

authenticate some element of the sequence by giving the siblings of the nodes be-

tween the element and the root (see Figure 4.1). Indeed, these nodes alone allow to

recompute the hash value at the root and forging such nodes implies breaking the

collision-resistance of H.
The problem of such data structure is that the size of the input is fixed. That is,

it is not possible to hash a sequence of more that N elements. In the following, we

73



propose an unbounded version of the Merkle tree that will allow to hash sequences of

arbitrary size and to update efficiently the hash value when the sequence changes.

Unbounded Merkle Trees. The idea to extend the previous construction so

that we can handle dynamic and unbounded sequences consists of the following (see

example of Figure 4.3): Instead of placing the values of the sequence at the leaves

of the tree, we also use the internal nodes for hosting these elements. If a new value

in the sequence is appended at the end, then we will add a new leaf so that the tree

remains balanced and the leaves at the last level are contiguous starting from the left.

In order to compute the hash value for the sequence, we introduce a proof value for

each node which is defined as follows.

� We consider a CRHF H : K × {0, 1}∗ → Y and denote H(·) = H(k, ·) for some

randomly chosen k ∈ K.

� The proof value for a Nil node is set to 0κ.

� The proof value for an internal node N or a leaf is set to πN = H(v||πl||πr) where

v ∈ Y is the value of the node, πl, πr ∈ Y are the proof values for the left and

right child respectively.

If N is the root node of tree T , we abuse the notation and write πT instead of πN.

The label of node N is set to ℓ(N) = (VN, πN). The collection of node values of T will

be denoted by V(T ).
At first sight, it seems natural to define the hash value for the sequence as the

proof value corresponding to the root node. However, we need to be more careful, as

in this case the depth of the tree we consider is variable and thus there is no guarantee

that it is computationally hard to find a collision despite H is a CRHF. To illustrate

this point let us consider a counter example that exhibits this issue (see Figure 4.2).

Let πNil = 0κ be the proof value for a Nil node, and let H be a (κ − 1)-bit CRHF.

Then, consider the following κ-bit hash function H′:

H′(x) =















01κ−1 for x = 0κ||1κ

0κ for x = 01κ−1||0κ||0κ

1||H(x) for all other x
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H′(a||b)

Nil Nil

H′(a||b)

H′(0κ||1κ) = 01κ−1

Nil Nil

Nil

T1 T2

Figure 4.2: Two different trees that yield the same proof value. The tree on
the left, T1, and the one on the right, T2, are different but yield the same proof value
H′(H′(a||b)||0κ||0κ) at their root.

Clearly, if H is collision-resistant, then so is H′ . Then the proof π for a tree T1

that contains a single node with value H′(a||b) is π = H′(H′(a||b)||πNil||πNil) =

H′(H′(a||b)||0κ||0κ) while the proof π′ for a tree T2 containing a root with value

H′(a||b) and a left child with value 0κ||1κ is: π′ = H′(H′(a||b)||π′′||πNil) where π′′ =

H′(H′(0κ||1κ)||πNil||πNil) = H′(01κ−1||0κ||0κ) = 0κ, thus π′ = H′(H′(a||b)||0κ||0κ) = π.

So we can observe that the proof values π and π′ of each tree are equal, while no

collision on H′ has occurred.

This kind of issue is usually fixed using structure (e.g. length) padding techniques

[ANPS07, BR97] so that the hash function allows to compare inputs that have the

same format. In our case, we need to take in account the depth and the number of

leaves at the last level (remember our tree is balanced) that are contiguous from left

to right. These both values (depth and quantity of leaves) indeed define the unique

structure of the tree so that no collision can occur.

Definition 29 A balanced binary tree T is said to be compact if, and only if, for

every ith leaf Li, each j > i, and considering d the distance of Li to the root, we have

that Lj is at distance at most d to the root.

Definition 30 (Unbounded Merkle Trees (UMT)) Let S = (v1, v2, . . . , vN) be

a sequence of values in Y = {0, 1}κ. Let H a collision-resistant hash function family

where H : K × {0, 1}∗ → Y . As before, we write H(·) for the function H(k, ·) where
k is selected at random. We say that T is an unbounded Merkle tree if, and only if:
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(a, πa = H(a||πb||πe))

(b, πb = H(b||πc||πd))

(c, πc = H(c||0κ||0κ)) (d, πd = H(d||0κ||0κ))

(e, πg = H(e||πf ||0κ))

(f, πf = H(f ||0κ||0κ))

Figure 4.3: Unbounded Merkle Tree and associated CRHF for sequences.
Each node hosts a value and a proof value that is computed by hashing the node
value along with the proof values of the children. The leaves of the last level are
grouped from left to right in a contiguous block. For example, the leaf with value d
could not be placed as a child of the node with value e, as it would leave a “hole” just
after the first leaf at the last level. The hash value of the sequence S = (a, b, e, c, d, f)
is computed from the proof value of the root node πa, the depth and the number of
leaves at the last level, that is HS(S) = H(πa||〈2〉κ||〈3〉κ).

� T is a binary tree with exactly N nodes.

� Each node N contains a pair ℓ(N) = (v, π) where v ∈ Y is the node value and

π ∈ Y is a proof value that links the node to its children. For a node N we write

VN = v and πN = π.

� T is balanced and all its leaves at the last level are grouped from left to right

contiguously, that is T is also compact.

� The values of S are assigned to the nodes of T (first component of label) in

breadth traversal order.

� The proof values for all the empty nodes are arbitrarily set to 0κ.

� For each internal node N, we have that πN = H(v||πl||πr) where v is the value

of the node and πl, πr are the proofs for the left and right child respectively. If

N is the root node of tree T , we abuse the notation and write πT instead of πN.

If T is an unbounded Merkle tree, then we denote by V(T ) the set of node values

for each node of T , that is the set {v1, v2, . . . , vN}.
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It is straightforward to see that given a sequence there is only an UMT possible.

Now, given a sequence S, we define a hash function family for that sequence (see

Figure 4.3). Then we prove that this hash function is collision-resistant.

Construction 9 (Hash Function based on UMT) Let S = (v1, . . . , vN) a se-

quence of elements in Y = {0, 1}∗. Let S = Y ∗ be the space of sequences of elements

in Y and let TH be the associated UMT using the CRHF H : K × {0, 1}∗ → Y . We

define the hash function family HS : K × S → Y as follows. Given H = H(k, ·)
for some k ∈ K, compute TH and return the hash value HS(S) = H(πTH ||〈d〉κ||〈l〉κ),
where πTH is the proof value for the root node of TH, d is the depth of TH and l is the

number of leaves at the last level.

Note that we do not use the following proposition to prove the security of our

accumulator scheme (Section 4.4). However, this proposition is relevant from a con-

ceptual point of view as it shows that the accumulated value (see Section 4.4.2) is

computed through a CRHF.

Proposition 6 The hash function family HS is collision-resistant.

Proof. Let A be the adversary that breaks the collision-resistance of HS. We

build the following adversary B that breaks the collision-resistance of H.
Given k ∈ K, B runs A on HS = HS(k, ·). A returns two sequences S, S ′ such

that HS(S) = HS(S ′) but S and S ′ are distinct. In particular this means that the

values of S are different from the values of S ′ or that they are in different order.

Let T, T ′ be the UMT of S, S ′ respectively. If dT 6= dT ′ or lT 6= lT ′, then B outputs

a collision on message M ||〈dT 〉κ||〈lT 〉κ = M ||V and M ′||〈dT ′〉κ||〈lT ′〉κ = M ′||V ′ where
M and M ′ may be equal but V, V ′ are different. Now we assume that both trees

have the same depth and same number of leaves at the last level. For each node

if the pre-images relative to the roots of T and T ′ are different then B outputs the

collision. Otherwise B continues to compare the node and their hash values from top

to bottom. Eventually, B will find a collision, as otherwise this would mean that all

the nodes are equal and thus that the inputs (sequences S and S ′) are equal as well.
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Merkle trees allow to authenticate a path from leaves to the root. Here we get

the same property, except that the path can start from an internal node. Given T, T ′

trees, if T is a subtree of T ′, we write T ⊆ T ′, otherwise we write T * T ′.

Lemma 3 Let S = (v1, . . . , vN) be a sequence of values in Y , H : K×{0, 1}∗ → Y a

hash function family and T the corresponding UMT. If H is collision-resistant, then

for every PPT algorithm A we have

Pr [T ∗ ← A(k, S) : πT ∗ = πT ∧ T ∗ * T ] = neg(κ)

where T ∗ is a binary hash tree of depth at most dT , with at most lT leaves at the last

level (grouped from left to right) and the probability is taken over the random coins of

A.

Proof. Let T be the UMT for the sequence S and A an adversary that finds a

tree T ∗ such that πT ∗ = πT , d(T
∗) ≤ d(T ), lT ∗ ≤ lT , but T ∗ * T . We define the

adversary B as follows. It runs A and obtains T ∗. Let T ′ be the subtree of T which

nodes are in the same position of the nodes of T ∗. By comparing the proof values of

T ∗ and T ′ from top to bottom, B will eventually find a collision for H like described

in the proof of Proposition 6.

4.4 A Strong Universal Accumulator using UMT

In this section we describe our scheme. We assume that there exists a public broadcast

channel with memory. Depending on the required security level, this can be a simple

trusted web server, or a bulletin board that guarantees that every participant can

see the published information and that nobody can delete a posted message. For a

discussion on bulletin boards and an example of their use in another cryptographic

protocol, the interested reader is referred to [CGS97]. We rely on broadcast channels

in order to ensure that the publication of the successive accumulator values that

correspond to updates of the set cannot be forged. In particular, an adversary who

controls the manager of the accumulator cannot publish different accumulator values

to different groups of participants.
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4.4.1 Preliminaries

Our construction relies on UMT previously introduced. In order to handle proof of

non-membership, we use the trick of Kocher [Koc98]: Instead of storing elements of

the set in each node of the tree, we store pairs of consecutive elements of the set.

Then, proving that an element x is not in the accumulated set X , amounts to simply

proving that there exists elements xα and xβ such that xα < x < xβ and a pair

(xα, xβ) is stored in the tree.

Notation for Sets. We assume the set X we want to accumulate is ordered and

denote by xi the ith element of X = {x1, x2, . . . , xN}, N ∈ N. Let x0 = −∞ and

xN+1 = +∞ two special elements such that −∞ < xj < +∞ for all xj ∈ X , where ≤
is the order relation on X (for example, the lexicographic order on bit strings) and

a < b if, and only if, a ≤ b and a 6= b.

Observe that showing x ∈ X is equivalent to proving that:

(xα, xβ) ∈ {(xi, xi+1) : 0 ≤ i ≤ N} ∧ (x = xα ∨ x = xβ).

On the other hand, showing that x /∈ X corresponds to proving:

(xα, xβ) ∈ {(xi, xi+1) : 0 ≤ i ≤ N} ∧ (xα < x < xβ).

Model for X = {x1, . . . , xN} under H. Given a set X = {x1, . . . , xN} and a

CRHF H, we define a model for X under H to be the UMT for some sequence taking

values in the set {H(xi||xi+1) : 0 ≤ i ≤ N}. Figure 4.4 depicts a toy example of a

model for a set.

Minimal subtrees generated by a set. Let T be a UMT. We say that V ⊆ V(T )
generates a minimal subtree R of T , if R is a subtree of T obtained by: (1) taking

all nodes in T that belong to all paths from T ’s root to a node whose value is in V
(the paths include both the root of T and the nodes of value in V), and (2) all the

(direct) children of the nodes taken in the previous step. Figure 4.5 illustrates the

concept of minimal subtree. If R is generated by a singleton {v}, then we say that R
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H(−∞||x1)

H(x1||x2)

H(x3||x4)

H(x6||x7) H(x7||x8)

H(x4||x5)

H(x2||x3)

H(x5||x6) H(x8||+∞)

Figure 4.4: A model T for the set X = {x1, . . . , x8}. The sequence for
this model is (H(−∞||x1),H(x1||x2),H(x2||x3),H(x3||x4),H(x4||x5),H(x5||x6),H(x8||+
∞),H(x6||x7),H(x7||x8)).

a

b

c

d e

f

g h

i

j

k l

m

n o

Figure 4.5: A tree and its minimal subtree (nodes with values in a box) generated
by the node of value j. Children of the nodes that are on the path from j to a are
underlined.

is generated by v.

In this section we use hash trees to build our proposed universal accumulator with

memory. At a high level, our accumulator scheme relies on an accumulator manager

that creates and updates a tree T which is a UMT of a sequence SX corresponding to

the set X = {x1, x2, ..., xN} under H. The UMT TH of SX will satisfy two conditions:

(1) the accumulator manager can guarantee that x ∈ X by proving that there is a

node N of TH such that VN = (xα, xβ) where x = xα or x = xβ , and (2) to demonstrate

that x 6∈ X , the accumulator manager proves that there is a node N of TH such that

VN = (xα, xβ) where xα < x < xβ . When adding or deleting elements from X ,

the accumulator manager needs to update TH and guarantee that both of the stated

conditions are satisfied.
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In terms of setup assumptions, our scheme can be instantiated with any trusted

initialization algorithm Ω(1κ) which includes picking a hash function H uniformly

at random from the family H (say by computing a random index k ∈ K where

|K| = κ and then setting H = H(k, ·)). Of course, such assumption can also be

instantiated with an ephemeral trusted third party running Ω, or alternatively using

standard multi-party computation techniques among all participants, including the

accumulator manager. Moreover, a common heuristic to avoid interaction is to simply

pick H =SHA-256 [Nat06], for example. A detailed description of the proposed scheme

follows.

4.4.2 Construction

Let κ ∈ N be the security parameter, Y = {0, 1}κ and let X = {x1, x2, . . . , xN} ⊂ U

where U = Y . We define the accumulator scheme HashAcc below.

� KeyGen(ζ): The algorithm starts by setting X equal to the empty set. Then,

it extracts the security parameter κ and the description (index k) of the hash

function H ∈ H from ζ . We use HS as defined previously. Let HS = HS(k, ·)
for some k ∈ K. The initial sequence is S = (H(−∞|| +∞)). The memory

m is the UMT corresponding to the sequence S. The accumulated value is set

to HS(S) = H(H(H(−∞||+∞)||0κ||0κ))||〈0〉κ||〈1〉κ). Finally, the algorithm sets

the creation witness wcrt to (m, crt), where crt is a fixed label.

� Updateop(ζ, x, Accbefore ,mbefore): On input element x ∈ U , accumulator value

Accbefore , and memory mbefore , it proceeds as follows. Consider two cases depend-

ing on whether the update is an addition (op = add) or a deletion (op = del).

If op = add and x 6∈ X , the algorithm adds x into X by modifying mbefore

through the two following steps:

1. It replaces the value H(xα||xβ) from the appropriate node in mbefore (where

xα < x < xβ) by the value H(xα||x).
2. It augments the tree mbefore adding a new leaf N of value H(x||xβ) so the

resulting tree mafter is a balanced tree and such that the leaves at the last
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H(−∞||x1)

H(x1||x2)

H(x3||x4)

H(x6||x7) H(x7||x8)

H(x4||x5)

H(x2||x3)

H(x5||x6) H(x8||+∞)

H(−∞||x1)

H(x1||x2)

H(x3||x4)

H(x6||x7) H(x7||x8)

H(x4||x5)

H(x||x3)

H(x2||x)

H(x5||x6) H(x8||+∞)

Figure 4.6: Inserting x into the tree of Figure 4.4 (at the top) where x2 < x < x3.
The resulting tree after insertion (at the bottom, with new nodes in a box) must be
kept balanced and such that the leaves at the last level are grouped from left to right.
This means in particular that the new leaf could not have been placed under the node
with value H(x5||x6) or the one with value H(x8||+∞).

level are grouped from left to right (see Figure 4.6). Let Par(N) be the

(parent) node where N is attached as a leaf.

The resulting tree is denoted mafter . Figure 4.6 illustrates the process of inserting

an element into mbefore .

Once tree mafter is built, the new accumulator is simply computed as the hash

of the value of the root of the tree concatenated with the new depth d′ of the

tree as well as the updated number of leaves l′ at the last level. Namely we have

Accafter = H(πmafter
||〈d′〉κ||〈l′〉κ). The witness wadd = ((Uadd ,1, Uadd ,2, Uadd ,3), add)

that the update (addition) has been done correctly is computed as follows:

◦ Uadd ,1 corresponds to the minimal subtree of mbefore generated by the set
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{H(xα||xβ), VPar(N)},

◦ Uadd ,2 corresponds to the minimal subtree of mafter generated by

{H(xα||x),H(x||xβ)}, and

◦ Uadd ,3 is the tuple (d, d′, l, l′) where d, l are respectively the depth and the

number of leaves at the last level of the tree mbefore and similarly d′, l′ are

the new depth and number of leaves at the last level for the new tree mafter .

If op = del, deleting x from X is done in a similar way as follows. First, the

update algorithm locates the two nodes of mbefore that contain x. Let α and

β be those nodes, and let H(xα||x) and H(x||xβ) be their respective values, for

some xα < x < xβ . The goal is to remove these nodes and replace them with a

new node with value H(xα||xβ) in a way that the derived tree is still balanced.

This is done by first replacing α with the single node with value H(xα||xβ), and

then replacing β with the rightmost leaf R on the last level of the tree. These

replacements yield a new tree mafter whose root label is set to the value of the

accumulator Accafter = H(πmafter
||〈d′〉κ||〈l′〉κ) where d′ and l′ are respectively

the new depth and updated number of leaves at the last level. The witness

wdel = ((Udel ,1, Udel ,2, Udel ,3, Udel ,4), del) is then computed as follows:

◦ Udel ,1 corresponds to the minimal subtree of mbefore generated by

the set {H(xα||x),H(x||xβ), VR},

◦ Udel ,2 is the pair (xα, xβ) such that xα < x < xβ ,

◦ Udel ,3 is the minimal subtree of mafter generated by {H(xα||xβ), VR, VPar(R)},
and

◦ Udel ,4 is the tuple d, d′, l, l′ where d, l are respectively the depth and the

number of leaves at the last level of the tree mbefore and similarly d′, l′ are

the new depth and number of leaves at the last level for the new tree mafter .

The algorithm Updateop outputs the new accumulator value Accafter , the modi-

fied memory mafter , and the update witness wop.
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� CheckUpdate(ζ, x, Accbefore , Accafter , wop): On input an element x ∈ U , two ac-

cumulator values Accbefore , Accafter , and an update witness wop = (w, op) for

op ∈ {add, del, crt}, it proceeds as follows. If op = crt, then the algorithm

outputs 1 if, and only if Accafter = H(H(H(−∞|| +∞)||0κ||0κ)||〈0〉κ||〈1〉κ) and

w is the model of the empty set under H.

If w = ((U1, U2, U3), add), then U1, U2 are parsed as trees and U3 as

(〈d〉κ, 〈d′〉κ, 〈l〉κ, 〈l′〉κ). The algorithm returns 1 provided that:

◦ d′ = d or d′ = d+ 1,

◦ l′ = l + 1 mod 2d−1,

◦ U2 is a tree obtained by adding a leaf to U1 so that (1) this leaf is placed

at depth d′ and (2) at the last position l′ (note that not all the leaves at

the last level will necessarily appear in U2),

◦ except for the node of value H(xα||xβ) (for xα < x < xβ) all nodes which

are common to U1 and U2 have the same value in either one of the trees,

◦ H(πU1 ||〈d〉κ||〈l〉κ) = Accbefore and H(πU2 ||〈d′〉κ||〈l′〉κ) = Accafter , and

◦ H(xα||x),H(x||xβ) ∈ V(U2).

Otherwise, it outputs 0. We omit the case w = ((U1, U2, U3, U4), del) which is

similar.

� WitGen(ζ, x,m): On input x ∈ U and memory m, it computes the witness

w = (w1, w2, w3) as follows. First, the algorithm sets w1 = (xα, xβ) where

x = xα or x = xβ if x ∈ X . Otherwise, if x /∈ X the algorithm sets w1 = (xα, xβ)

where xα < x < xβ . Finally, it sets w2 as the minimal subtree of m generated

by the value H(xα||xβ) and w3 = (〈d〉κ, 〈l〉κ) where d, l are respectively is the

depth and the number of leaves at the last level of the UMT m 2.

� Verify(ζ, x, w, Acc): On input x ∈ U and witness w = ((x′, x′′), T, (〈d〉κ, 〈l〉κ))
where T is purportedly a minimal subtree of the memory value m associated

2This information is not related to the minimal subtree itself, however it is necessary in order to
recompute the accumulated value in the next algorithm Verify.
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H(−∞||x1)

H(x1||x2)

H(x3||x4) H(x4||x5)

H(x2||x3)

H(x5||x6) H(x8||+∞)

H(−∞||x1)

H(x1||x2)

H(x3||x4) H(x4||x5)

H(x||x3)

H(x2||x)

H(x5||x6) H(x8||+∞)

(a) (b)

Figure 4.7: (a) The minimal subtree of the tree shown in Figure 4.4 and generated
by {H(x2||x3),H(x4, x5)}. (b) The minimal subtree of the bottom tree shown in
Figure 4.6 and generated by {H(x2||x),H(x||x3)}.

to the accumulator value Acc and 〈d〉κ, 〈l〉κ are respectively the depth and the

number of leaves at the last level of the memory m. We compute the depth dT

of the tree T and the position lT (starting from the left) of the last leaf at the

last level (note that T is not necessarily balanced).

Then we need to check if the following conditions hold:

◦ (1) H(πT ||〈d〉κ||〈l〉κ) = Acc,

◦ (2) H(x′||x′′) ∈ V(T ),
◦ (3) (x = x′ or x = x′′), and (3’) (x′ < x < x′′), and

◦ (4) dT ≤ d and lT ≤ l.

The algorithm outputs 1 if conditions (1), (2), (3) and (4) hold; it outputs 0 if

(1), (2), (3’) and (4) hold. Otherwise, it outputs ⊥.

Security. We now prove that the scheme HashAcc of the previous section is secure

under Definition 28. First, note that if memory m is a model of X , then the memory

obtained after executing Update in order to add a new element x /∈ X , is a model

of X ∪ x. Indeed, suppose xα < x < xβ and let H(xα||xβ) be the value of a node N

in m. By replacing node N with the node of value H(xα||x) and adding the node of

value H(x||xβ), we clearly obtain a set of values {H(xi||xi+1), 0 ≤ i ≤ N + 1} that

corresponds to the successive intervals of the set X ∪ {x} (where N = |X|).
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Intuitively, CheckUpdate must guarantee that the updated memory (tree) used to

compute the new accumulated value still has the property of having all the successive

intervals of the accumulated set as node values, that each interval appears once and

only once in the tree, and that no other node value can belong to the tree.

Theorem 6 Let Y = {0, 1}κ and H : K × {0, 1}∗ → Y be a CRHF. Let ΩH be

the initialization procedure that on input κ in unary returns ζ = (H, 1κ) where H is

chosen uniformly at random from the family H. If H is a CRHF, then the accumula-

tor scheme HashAcc is a secure strong universal accumulator scheme (with memory)

under ΩH.

Proof. Let A be the adversary that breaks the security of our scheme HashAcc.

We build the following adversary B. B is given the description of the CRHF H. B
forwards this description toA which outputs the sequence introduced in Definition 28:

(Acc∗1, w
∗
1, x1, op1), . . . , (Acc

∗
q, w

∗
q , xq, opq) and (x∗, w∗), an element from U along with

its proof of membership/(non-membership). Adversary B, using the same hash key,

computes the correct sequence (remember that the computation of the accumulated

value and the proofs are deterministic) related to updates (x1, op1), . . . , (xq, opq), and

obtains the following sequence of accumulated values and witnesses (Acc1, w1, x1, op1),

. . . , (Accq, wq, xq, opq). Let X be the set resulting from the successive updates and

whose correct accumulated value is Accq, and T be the model of X computed by

adversary B.
Let us first consider the case where for all i ∈ [q] we have that Acc∗i = Acci. This

means that in order to win, A must be able to compute a fake witness of membership

/ (non-membership).

� First, consider that w∗ = (w1, w2, w3) is such that w1 = (x∗α, x
∗
β) where (x∗α, x

∗
β)

is not an interval for successive values in X , but H(x∗α||x∗β) ∈ V(T ). In this case

adversary B can output a collision for H: H(x∗α||x∗β) = H(xα||xβ) where (xα, xβ)

is a pair of successive values in X .

� Secondly, if w1 is such that H(x∗α||x∗β) /∈ V(T ) then by applying lemma 3 the

adversary B is able to output a collision for H.
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Now, let us consider the first i ∈ [1..q] such that Acc∗i 6= Acci. As the procedure

CheckUpdate is successful, this means that A has been able to compute a witness that

is not a subtree of the correctly computed memory Ti−1 (otherwise we would have

Acc∗i = Acci). Once again, applying lemma 3, B obtains a collision for H.

Efficiency. We analyze the computational efficiency of the proposed scheme.

Theorem 7 Let N be the size of X. The witnesses of (non)membership and of

updates have size O(log(N)). The update process Update, the verification processes

Belongs and CheckUpdate can be done in time O(log(N)).

Proof. Assuming the accumulator manager uses a pointer based data structure

representation for labeled binary trees, it is enough to show that a minimal subtree

U of T generated by a constant number of node values has size O(log(N)). Indeed,

first note that a minimal subtree of a tree generated by a constant number of node

values is the union of the minimal subtrees generated by each of the values. It is easy

to see that the size of a minimal subtree generated by a node value is proportional

to the depth of the node. This, and the fact that T is balanced, implies the desired

conclusion.

4.5 Comparison with Previous Proposals

4.5.1 Efficiency of Our Scheme

Our solution is theoretically less efficient than the scheme proposed in [LLX07].

Nonetheless, if one considers practical instances of these schemes the difference effec-

tively vanishes, as in most implementations hash function evaluation is significantly

faster than RSA exponentiation – which is the core operation used by the schemes

in [LLX07, CL02].

Table 4.1 shows the time taken by one single RSA exponentiation versus the time

taken by our scheme for update operations as a function of the number of the accu-

mulated elements. For the time measurements, we used the openssl benchmarking

command (see [ope]) on a personal computer. Notice that RSA timings were obtained
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N RSA-512 RSA-1024 RSA-2048 SHA-256 SHA-512

23 0.85 4.23 25.00 0.55 2.13
210 0.85 4.23 25.00 1.83 7.125
220 0.85 4.23 25.00 3.66 14.25
230 0.85 4.23 25.00 5.49 21.36

Table 4.1: Comparison of performance between simple RSA exponentiation and log-
arithmic number of computations of SHA where N is the number of accumulated
elements. Time is represented in milliseconds.

using signing operations, as in the scheme proposed in [LLX07] where exponents may

not be small. Timings for SHA operations were measured using an input block of

1024 bits. The comparison is based on the fact that our scheme requires at most

6 × 2 log(N) hash computations, where N is the number of accumulated elements,

given that at most six branches of the Merkle tree used in our construction (three for

Udel ,1 and three for Udel ,3, see Section 4.4.2) will have to be recomputed in the case of

deletions. We now explain the relevance of Table 4.1. For clarity’s sake, we focus on

the efficiency of witness generation. In [CL02, LLX07, BdM93, BP97] schemes, the

time to generate a witness is at least a single RSA signing operation, independently

of the number of accumulated values. Hence, for both the aforementioned schemes,

the time required to generate a witness is at least the one given by the columns of

Table 4.1 with headers RSA-512, RSA-1024, and RSA-2048, depending on the size of

the modulus used. In contrast, if we instantiate the hash function of our proposed

scheme by one of the SHA family of hash functions, the time required to generate the

witness for a set of size N is given by the columns of Table 4.1 with headers SHA-256

and SHA-512, depending on which version of SHA is used. A similar situation holds

for operations such as addition or deletion of accumulated values. In conclusion, using

our hash-based scheme is still very efficient, even for large values of N , in comparison

with previous proposals.

Table 4.2 compares the functionality provided and sizes of parameters appearing

in aforementioned schemes and our solution.
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Scheme Strong Dynamic Witness size
Benaloh et al. [BdM93] Yes No O(κ)
Barić et al. [BP97] Yes No O(κ)

Camenisch et al. [CL02] No Yes O(κ)
Li et al. [LLX07] No Yes O(κ)

This work Yes Partially† O(κ logN)

Table 4.2: Comparison of properties of previous and our scheme, where N is again
the number of accumulated elements and κ is the security parameter. In all schemes
the accumulator size is O(κ). † Our solution allows dynamic addition and deletion
of elements but no witness update.

4.5.2 Modeling Strong Accumulators

On the Setup Assumptions. We prove the security of our scheme under the

assumption that there is a trusted procedure that chooses hash functions uniformly

at random from a given family. We model such assumption using an initialization

procedure Ω, which cannot be corrupted. Notice that once Ω finishes execution,

no other trusted process or entity is required. In contrast, both previous solutions

for dynamic accumulators [CL02, LLX07] not only require a trusted party – the

accumulator manager itself – but also that such trusted entity be available for as long

as the accumulator is active.

In practice, trusted initialization can efficiently be implemented using standard

secure multi-party computation techniques. For our protocol, we only need to gen-

erate a hash function index, that is, a κ-bit uniformly distributed random string.

This can be done using standard coin tossing algorithms [RBO89] (or more practi-

cal variants [KG09]) if a majority of participants during the initialization is honest.

Alternatively, we could cast our results in the human ignorance setting proposed by

Rogaway [Rog06]. In that case, it would suffice to take Ω as the identity function and

make the reductions behind the proof of Theorem 6 more explicit (that is, detailing

how new collision-finding adversaries are built from the given protocol adversaries).

Note that all reductions in this chapter are in fact constructive.

Nontriviality of the strong property. Both in the construction of Camenisch

et al. [CL02] as well as the one by Li et al. [LLX07], a corrupted manager can compute
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witnesses for arbitrary elements (regardless of whether the elements belong to the

accumulated set or not). For example, in both schemes, the manager is able to

generate a valid membership witness w for an arbitrary element x ∈ Zn by simply

computing w = ux−1mod (p−1)(q−1), where n = pq is the RSA modulus and u ∈ Zn is

the current accumulator value.

In contrast, our solution achieves the strong property as long as, at any given time,

the party verifying the correctness of an accumulator update is able to remember the

current and previous accumulated values.

4.6 The e-Invoice Factoring Problem

In this section, we describe an application of strong universal accumulators that

yields an electronic analog of a mechanism called factoring through which a company,

henceforth referred to as the Provider (P ), sells a right to collect future payment

from a company Client (C). The ensuing discussion is particularly concerned with

the transfer of payment rights associated to the turn over of invoices, that is, invoice

factoring. The way invoice factoring is usually performed in a country like Chile is

that P turns over a purchase order from C to a third party, henceforth referred to as

Factor Entity (FE). The latter gives P a cash advance equal to the amount of C’s

purchase order minus a fee. Later, FE collects payment from C.

There are several benefits to all the parties involved in a factoring operation. The

provider obtains liquidity and avoids paying interests on credits that he/she would

otherwise need (it is a common practice for some clients as well as several trading

sectors in Chile to pay up to 6 months after purchase). The client gets a credit at no

cost and is able to perform a purchase for which he might not have found a willing

provider.

According to the Chilean Association of Factoring (Asociación Chilena de Factor-

ing - ACHEF ) during 2010, its 19 members accumulated almost 2 million documents

worth more than 18 billion dollars [ACH]. Factoring’s origins lie in the financing of

trade, particularly international trade. Factoring as a fact of business life was under-

way in England prior to 1400 [Hur39]. The reader is referred to the website of the
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Figure 4.8: Steps of a factoring operation.

International Factors Group [ifg] for information on current trends and practices con-

cerning factoring worldwide. Although factoring is performed in many contexts, as

the reader will see, our proposed solution exploits peculiarities of the way it is locally

implemented in Chile — thus, its applicability in other scenarios, if at all possible,

would require adaptations.

The main phases of an invoice factoring operation are summarized below and

illustrated in Figure 4.8:

1. C requests from P either goods or services,

2. P delivers the goods/services to C,

3. P makes a factoring request to FE,

4. FE either rejects or accepts P ’s request — in the latter case FE gives P a cash

advance on C’s purchase,

5. later, FE asks C to settle the outstanding payment, and finally,

6. C pays FE.

A risk for FE is that P can generate fake invoices and obtain cash advances over

them. This danger is somewhat diminished by the fact that such dishonest behavior

has serious legal consequences. More worrisome for FE is that P may duplicate real

invoices and request cash advances from several FEs simultaneously. But, Chile’s

local practice makes this behavior hard to carry forth. Indeed, invoices are printed
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in blocks, serially numbered and pressure sealed by the local IRS agency (known as

Servicio de Impuestos Internos (SII)). A FE will request the physical original copy

of an invoice when advancing cash to P . It is illegal, and severely punished, to make

fake copies or issue unsealed invoices.

Less than a decade ago, an electronic invoicing system began operating in Chile.

Background and technical information concerning this initiative can be downloaded

from the website of the SII, specifically from [efa]. The deployed electronic invoicing

system has been widely successful. It has been hailed as a major step in the gov-

ernment modernization. Furthermore, it has created strong incentives for medium

to small size companies to enter the so called “information age”. Nevertheless, the

system somewhat disrupts the local practice concerning factoring. Specifically, a FE

will not be able to request the original copy of an invoice, since in a digital world

there is no difference between an original and a copy. This creates the possibility of

short term large scale fraud being committed by unscrupulous providers. Indeed, a

provider can “sell” the same invoice to many distinct FEs. We refer to the aforemen-

tioned situation created by the introduction of electronic invoicing as the e-Invoice

Factoring Problem.

We show below how to address this problem using strong universal accumulator

schemes, but first it is important to note that there are other issues of concern for

participants of an e-invoice factoring system, among the most relevant are:

� Privacy of the commercially sensitive information contained by invoices (e.g. pri-

vate customer’s information like for example tax identification numbers, volume

of transactions, etc.)

� Robustness of the e-invoice factoring system — no small size colluding party

should be able to disrupt the system’s operation and/or break its security.

� Confidentiality of the FE’s commercially sensitive information (customer pool,

number of transactions, volume of transactions, etc.)

The latter of these issues arises because the FEs are in competition among them-

selves. They have an incentive to collaborate in order to avoid fraud, but they do
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not wish to disclose information about their customer base and transaction volumes

to competitors. Moreover, a widespread sharing of invoices would not be welcomed

by the providers who issue them, given that they probably want to keep the profile

of their clients confidential.

In order to describe our proposed strong accumulator based solution for the e-

Invoice Factoring Problem it is convenient to introduce additional terminology. A

factoring protocol F = (FE1, . . . , FEl;FA) involves l ≥ 2 participants FE1, . . . , FEl

called factor entities, and a special participant FA called the factoring authority. The

factoring protocol F is defined by the concurrent execution of several instances of a

decision protocol consisting of:

1. The transmission from FEi to FA of a digest x of an invoice Inv that FEi

wants to buy.

2. The computation by FA, based on x and the identity of FEi, of a value V and

its publication through a public broadcast channel.

3. The decision on whether or not to buy the invoice associated to x made by

FEi based on V and other possible information previously collected. If FEi

concludes that Inv has not been previously sold, then it decides to buy and

outputs Inv||0||i, otherwise it outputs Inv||1||i.

The previous description of a factoring protocol captures the fact that the FEi’s

interact concurrently with FA in order to decide whether or not to buy invoices.

In order to formalize the security requirements involved in a factoring protocol we

proceed as follows. Let κ ∈ N be a security parameter, Ω an initialization procedure,

and let F = (FE1, . . . , FEl;FA) be a factoring protocol for l = P (κ) ≥ 2 where P is a

polynomial. Consider an experiment, denoted ExpfacF ,Ω,A(κ), where A is a polynomial

time bounded adversary that can corrupt FA and choose the elements for which the

FEi’s want to make a purchase decision. The adversary can run a polynomial number

of decision protocol instances. Also, FA can invoke the initialization procedure Ω

which is not under the control of the adversary. We say that the experiment outputs

1 if the adversary wins, i.e. if either one of the following situations occur; (1) for
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Figure 4.9: Base Protocol (trustworthy FA).

i 6= j, FEi, FEj publish Inv||0||i and Inv||0||j respectively, meaning they are willing

to purchase the same invoice Inv, or (2) FEi publishes Inv||1||imeaning it rejects the

invoice Inv, despite no other honest factor entity took the decision to buy it (there is

no published message Inv||0||j where j is the index of an honest factor entity FEj).

Definition 31 (Security of a factoring protocol) Let κ ∈ N be a security pa-

rameter and l = P (κ) ≥ 2 for some polynomial P . We say that a factoring protocol

F is secure under initialization procedure Ω if Pr
[

ExpfacF ,Ω,A(κ)
]

= neg(κ) for every

probabilistic polynomial time adversary A.

A factoring protocol based on a secure strong universal accumulator

scheme. We now describe how any secure strong universal accumulator scheme can

serve as the basis on which a secure factoring protocol can be built.

For the sake of clarity of exposition we first describe a general protocol, calledBase

Protocol, that involves all the participants of a factoring transaction: the client C,

the provider P , the factor entities FE1, . . . , FEl and the factoring authority FA. In

this Base Protocol, we assume moreover that FA is trustworthy. Afterwards, we
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shall show how to remove this assumption. Also assume that FA has access to a

hash function H uniformly chosen from a collision-resistant hash function family. In

our trustworthy factoring authority based solution, FA stores the hash values of all

acquired invoices and replies to queries from the factor entities concerning the status

(either acquired or available) of an invoice with a given digest value. Henceforth,

we assume that the origin and authencity of all messages are guaranteed through a

bulletin board (as implemented in other cryptographic protocols, e.g. [CGS97]).

The Base Protocol is illustrated in Figure 4.9 and its phases are described next:

Base Protocol

1. P sends an e-invoice Inv to C.

2. C sends an acknowledgement of receipt of the e-invoice

Ack = SignC(Inv).

3. P sends the message Inv||Ack to the FEi of his choice.

4. FEi sends the message x = H(Inv) to FA.

5. FA checks whether x is in its database. If not, FA sets Stat to 0 and

adds x to its database. Otherwise, Stat is set to 1. Then, FA broad-

casts through the public channel the message x||Stat||i. Upon receiving

x||Stat||i, the factor entity FEi agrees to purchase Inv if Stat = 0, and

declines if Stat = 1.

6. FEi sends the message Inv||Stat to P .

Discussion. Note that during Step 2 a receipt is produced by C and then transmitted

to FEi during Step 3. This is to prevent client C from being framed by P as having

made a purchase whose payment FEi could try to collect later on. Also, note that

Inv is not transmitted to FA during Step 4. This is done to allow protocol extensions
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to support confidentiality of P ’s and FEi’s commercially sensitive information3. The

reason for including the identifier i in FA’s reply in Step 5 is to guarantee that nobody

besides FEi can exhibit a valid proof, purportedly sent by FA, claiming that x was

not in FA’s database at a given instant (otherwise anyone capturing FA’s replies

could obtain a certificate that purchase of an invoice with digest x is warranted).

In the protocol, FA’s message x||Stat||i certifies that an invoice with digest x

either is or is not present in FA’s database. Note also that FEi’s message Inv||0 is

a proof of commitment that FEi has agreed to acquire Inv from P .

Attacks outside of the model. Observe that collusion between C and P is

possible. Indeed, it is easy to see that together they can produce e–invoices not tied

to a real commercial transaction. To avoid this risk, a factor entity should check

the validity of every e–invoice it is offered, before even contacting FA. The current

e–factoring system deployed by the Chilean internal revenue service provides on–line

functionality to check the validity of e–invoices (every issuer of e–invoices must submit

to the tax collecting agency an electronic copy of every e–invoice it creates within 12

hours of having issued it).

Refined protocol. Now let us consider a more realistic scenario where the factor-

ing authority is not trustworthy. We describe a solution for the e-Invoice Factoring

Problem that is based on five algorithms that rely on a secure strong universal ac-

cumulator under initialization procedure Ω, denoted ACC. To avoid confusion, each

algorithm related to the accumulator will be referred to by ACC.〈algorithm name〉.

� Setup(1κ): The factoring authority acts as the accumulator manager. First it

invokes Ω on input 1κ and obtains ζ . Then, it runs accumulator setup algorithm

ACC.Setup on ζ , and stores the accumulator value Acc and the memory m.

� Add(ζ, x, Accbefore,mbefore): The factoring authority runs procedure

ACC.Updateadd(ζ, x, Accbefore,mbefore), returns (Accafter,mafter) and wadd. Then,

it publishes4 in the bulletin board (Accbefore, Accafter, wadd).

3This is straightforward by using perfectly one-way hash functions [CMR98] for H in Step 4.
4Note that conceptually it would be enough to publish only the elements that are inserted into /
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� Checkadd(ζ, x, Accbefore, Accafter, wadd): The factor entity that wants to check

whether the element x was correctly added to the accumulated set executes

ACC.CheckUpdate(ζ, x,Accbefore,Accafter, wadd).

� Belongs(ζ, x,m): the factoring authority sets w = ACC.WitGen(ζ, x,m). Then,

it sets Stat = 1 if x has been accumulated, and Stat = 0 otherwise. Finally, it

returns (Stat, w).

� Checkbelongs(ζ, x, Stat, w, Acc): the factor entity that wants to check whether or

not the element x belongs to the accumulated set verifies that

ACC.Verify(ζ, x, w, Acc) equals Stat.

Below we describe the refinement of Step 5 of the Base Protocol which cor-

responds to a factoring protocol. As in Section 4.4 we assume the availability of a

public broadcast channel. We also assume that when Base Protocol starts the pro-

cedure Setup(1κ) is invoked, where κ is the security parameter, thus generating the

system-wide parameter ζ .

deleted from the set after each update. However, this would force every participant to store the whole
history of changes in order to recompute the successive accumulated values. Thus, by publishing
the accumulated values and the update proofs the accumulator manager allows an external party
to check the consistency of the updates without having to parse all the intermediate values: It only
needs to remember the last accumulated value that was checked successfully whether by itself or
some other (trusted) verifier.
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Refinement of Step 5

5.0 Assume the current accumulator value is Accbefore and the memory state is

mbefore.

5.1 Upon receiving x from factoring entity FEi, the factoring au-

thority FA determines (Stat, w) = Belongs(ζ, x,mbefore) and then

broadcasts x||(Stat, w)||i. If Stat = 0, then FA executes

Add(ζ, x, Accbefore,mbefore), obtains (Accafter,mafter) and wadd, and broad-

casts x||(Stat, Accafter,mafter, wadd)||i.

5.2 The following verifications are performed:

(a) FEi runs Checkbelongs with input (ζ, x, Stat, w, Accbefore).

(b) If Stat = 0, then every factor entity executes

Checkadd(ζ, x, Accbefore, Accafter, wadd).

5.3 If no factor entity objects by exhibiting a valid proof that it has previously

purchased an invoice with digest value x, Stat = 0 in Step 1, and no

message x||(Stat, Accafter,mafter, wadd)||j with j 6= i is published before

FA updates the accumulator value to Accafter (and the memory state to

mafter),
5 then FEi agrees to the purchase of an e-invoice with digest x.

Otherwise (Stat = 1 or one of the verification fails), FEi rejects the invoice

with digest x.

It is important to point out that every FEi has to check each change on the mem-

ory m using the values published in the broadcast channel. Theses checks guarantee

continuity in the evolution of the history of the FEi’s decisions (buy or reject an

invoice).

5In practice this can be implemented by a round during which each factor entity that disagrees
with FA’s broadcast values has to publish its complaint.
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For clarity of exposition, in our proposed solution to the e-Invoice Factoring Pro-

tocol, we have omitted explanations of how to deal with e-invoice digest removals from

FA’s database. However, it should be obvious how to implement this feature relying

on the secure deletion functionality provided by secure strong universal accumula-

tors with memory. Implementation of this functionality is essential for maintaining

efficiency. Specifically, to upper bound the size of the intermediate outputs and per

operation processing time by a logarithm in the number of accumulated invoices.

We henceforth denote by FACC the protocol described above (the Base Protocol

together with its refinement) when instantiated with a universal accumulator scheme

ACC.

Proposition 7 Let ACC be a secure strong universal accumulator scheme (with mem-

ory) under initialization procedure Ω. Then, FACC is a secure factoring protocol under

Ω.

Proof. Assume an adversary can make either one of the following situations to occur:

(1) for i 6= j the adversary manages to get two messages Inv||0||i, Inv||0||j broad-

casted by two honest factor entities FEi and respectively FEj , or (2) the adversary is

able to convince an honest factor entity FEi to publish the message Inv||1||i while no
message Inv||0||j, where j is the index of an honest participant, has been broadcasted

previously . If situation (1) occurs, the verification in Step 5.2 of the factoring protocol

guarantees that only one message of the type H(Inv)||(Stat, Accafter,mafter, wadd)||z
can be published between two consecutive changes of the accumulated value, thus

the attacker needs to be able to find a witness of non-membership for H(Inv), al-

though H(Inv) has already been accumulated. Since FACC is secure, this can only

happen with a negligible probability. If situation (2) occurs, then in order to succeed

in Step 5.2, the attacker needs to be able to find a witness of membership for H(Inv),

although H(Inv) has not been previously accumulated. Since FACC is secure, this can

not happen except with negligible probability.

Theorem 6 and Proposition 7 immediately yield,

Corollary 1 The factoring protocol FHashAcc is a secure factoring protocol under ΩH.
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4.7 Conclusion

We introduced the notion of strong universal accumulator scheme which provide al-

most the same functionality as do the universal accumulator schemes defined in [LLX07],

namely (1) a set is represented by a short value called accumulator, (2) it is possible

to add and remove elements dynamically from the (accumulated) set, and (3) proofs

of membership and non-membership can be generated using a witness and the accu-

mulated value. In this notion, however, the accumulator manager does not need to

be trustworthy and might be compromised by an adversary.

We also give a construction of a strong universal accumulator scheme based on

cryptographic hash functions which relies on a public data-structure to compute ac-

cumulated values and witnesses (of membership and non-membership in the accu-

mulated set). We argue that the proposed scheme is practical and efficient for most

applications. In particular, we discuss an application to a concrete and relevant

problem, the e-invoice factoring problem.
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5.1 Introduction

In their survey on cryptographic accumulators [FN02], Fazio and Nicolosi pointed

out that, in Camenisch and Lysyanskaya’s construction, the time to recompute the

witnesses once the accumulated set has been modified was proportional to m, the

number of changes of the accumulated set. This raised a natural question: “Is it

possible to construct dynamic accumulators in which the update of several witnesses

can be performed in constant (independently of m) time?”
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Wang et al. [WWP07, WWP08] answered this question in the affirmative by

proposing a construction that allows batch update. Unfortunately, we show that this

construction is not secure. Moreover, we prove that there is no way to fix Wang et

al.’s accumulator by giving a lower bound of Ω(m) in the time required to update

witnesses after m updates.

Since the publication of [WWP07, WWP08], the existence of accumulators with

batch update seems to have been taken for granted, and in fact assumed to exist in

subsequent work. Damg̊ard and Triandopoulos [DT08] cite their availability as an ex-

ample of an accumulator construction based on the Paillier cryptosystem. Camenisch

et al. [CKS09] also mentioned Wang et al.’s accumulator and claim to support batch

update. If we consider strictly Fazio and Nicolosi’s definition however, this is not the

case, as the witness update algorithm in [CKS09] performs a number of operations

proportional to the combined size of the set of added elements and removed elements.

We remark that our impossibility result also applies to any batch update variant of

the accumulator schemes proposed in [DT08, LLX07], which allow both membership

and non-membership proofs.

Batch Update. As originally proposed [FN02], the batch update property for

an accumulator scheme states that each user should be able to update each of his

witnesses using the algorithm UpdWit in time independent of the number of changes

(additions and deletions) to the accumulated set. The formal definition is as follows:

Definition 32 (Batch update for accumulator schemes). Let κ ∈ N be a security

parameter and let Acc be an accumulator scheme. Also, let Xi be a set of accumulated

values at some time i, and Ui ⊂ Xi be a set of elements for which some user U holds

valid witnesses. Suppose that after m > 0 updates (insertions or deletions) to set Xi,

the new accumulated set is Xi+m and the associated accumulated value is AccXi+m
.

We say that Acc has the batch update property if given some information UpdXi,Xi+m
,

user U running UpdWit can recompute a valid witness for any element in Ui

⋂

Xi+m

in constant time (with respect to m). More precisely, if t is the time of a witness

update for a single added/removed element, then the update for a set after m changes

must take time O(t).
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5.2 Wang et al.’s Construction

In this section, we briefly recall Wang et al.’s accumulator with batch update [WWP07,

WWP08]. The first version of their work [WWP07] suffered from two correctness

problems which were later fixed [WWP08]. Below we review the improved version

[WWP08].

The algorithms of Wang et al.’s scheme slightly deviate from the general syntax

of definition 18 as they allow adding and deleting sets of more than one element to

the accumulator. Moreover, the algorithms AddEle and AccVal are randomized which

means that the accumulated value does not only depend on the elements of the set,

contrary to the definition of Fazio and Nicolosi [FN02]. The general idea however

remains the same.

Definition 33 (Syntax for dynamic accumulators with batch update [WWP08]) Let

κ be the security parameter. A dynamic accumulator with batch update AccBU consists

of the following algorithms:

� KeyGen(1κ): is a probabilistic algorithm that takes as input the security parame-

ter κ in unary and returns a parameter P = (PK, SK) where PK is the public

key and SK is the private key1.

� AccVal(X,P): is a probabilistic algorithm that computes an accumulated value.

It takes as input the set X = {c1, ..., cN} and the parameter P and returns an

accumulated value AccX along with some auxiliary information ac that will be

used by other algorithms.

� WitGen(ac, X,P): this probabilistic algorithm returns a list of witnesses corre-

sponding to each element in the set X. It takes as input an auxiliary information

ac, the set X and the parameter P.

� AddEle(X⊕, ac, AccX ,P): this probabilistic algorithm adds some new elements

to the accumulated value. The input values are the set of new elements to add

1In the original paper, the authors mention another parameter M which is an upper bound to
the number of elements that can be accumulated. In order to simplify the notations, we omit it and
recall that this upper bound must be a polynomial in κ.
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X⊕ = {c⊕1 , ..., c⊕l }, the auxiliary information ac, the accumulated value AccX

and the parameter P. The returned values are AccX∪X⊕ the accumulated value

corresponding to the set X ∪X⊕, a list of witnesses (π⊕1 , ..., π
⊕
l ) associated with

the inserted elements (c⊕1 , ..., c
⊕
l ), and the auxiliary information ac, au, that will

be used for future update operations.

� DelEle(X⊖, ac, AccX ,P): this probabilistic algorithm is analogous to AddEle and

allows a set of elements X⊖ to be deleted. The input values are the set of ele-

ments to delete X⊖ = {c⊖1 , ..., c⊖l }, the auxiliary information ac, the accumulated

value AccX and the parameter P. The returned values are AccX\X⊖ the accu-

mulated value corresponding to the set X \X⊖, and the auxiliary information

ac, au, that will be used for future update operations.

� Verify(x, π, AccX , PK): this deterministic algorithm checks whether an element

x belongs to the set X represented by the accumulated value AccX using the

witness π and the public key PK. It returns valid if the witness π for x is valid

or ⊥ otherwise.

� UpdWit(πi, au, PK) : this deterministic algorithm updates witnesses for the el-

ements accumulated in AccX and that are still accumulated in AccX′ (the new

set after update). The inputs are πi, the witness to update, the auxiliary infor-

mation au and the public key PK. It returns an updated witness π′i that allows

to prove that ci is still accumulated in the new accumulated value AccX′.

Note that in this definition UpdWitGen does not appear. The reason is that in

Wang et al.’s construction, the update information required to recompute the wit-

nesses is generated by algorithms AddEle and DelEle.

Wang et al.’s accumulator relies on the Paillier cryptosystem [Pai99], which we re-

call here. The Paillier cryptosystem [Pai99] consists of the following three algorithms.

� KeyGen: let n = pq be a RSA modulus, with p, q large prime integers. Let g be

an integer multiple of n modulo n2. The public key is defined by PK = (n, g)

and the private key by SK = λ = λ(n) = lcm(p− 1, q − 1).
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� Encrypt: let M ∈ Zn be a plaintext message and r a random element in Z∗n, the

encrypted message is c = gMrn mod n2.

� Decrypt: to recover M from ciphertext c, compute M = L(cλ mod n2)
L(gλ mod n2)

mod n w

here L : u → u−1
n

takes as argument elements from the set Sn = {u < n2|u =

1 mod n}.

The homomorphic property of the Paillier cryptosystem follows from the fact that

∀x, y ∈ Sn and σ ∈ Z+:

L((x.y)λ mod n2) mod n = L(xλ mod n2) + L(yλ mod n2) mod n

L(xσλ mod n2) mod n = σL(xλ mod n2) mod n

We can now describe Wang et al.’s concrete scheme.

Construction 10 (Wang et al.’s accumulator, [WWP08])

� KeyGen(1κ):

Given the security parameter κ in unary, compute a safe-prime product n = pq

that is κ-bits long and create an empty set V . Let C = Z∗n2 \ {1} and T ′ =

{3, ..., n2}. Let β
R← Z∗φ(n2) and σ

R← Zn2 be two random numbers. The public

key PK is set to (n, β) and the private key SK to (σ, λ). The output is the

parameter P = (PK, SK).

� AccVal(X,P):
Given a set X = {c1, ..., cN} with X ⊂ C, and the parameter P, take cN+1

R← C
and compute

xi = L(cλi mod n2) mod n (for i = 1, ..., N + 1)

AccX = σ
∑N+1

i=1 xi mod n

yi = cλσβ
−1

i mod n2 (for i = 1, ..., N + 1)

ac = ΠN+1
i=1 yi mod n2

Output the accumulated value AccX and the auxiliary information ac.
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� WitGen(ac, X,P):
Given the auxiliary information ac, a set X = {c1, ..., cN}, and the parameter

P, choose uniformly at random a set of m numbers T = {t1, ..., tN} ⊂ T ′ \ {β}
and compute

wi = acc
−tiβ−1

i mod n2 (for i = 1, ..., N)

Output the witness πi = (wi, ti) for ci (for i = 1, ..., N).

� AddEle(X⊕, ac, AccX ,P):
Given a set X⊕ = {c⊕1 , ..., c⊕l }(X⊕ ⊆ C \X) to be inserted, the auxiliary infor-

mation ac, the accumulated value AccX , and the parameter P, choose c⊕l+1

R← C
and a set of l numbers T⊕ = {t⊕1 , ..., t⊕l }

R← T ′ \ (T ∪ {β}), and compute

x⊕i = L((c⊕i )
λ mod n2) mod n (for i = 1, ..., l + 1)

AccX∪X⊕ = AccX + σ
∑l+1

i=1 x
⊕
i mod n

y⊕i = (c⊕i )
λσβ−1

mod n2 (for i = 1, ..., l + 1)

au = Πl+1
i=1y

⊕
i mod n2

w⊕i = acau(c
⊕
i )
−t⊕i β−1

mod n2 (for i = 1, ..., l)

Set ac = acau mod n2, T = T ∪ T⊕, and V = V ∪ {au}. Then output the

new accumulated value AccX∪X⊕ corresponding to the set X ∪X⊕, the witness

π⊕i = (w⊕i , t
⊕
i ) for the new added elements c⊕i (for i = 1, ..., l), and the auxiliary

information au and ac.

� DelEle(X⊖, ac, AccX ,P):
Given a set X⊖ = {c⊖1 , ..., c⊖l } (X⊖ ⊆ X) to be deleted, the auxiliary information

ac, the accumulated value AccX , and the parameter P, choose c⊖l+1

R← C and

compute

x⊖i = L((c⊖i )
λ mod n2) mod n (for i = 1, ..., l + 1)

AccX\X⊖ = AccX − σ
∑l

i=1 x
⊖
i + σx⊖l+1 mod n

y⊖i = (c⊖i )
λσβ−1

mod n2 (for i = 1, ..., l + 1)

au = y⊖l+1Π
l
j=1(y

⊖
j )
−1 mod n2
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Set ac = acau mod n2 and V = V ∪ {au}. Then output the new accumulated

value AccX\X⊖ corresponding to the set X \X⊖ and the auxiliary information

au and ac.

� Verify(c, π, AccX, PK):

Given an element c, its witness π = (w, t), the accumulated value AccX , and

the public key PK, test whether {c, w} ⊂ C, t ∈ T ′ and L(wβct mod n2) ≡
AccX( mod n). If so, output valid, otherwise output ⊥.

� UpdWit(πi, au, PK) :

Given the witness πi, the auxiliary information au and the public key PK, com-

pute w′i = wiau mod n2 then output the new witness π′i = (w′i, ti) for the element

ci.

In the following section we show that Wang et al.’s construction is not secure.

5.3 An Attack on the Accumulator with Batch

Update of Wang et al.

5.3.1 Problems with the proof

A security proof for the scheme was presented in the original paper [WWP07]2. In

their work, Wang et al. described a security reduction assuming the Extended Strong

RSA assumption (or es-RSA), also proposed in [WWP08] as an analogous to the

Strong RSA assumption [BP97] but relative to modulus n2 instead of n. Unfortu-

nately, there are two main problems in the proof. First, it states that adversary B
must “run the KeyGen algorithm” which means it knows the factorization of the prod-

uct n = pq, or at least knows φ(n2) and λ = lcm(p − 1, q − 1) since β = σλ mod n2

(see [WWP07]). Therefore, it is not clear how the reduction to break the es-RSA

assumption can be achieved.

2As mentioned before, the subsequent paper [WWP08] fixes two correctness flaws in [WWP07]
but does not give a new security proof. Our attack is against the improved version [WWP08].

107



The second problem is that, to break the es-RSA assumption, B needs to find non

trivial values (y, s) such that ys = x mod n2 where x is given as input to B. This

value x does not seem to be mentioned in the proof.

5.3.2 Description of the attack

In order to show that the construction is not secure, i.e. the proof of security cannot

be fixed, we present an attack. This attack considers the updated scheme [WWP08].

The idea is simply to delete an element from the set, and then update the witness of

this element with the update information obtained by the execution of the algorithm

DelEle. We then observe that this new witness is a valid one for the deleted element,

which of course should not happen. We start with the set X = {c1} for some c1,

and let x1 = L(cλ1 mod n2) mod n. Then, a random element c∗ is chosen and

x∗ = L(cλ∗ mod n2) mod n is computed. The accumulated value is set to v = σ(x1 +

x∗) mod n. The witness value π1 = (w1, t1) for c1 is defined by π1 = acc
−t1β−1

1 mod n2

where ac = y∗y1 mod n2, y1 = cλσβ
−1

1 mod n2, y∗ = cλσβ
−1

∗ mod n2, and t1 is random.

Then, the adversary asks the manager to delete element c1. This means that the

new accumulated value is v′ = v − σx1 + σ(x∗∗) mod n = σ(x∗ + x∗∗) mod n where

x∗∗ = L(cλ∗∗ mod n2) mod n and c∗∗ is random. The auxiliary value au used to update

the witnesses is au = y∗∗y
−1
1 mod n2 where y∗∗ = cλσβ

−1

∗∗ mod n2. So, by updating

the witness w1 with au we obtain w′1 = auw1 mod n2 = y∗∗y
−1
1 y∗y1c

−t1β−1

1 mod n2 =

y∗∗y∗c
−t1β−1

1 mod n2. Then w′β1 c
t1
1 ≡ (y∗∗y∗c

−t1β−1

1 )βct11 mod n2 = (y∗∗y∗)
β mod n2 =

(c∗∗c∗)
λσ mod n2. It follows that

L(w′β1 c
t1
1 mod n2) ≡ L((c∗∗c∗)

λσ mod n2) mod n

≡ σ(L(cλ∗∗ mod n2) + L(cλ∗ mod n2)) mod n

≡ σ(x∗ + x∗∗) mod n

≡ v′ mod n

This shows that (w′1, t1) is a valid witness for the deleted element x1. Therefore

the scheme is not secure. Indeed the problem is simply that the information au allows

every old witness, including w1, to be updated. However such an update should not
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be possible.

5.4 A Lower Bound for Updating the Witnesses

The attack of the last section is an indication that the proposed construction may

have some design flaws. In this section, we show that the problem indeed is more

fundamental and the batch update property is essentially unrealizable. We argue this

by presenting a lower bound on the size of UpdX,X′ , the information needed to update

the witnesses after m changes (more precisely, deletions). Any deterministic update

algorithm UpdWit must at least read UpdX,X′ , and so it also bounds the running time

of any such algorithm in the case of sequential memory access.

Theorem 8 Let Acc be a secure accumulator scheme with deterministic UpdWit and

Verify algorithms. For an update involving m delete operations in a set of N elements,

the size of the information UpdX,X′ required by the algorithm UpdWit is Ω(m log N
m
).

In particular if m = N
2
we have |UpdX,X′ | = Ω(m) = Ω(N).

Proof. The idea of the proof is that the update information must encode a

minimum amount of information in order for the accumulator scheme to be correct

and secure. We prove this by considering a theoretical game between the accumulator

manager and some user U . In the game, starting from an accumulated set X , the

accumulator manager updates the accumulator in a way that is not known to user U

(namely, the manager deletes some elements in an arbitrary set Xd ⊂ X) while still

providing the update information UpdX,X′ to U , where X ′ = X \Xd. We prove that,

as long as the scheme is correct and secure, there is a simple strategy that allows the

user U to recover the exact changes made by the manager, that is, the set of deleted

elements Xd. We conclude that the information provided by the manager to the user

must at least encode a description of the set Xd. Details follow.

Consider the following game. The set accumulated at some point in time is

X = {x1, x2, . . . , xN}, and the corresponding accumulated value is AccX . We suppose

the user possesses all the witnesses for each element in X and knows the accumulated

value. Then m DelEle operations are performed, that is the new set obtained is X ′ =
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X \Xd where Xd = {xi1 , xi2 , ..., xim}. The manager computes the new accumulated

value AccX′ and sends it to the user along with the update information UpdX,X′

required to update all the witnesses that are still in X ′.

Armed with this update information UpdX,X′ and the new accumulated value

AccX′ , user U is able to reconstruct the set Xd of deleted elements as follows: For

each element in X , the user checks if the corresponding witness can be successfully

updated using algorithm UpdWit with input UpdX,X′ .

More specifically, the user computes π′x = UpdWit(πx, UpdX,X′, PK) and checks

whether or not π′x is a valid witness. If not, that is, if Verify(x, π′x, AccX′ , PK) = ⊥,
then the user U deduces that the element x must have been deleted from X .

Let us consider the set Good = {Xd can be reconstructed by user U}. As the

scheme must be correct and as algorithms UpdWit,Verify are deterministic, we note

that if x is still in X ′ the user U necessarily will be able to successfully update the

corresponding witness πx.

Moreover, as the scheme must be secure, we claim that

Pr[Xd /∈ Good] ≤ ǫ(κ)

where κ is the security parameter and ǫ is a negligible function. The reason is that

this whole experiment can be transformed in an adversary that tries to find a fake

witness choosing Xd at random. We deduce that the size #Good of the set Good is

such that

#Good ≥
(

N

m

)

(1− ǫ(κ))

Hence, the user must be able to recompute the set of deleted elements Xd only

from values UpdX,X′ and AccX′ , assuming that Xd ∈ Good.

We therefore conclude that (UpdX,X′ , AccX′) must contain at least the information

required to encode any element of Good. There are at least
(

N
m

)

(1− ǫ(κ)) elements in

Good, so the minimum amount of information required is log(
(

N
m

)

(1−ǫ(κ)) bits. Since
log(

(

N
m

)

) ≥ m log N
m

we obtain that |(AccX′ , UpdX,X′)| = Ω(m log N
m
+ log(1 − ǫ(κ))).

Recall that |AccX′ | must be sufficiently short (say, at most O(log(N)), otherwise the

accumulated value is not longer a “short representation” of the set, and the scheme
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is not really useful. Moreover ǫ vanishes to 0 when κ grows, so we can conclude that

|UpdX,X′| = Ω(m log N
m
). The result then follows.

Given a the security parameter κ, the above theorem says that any update algo-

rithm must take time at least O(m) = O(N) = O(P (κ)) = ω(t) for some arbitrary

polynomial P , in order to read the input (in the case of sequential memory access).

This goes beyond O(t), the desired “constant time” in the number of changes.

Corollary 2 Cryptographic accumulators with batch update (and deterministic up-

date and verification) do not exist.

5.5 Conclusion

This result shows that the batch update property as proposed in [FN02] essentially

cannot be obtained, as the time to update all the witnesses cannot be linear in t,

the time required to verify a single witness, but it must be at least O(P (κ)) = ω(t)

for some polynomial P . Notice that our lower bound is not tight since Camenisch

and Lysyanskaya’s accumulator requires O(P (κ) · t) time to update the witnesses

after O(P (κ)) changes. Nonetheless, in principle, it leaves some (potential) room to

improve their construction by at most a factor of t.

Finally, one may consider getting around this impossibility result by not allowing

deletions in the set. Unfortunately, such an accumulator can be trivially implemented

by signing the elements of the set, as in this case there is no replay-attack. The witness

for every element consists in its signature under the manager’s private key, and clearly

needs not to be updated.
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6.1 Introduction

In this chapter, we describe a new construction for a TSDT scheme that enjoys better

worst-case complexity than Neven’s [Nev08]. We obtain a scheme where, for any

λ ≥ 1, (a) signing or verifying an edge signature requires O(λ) cryptographic opera-

tions, and (b) computing (without the secret key) an edge signature in the transitive

closure of the tree requires O(λ(N
κ
)1/λ) cryptographic operations. The signature size

is substantially improved: Our signatures are only O(κλ) bits, where κ is the security

parameter. In particular, if λ = log(N), then signatures are O(κ log(N)) bits, while

allowing efficient signature computation (O(log(N) time). Alternatively, by setting
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for example λ = 2, we obtain optimal signature sizes of O(2 · κ) = O(κ) bits if we are

willing to afford O(
√

N
κ
) computation.

Our Approach. There are two main ideas in our construction. First, we use the

following fact observed by Dietz [Die82]. Let Pre and Post be the two strings rep-

resenting the sequences of nodes obtained by pre-order and post-order (respectively)

traversal of a given tree T . Dietz observed that there exists a path from a to b if,

and only if, a appears before b in Pre and b appears before a in Post. This property

captures the fact that the tree is directed (from top to bottom) and gives us a char-

acterization of the existence of a path between two nodes. Armed with this result,

we reduce the problem of deciding whether there is a path between vertices a and b,

to comparing the position of a and b in a string sequence S. Doing this efficiently

is not trivial as the tree can grow, which means the string S dynamically changes.

An order data structure – a concept also introduced by Dietz [Die82] – does exactly

what we need: It supports element insertions into a sequence while still providing an

efficient method to decide element order. Roughly speaking, we implement such data

structure via a binary search tree B, where each pair of elements x and y in S are

associated to nodes x, y ∈ B (respectively), each with efficiently computable short

labels ℓ(x) and ℓ(y). We then are able to define the relation “a appears before b in

the sequence S” as a total order relation ≺ which can be efficiently evaluated only

from ℓ(a) and ℓ(b).

To achieve this, we use a labelling technique – based on tries [Fre60] – which

allows efficient and incremental computations of labels for new elements. Any newly

inserted element v in T is mapped to a node v in B whose label ℓ(v) will share all

but the last bit with another already computed label (see details in Section 6.4).

Thus, whether an element a comes before some other element b in S, can then be

efficiently tested by lexicographical comparison between the labels associated with

the corresponding nodes in B. With this at hand, we then use two of these data

structures to keep track of Pre and Post lists and to test Dietz’s condition on any

pair of elements.

The problem, however, is that labels of O(N) bits are now associated to vertices

of the N -node tree T , so at first sight, little has been gained: Signature length is now
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O(N) bits compared to N logN bits in Neven’s construction.

That is when our second idea comes into play: We use a CRHF that preserves

the predicate CommonPrefix, defined as follows: Given A,B ∈ Σm, for some m ∈ N,

CommonPrefix(A,B, i) = 1 if, and only if, A and B share a common prefix up to

position i. This tool allows us to prove Dietz’s condition using only hashed labels

(and a constant size proof), effectively compressing the signature. Thus, we pro-

pose a generic construction for TSDT schemes based on the new primitive mentioned

above. Morevover, we describe a concrete instantiation for a CRHF that preserves the

CommonPrefix predicate and whose security relies on the N-Bilinear Diffie Hellman

Inversion assumption.

We further improve our construction by showing how to balance the work between

the verifier and the combiner using the natural idea of hashing consecutive chunks

of the initial string to obtain a shorter one, and repeat this operation several times.

This technique leads to a novel tradeoff O(λ(N
κ
)1/λ) vs. O(λ) for λ ≥ 1 between the

time to compute a proof versus the time to verify a proof.

Our solution, like previous ones, is stateful. However, we note that our construc-

tion does not allow the combiner to compute edge signatures without using a state

shared with the signer. This means that, strictly speaking, signature edge composi-

tion is impossible in our construction (contrary to Neven’s [Nev08] where a state is

also required but only for signing edges). Nonetheless, the functionality of computing

signatures for any edge in the transitive closure of the tree (which is done by the

combiner) – without relying on the signer ’s secret – is maintained. To the best of our

knowledge, if we require these edge signatures to have constant size in the number

of nodes of the tree, avoiding the use of a state for edge signature composition is an

open problem.
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6.2 A CRHF that preserves the Common Prefix

predicate

In this section we describe a CRHF that implements the CommonPrefix predicate

mentioned above. We first observe that using CommonPrefix predicate we can imple-

ment other useful predicates over strings such as Compare, defined as Compare(A,B) =

1 if, and only if, A ≺ B (here ≺ is the extended lexicographical order): If A ≺ B,

it follows that there exists a (possibly empty) common prefix C for A and B and

symbols σ, σ′, such that (1) D = C||σ is a prefix of A, (2) C||σ′ is a prefix of B, and

(3) σ < σ′. In summary, once we know how to do short proofs for CommonPrefix,

using incremental hashing we can compare any two strings by only their hash values.

Definitions. Let PP ∈ {0, 1}κ some public parameter, and N ∈ N a bound on the

size of the input1 which is a polynomial in κ. We denote by H a hash function family.

Definition 34 (CRHF that preserves CommonPrefix - Syntax) A hash function fam-

ily H that preserves the CommonPrefix predicate is a 4-tuple of algorithms

(HGen,HEval,ProofGen,ProofCheck) where:

� HGen(1κ, N): Given a bound N on the length of the strings to hash, this prob-

abilistic algorithm returns a public parameter PP. Value PP implicitly defines a

hash function H = HPP,N,κ ∈ H where H : {0, 1}N → {0, 1}κ.

� HEval(M, PP): Given M ∈ {0, 1}N , this deterministic algorithm efficiently com-

putes and returns the string H(M) ∈ {0, 1}κ.

� ProofGen(A,B, i, PP): Given two messages A, B ∈ {0, 1}N , and an index 1 ≤
i ≤ N , this deterministic algorithm computes a proof π ∈ {0, 1}κ that will be

used by the ProofCheck algorithm.

� ProofCheck(HA, HB, i, π, PP): A deterministic algorithm that, given two hash

values HA, HB ∈ {0, 1}κ and a proof π ∈ {0, 1}κ, returns either valid or ⊥.
1Here we intentionally use the same variable name N for the size of the input of the hash function

as well as the number of nodes of the tree. Indeed, our full construction for trees ofN nodes presented
in section 6.4.2 requires hashing N -bit strings.
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The scheme is said to be correct if for any strings A,B and i ∈ N such that

CommonPrefix(A,B, i) = 1, and π = ProofGen(A,B, i, PP), we have that ProofCheck

on inputs (H(A),H(B), i, π, PP) returns valid.

The security requirement is the following: For any PPT adversary A, it has to be

difficult to compute two N -bit strings A,B, an index i ∈ {1, . . . , N}, and a proof π ∈
{0, 1}κ such that ProofCheck(H(A),H(B), π, i, PP) returns valid but A[1..i] 6= B[1..i].

Note that the adversary is required to output pre-images A and B to win, which

guarantees that the hash values H(A) and H(B) have been correctly computed.

Definition 35 (Secure preservation of the CommonPrefix predicate) Let H be a fam-

ily of hash functions with common-prefix proofs and A a PPT adversary. The

CommonPrefix advantage of A is

AdvCommonPrefixH (A, κ, N) = Pr









PP← HGen(1κ, N);A,B, π, i← A(1κ, N, PP) :

A[1..i] 6= B[1..i] ∧HA = H(A) ∧HB = H(B)∧
ProofCheck(HA, HB, i, π, PP) = valid









We say H preserves securely CommonPrefix if, for every PPT A, we have

AdvCommonPrefixH (A, κ, N) = neg(κ).

The following proposition states that a hash function family that preserves the

CommonPrefix predicate must be collision-resistant.

Proposition 8 Let H be a family of hash functions that preserves securely the

CommonPrefix predicate. Then H is a collision-resistant hash function family.

Proof. Assume an adversary A finds A,B two strings of size N with A 6= B such

that H(A) = H(B). Due to the correctness of the scheme it is trivial to compute a

proof π such that A shares a common prefix of length N with itself. As A 6= B we

can deduce that (A,B, π) is a forgery for H relative to the predicate CommonPrefix.

The Construction. The description of the hash function H is a tuple (g, gs, gs
2
,

..., gs
N
) of the N -BDHI problem. We assume it has been computed securely by a
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trusted third party or using multi-party computations techniques. The basic idea is to

represent a N -bit binary string M by H(M)
def
= gM [1]s ·gM [2]s2 · · · gM [N ]sN . Now if some

message M ′ is equal to M up to position i then the value ∆ = H(M)
H(M ′)

=
∏N

j=i+1 g
cjsj ,

where cj ∈ {−1, 0, 1}, will be a product of powers of gs
j
for 1 ≤ j ≤ N where for all

j ≤ i the exponents are equal to 0. Yet, the related value π =
∏N

j=i+1 g
cjsj−(i+1)

can

easily be computed given M ,M ′ and H. The intuition behind the proof is that as M

and M ′ are equal up to position i, then we can represent the difference between M

and M ′ using only N − i positions. Thus, verifying proof π simply consists in testing

to see if by using the bilinear map, we can “shift forward” the exponents in the proof

by i positions to obtain ∆. More precisely, π will be a valid proof for H(M),H(M ′)

if, and only if, e( H(M)
H(M ′)

, g) = e(π, gs
i+1

). Details follow.

Construction 11 (A CRHF that preserves CommonPrefix) Let PH be the scheme

defined by the following algorithms:

� HGen(1κ, N): Run BMGen(1κ) to obtain P = (p,G,GT , e, g). Let s
R← Zp, and

T = (g, gs, gs
2
, ..., gs

N
). Return PP = (P, T ).

� HEval(M, PP): M ∈ {0, 1}N . Compute H(M) =
∏N

j=1 g
M [j]sj. Return H(M).

� ProofGen(A,B, i, PP): Given N-bit strings A,B, let C be the array such that

∀j ∈ {1, . . . , N} : C[j] = A[j]− B[j]. Return π =
∏N

j=i+1 g
C[j]sj−(i+1)

.

� ProofCheck(HA, HB, π, i, PP): Compute ∆ = HA

HB
. If i = N and ∆ = 1 return

valid. If i < N return valid if e(∆, g) = e(π, gs
i+1

), otherwise return ⊥.

Proposition 9 Under the N-BDHI assumption the hash function family defined by

the scheme PH securely preserves the predicate CommonPrefix.

Proof. Given an adversary A that breaks the security of PH, we construct an

adversary B that breaks the N -BDHI assumption as follows. Once B receives the

public parameter PP = (P, T = (g, gs, gs
2
, . . . , gs

N
)) as input, it forwards them to

A. Eventually A will output values A,B, π, i such that ProofCheck(H(A),H(B), i, π,

PP) = valid. Then, B computes the array C defined as C[j] = A[j] − B[j] = cj for
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j ∈ {1, . . . , N}. Let k be the smallest index such that ck 6= 0. Clearly i− k > 0 since

A[1..i] 6= B[1..i]. From the validity of π, we have that e(∆, g) = e(π, gs
i+1

), and thus

π = ∆
1

si+1 . Then:

E = e(π, gs
i−k

) = e(∆
1

si+1 , gs
i−k

)

=
∏N

j=k e(g, g)
cjsj−k−1

= e(g, g)
ck
s

∏N
j=k+1 e(g, g)

cjsj−k−1

= e(g, g)
ck
s D

As all cj are known, and ck = ±1, B can compute (E
D
)1/ck = e(g, g)

1
s .

Additional properties. The family H is incremental [BGG94]: Let H ∈ H be

a hash function, M = M [1..N ] ∈ {0, 1}N be any message, and M ′ another message

such that M ′[j] = M [j] for all j ∈ [N ] except for j = i where i ∈ [N ]. We have that

H(M) =
∏N

j=1 g
M [j]sj and thus H(M ′) = H(M) · g(M ′[i]−M [i])si. In terms of efficiency,

both the computation of the hash function and the proof are easily parallelizable as

they involve only group multiplications. In particular, with O(N) processors, we can

compute a proof using only O(logN) (sequential) group multiplications. Also, note

that handling strings of length m > N can be done dynamically, without having to re-

compute any proof, by simply extending the public parameter T = (g, gs, gs
2
, . . . , gs

N
)

say by invoking the distributed procedure (or calling the trusted generator) to com-

pute gs
N+1

, . . . , gs
m
.

6.3 Proof Generation and Verification Tradeoff

First, we can see that a simple optimization can be made to our scheme: Instead of

working with the binary alphabet Σ = {0, 1}, it is possible to encode the string S

using Σ = {0, 1, ..., 2κ − 1} and thus compute H(S) =
∏N/κ

i=1 gσisi where ∀i : 1 ≤ i ≤
N/κ, σi ∈ {0, 1, ..., 2κ − 1}. This observation reduces the number of cryptographic

operations 2 required to compute a proof from O(N) to O(N
κ
) 3. Although simple,

2For the sake of clarity, we do not describe the case where the alphabet contains the special
symbol $. The asymptotic efficiency remains the same however.

3The proof of security remains the same, except that the symbols lie in a larger alphabet.
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Figure 6.1: Toy example of tradeoff data structure.

In this example, let N = 54, λ = 3, κ = 2 and the alphabet Σ = {a, b, c, d}. We have
t = (54/2)1/3 = 3. R and S are two strings that share the same prefix T until
position i = i0 = 17 · 2 = 34. At level 3 we have the final hash values for R = R0

and S = S0 which are respectively R3 and S3. We move now to level 2. The
combiner shows that R2 and S2 are equal up to the position i2 = 1 using hash
values R3 = F(R) and S3 = F(S). Then, it also proves that da is a prefix of R2 and
db is a prefix of S2. This means we need to find the common prefix of strings
G−1(a) = cba and G−1(b) = cbc. So we move up to level 1. Now the combiner, using
G−1(a) and G−1(b), shows that R1 and S1 share a common j1-symbol prefix up the
relative position j1 = 2. This means that i1 = 1 · 3 + 2 = i2 · t+ j1 = 5. We move to
the level 0. The combiner then shows that a,c are the symbols that come just after
T 1 in R1 and S1 respectively. Now using G−1(a) = 001011 and G−1(c) = 001010 the
combiner shows that R0 = R and S0 = S share a common prefix T 0 = T up to the
relative position j0 = 2. This means that i = i0 = 34 = (5 · 3 + 2) · 2 = (i1 · t+ j0)κ.
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this observation is crucial for the following tradeoff.

We now show how to balance the computational work between the combiner –

who generates the hashes and the proofs – and the verifier – who checks the proofs –

as follows. We obtain a scheme such that, for any λ ≥ 1, the time it takes to compute

a proof is reduced to O(λ(N
κ
)1/λ) while the time it takes to generate a signature or

verify a proof is now O(λ). Let t > 0, and S = S0 be the N -bit string (and thus N
κ

symbols) to hash. Assume for clarity, that N
κ
is a power of t. In order to compute

H(S), we first cut S in chunks of size tκ bits.

Let G : {0, 1}tκ → {0, 1}κ be a CRHF that preserves the common-prefix predicate

(that is G operates as H but takes tκ bits (i.e. t symbols) as input). For each chunk

S0, S1, ..., SN/(tκ)−1 we compute the hash value G(Si) and obtain, by concatenating

(G(S0),G(S1), . . . ,G(SN/(tκ)−1)), a new string S1 of size N
tκ
κ = N

t
bits. We repeat the

same procedure with the new string S1 and obtain a string S2 of size N
t2κ

κ = N
t2

bits.

We follow the same algorithm until reaching a string S
log(N/κ)

log t with only one symbols

(i.e. κ bits). The final output corresponds to the output of the common-prefix

preserving CRHF F : {0, 1}N → {0, 1}κ.
To be more concrete, we set t = (N

κ
)1/λ so that the new data structure has λ levels.

In order to prove that the N -bit strings R and S have a i-bit common prefix, we do

the following: Let R0, R1, . . . , Rλ−1, Rλ and S0, S1, . . . , Sλ−1, Sλ be the sequences of

strings obtained by following the above hashing algorithm on input R0 = R and

S0 = S, where Rℓ (resp. Sℓ) is the string processed at level ℓ. We start at level λ.

Here we have the final hash value of κ bits. At the next level, λ − 1, there is only

one chunk of size t = (N
κ
)1/λ (number of symbols). Using ProofGen, the combiner

computes a proof πλ−1 showing that Rλ−1 and Sλ−1 share a common prefix T λ−1 until

some position iλ−1. Then, the combiner computes two additional proofs: One proof

πλ−1,R, showing that T λ−1||σR,λ−1 is a prefix of Rλ−1 (where σR,λ−1 is a symbol), and

another one (say πλ−1,S), showing that T λ−1||σS,λ−1 (where σS,λ−1 is also a symbol)

is a prefix of Sλ−1. Notice that since the combiner has previously computed the hash

values for each level, he knows the pre-images of σR,λ−1 and σS,λ−1 under G: the

tκ-bit long strings Rλ−2
iλ−1t

= G−1(σR,λ−1) (that is the chunk number iλ−1t of R
λ−2) and

similarly Sλ−2
iλ−1t

= G−1(σS,λ−1). The combiner then moves up one level and repeats
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the procedure at level λ− 2 now working on the strings G−1(σR,λ−1),G
−1(σS,λ−1) and

generating a proof (say πλ−2) that they have some jλ−2-symbol common prefix (inside

the blocks relative to G−1(σR,λ−1) and G−1(σS,λ−1)). We can see that up to this point,

the combiner has proven that strings Rλ−2 and Sλ−2 share a common prefix of length

iλ−2 = iλ−1t+ jλ−2. The procedure continues iteratively going up at the levels until it

reaches level 0 (see example in figure 6.1) where i0 = (i1t+ j0)κ, with i0 the absolute

position at level 0, i1 the absolute position at level 1 and j0 the relative position at

level 0. The total size of the proof is O(λκ) bits.

The verification step at each level consists in verifying that (1) the proofs computed

by the combiner are valid, and (2) for each two consecutive levels ℓ − 1 and ℓ the

proofs for level ℓ are relative to the pre-images G−1(σR,ℓ−1) and G−1(σS,ℓ−1). These

considerations lead to the following result.

Theorem 9 Let λ ≥ 1. Under the N-BDHI assumption we can build a CRHF that

securely preserves the CommonPrefix predicate where (a) the time to compute a hash

value is O(λ), (b) the time to compute a proof is O(λ(N
κ
)1/λ), and (c) the time to

verify a proof is O(λ).

Proof. First we observe that the mappings between each level are a collision-

resistant hash function family. We denote by Fi the mapping between level 0 and

level i. Also note that finding a collision for Fi enables to find a collision for G

described previously.

Assume an adversary A manages to break the security of the tradeoff scheme.

Then we build an adversary B that breaks the (simple) PH by computing a forged

proof or finding a collision for G. Adversary B sends the public parameters of the

scheme to A who answers with a forgery for the tradeoff scheme. More precisely A
returns two strings R, S and valid proofs for each level that lead to the claim that

R = R0 and S = S0 are equal up to position i although there exists some index k < i

such that R[k] 6= S[k]. Consider level λ where Rλ and Sλ are the final hash values.

Let t = (N
κ
)1/λ. Using the pre-images of t bits present at level λ−1 and the proof that

the pre-images share a common prefix until position iλ−1 we consider three cases:
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1. We are in presence of a forgery, then B has broken the security of the simple

PH.

2. There is no proof forgery, but we have that R[1..(iλ−1t
λ−1)] 6= S[1..(iλ−1t

λ−1)]

then we found a collision for the mapping Fλ−1.

3. There is no proof forgery nor collision.

If we are in case (3) we repeat the procedure at the next level λ− 2 and so forth

until reaching level 0. Eventually we will find a collision for G or a forgery for PH, as

otherwise the adversary A would not have won.

6.4 Short Transitive Signatures for Directed Trees

Our construction for TSDT is based on the following idea: Handling a growing tree can

be reduced to maintaining two ordered sequences, one corresponding to the pre-order

tree traversal and another to the post-order tree traversal in a depth-first search. This

was first observed by Dietz [Die82].

Proposition 10 ([Die82]) Let T be a tree of N nodes and consider a depth-first

traversal. Let Pre and Post be the strings formed by the nodes that are visited in pre-

order and post-order respectively, then for any pair of nodes a, b in T , b is descendant
of a if, and only if, ∃i, j : 0 < i < j and ∃i′, j′ : 0 < j′ < i′ such that:

(Pre[i] = a ∧ Pre[j] = b) ∧ (Post[i′] = a ∧ Post[j′] = b)

For example, consider the tree depicted in Figure 6.2, last row, first column. For

that tree, Pre = acdbe and Post = dcbea. Since there is a path from c to d, c appears

before d in Pre and d appears before c in Post. Also note that if there is no path

from some node x to another node y then y may appear before x in Pre or x may

appear before y in Post. See for example pairs (c, b), (e, d) or (b, a).

The challenge in using this result is that the ordered sequences are dynamic –

new elements can be inserted between any two existent elements. More concretely, in

order to use Dietz’s property for our problem we require to:
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� assign labels to the nodes of the tree so that these labels can be compared,

� create these labels dynamically, as the directed tree we want to sign grows, and

� produce fixed labels, as recomputing all or part of them after a node insertion

would be unpractical.

It is the role of the signer to handle these labels so that the combiner can use them

in order to convince a verifier that there is a path between two nodes.

This problem is addressed by the so called order data structure [Die82, MRB+02].

Such a data structure allows us to compare any pair of labels and also insert a new

label so that it may lie between two existing ones. A naive way - mentioned in

[Die82] - to implement the proposed data structure would be to consider the interval

[0..2N − 1] for the labels; to insert an element between X and Y one would use label

Z = ⌊X+Y
2
⌋. This way, we can always find the label for an element between any two

others and the comparison algorithm consists in comparing the labels. Unfortunately,

this solution does not suffice for our application since the string representation of a

new label cannot be easily obtained from already computed labels, and the signer

must sign labels of length N for each new edge. So our first improvement is a new

order data structure with the following property: If X and Y are two consecutive

labels (that is X ≺ Y and there is no Z between X and Y ) then every new computed

label Z such that X ≺ Z ≺ Y will share all bits except one with X or Y .

Before describing our construction we introduce the formal definition of order data

structure [MRB+02]. Jumping ahead, we use this data structure to efficiently create

and update labels in U = {0, 1}∗, as well as to compare them using the extended

lexicographical order as the relation ≺U . The particular mapping between elements

in lists Pre and Post to labels will depend on our construction.

Definition 36 Let (U ,≺U) be a totally ordered set of labels. An order data structure

over U consists of three algorithms:

� ODSetup() : Initialize the data structure and in particular return two bounds

−∞ and +∞ such that for every element X ∈ U we have −∞ ≺ X ≺ +∞.
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Step Tree T Pre/Post
order

OrderDSPre OrderDSPost Labels

0 Nil Pre =
Nil

Post =
Nil

−∞

Nil ∞

−∞

Nil ∞

ℓPre[−∞] = $
ℓPre[∞] = 1$
ℓPost[−∞] = $
ℓPost[∞] = 1$

1 a Pre = a
Post = a

−∞

Nil ∞

a Nil

−∞

Nil ∞

a Nil

ℓPre[a] = 10$
ℓPost[a] = 10$

2 a

b

Pre = ab
Post =
ba

−∞

Nil ∞

a

Nil b

Nil

−∞

Nil ∞

a

b Nil

Nil

ℓPre[b] = 101$
ℓPost[b] = 100$

3 a

c b

Pre =
acb
Post =
cba

−∞

Nil ∞

a

Nil b

c Nil

Nil

−∞

Nil ∞

a

b

c Nil

Nil

Nil

ℓPre[c] = 1010$
ℓPost[c] = 1000$

4 a

c

d

b

Pre =
acdb
Post =
dcba

−∞

Nil ∞

a

Nil b

c

Nil d

Nil

Nil

−∞

Nil ∞

a

b

c

d Nil

Nil

Nil

Nil

ℓPre[d] =
10101$
ℓPost[d] =
10000$

5 a

c

d

b e

Pre =
acdbe

Post

= dcbea

−∞

Nil ∞

a

Nil b

c

Nil d

e

Nil

−∞

Nil ∞

a

b

c

d Nil

e

Nil

Nil

ℓPre[e] = 1011$
ℓPost[e] = 1001$

Figure 6.2: Example of several insertions in a directed tree and their effect on the
order data structures.

Step 0: The tree T to authenticate has no nodes. The sequences Pre and Post are empty as well. The order data structure OrderDSPre
and OrderDSPost contain two nodes −∞ and +∞ that are the bounds of the ordered universe. Each edge is marked implicitly by 0 (for
a left child) and 1 (for a right child).
Step 1: The first node a of T is created. The pre/post-order lists contain only a. The order data structures are updated – through a
call to OrderDSPre.ODInsert(−∞,∞) and OrderDSPost.ODInsert(−∞,∞) – in such a way they reflect the order −∞ ≺ a ≺ ∞. In particular
we have that labels ℓPre[a] = ℓPost[a] = 10$. The end marker $ is appended to the label so it allows direct order label comparison
through the standard lexicographical order assuming that 0 < $ < 1.
Step 2: A child b is added to a. Now the pre-order sequence Pre is equal to ab and the post-order sequence is ba. After invoking
OrderDSPre.ODInsert(a,+∞) and OrderDSPost.ODInsert(−∞, a), the order data structure tries for Pre and Post are updated as follows: As b
comes after a in Pre we have that b is the right child of a in OrderDSPre. In OrderDSPost, b is the left child of a as it comes before a in Post.
Step 3,4 and 5: We follow the same procedure and obtain for each node v its order labels ℓPre[v] and ℓPost[v] respectively.
Comparing two node labels: In step 5 we can check easily using the order labels that for example d is a descendant of a. Indeed we
have ℓPre[a] = 10$ and ℓPre[d] = 10101$ which means ℓPre[a] ≺ ℓPre[d]. Also we can check that ℓPost[d] = 10000$ ≺ ℓPost[a] = 10$.
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� ODInsert(X, Y ) : Let X and Y be two consecutive labels. Compute a new element

Z such that X ≺U Z ≺U Y .

� ODCompare(X, Y ): Return valid if, and only if, X ≺U Y .

Our construction for order data structure uses binary tries (which are a special

kind of trees) [Fre60] to handle labels. In order to avoid confusion, the trees used

in the order data structure will be denoted by the letter B and we will use the term

tries when referring to them. Moreover, we will keep using the symbol T for the

directed tree we want to sign and also use the term tree in this case. As mentioned

in Section 2.1, in a trie, the label for a node is obtained by concatenating the labels

on the edges in a path from the root to the node. Comparing two labels then consists

of comparing the labels as binary strings w.r.t. the extended lexicographical order.

Construction 12 . Let OrderDS be the order data structure over universe

({0, 1}∗,≺) defined by the following operations:

� ODSetup(): Create a trie B with two nodes, a root for the bound −∞ and its

right child for the bound +∞. The label of the root is ǫ (the empty string) and

the label of the right child is 1. Intuitively −∞ represents the lowest element of

the universe and +∞ the greatest.

� ODInsert(X, Y ) : Let X, Y be to consecutive elements, i.e. in particular X ≺ Y .

Search node(X) and node(Y ) in the tree. If node(Y ) belongs to the right sub-

tree of node(X) then add node(Z) as the left child of node(Y ). If node(X)

belongs to the left sub-tree of node(Y ) then add node(Z) as the right child of

node(X). Return Z, the label of node(Z).

� ODCompare(X, Y ) : Return 1 if, and only if, X ≺ Y , that is X is lower than Y

w.r.t. to the extended lexicographical order.

We observe that in the worst case the largest path of the trie may be of size N+1,

and thus the largest label will contain N+1 = O(N) bits. Note that now the elements

X, Y, Z are strings and not integers as in the naive order data structure. This order
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data structure has an important property: For a pair of consecutive elements (strings)

X, Y the string Z returned by ODInsert(X, Y ) is equal toX||b or Y ||b where b ∈ {0, 1}.
This turns out to be crucial as these strings will be hashed using a hash function with

common-prefix proofs H, introduced in the previous section. As a consequence of the

homomorphic property of H, it will require only a constant number of cryptographic

operations in order to compute H(Z) from H(X) or H(Y ).

6.4.1 Basic Construction

Our first construction is based only on standard digital signatures, as Neven’s con-

struction. The scheme is as follows: Each time an edge (and thus a vertex) is inserted

into the tree T , two lists Pre and Post corresponding the the pre-order and post-

order traversals of T respectively are updated with the newly inserted element. We

efficiently implement the latter by maintaining two order data structures (see Figure

6.2) OrderDSPre and OrderDSPost, one for each list. More precisely, each node x ∈ T
is associated with a label ℓPre[x] (resp. ℓPost[x]) computed by the order data struc-

ture for pre-order (resp. post-order). Note that the labels ℓPre[x] and ℓPost[x] will

mention explicitly the end marker symbol $. The reason to introduce this change

is that in the full construction these labels will be hashed and, given that our hash

function introduced in Section 6.2 considers fixed length inputs, we need to rely on

this extra symbol to avoid trivial collisions. Thus, comparing two labels will be imple-

mented through standard lexicographical order which is why we will use the operator

< instead of ≺ henceforth.

We use ODCompare to evaluate if x appears before some y in Pre (resp. Post),

which simply verifies that ℓPre[x] < ℓPre[y] and ℓPost[y] < ℓPost[x].

Construction 13 (TSDT from Standard Digital Signatures) Let SSig = (SKG, SSig,

SVf) be a standard digital signature scheme. The scheme BasicTSDT is as follows.

� TSKG(1κ) : Run SKG to generate a pair of keys (sk, pk). Set tsk = sk and

tpk = pk. Initialize two order data structures OrderDSPre and OrderDSPost to

maintain the sequences for pre-order and post-order tree traversal respectively.

Set T = (V,E) as the empty tree. Define two tables ℓPre[·] and ℓPost[·] that map
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nodes in T to their respective labels in OrderDSPre and OrderDSPost respectively.

That is, if x ∈ V , ℓPre[x] will be the label bound to x in OrderDSPre and ℓPost[x]

will be the label bound to x in OrderDSPost. Set ℓPre[−∞] = ℓPost[−∞] = $ and

ℓPre[+∞] = ℓPost[+∞] = 1$. Return (tsk, tpk).

� TSign(tsk, a, b) : If both a, b ∈ V or if the insertion does not preserve the tree

structure of T , return ⊥. If both a, b /∈ V then insert a in OrderDSPre, OrderDSPost,

that is such that −∞ < a < +∞ in lists Pre and Post. Then insert b in

OrderDSPre, OrderDSPost so to reflect the pre-order list Pre = ab and post-order

list Post = ba respectively.

Otherwise, let z ∈ {a, b} be the new vertex not yet in V and x ∈ {a, b} \
{z} be the other. Insert edge (a, b) in T , and update OrderDSPre, OrderDSPost

data structures to reflect the new pre-order and post-order tree traversal of T
as follows. Let y be the element in Pre such that z lies (strictly) between

x and y. Assume that x < z < y (the other case is similar). Compute

OrderDSPre.ODInsert(ℓPre[x], ℓPre[y]) to obtain ℓPre[z] the label associated to z

in OrderDSPre. Similarly obtain ℓPost[z] the label associated to z in OrderDSPost:

That is, compute ℓPost[z] = OrderDSPost.ODInsert(ℓPost[y], ℓPost[x]).

Then, computeMz = (z, ℓPre[z], ℓPost[z]) and sign it to obtain σz = SSig(tsk,Mz).

Now, using ℓPost[x], (re)compute signature σx = SSig(tsk,Mx) on

Mx = (x, ℓPre[x], ℓPost[x]). Return τ(x,z) = (Mx, σx,Mz, σz).

� TSComp((a, b), τ(a,b), (b, c), τ(b,c), tpk): Parse τ(a,b) as (Ma, σa,Mb, σb) and τ(b,c)

as (Mb, σb,Mc, σc). Return τ(a,c) = (Ma, σa,Mc, σc).

� TSVf((a, b), τ, tpk) : Parse τ as (Ma, σa,Mb, σb). If Ma or Mb are not of the

form (a, APre, APost) or (b, APre, APost) where APre, APost, APre, APost are labels,

or if any signature is invalid, then return ⊥. Otherwise, verify that a appears

before (resp. after) b in Pre (resp. Post) by checking that APre < BPre and

BPost < APost. If verification succeeds return valid else return ⊥.

Correctness and Security. We require that correct signatures, those honestly

computed by the signer as well as those combined by anyone from two existent

127



signatures, verify correctly, meaning that the verification algorithm on them returns

valid. To see that this holds, it suffices to observe first, that the signing operation

preserves the tree structure of the graph, and second, that ODCompare(X, Y ) is true,

if, and only if, x = ℓ−1Pre[X ] (resp. y = ℓ−1Post[Y ]) appears before y = ℓ−1Pre[Y ] (resp.

x = ℓ−1Post[X ]) in Pre (resp. Post) which allows correct verification by Dietz’s condition

(namely, Proposition 10). These considerations yield the following theorem.

Theorem 10 If SSig is a signature scheme existentially unforgeable under chosen

message attack then BasicTSDT a is secure transitive signature scheme for directed

trees where edge signatures are O(N + κ) bits long.

6.4.2 Full Construction

We extend our basic construction as follows. Instead of comparing strings directly, we

compare them by proving that labels from certain nodes contain the labels of other

nodes as prefixes. Such proofs are done using scheme PH. As mentioned before, we

use the alphabet Σ = {0, $, 1} where 0 < $ < 1. That is, in order to prove that

two labels X, Y are such that X ≺ Y using their hashes H(X),H(Y ) instead of the

strings, the combiner must compute: (1) the longest common prefix C for X and Y ,

(2) a proof that C is a prefix of X up to position i = |C|, (3) a proof that C is a

prefix of Y up to position i = |C|, (4) a proof that C||c1 is a prefix of X||$ up to

position i + 1 for some c1 ∈ Σ, and (5) a proof that C||c2 is a prefix of Y ||$ up to

position i+ 1, for some c2 ∈ Σ. Then, verifying that X ≺ Y reduces to the checking

of the proofs and verifying that c1 < c2.

Our full construction requires the combiner to be stateful, in particular to hold

at any moment the tree T , and the two tries BPre and BPost for both order data

structures. In particular our scheme does not allow for edge signature compositions

as the data present in a pair of edge signatures is not enough to compute the combined

signature. This is an important limitation of our scheme despite the fact that the

main functionality (i.e. being able to compute a signature for any path in the tree

T without the secret key of the signer) is maintained. Thus, the main change in

our construction compared to the inital syntax for a transitive signature scheme (see
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Definition 23), is the replacement of the algorithm TSComp used to combine two

signatures by the algorithm TSCompStat which takes as input all the data produced

by the signer : the order data structures, the hash values and the signatures that are

computed after each update of the directed tree T .
In the following scheme, we denote by m the state that is shared by the combiner

and the signer and contains:

� the order data structures (with the tries) for the pre-order and post-order lists,

� the standard signatures produced by the signer and their relative messages,

� the hash values of the labels computed through the order data structures, and

� a table t to map the nodes of the tree T to their labels, the hash values of these

labels and the corresponding (standard) signatures.

Construction 14 (TSDT using CRHF that preserves CommonPrefix) Let

PH = (HGen,HEval,ProofGen, ProofCheck) be a family of hash functions that preserves

CommonPrefix. The scheme PHTSDT consists of the following algorithms:

� TSKG(1κ) : Do as in BasicTSDT and also generate the public parameters (ie.

PP) for the PH scheme. Return (tsk, tpk, PP).

� TSign(tsk, a, b,m) : Do as in BasicTSDT except that the message Mz to sign is

now Mz = z||HzPre ||HzPost, where HzPre = H(ℓPre[z]) and HzPost = H(ℓPost[z]).

Store in a table t (which is part of m) the association between the node z

the values HzPre and HzPost and the corresponding digital signature. Notice that

HzPre , HzPost can be computed incrementally due to H’s homomorphism.

� TSCompStat(a, b,m, tpk): If there is no path between a and b then reject. Re-

trieve from m the values (Ma, σa,Mb, σb). If σa or σb is invalid, then reject.

Parse Ma = (a,HAPre
, HAPost

) and Mb = (b,HBPre
, HBPost

). Compute proof πPre

as follows. Let DPre be the longest common prefix between APre and BPre.

Note that H(DPre) has already been computed by the signer and thus Md = d
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||H(DPre)||H(DPost), and the signature σd on Md can be fetched from m, as well

as APre, BPre, DPre, APost, BPost and DPost. Let t = |DPre|. Compute the follow-

ing values:

◦ π1 = ProofGen(DPre, APre, t, PP),

◦ π2 = ProofGen(DPre, BPre, t, PP)

◦ π3 = ProofGen(DPre||d1, APre||$, t+ 1, PP), and

◦ π4 = ProofGen(DPre||d2, BPre||$, t+ 1, PP)

where (d1, d2) ∈ {(0, $), (0, 1), ($, 1)}. Set Θ = (Ma, σa,Mb, σb,Md, σd, t, d1, d2)

and πPre = (π1, π2, π3, π4). Compute similarly πPost and

return τ(a,d) = (Θ, πPre, πPost).

� TSVf((a, b), τ, tpk, PP) : Parse τ as τ = (Θ, πPre, πPost). Parse πPre as (π1, π2, π3, π4).

Parse Θ as (Ma, σa,Mb, σb,Md, σd, t, d1, d2) where Mx = x||HXPre
||HXPost

for

x ∈ {a, b, d}. Check that all (standard) signatures are valid under public key

tpk. Check that d1, d2 ∈ Σ and d1 < d2. Verify proofs π1, π2, π3, π4 using

ProofCheck:

◦ ProofCheck(HDPre
, HAPre

, π1, t, PP),

◦ ProofCheck(HDPre
, HBPre

, π2, t, PP),

◦ ProofCheck(HDPre
· H(0t||d1), HAPre

· H(0t||$), π3, t+ 1, PP), and

◦ ProofCheck(HDPre
· H(0t||d2), HBPre

· H(0t||$), π4, t+ 1, PP)

Perform the similar verifications relative to OrderDSPost. If all these verifica-

tions pass return valid otherwise return ⊥.

This new construction combines the basic one with hashing with common-prefix

proofs so we can shrink the size of an edge signature to O(κ) bits.

Theorem 11 If SSig is a signature scheme existentially unforgeable under chosen

message attack and H securely preserves the predicate CommonPrefix, then PHTSDT is

a secure TSDT scheme where the size of an edge signature is O(κ) bits.
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Proof. Let A be a PPT adversary that breaks our scheme. We build an adversary

B that breaks the security of SSig or PH. B has access to a signing oracleOSSig(·) and is

given the description of the hash function H as defined in construction 11. B forwards

all the public parameters to A. A asks for edges signing to B who replies using the

signing oracle OSSig(·) and H. Finally, A outputs a compressed edge signature τ ′

such that TSVf((a, b), τ ′, tpk) = valid and there is no path from a to b in T . We

first consider the case where signed messages Ma,Mb do not all correspond to edges

inserted in the tree T . This means that B has been able to compute some signature

for a message M ′ not previously requested to the oracle OSSig. So now we assume

that all signed messages reflect the history of edge insertions in the tree.

Let APre, BPre and APost, BPost be the order labels associated to vertices a, b in

OrderDSPre and OrderDSPost respectively. As there is no path from a to b, this means

that (i) a appears before b in Pre and also a appears before b in Post or (ii) b appears

before a in Pre and also b appears before a in Post or (iii) there is a path, but from b

to a. Assume we are in case (i). If indeed a appears before b in Pre, then the adversary

A managed to prove that b appears before a in Post, although the contrary is true.

This means, in particular, that π1, π2, π3, π4 prove that there exists a string C such

that C||c1 is a prefix of BPost and C||c2 is a prefix of APost and c1 < c2. It is worth

noting that, although the proofs π1, π2, π3, π4 do not explicitly mention the strings

tied to the nodes (only hash values and lengths), these strings are present in the

data structures OrderDSPre and OrderDSPost which are maintained by the signer and

hence are accessible to the simulator B. If some hash value is linked to two different

pre-images then B has found a collision for H. In particular this means that B knows

C. Now, as indeed APost ≺ BPost, there exists no such string C, so this means that

either C||c1 is not a prefix of APost or C||c2 is not a prefix of BPost, therefore B has

been able to break the security of the predicate preserving hashing scheme PH. The

case (ii) and (iii) can be treated similarly.

Using the tradeoff technique we can generalize the previous result as follows.

Theorem 12 Let λ ≥ 1. If SSig is a signature scheme existentially unforgeable

under chosen message attack and H securely preserves the CommonPrefix predicate,

then PHTSDT with tradeoff is a secure TSDT scheme. Moreover, (a) an edge signature is

131



3 6 9 12 15 18 21 24 27

3 6 9

1 2 3

17

54

0

0

0

01 00 00 00 11 10 00 0011 10 11 01 11 10 01 11 10
R

00 10 00
11

10
10 01 11 00 10 01

a c d c b
a

c
a d c

d
b

a
c

0

S 0

R 1

S 1

R 2

S 2

a

b S=F(S)

R=F(R)
3

3

Figure 6.3: Example of hash value update for the tradeoff scheme.

In this example we show how to compute the hash value for the string S0 = S given
the hash value (and all intermediate values) of the string R0 = R that share all bits
except one (in position 36). We start at level 0. The first 5 chunks starting from the
left are already in the table as they correspond to the chunks of string R for which
the hash values have already been computed. The same applies for the chunks in
position 7, 8 and 9 respectively. The chunk in position 6 differs between string R
and S by one bit (one symbol). Thus the signer fetches the hash value of this chunk
for string R and updates it using the incremental property of the hash function G to
obtain the hash value for the chunk in position 6 corresponding to the string S.
This chunk now affects the string at level 1 within the chunk number 2. Again the
signer using the hash value of this chunk relative to string R1, can compute the
hash value of chunk number 2 for the string S1. This hash value will feed the level 2
and change the (single) chunk present at this level. The signer by computing the
new hash value for the updated chunk will obtain the final hash value F(S).
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O(λκ) bits long and can be verified in O(λ) cryptographic operations, (b) the signer has

to perform O(λ) cryptographic operations to sign an edge, (c) computing the signature

for any edge (in the transitive closure of the tree) takes O(λ(N
κ
)1/λ) cryptographic

operations for the combiner, and (d) the initialization requires O(N) cryptographic

operations for the signer.

Proof. The new construction consists conceptually of replacing the hash function

H in the Construction 14 by the one with tradeoff described in Section 6.3. As before,

we will denote this hash function by F.

The security of the new construction still holds as F preserves the CommonPrefix

predicate (see Theorem 9). Moreover the size of an edge signature in the transitive

closure of the tree is O(λκ) as it consists of a constant number of proofs and (standard)

digital signatures. Some technical details need to be addressed though. The problem

we need to solve is how to compute incrementally the hash values through all the

levels of the tradeoff hash function. Recomputing the hash value from scratch every

time a label is produced would be inefficient for the signer.

We describe here the full construction (see example Figure 6.3). Let OrderDS be

an order data structure (both data structures for Pre and Post lists are treated in

the same way). At the beginning the signer will compute the hash value for the first

string corresponding to −∞ which is equal to S = $0N . To do so, he will compute the

intermediate hash values for each layer of the hash scheme with tradeoff as depicted in

Figure 6.1. When computing each string at each layer the signer will store in a table

the association between each chunk (that is the string of size (N
κ
)1/λ bits), the layer,

the position within the layer, its hash value and also the relationship between the

input string S and this chunk. This costs the signer O(N) cryptographic operations

but note it is required only once for the setup phase. Henceforth the signer will only

need O(λ) operations as explained below. In order to compute the hash of a new

string (for example the string 1$0N−1 that stands for +∞), the signer will proceed

from the first to the last layer.

1. Identify using the trie of the data structure the string R that share all bits

except one with the string S for which we want to compute the hash value.

133



2. Start at the first layer. For each chunk of input string S, if it is present in the

table, skip it.

3. When finding the first (and single) chunk which has not been stored previously

in the table, compute the hash of this string and store it in the table. This hash

value will replace at the next layer the corresponding chunk belonging to string

R.

4. Jump to the next layer and repeat the same procedure.

5. When reaching the last level λ output to the final hash value F(S).

We claim that the number of cryptographic operations involved for computing

F(S) for a new string S is O(λ). As mentioned before, the string S shares all the bits

except one with some label R which hash value has already been computed. Thus,

this means that in our layered hash function scheme, only one chunk per level will

be affected by this change and thus the signer will only have to recompute the hash

value for this chunk. Moreover, due to the incremental incremental property of the

hash function G (see Section 6.2, additional properties), this computation can be done

using a constant number of cryptographic operations.

The other complexities follow directly from the complexities of Theorem 9.

6.5 Conclusion

In this chapter we show how to use a CRHF that preserves the CommonPrefix pred-

icate in order to build an efficient transitive signature scheme for directed trees.

Moreover we show that this CRHF also enables a practical tradeoff between the time

to combine a signature, O(λ(N
κ
)1/λ), and the time to verify it, O(λ). We recall, how-

ever, that the problem of building short and stateless transitive signatures, even for

directed trees, remains open. In particular, enabling signature composition seems to

imply the need for global information on the tree that is signed. Finally, we believe

that the introduced CRHF may lead to useful applications, especially in the area of

authenticated data structures.
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Chapter 7

Fair Exchange of Short

Signatures without Trusted

Third Party
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7.1 Introduction

Let p be a prime number of κ bits, θ ∈ Zp and ~b a bit vector of κ components. In this

chapter we design a pair of CRHFs that preserve the predicate Equiv(θ,~b) = 1⇔ θ =
∑κ

i=1
~b[i]2i−1. These hash functions combined with some zero-knowledge techniques

are used to build a protocol for gradually releasing a secret. A protocol is said to

gradually release a secret if this secret (but verifiable) value can be opened bit by bit.

The correctness of each bit released is checkable and moreover the process does not leak

any additional information. We consider, as introduced in section 2.3, a bilinear map

135



e : G × G → GT and a public parameter PP = 〈(p,G,GT , e, g), (g0, g1, g2, · · · , gκ)〉.
More concretely, we use the following pair of CRHF that preserve the predicate Equiv:

� H1 : {0, 1}κ → G, where H1(θ) =
∏

i∈[κ] g
θ[i]
i .

� H2 : Zp → G where H2(θ) = gθ.

We apply this idea for gradually releasing a secret to the problem of fair exchange

of digital signatures which we motivate next.

Motivation. Nowadays, it is more and more common to trade digital goods on

the web: E-books, software licenses, avatar-games currencies like Ultima Online1, to

cite a few. Whether these goods are exchanged on E-bay through Paypal or bought

directly to a provider like Amazon or Microsoft, securing this transaction requires a

trusted third party (TTP). Though it works quite well in practice, enabling a totally

distributed and at the same time secure virtual market place is of clear interest: It

would avoid the presence of single points of failure, and also allow smoother electronic

commercial transactions that would not need to rely on some intermediary. A lot of

these transactions may be captured by the exchange of digital signatures. Suppose

for example you want to buy a software license from some independent developer:

Indeed exchanging the software license as well as the money transfer (digital check)

can be modeled by signed messages. However we face a non-trivial problem. Given

that the transaction is made on-line, a malicious participant may fool his counterpart

by not sending his signature or simply sending garbage. A protocol that prevents

such a behavior from a corrupted party is called fair : At the end of the execution of

protocol either both parties obtain the signature they expected or neither do.

Gradual Release of a Secret and Fair Exchange. There are two main ap-

proaches to solving this problem. On the one hand, one can assume that both players

interact through a TTP. Though this solution does not fit our goal, it is important to

note that an important line of research has focused on designing protocols where the

TTP is only required when “something goes wrong”. These protocols are said to be

optimistically fair : (see [ASW97, Mic03] and [HWS12] for some recent related work).

1http://en.wikipedia.org/wiki/Ultima Online
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On the other hand, if no TTP exists and we assume that both participants have

exactly the same computational resources, then it is impossible, in general, to achieve

complete fairness [Cle86]. In [Blu83, EGL85] was proposed a way to relax the notion

of fairness in order to overcome Cleve’s impossibility result [Cle86]. The idea is to

assume that both players have roughly the same amount of time, so we can achieve

partial fairness. Several secure multi-party computations and specific protocols, like

[BCvD87, Cle90, Dam95, BN00, GMPY06], were built on top of this security notion.

The recurrent idea behind these constructions consists in enabling each player to

release their secret, bit by bit, in alternation. Thus, if a player aborts, the other

participant will have “only one bit of disadvantage”. Formalizing this idea is not an

easy task though, in particular because it is hard to reason on the specific amount

of time for the players. This issue was noticed in [GK10] where authors point out

that (1) assigning more time to the honest party in order to allow him to recover his

value is somehow artificial as it does not depend on the participant himself, and (2)

implementing such definitions seems to imply the use of strong assumptions related

to the exact time required to solve some computational problem.

In this work we propose a new security definition that still captures the intu-

ition of partial fairness for the exchange of digital signatures, but without forcing the

participants to have access to almost equal computational resources as proposed in

[GMPY06]. The idea of our definition is to compare the probabilities of computing

valid signatures on the agreed messages at the end of the protocol. More precisely, if

the adversary aborts the protocol, the honest participant2 will compute the expected

signature by choosing randomly a value from the space of signature candidates, which

is defined by the remaining bits to be obtained. The adversary will keep running its

own algorithm and also output a signature candidate. We say the protocol is se-

cure if the probabilities that each participant output a valid signature only differ by

a polynomial factor. Note that this definition, like previous ones that circumvent

Cleve’s impossibility result [Cle86], allows the adversary to get some advantage, but

it guarantees that this advantage is polynomially bounded. With that definition in

2Note that we need to consider that at least one participant is honest, as otherwise we cannot
really avoid that one of the two adversaries, which are arbitrary polynomial time algorithms, wins.
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hand we can prove the security of our protocol without having to rely on the strong

assumptions mentioned above. Our protocol is designed to exchange short signatures

[BB08] without the presence of a TTP. We use bilinear maps as the underlying sig-

nature scheme, and also the idea of gradually releasing each bit of some secret θ that

will enable the signature to recovered. The security of our construction relies on two

complexity assumptions for bilinear maps, namely the κ-Strong Diffie-Hellman [BB08]

and the κ-Bilinear Diffie-Hellman assumptions [BB04a], and the security proof holds

in the common reference string model. As we use non-interactive zero-knowledge

proofs of knowledge (ZKPoK) to make the protocol simpler and more efficient, we

require the use of random oracle [FS86] or some non-black-box assumptions [Gro10].

Of course, we can use interactive ZKPoK at a minor expense in round efficiency.

Our Contributions.

1. We propose a practical protocol for exchanging short signatures [BB08] without

relying on a TTP. To the best of our knowledge this is the first construction

that meets such a goal. The number of rounds of our protocol is κ + 5, where

κ is the security parameter. The communication complexity is 16κ2 + 12κ bits.

The protocol requires a linear number of group exponentiations, group multi-

plications, bilinear map applications, hash computations and also a constant

number of group divisions (see Fig. 7.5 for more details).

2. We introduce a new non-interactive ZKPoK to prove that the prover is able

to open a commitment to a bit vector. This protocol may be of independent

interest.

3. We introduce another non-interactive ZKPoK to prove that the prover is able to

open a commitment to a bit vector that corresponds to the binary decomposition

of some value θ which is hidden as the discrete logarithm of some group element.

We think this technique may lead to other interesting applications.

4. As stated earlier, we propose a new security definition for partial fairness in

the context of the exchange of digital signatures. This definition is simple and

avoids the issue of involving the exact running time of the participants.
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Our Approach. Let κ ∈ N be the security parameter. Let (p,G,GT , e, g) ←
BMGen(1κ) be the public parameter where p = |G| = |GT | is prime, G,GT are cyclic

groups, e : G × G → GT is the bilinear map and g is a random generator. Let

s be a random element in Zp, we consider the following common reference string:

(g, gs, gs
2
, ..., gs

κ
) = (g0, g1, g2, ..., gκ). In practice this common reference string can

be computed using generic multi-party computation techniques (see [CHK+12] for

an efficient implementation) so that the secret s is randomly generated and remains

unknown to all the participants. Another alternative is to rely on a TTP that would

“securely delete” the secret after the generation of the common reference string.

Obviously the intention of this work is to avoid the use of a TTP, but note however

that even in this case, the TTP would be required only once.

Our construction can be summarized as follows: The prover chooses a secret

θ
R← Zp, then commits each bit of this secret into a Pedersen [Ped91] commitment,

where the bit bi in position i with randomness ri ∈ Zp will be committed with respect

to the base (g, gi): That is Commit((bi, i), ri) = grigbii . Then, we use a ZKPoK

protocol in order to verify that the prover is able to open these commitments to

bits. The next step is to publish D = gθ and show, using another ZKPoK protocol,

that θ, the discrete logarithm of D, is “equivalent” to the bit vector committed in

~C = (Commit((bi, i), ri))i∈[κ]. More precisely, the prover shows that θ =
∑

i∈[κ] bi2
i−1.

To release a signature σ, the prover will blind it using θ to obtain σ̃ = σθ. Using

bilinear maps it is straightforward to verify that σ̃ contains a valid signature σ which is

blinded in the exponent by θ, the discrete logarithm of D. The other verifications will

simply check the proofs. By releasing each bit in turn, both players will reconstruct

their own blinding factor θ and obtain the signature.

Related Work. Among the abundant literature on the topic of gradual release

and fair exchange for digital signatures, the work in [Dam95] is probably what is

the most similar to ours: It describes a practical fair exchange protocol for digital

signatures based on gradual release of a secret. The protocol described in [Dam95]

works for Rabin, RSA and El Gamal signatures. The number of rounds of the protocol

described in [Dam95] is roughly 2κ for RSA and Rabin signatures and κ for El Gamal

signatures.

139



Due to Cleve’s impossibility result [Cle86], the question of building complete fair

protocols with dishonest majority seemed to be closed. However, Gordon et al.

showed that non-trivial functions can be computed fairly in the two-party model

[GHKL11], and left the question of finding a tight characterization of these functions

open. In particular it is not known whether functions with a non-polynomial size

domain and that return multiple bits as output (like computing a signature) can be

computed fairly in Cleve’s setting.

In [GK10] a definition is proposed for partial fairness that may exhibit some sim-

ilarities with ours (both definitions involve a Q(κ) factor where Q is a polynomial).

However, our definition and approach differs quite a bit from [GK10]. First, the

setting in [GK10] is more general than our specific construction to exchange digital

signatures. Secondly, in their protocol, the number of rounds is variable and de-

fines the level of fairness, whereas in our construction fairness only depends on the

computational power of the participants.

Our ZKPoK protocol to prove that a commitment can be opened to a bit vector

is inspired by [GOS06, Gro10]. We remark that, though [GMPY06] uses the idea of

gradual release, the construction proposed is not practical in our setting as it requires

coding the functionality (signing in our case) as an arithmetic circuit.

7.2 A new argument to prove that a commitment

encodes a bit

In this section we describe a commitment scheme to encrypt a vector of values in Zp

and then provide a ZKPoK that the prover knows how to open each commitment to

a bit. Our construction, as [GOS06], uses the idea that if the value b encrypted is a

bit then b(b− 1) must be equal to 0, and also borrows from [Gro10] by instantiating

a basic form of the restriction argument.

Our commitment scheme requires the generation of a common reference string

CRS = (g, gs, gs
2
, ..., gs

N
) = (g0, g1, ..., gN) where s

R← Zp is the trapdoor. To commit

a bit bi in position i using randomness ri ∈ Zp, we compute the Pedersen commitment
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Common reference string: Input (1κ, N)
1. (p,G,GT , e, g)← BMGen(1κ)

2. s
R
← Zp

3. Return CRS = 〈(p,G,GT , g), (g0, g1, g2, ..., gN )〉 where for all i ∈ [0..N ] : gi = gs
i
.

Statement: The statement is formed by a vector of elements of G: (C1, C2, ..., CN ). The claim is that

for each i ∈ [N ], the prover knows (ri, bi) such that Ci = grigbii where bi ∈ {0, 1}.

Proof: Input (CRS,~b, ~r)

1. Check that ~b = (b1, ..., bN ) ∈ {0, 1}N . Return ⊥ if this is not the case.

2. Check that ~r = (r1, ..., rN ) ∈ ZN
p . Return ⊥ if this is not the case.

3. For each i ∈ [N ] compute an argument πi that Ci is the commitment to a bit in base gi: πi =

(Ai, Bi) where Ai = griN−ig
bi
N and Bi is such that e(Ai, Cig

−1
i ) = e(Bi, g). More concretely

compute Bi = g
r2i
N−ig

ri(2bi−1)
N .

4. Compute the ZKPoK ~PK = (PK{(ri, bi) : Ci = grig
bi
i })i∈[κ] as described in section 2.6.2.

5. Return π = (πbit, ~PK) where πbit = (πi)i∈[N].

Verification: Input (CRS, ~C, π)

1. Parse ~C as (Ci)i∈[N]. Check that C ∈ GN .

2. Parse π as (πbit, ~PK). Check that πbit ∈ (G× G)N .

3. Verify the proof of knowledge for each commitment using the vector ~PK.

4. For each i ∈ [N ] check that:

(a) e(Ci, gN−i) = e(Ai, g).

(b) e(Ai, Cig
−1
i ) = e(Bi, g).

5. Return valid if and only if all check pass, otherwise return ⊥.

Figure 7.1: ZKPoK that the prover can open a commitment to a bit vector.

Commit((bi, i), ri) = Ci = grigbii . The commitment to the vector ~b = (b1, b2, ..., bN )

using the randomness ~r = (ri)i∈[N ] will simply be the vector formed by the commit-

ments for each bit in position i: ~C = (Ci)i∈[N ]. Abusing a little our notation we will

write ~C = Commit(~b, ~r).

We still need a ZKPoK that each commitment Ci can be opened to a bit by the

prover. The prover proceeds as follows (see Figure 7.1): First it computes a (non-

interactive) ZKPoK for the representation of each commitment Ci in base (g, gi).

Then, it computes the “translation” of the commitment Ci = grigbii by N − i posi-

tions to the right, by providing the value Ai = griN−ig
bi
N . If we compute e(Ai, Cig

−1
i )

and express this quantity in terms of e(Bi, g) we realize by simple inspection (see

completeness paragraph in the proof of Theorem 13) that Bi = g
r2i
N−ig

ri(2bi−1)
N g

bi(bi−1)
N+i .
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As the prover does not know gN+i, if bi /∈ {0, 1}, it will not be able to provide the

second part of the proof Bi. In case bi is indeed a bit, then the prover will compute

the proof πi = (Ai, Bi) in order to convince the verifier that Ci is the encryption of a

bit relative to position i.

Proposition 11 The vector commitment scheme described above is perfectly hiding

and computationally binding under the N-BDHI assumption.

Proof. Here we have that τ = s. If we define TCommit(τ) = (C = grgm
′

i , ek =

(m′, r)) for m′, r ∈ Zp, we have that TOpen(C, ek,m) will return r′ = r+ si(m′−m).

The scheme is perfectly trapdoor.

Assume an adversary A computes ~b,~b′ ∈ ZN
p two vectors of messages and ~r =

(r1, ..., rN), ~r′ = (r′1, ..., r
′
N) ∈ ZN

p two randomness vectors such that Commit(~b, ~r) =

Commit(~b′, ~r′) and B[j] 6= B′[j] for (at least) one j ∈ [N ]: We obtain the equation

grj−r
′
jg(B[j]−B′[j])sj = 1G. If we set X = sj, we can deduce that (rj − r′j) + (B[j] −

B′[j])X = 0 and then X = sj =
r′j−rj

B[j]−B′[j]
mod p. Once sj is recovered we can compute

gXN = gN+j and by proposition 1, the N -BDHI assumption is broken.

Theorem 13 The protocol in Figure 7.1 is a ZKPoK that for each i ∈ [N ], the

prover knows (ri, bi) such that Ci = grigbii and bi ∈ {0, 1}. The protocol is perfectly

complete and perfect zero-knowledge. Moreover, if the N-BDHI assumption holds, for

any i ∈ [N ], the prover has negligible probability to output (ri, bi) and a valid proof πi

such that the verification passes and bi /∈ {0, 1}.

Proof. Completeness. Let i ∈ [N ]. It’s clear that the prover can compute

Ai = griN−ig
bi
N . Then if bi := ~b[i] ∈ {0, 1} we have bi(bi − 1) = 0 and

e(Ai, Cig
−1
i ) = e(g(ri+bis

i)sN−i
, grig(bi−1)s

i
)

= e(g(ris
N−i+bisN )(ri+(bi−1)si), g)

= e(gr
2
i s

N−i+ribis
N+ri(bi−1)s

N+bi(bi−1)s
N+i

, g)

= e(gr
2
i s

N−i+sNri(2bi−1), g)

= e(Bi, g)
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We can see that the prover can compute Bi as he knows ri and bi and the group

elements gN−i, gN are public.

Hardness to open the commitment to a non-bit vector. Assume there

exists some adversary A that is able to open the commitment to some vector that

does not contain bits, for at least one i. We build the following adversary B that

breaks the N -BDHI assumption. B receives the challenge tuple (g0, g1, g2, ..., gN).

Then, B runs A using the tuple as the CRS and obtains Ci, ri, bi such that Ci = grigbii

(using the proof of knowledge ~PK) and πi = (Ai, Bi) where

e(Ci, gN−i) = e(Ai, g) (1)

e(Ai, Cig
−1
i ) = e(Bi, g) (2)

From (1) we can deduce that Ai = CsN−i

i . From (2) (as seen in the correctness

proof) we have that Bi = gr
2
i s

N−i+ri(2bi−1)sN+bi(bi−1)sN+i
= g

r2i
N−ig

ri(2bi−1)
N g

bi(bi−1)
N+i

B can compute X = g
r2i
N−ig

ri(2bi−1)
N , so it can obtain gN+i = (Bi ·X−1)

1
bi(bi−1) where

bi(bi − 1) 6= 0 as bi /∈ {0, 1}, and thus the N+i-DHE assumption is broken. Using

Proposition 1 we have that the N -BDHI assumption is broken as well.

Perfect Zero-Knowledge. We justify why the proof is perfectly

witness-indistinguishable. Consider a pair of witnesses (ri, bi), (r
′
i, b
′
i) for some com-

mitment Ci = grigbii = gr
′
ig

b′i
i . First observe that there is only one possible value that

satisfies equations Ai = A′i = CsN−i

i . Secondly we have that Bi = gr
2
i s

N−i+ri(2bi−1)s
N

and B′i = gr
′2
i sN−i+r′i(2b

′
i−1)s

N
are uniformly random and thus are perfectly indistin-

guishable.

We describe now the zero-knowledge simulator. It generates the common reference

string correctly, and also learns the trapdoor so it can create commitments that can

be opened to any value. As the commitment can be opened, it is straightforward to

compute a proof Ai, Bi.

Let us justify why the simulator perfectly simulates the real proof. Consider the

hybrid stateful algorithm where the simulator generates the trapdoor and the common

reference string but opens the commitment to the real bit bi. Then as the randomness

is known, the hybrid algorithm can compute the proof as well. As the commitment
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is perfectly trapdoor the real argument is perfectly indistinguishable from the hybrid

algorithm. Finally, as the argument is perfect witness-indistinguishable, the hybrid

is perfectly indistinguishable from the simulated proof.

7.3 Base equivalence argument

Let θ
R← Zp. Consider the commitment to the bit vector ~C = (Ci)i∈[κ] = (grig

θ[i]
i )i∈[κ]

where ri ∈ Zp for each i ∈ [κ] and also D = gθ. In this section we introduce a

ZKPoK that the prover can open a commitment to a vector of bits such that each

bit in position i, corresponds to the ith bit of θ, which is hidden as the discrete

logarithm of D. This protocol will allow us to blind the signature with some factor

θ (in the exponent) and then reveal each bit of this exponent gradually without

leaking any additional information. The idea is the following. Given θ ∈ Zp and

~C = (grig
θ[i]
i )i∈[κ], the prover proceeds in two steps. First it computes a proof of

knowledge of the representation for Ci in base (g, gi) (for each i ∈ [N ]), and of the

discrete logarithm of D in base g. It also runs the protocol described in Figure 7.1

to prove that the commitment can be opened to a bit vector. Then it computes

D′ =
∏

i∈[κ] g
rig

θ[i]
i

gr
where r =

∑

i∈[κ] ri. Here the prover computes some compressed

representation of the bit vector commitment and removes the randomness. Intuitevely

we can observe that, though the randomness is removed, D′ does not reveal any further

information about θ, as the bits are still hidden in the discrete logarithm and D′ is

uniformly random. The prover will need to convince the verifier that r is indeed

the accumulated randomness of the bit vector commitment. To do so, it computes

U = D′
1
s = (

∏

i∈[κ] g
θ[i]
i )

1
s =

∏

i∈[κ] g
θ[i]
i−1 where we recall that g0 = g. Observe that this

value can be computed without knowing s. In order to verify this proof, the verifier

will check that e(
∏

i∈[κ] Ci

gr
, g) = e(U, g1). Once the randomness of the bit vector is

removed one can “move the vector to the left by one position”. If r would not be

equal to
∑

i∈[κ] ri this would not be possible without breaking some of the assumptions.

The second step consists in checking that the condensed bit vector commitment U =
∏

i∈[κ] g
θ[i]
i−1 is “equivalent” to the simple commitment gθ. This is done by noting that

U =
∏

i∈[κ] g
θ[i]
i−1 = gP (s) where P (·) is the polynomial P (X) =

∑

i∈[κ] θ[i]X
i−1. This
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means in particular that P (2) =
∑

i∈[κ] θ[i]2
i−1 = θ. Thus, we need to prove that

P (s)−P (2) = P (s)− θ is divisible by s− 2. The prover can compute the coefficients

of the formal polynomial3 W (·) such that P (X)−P (2) = W (X)(X−2). Then, using

the common reference string CRS the prover obtains V = gW (s). Verifying the “base

equivalence” statement consists in checking that e(U
D
, g) = e(V, g1g

−2) = e(V, gs−2).

This means that indeed θ = P (2) and thus, the coefficients of P (·) correspond to the

binary decomposition of θ. The full protocol is detailed in figure 7.2.

Theorem 14 The protocol in Figure 7.2 is a ZKPoK that the prover knows the dis-

crete logarithm θ of D, and (ri, bi)i∈[κ] for each i ∈ [κ], such that Ci = grigbii with

bi ∈ {0, 1}, and θ =
∑

i∈[κ] bi2
i−1. The protocol is perfectly complete and perfect zero-

knowledge. Moreover if the κ-SDH and the κ-BDHI assumptions hold, the prover

has negligible probability to output (ri, bi)i∈[κ] , θ and valid proofs πequiv, πbit such that

~b = (bi)i∈[κ] /∈ {0, 1}κ, or
∑

i∈[κ] bi2
i−1 6= θ.

Proof. Perfect Completeness. The prover can compute U = (
∏

i∈[κ] Ci

gr
)
1
s

without knowing s because U =
∏

i∈[κ] g
θ[i]
i−1. Indeed U corresponds to the vector

(0, θ[1], ..., θ[κ]) that is moved by one position to the left. Similarly V can be com-

puted because the prover knows the coefficients W [i] of the polynomial W (·) of degree
κ− 2, so we have V =

∏

i∈[κ−1] g
W [i]
i−1 . The rest follows by inspection.

Hardness to open the commitment to a vector which is not the binary

expansion of θ. Assume there exists an adversary A that is able to open the com-

mitment ~C to a vector which is not the binary expansion of θ, the discrete logarithm

of D. We build the following adversary B that breaks the κ-BDHI assumption or

the κ-SDH assumption. B receives the challenge tuple (g0, g1, g2, · · · , gκ). This chal-
lenge tuple stands for the CRS and is sent to A. B, using ~PK and πbit can break

the κ-BDHI assumption in case ~C can be opened to a non-bit vector (see Theorem

13). Henceforth we assume that ~C can be opened by the prover to a bit vector. As

adversary A wins, B obtains

� θ such that D = gθ (using PKθ).

3That is a polynomial which variable X stands for s which is unknown.
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Common reference string: Input (1κ, κ)
1. (p,G,GT , e, g)← BMGen(1κ).

2. s
R
← Zp.

3. Return CRS = 〈(p,G,GT , e), (g0, g1, g2, ..., gκ)〉 where for all i ∈ [0..κ] : gi = gs
i
.

Statement: The statement is formed by a vector of elements of G: (D,C1, C2, ..., Cκ) where ~C = (Ci)i∈[κ]
is a commitment to a bit vector as defined in section 7.2. The claim is that the prover can open the
commitment to a bit vector which is the binary expansion of the discrete logarithm of D, also known by
the prover.

Proof: Input (CRS, θ, r1, ..., rκ)

1. Compute D = gθ.

2. Compute for every i ∈ [κ]: Ci = grig
θ[i]
i .

3. Compute the πbit as described in Figure 7.1, with bi = θ[i] for each i ∈ [N ].

4. Compute r =
∑

i∈[κ] ri.

5. Compute U = (

∏
i∈[κ] Ci

gr
)
1
s using the common reference string CRS and the bit vector θ[·].

6. Compute the formal polynomial W (·) such that P (X) − P (2) = W (X)(X − 2) where P (X) =∑
i∈[κ] θ[i]X

i−1, and P (2) =
∑

i∈[κ] θ[i]2
i−1 = θ. Compute V = gW (s) using the coefficients of

the formal polynomial W (·) and the common reference string CRS.

7. Compute the ZKPoK PKθ = PK{θ : gθ} and ~PK = (PK{(ri, bi) : Ci = grigbii })i∈[κ] as
described in section 2.6.2.

8. Return π = (πequiv , πbit, ~PK, PKθ) where πequiv = (r, U, V ).

Verification: Input (CRS, C, π)

1. Parse C as (D, (Ci)i∈[κ]).

2. Parse π as (πequiv, πbit, ~PK,PKθ).

3. Check πbit as described in Figure 7.1.

4. Check that r ∈ Zp.

5. Check that (U, V,D,C1, ...,Cκ) ∈ Gκ+3.

6. Compute D′ =

∏
i∈[κ] Ci

gr
.

7. Check that e(D′, g) = e(U, g1).

8. Check that e(U
D
, g) = e(V, g1g−2).

9. Verify the proofs of knowledge ~PK and PKθ.

10. Accept if all tests pass in which case return valid otherwise return ⊥.

Figure 7.2: ZKPoK that the prover can open a commitment to a bit vector which is
the binary expansion of the discrete logarithm of some group element D.
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� (ri, θ
∗[i]) ∈ (Zp × {0, 1})κ for i ∈ [κ] such that ~C = (Ci)i∈[κ] where Ci = grig

θ∗[i]
i

(using ~PK), and θ∗ 6= θ.

� πequiv = (r, U, V ) ∈ Zp ×G×G.

Assume first that r 6= ∑

i∈[κ] ri mod p, then we can deduce that

U = (g
∑

i∈[κ] ri−rgθ
∗
i s

i
)1/s. Since g

θ∗i s
i

s = g
θ∗i
i−1 is easily computable from the known

θ∗[i], B can deduce g

∑
i∈[κ] ri−r

s and as δ =
∑

i∈[κ] ri − r 6= 0 mod p is known, B can

compute g
1
s = ( U

g
θ∗
i

i−1

)
1
δ and thus the κ-DHI assumption is broken. From now on we

assume that
∑

i∈[κ] ri = r. As the adversary A wins, this means that there exists

some j ∈ [κ] such that θ[j] 6= θ∗[j]. Moreover, as the verification involving V passes,

we have that V = g

∑
i∈[κ] θ

∗[i]si−1−θ[i]2i−1

s−2 . As the decomposition in binary is unique

we have that ∆ =
∑

i∈[κ] 2
i−1(θ∗[i] − θ[i]) 6= 0 mod p. We can rewrite V as V =

g
∆

s−2
+

∑
i∈[κ] θ[i]

∗si−1−θ[i]2i−1

s−2 = g
∆

s−2
+

∑
i∈[κ] θ[i]

∗(si−1−2i−1)

s−2 = g
∆

s−2
+Z(s) where the coefficients

of Z(·) are efficiently computable by B because ∀i ∈ [κ] : (s − 2)|(si−1 − 2i−1). As

∆ ∈ Zp is also known this means B can compute g
1

s−2 = ( V
gZ(s) )

1
∆ and thus the κ-SDH

assumption is broken.

Perfect Zero-Knowledge. The simulator works as follows. It generates the

common reference string CRS correctly and saves the trapdoor s. Given the state-

ments D and ~C = (Ci)i∈[κ] such that ~C is formed by Pedersen commitments to bits

in positions 1, ..., κ and such that D and ~C are equivalent with respect to bases (2, s),

the simulator chooses a random r′ ∈ Zp and reveals it as the randomness of
∏

i∈[κ]Ci.

Then, the simulator sets U = (
∏

i∈[κ] Ci

gr′
)
1
s and V = (U

D
)

1
s−2 . To see that r′, U, V pro-

duced by the simulator are indistinguishable from values of a real experiment, we

observe that:

� r′ is uniformly distributed as well as r.

� D′ is equal to f1(r
′) in the simulated experiment and f1(r) in the real experi-

ment, where f1 : G→ G is defined as f1(x) =
∏

i∈[κ] Ci

x

� U is equal to f2(r
′) in the simulated experiment and f2(r) in the real experiment,

where f2 : G→ G is defined as f2(x) = f1(x)
1
s .
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� V is equal to f3(r
′) in the simulated experiment and f3(r) in the real experiment,

where f3 : G→ G is defined as f3(x) = (f2(x)
D

)
1

s−2 .

7.4 Fair Exchange of Short Signatures without TTP

Our fair exchange protocol for digital signatures works as follows. At the beginning a

common reference string CRS is generated. Then each participant runs FEKeyGen(1κ)

to obtain a pair of (public/private) keys (pk, sk) for the signing algorithm. At this

point each participant executing EncSigGen(CRS, sk,m) will compute an encrypted

signature γ for the message m, using the signature σm blinded with some factor θ.

This value γ will also contain the proofs that relate the signature σm with some bit

vector commitment to θ.

The rest is straightforward: Each participant sends the encrypted signature. If all

the verifications pass, the first participant PA will ask to PB to open the commitment

of the first bit of θA. If the opening is successful, PB will do the same for its own

blinding factor θB. The process is repeated for each bit until all the bits of the blinding

factors are recovered. Finally, each player can compute the signature by “canceling

out” the blinding factor θ. The abstract syntax of the protocol is described in Fig.

7.3.

We now describe more in detail how the encrypted signature is constructed, which

is the core of our construction. The encrypted signature contains:

1. A commitment ~C to the bit string formed by the bits of θ as described in Section

7.2.

2. σ̃, the signature of the message m blinded by θ.

3. Proofs to guarantee that the bit vector commitment encrypts the binary de-

composition of the blinding factor θ.

4. A proof in order to convince the verifier that γ is the encryption of σm under

some blinding factor θ which is hidden in the basic commitment gθ.
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5. A proof of knowledge of the discrete logarithm of D and a proof of knowledge

of the representation of each bit commitment of the vector ~C. These proofs of

knowledge will allow us to keep simulating the adversary despite the fact that

it aborts.

A detailed description of the concrete protocol is given in Fig. 7.4.

PA(CRS,mA,mB) PB(CRS,mA,mB)

1 (skA, pkA)← FEKeyGen(1κ)
2 pkA −→
3 (skB, pkB)← FEKeyGen(1κ)
4 ←− pkB
5 (θA, ~rA, γA)← EncSigGen(CRS, skA, mA)
6 γA −→
7 (θB , ~rB, γB)← EncSigGen(CRS, skB, mB)
8 ←− γB
10 v ← EncSigCheck(CRS, pkB, mB , γB)
11 if v = ⊥ then ABORT

12 v ← EncSigCheck(CRS, pkA, mA, γA)
13 if v = ⊥ then ABORT

for i = 1 to κ:
14 openA,i ← KeyBitProofGen(CRS, ~rA, θA, i)
15 openA,i −→
16 openB,i ← KeyBitProofGen(CRS, ~rB , θB , i)

17 ←− openB,i

19 vi ← KeyBitCheck(CRS, openB,i, i)

20 if vi = ⊥ then ABORT

21 vi ← KeyBitCheck(CRS, openA,i, i)

22 if vi = ⊥ then ABORT

end for

23 σmB ← EncSigDecrypt(γB , θB)
24 σmA ← EncSigDecrypt(γA, θA)

Figure 7.3: Abstract fair exchange protocol.

We say that the protocol is perfectly complete4 if, and only if, both players PA and

PB that follow the protocol obtain respectively σA = SSig(skB, mB), the signature of

message mB and σB = SSig(skA, mA), the signature of message mA, with probability

1.

We say that the protocol is (partially) fair if, at the end of the execution of

the protocol (be it normal or anticipated by the abortion of the adversary), the

4Here complete does not refer to fairness.
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probability of both players to recover their corresponding signature differs at most by

a polynomial factor in the security parameter κ. As mentioned in the introduction,

the advantage of this approach is that it avoids trying to compare the exact running

time of the participants and thus allows to capture in a simple, but precise manner,

the intuition of partial fairness.

Definition 37 (Partial fairness) We define the partial fairness of the protocol through

the following experiment: The adversary A plays the role of the corrupted player say

w.l.o.g. PA. Thus, PB is honest and follows the protocol. OSSig(·) is the signing

oracle for the signature scheme SSig relative to the public key pkB of PB.

1. A asks for signature computations for arbitrary messages to OSSig(·).

2. A chooses the messages mA and mB on which the fair exchange protocol will be

run, with the restriction that mB must not have been requested before to OSSig(·).

A computes also its public key pkA and sends it to PB.

3. A then interacts in arbitrary way with PB.

4. If A has aborted before ending the protocol, then let θ∗A[1..i] (0 ≤ i ≤ κ) be the

partial blinding obtained by PB. At this point we assume that PB will try to

compute SSig(skA, mA) by choosing at random some element in the remaining

space of size 2κ−i. We call this tentative signature σB.

5. A asks for signature computations for arbitrary messages to OSSig(·) with the

restriction that the message must be different from mB.

6. A keeps running its own algorithm and finally outputs a tentative signature σA

on mB relative to public key pkB, and also another tentative signature σ∗ on

a message m∗, different from mB and that has not been queried before to the

signing oracle OSSig(·).
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FESetup(1κ)
1. (p,G,GT , e, g)← BMGen(1κ)

2. s
R
← Zp

3. Return CRS = 〈(p,G,GT , e, g), (g0, g1, g2, ..., gκ)〉 where for all i ∈ [0..κ] : gi = gs
i
.

FEKeyGen(1κ)

1. (sk, pk)← SKG(1κ) where sk = (g, x, y) and pk = (g, u, v) with u = gx and v = gy , like described in Section 2.4.2.

2. Return (sk, pk).

EncSigGen(CRS, sk,m)

1. Compute θ
R
← Zp.

2. Compute D = gθ . [RELEASE].

3. Compute ~C = (Ci)i∈[κ] = (grig
θ[i]
i

)i∈[κ]. [RELEASE].

4. Compute πbit that shows that ~C is the encryption of a binary vector as described in Figure 7.1.

5. Compute πequiv that shows that ~C is the encryption of the bits of the binary decomposition of the blinding factor θ
as described in Figure 7.2.

6. Compute PKθ = PK{θ : gθ} = (c = H(gr), z = r − cθ) , where r
R
← Zp. (see Section 2.6.2). [RELEASE].

7. Compute ~PK, a vector where each component at position i is ZKPoK for the representation of Ci in base (g, gi): ~PK =

(PK{(ri, θ[i]) : grig
θ[i]
i
})i∈[κ] = ((ci, z1,i, z2,i))i∈[κ] where ci = H(g

r1,ig
r2,i
i

),z1,i = r1,i − ciri, z2,i = r2,i − ciθ[i]

and r1,i, r2,i
R
← Zp for each i ∈ [κ] (see Section 2.6.2). [RELEASE].

8. Parse sk as (g, x, y).

9. Set rσ
R
← Zp.

10. Compute σ = (σ′, rσ)← SSig(sk,m) where σ′ = g
1

x+m+yrσ .

11. Set σ̃ ← (σ′θ = g
θ

x+m+yrσ , rσ) = (σ̃′, rσ).

12. Set γ ← (D, ~C, πbit, πequiv , PKθ ,
~PK, σ̃).

13. Return (θ, ~r, γ), where ~r = (ri)i∈[κ] is the randomness vector of the commitment ~C.

EncSigCheck(CRS, pk,m, γ)

1. Parse γ as γ = (D, ~C, πbit, πequiv , PKθ ,
~PK, σ̃).

2. Check πbit as described in Figure 7.1.

3. Check πequiv as described in Figure 7.2.

4. Check PKθ by verifying that c = H(Dcgz) (see Section 2.6.2).

5. Check PKθ by verifying that for each i ∈ [κ] we have that ci = H(C
ci
i

g
z1,ig

z2,i
i

) (see Section 2.6.2).

6. Parse pk as pk = (g, u, v).

7. Check that e(σ̃, ugmvrσ ) = e(D, g).

8. Return valid if all tests pass, ⊥ otherwise.

KeyBitProofGen(CRS, ~r, θ, i)

1. Opens the ith commitment of ~C, that is (θ[i], ri) such that Ci = grig
θ[i]
i

.

2. Return open ← (θ[i], ri).

KeyBitCheck(CRS, open, i)

1. Parse open as (b, r).

2. Check that Ci = grgbi and b ∈ {0, 1}.

EncSigDecrypt(γ, θ)

1. Parse γ as γ = (D, ~C, π, PKθ ,
~PK, σ̃).

2. Parse σ̃ as σ̃ = (σ̃′, rσ).

3. Compute σ′ = σ̃
′
1
θ .

4. Return σ = (σ′, rσ).

Figure 7.4: Implementation of the fair exchange protocol. For the sake of sim-
plicity we introduce the notation [RELEASE] which means that the first player(the
one who sends the first value) must release the currently computed value and wait
for the second player to send his before releasing the next one.
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Operation # Exp # Mult # BM # Div # Hash
Step 2 EncSigGen 1

Bit Vector commitment κ κ
BV-NIZK 4κ 2κ
BE-NIZK 2κ 2κ− 3 1
ZKPoK 2κ+ 1 κ κ+ 1

Check BV-NIZK κ 4κ
Check BE-NIZK 1 κ− 1 4 2
Check ZKPoK 3κ+ 2 2κ+ 1 κ+ 1

Step 7 EncSigCheck 2 2 2
KeyBitCheck κ κ
EncSigDecrypt 1

Sum 13κ+ 8 11κ− 1 4κ+ 6 3 2κ+ 2

Figure 7.5: Time complexities of the fair exchange protocol. This figure shows
the number of cryptographic operations performed by each participant during the
whole protocol. The first block corresponds to the algorithm EncSigGen, the second
block to the algorithm EncSigCheck. BV-NIZK stands for the NIZK argument to prove
a commitment is the encryption of a bit vector as depicted in Fig. 7.1. BE-NIZK
stands for the NIZK argument to prove the equivalence between a commitment to a bit
vector and the discrete logarithm of D = gθ, as depicted in Fig. 7.2. #Exp, #Mult,
#BM, and #Div correspond respectively to the number of group exponentiations,
group multiplications, bilinear map applications and group inversions. #Hash is the
number of hash evaluations.

The protocol is said to be partially fair if, and only if,

Pr [ SVf(pkB, mB, σA) = valid ]

Pr [ SVf(pkA, mA, σB) = valid ]
≤ Q(κ) ∧ Pr [ SVf(pkB, m

∗, σ∗) = valid ] = neg(κ)

where Q(·) is some polynomial and the probability is taken over the random choices

of A and PB.

Note that, in this definition, it is fundamental to consider the case where the

adversary reveals its own signature to the honest player by following the protocol,

but is also able to compute another signature on a message different from mB. To

understand why, it is sufficient to think of a protocol where the honest player releases

at the end its private key for signing. In this case the honest player may have obtained
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the signature of the adversary, and we could say that somehow the exchange is fair,

but obviously this solution should not be considered as secure.

Simultaneous hardness of bits for discrete logarithm. Our construction

relies on the idea of releasing gradually the bits of θ ∈ Zp the discrete logarithm

in base g of D = gθ. A problem that could arise in this situation would be that

some θ values are somehow easier to find than others especially when some of the

bits are released. This might help an adversary to retrieve θ much faster (by a

factor greater than a polynomial) and thus break the security of our protocol. To

overcome this issue we need to introduce the Simultaneous hardness of bits of the

discrete logarithm assumption which states that a polynomial time adversary cannot

distinguish5 between a random sequence of j = κ− ω(log κ) bits and the first j bits

of θ when given D = gθ.

Definition 38 (Simultaneous hardness of bits for discrete logarithm) Let G be a

cyclic group of prime order p. We say that the Simultaneous hardness of bits for

discrete logarithm (SHDL) assumption holds if for every PPT adversary A and for

any l = ω(log κ) we have that the following quantity is negligible in κ.

AdvSHDL(A, κ) = |Pr
[

θ
R← Zp :

1← A(gθ, θ[1..κ− l])

]

− Pr

[

θ, α
R← Zp :

1← A(gθ, α[1..κ− l])

]

|

where the probability is taken over the random choices of A.

Schnorr [Sch98] showed that the SHDL holds in the generic group model by

computing the following upper bound on the advantage of the adversary

AdvSHDL(A, κ) = O(κ(κ− l)
√
t(
2κ−l

2κ
)1/4)

where t is the number of generic group operations of the adversary. Thus, if we

set l = ω(log κ) we obtain that AdvSHDL(A, κ) = O(κ(κ− ω(log κ))
√
t(2−ω(log κ))1/4)

which is negligible.

5Note that a PPT adversary can easily distinguish both bit strings if j = κ − O(log κ) by
performing a brute force attack on the remaining bits as 2O(log κ) is a polynomial in κ.
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The recent work [DJ12] by Duc and Jetchev suggests that results applying to

groups of integers modulo a safe prime [PS98, MP05] can be extended to elliptic

curves so to reduce the SHDL assumption to more standard ones.

Theorem 15 The protocol described in Fig. 7.4 is complete. Moreover if the κ-SDH

assumption, the κ-BDHI assumption and the SHDL assumption hold, and a securely

precomputed common reference string is available, then it is secure in the random-

oracle model according to definition 37.

Proof. As the underlying ZKPoK protocols are perfectly complete, we can see

by inspection that so is the fair exchange protocol.

Let us outline the intuition of the security proof. The main challenge for our proof

is related to the following facts:

� The adversary may abort during the protocol. In order to cope with this issue,

we will use the proofs of knowledge that conceptually will allow us to force

the adversary to open all the commitments and thus break some complexity

assumption in case the adversary lies, that is does not open the commitments

to the bits of the blinding factor θ.

� The adversary might detect that it is simulated, especially when few bits remain

to be released, exposing the fact that the simulator does not know the signature

and is trying to get it from the adversary.

In this case, we will rely on the idea that if the adversary opens the commitment

correctly (follows the protocol) then it will not get a significative advantage and

thus will not win. Moreover, we will need to use the SHDL assumption that

will guarantee us that when the simulator releases bits that do no correspond

to the blinding factor θ, then, if sufficient bits remain (ω(logκ)), the adversary

will not be able to detect it.

Let A be the adversary that breaks the fairness of our protocol. We consider the

following sequence of games.

Game 0. This game corresponds to the security definition 37. In this game, the

simulator B invokes a signing oracle OSSig(·) to obtain the signatures, and does not
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know the trapdoor s of common reference string CRS. We define S0 to be the event

that adversary A wins.

Game 1. This game is identical to the previous one except that the adversary A
is not allowed to open the commitments Ci to values that are not equal to the ith bit

of θA, the discrete logarithm of DA (computed by A).
More precisely, the simulator B does the following: It asks A to compute γA which

is parsed as (DA, ~CA, πA,bit, πA,equiv, PKθA, ~PKA, σ̃A). For the proofs of knowledge, A
will use H(·) a random oracle which is controlled by B. So B will rewind A and obtain

PKθ
′
A from which it will obtain θA. Similarly, B will use ~PKA[i] and ~PK

′

A[i] (after

rewinding) to extract (rAi, θA[i]) for each i ∈ [κ].

Let S1 be the event that adversary A wins. Applying the difference lemma [Sho04]

and as we rely on the random-oracle methodology, we have that

|Pr [S0 ]− Pr [S1 ] | ≤ 2Advκ−BDHI(B1, κ, κ) + Advκ−SDH(B2, κ, κ)

considering that B1 is the best adversary that breaks κ − BDHI assumption and

B2 is the best adversary that breaks the κ − SDH assumption. This follows from

Proposition 11, Theorem 13 and Theorem 14. Note that the rewindings are not nested

because each ZKPoK is released in alternation and the committed values are fixed at

the beginning of the interaction of EncSigCheck at steps 2 and 3 (see Figure 7.4).

Game 2. This game is identical to the previous one except that the adversary A
is not allowed to win by outputting a valid signature σ∗ on a message different from

mB and other messages the adversary A may have requested to the simulator B for

signing.

More precisely, the simulator B will simply follow the protocol by invoking the

signing oracle OSSig(·) when necessary. If A wins by outputting a valid signature σ∗

on a message m∗ not queried previously, then B has been able to forge a signature

for scheme SSig.

Applying the difference lemma, we have that

|Pr [S1 ]−Pr [S2 ] | ≤ AdvUF−CMASSig (B3, κ), where B3 is the best adversary for breaking

the security of SSig.
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Game 3. This game is identical to the previous one except that now the common

reference string CRS is computed by the simulator B which now knows the trapdoor

s. Let S3 be the event that A wins, we have that Pr [S2 ] = Pr [S3 ].

Game 4. In this game we perform the following change: The simulator B, instead
of committing to the bits of θB, will commit (and release gradually) the bits of some

other random value α
R← Zp.

Note that, as B knows the trapdoor s, it will be able to simulate the proofs and

make all the tests pass. We detail next how B computes the values of the protocol.

1. Run BMGen(1κ) to obtain (p,G,GT , e, g).

2. Get the public key for the signature scheme pk = (g, u, v) from the oracle

OSSig(·).
3. Set s

R← Zp.

4. Compute CRS← 〈(p,G,GT , e, g), (g0, g1, ..., gκ)〉 where ∀i ∈ [0..κ] :

gi = gs
i
.

5. Forward the public key of the signature scheme SSig to adversary A.
6. Set α

R← Zp.

7. Set θB ← Zp

8. Set rσ
R← Zp.

9. Set D = gθB .

10. Set σ̃ = (σθB
mB

, rσ) (σmB
is queried to the signing oracle OSSig(·)).

11. Set (r1, r2, ..., rκ)
R← Zκ

p .

12. ~C = (Ci)i∈[κ] = (grig
α[i]
i )i∈[κ].

As A cannot win by outputting a valid signature σ∗ on a message different from

mB, this means that if A does not abort before less than O(log κ) bits remain to be

released, it cannot win either. The reason is that, as stated in Game 1, A is not

allowed to lie (that is to open the commitments to bits that do not correspond to the

binary expansion of θA).

More precisely, we have that Pr [SVf(pkA, mA, σB) = valid ] ≥ 1
2O(logκ)+1 (because
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A has got one bit of advantage, and only O(log κ) bits remain). We can deduce that

Pr [SVf(pkB, mB, σA) = valid ]

Pr [SVf(pkA, mA, σB) = valid ]
≤ 1

2−(log(O(κ)+1)
= 2O(log κ)+1

which is still a polynomial, thus A did not win.

Let S4 be the event thatA wins. We have that |Pr [S3 ]−Pr [S4 ] | = AdvSHDL(B4, κ),
where B4 is the best adversary that breaks the SHDL assumption. To see this, we

build the following distinguisher D for the SHDL assumption. D receives a group

element E and a sequence α of κ − ω(log κ) bits. D will use the simulator B and

replace D by the value E. Then, D will complete the sequence α with random bits so

that the new sequence is κ-bit long. We denote this new sequence α′ = α||γ, where
each bit of γ is random and |γ| = κ−|α|. Then, D will compute the commitments for

each bit of α′ and also release each of these bits gradually as B (whether in Game 3

or in Game 4). If A aborts the simulation (not only the protocol) before, or precisely

when, all the bits of α are released, then we can deduce that the discrete logarithm of

E does not start with the sequence α (Game 4). Otherwise, this means that indeed

α is a prefix of the discrete logarithm of E (Game 3).

Game 5. In this game the simulator will not ask to the oracle to produce the

signature on mB, instead it will compute the values as follows.

1. Run BMGen(1κ) to obtain (p,G,GT , e, g).

2. Get the public key for the signature scheme pk = (g, u, v) from the oracle

OSSig(·).
3. Set s

R← Zp.

4. Compute CRS← 〈(p,G,GT , e, g), (g0, g1, ..., gκ)〉 where ∀i ∈ [0..κ] :

gi = gs
i
.

5. Forward the public key of the signature scheme SSig to adversary A.
6. Set θB

R← Zp.

7. Set rσ
R← Zp.

8. Set D = (gmBuvrσ)θB .

9. Set σ̃ = (gθB , rσ).
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10. Set (r1, r2, ..., rκ)
R← Zκ

p .

11. ~C = (Ci)i∈[κ] = (grig
θB[i]
i )i∈[κ].

Note again that all the proofs can be simulated because B knows s. Moreover, A
is “fooled” because we have e(σ̃, gmBuvrσ) = e((gmBuvrσ)θB , g) = e(D, g) and all

values computed by the simulator B are perfectly indistinguishable from those of a

real experiment. Let S5 be the event that A wins. Both transcripts (from this game

and the previous one) are indistinguishable as in both cases the bits released do not

correspond to the binary expansion of the discrete logarithm of D. Thus we can

deduce that Pr [S4 ] = Pr [S5 ].

Moreover if A wins then B has found a forgery for the signature scheme SSig.

Thus we have Pr [S5 ] ≤ AdvUF−CMASSig (B3, κ), where, as mentioned before, B3 is the

best adversary that breaks the security of the signature scheme SSig.

To summarize, we have that:

Pr [S0 ] ≤ |Pr [S0 ]− Pr [S5 ] |+ Pr [S5 ]

≤ |Pr [S0 ]− Pr [S1 ] |+ |Pr [S1 ]− Pr [S2 ] |
+|Pr [S2 ]− Pr [S3 ] |+ |Pr [S3 ]− Pr [S4 ] |
+|Pr [S4 ]− Pr [S5 ] |+ Pr [S5 ]

≤ |Pr [S0 ]− Pr [S1 ] |+ |Pr [S1 ]− Pr [S2 ] |+ |Pr [S3 ]− Pr [S4 ] |
+Pr [S5 ]

≤ 2Advκ−BDHI(B1, κ, κ) + Advκ−SDH(B2, κ, κ)
+AdvUF−CMASSig (B3, κ) + AdvSHDL(B4, κ)
+AdvUF−CMASSig (B3, κ)

= 2Advκ−BDHI(B1, κ, κ) + Advκ−SDH(B2, κ, κ)
+2AdvUF−CMASSig (B3, κ) + AdvSHDL(B4, κ)
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7.5 Conclusion

In this work we introduced a practical protocol to exchange short signatures [BB04b,

BB08] fairly without relying on a TTP using between others a pair of CRHF that

preserve the predicate Equiv(θ,~b) = 1 ⇔ θ =
∑κ

i=1
~b[i]2i−1. It seems our approach

can be applicable to other signature schemes, those where the signature is verified by

a single application of the bilinear map. For example, in the BLS scheme [BLS04]

a signature on message m has the form σm = H(m)s where s is the secret key and

H(·) is a CRHF. The idea would be to blind σm with θ
R← Zp and get the encrypted

signature σ̃ = σθ
m. One could verify that the encrypted signature is well-formed by

checking that e(σ̃, g) = e(H(m), A) and e(A, g) = e(gs, gθ).

Thus, our techniques might be extended in order to obtain a general framework

for building practical fair protocols involving bilinear maps.
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Chapter 8

Conclusion

In this thesis, we started first by studying cryptographic accumulators and in par-

ticular the dynamic properties of such primitive. This research lead to the design

of an authenticated data structure supporting (non)membership queries and the se-

curity of which does not rely on a trusted third party [CHKO08]. Then we solved

an open question raised by Nicolisi and Fazio [FN02] asking whether accumulators

allowing efficient update of all the witnesses at once could be built, answering in the

negative [CH10]. Trying to design an optimal authenticated dictionary (where the

time to compute a proof is O(logN) and the time to verify it is O(1)), we started to

study transitive signature schemes. This lead us to design a new transitive signature

scheme for directed trees [CH12] that is more efficient than previous proposals, and

achieves the best known worst-case complexity. Moreover our construction enables a

practical trade off between the time to combine a signature, O(λ(N
κ
)1/λ), and the time

to verify it, O(λ). This construction is based on a hash function that allows efficient

comparison of two strings (w.r.t. the lexicographical order) only using hashes and a

short proof.

The concept of predicate-preserving collision-resistant hashing emerged: Indeed

we can build CRHFs that somehow preserve some of the structure of the values being

hashed, enabling the efficient computation of proofs for predicates involving the pre-

images. Then we applied this concept to build a commitment scheme for a bit vector

with a proof that this bit vector is the binary decomposition of some value (hidden in

another commitment). This commitment scheme and the related arguments served

to build a fair exchange protocol for Boneh-Boyen short signatures [BB04b] that does

not rely on a trusted third party, which is the first of the sort to the best of our

knowledge.

Finally, we highlight some open problems related to this thesis.
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� We studied CRHFs that preserve simple predicates like set membership, exis-

tence of a common prefix, and equivalence of two values expressed in different

bases. What kind of predicates can be efficiently preserved? What is the re-

lation between the logical complexity of the predicate (number of variables,

quantifiers) and the size of the proof or the time to compute such a proof?

� The problem of building an optimal authenticated dictionary is still open. One

way to solve it is by using a transitive signature scheme for directed graphs, but

this primitive is not known to exist either.

� Can we generalize the concept of predicate-preserving hashing enough, providing

concrete constructions, in order to build a general framework to compute on

authenticated data like [ABC+12]?

� It seems natural to apply the hash functions of Chapter 6 to build efficient

authenticated string pattern schemes. This may lead to constructions where

proofs are shorter than those of [Ver11, HL08, HT10, GHS10] which are linear

in the size of the string.
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