
173

E-Breaker: Flexible, Distributed Environment for Collaborative Authoring

Nelson Baloian1, Francisco Claude3, Roberto Konow2, Sebastian Kreft1

1Department of Computer Science, Universidad de Chile, Santiago, Chile
{nbaloian, skreft}@dcc.uchile.cl

2Facultad de Ingeniería, Universidad Diego Portales, Santiago, Chile
roberto.konow@mail.udp.cl

3David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
 fclaude@cs.uwaterloo.ca

Abstract

This paper presents a system called E-Breaker for
supporting small and medium size group authoring of
any kind of documents following a regular structure.
The system supports a decentralized model of
development, thus not requiring a central repository. A
set of rules for content ownership maintains the
synchronization of the work among all members of the
developing team which can work on- or off-line. It
allows fine-grained locking of documents’ content.

Keywords: CSCW, Collaborative Authoring.

1. Introduction

In the last years, the traditional working style of
people depending on computing resources to do their
work has dramatically changed due to the influence of
the recent development of mobile computing devices
and wireless networks. The concept of “workstation” is
being less used and today it is common to find people
working anywhere, anytime not necessarily attached to
a specific location or time of the day. This working
style has been named as “nomadic computing” by some
authors and according to [1] the future of the personal
computing is on cell phone-like computing devices.
According to [2] the number of people working out of
an office has grown by 35% since the year 2000. In the
past, it was common that the working computer would
be fixed at the working place like the office, and
working teams would meet on a regular basis in that
working place. This facilitated the use of central
repositories to support the collaborative work
synchronization since they will have access to it.
Nowadays people do not work creating documents
and/or programs on a computer attached to a certain
physical place. Consequently, meetings for
coordinating work frequently do not take place in a
predetermined place, or at predetermined time. We
believe that there are many unexplored applications of
collaborative work in nomadic systems. This opens a
wide and exciting area of research, in our case, focused

in the distributed confection of structured documents.
For example, consider the task of writing an article:
Three or four researchers are discussing about a new
idea they would like to present as a paper. After that,
they open their laptops and begin to write the outline of
the document, where they explain briefly different
segments of the document. After that, they assign
different sections of the document to each author, and
they start working on the task of writing. A wireless
network may be available, allowing them to work in a
synchronous way, in other case, they can work
asynchronously trough email or using a pen-drive.
Subsequently they separate and work independently.
The members, or maybe only a few of them, may meet
again; new members who join the project will need to
merge the work. We propose that a system suitable for
this paradigm should meet the following requirements:

Work on a peer-to-peer architecture without having
a central repository: As we want to support people
who may start a new development without previous
preparation, a central repository may not be always
available for all members at that moment. Because of
this, every member of the developing group should
have a copy of the project, as updated as possible, even
when working alone.

Allow synchronous and asynchronous collaborative
working: Of course the system should support the
synchronous collaboration work when two or more
users are on line, providing adequate tools. But it
should also allow synchronizing the work with other
participants which are off-line in the best possible way,
and provide mechanisms for merging the code
developed off line.

Allow the inclusion of new unforeseen participants:
Because the system is aimed to support flexible and
changing teams, there should be a way to include
unforeseen participants and assign them tasks.
However, the system should avoid an uncontrolled
explosion of participants and maintain a certain order in
the versioning of the document.

Proceedings of the 2009 13th International Conference on Computer Supported Cooperative Work in Design

978-1-4244-3535-7/09/$25.00 ©2009 IEEE

174

Allow fine grained locking of a document: In a less
formal and flexible working team everyone may have
access to the working documents and be able to modify
them. However, to synchronize the documents copies of
all participants in a full peer to peer environment, where
there is no central repository may be a complex task, if
we do not want to introduce too restrictive rules about
who has the lock of a document is a complex task to
accomplish in a fully distributed environment where
there is no central server.

Some authors have already pointed out to the
necessity of not having a centralized repository to
coordinate the work of a software developing team [5],
while others also have stressed the necessity of having a
fine grained, logical oriented locking of the code [6].
These requirements can also be applied to the
collaborative authoring of any document which has a
certain structure. The decentralized model is certainly
the most flexible and suitable model for these
requirements. However, there is still no system which
meets all the requirements mentioned. Developing such
a system represents a challenge of high complexity, in
the design and in its implementation. In this work we
will present an extension of Code-breaker [14], which
is was designed for supporting exclusively small and
medium size software development based on an
extreme programming principle, meeting the
requirements mentioned above. The new system
presented in this paper extends the same idea to other
interesting problems in the field of collaborative
authoring of documents in general. The main idea
behind this work is to present a new scheme for the
exchange and synchronization of well structured
documents.

We limit the scope to documents that can be mapped
to an LALR grammar. We state that solving the
problem of collaborative work for this kind of
documents opens a wide and interesting range of
applications to real life situations. Consider the general
scenario of the example stated above of writing an
article. Many authors, distributed around the world,
have to interact and generate a document. They have to
share their contributions, and sometimes even integrate
their writing into foreign systems. Our solution
supports different conflict resolutions schemes,
collaborative working, and even the possibility of
working with different platforms, such as the case when
an author writes in Latex and other in Open Office,
waiving the painful process of transforming the source
documents.

2. State of the Art

Back in the late 80'and early 90's when the Internet

was rapidly expanding, there was a great interest in the
distributed systems. It was then predicted that such

systems will be the dominant technology for the
synchronous collaborative work in the future [7].We
can nowadays confirm those predictions and add that
these system have also deeply influenced the working
style in all fields, Of course, computer system
programming being was one of the first, and many
systems have been developed since very early. We can
classify those systems in two categories according to
the aspect they stress with their support.

2.1 Versioning management systems

In the 1990's perhaps the most used tool for

collaborative work synchronization was created, CVS,
[3] initiating a wave of development of tools supporting
Version Management. CVS problems are well known
[8]: it uses a centralized model, a central data repository
and only few operations or commands which can be
executed off-line. This makes this structure really
unsuitable for synchronous collaborative programming
development. All developers need access to the central
server for almost all operations. Today, there is a whole
family of CVS-like tools: GNU-Arch, Subversion,
CSSC, PVCS, etc. These applications are frequently
used in the Open Source community and also in large
business environments. All of them follow the same
schema: one central repository, and file-level
permissions. (Check in, Check out). These tools are
used for Version Management in mid to large software
development projects with many programmers
involved.

2.2 Collaborative development environments

One of the first approaches to the implementation of
collaborative development environments is the Orwell
system [9]. This system allows the Smalltalk
programmers to develop programs using a common
library. An interesting aspect of this system is that it
organizes the developing system code in methods and
classes instead of files, thus using a more logical
approach to present the code. Another Collaborative
Environment that follow the same idea of the Orwell
system is Tukan [10].This synchronous distributed team
programming environment for Smalltalk claims to solve
the problems that Extreme Programming teams have.
Tukan incorporates a version management system and
adds awareness information, communication channels
and synchronous collaboration mechanisms. It also
provides a shared code repository with a distributed
version management and the code integration can be
made in a centralized or decentralized way. The IBM
Rational ClearCase System [11] provides real time
support for collaboration between developers located
anywhere on the Internet. It uses a central server, that
manages users permissions and differences between the
source code versions. The server has also support for
multiple repository server deployments for large-scale

175

enterprise teams. Another tool to which supports the
collaborative editing of source code is the Collab add-
on for the Netbeans 5.0 [12]. This add-on allows the
NetBeans users to edit files collaboratively, share files
and provides space to communicate with other E-
breaker Organization, Roles and Ownership

 In order to allow the synchronization of the
document being developed among the members of the
group in an asynchronous scenario, E-Breaker imposes
that any existing piece of document in any of the
participants' computer should be “owned” by someone.
A E-Breaker collaborative document development
project starts with one person defining the project an
others joining it. Each new member including the one
who created the project has to register an e-mail address
and receives a digital signature.

3. Rules for document source ownership

 All members can develop new writings which are
owned by him/her. Other members will receive the
document’s source and can use, modify, and even share
it with others, but the only “official” version can be
distributed or approved by the owner. In this way, there
will be always a “current final version” of the entire
document which will be the sum of all the code pieces
each participant owns. In order to allow users to
delegate their work, they can pass the ownership of the
code among each other. Figure 1 and Figure 2 show an
example how ownership of the document source may
develop during a project involving three collaborators.

3.1 Exceptions to the Rules

It is important to maintain the rights of the owner of
the code and the order of, so an alternative should the
project itself in order to avoid an uncontrolled
explosion of versions. It is also known that in many
projects it is sometimes impossible to maintain and
respect every rule because of the emergence of
unforeseen situations exist for bypassing the rules in
exceptional cases. For example, it could happen that a
certain user cannot work on the project anymore and
that he is not reachable to ask him to delegate the work
to other users. In this case there are two mechanisms
that can be applied and the two coexist giving more
flexibility to the system. The first one is that a user can
ask the rest of the team to approve or reject by voting a
petition for becoming the owner of a certain code piece
that is owned by a third member of the team and/or to
force the acceptance of a given modification.

By automatically locking the inherited classes of a
locked class, i.e., the user that owns a specific class,
owns by default the subclasses that extend it, a better
control of the whole system is achieved. For example, a
class that has been implemented to fit a small set of
requirements and is not completely defined could have

many changes in their implementation issues, the data
representation, and many similar details. This
functionality ensures that the users that try to inherit
from such classes must have the permission from the
owner of the parent class, preventing inconsistencies

Figure 1: Colors show ownership of the code: blue for
user A, green for user B and yellow for user C. In the first
row, A and B start a new project writing both a part of the
code. In the second, they merge their works and keep the
ownership. In the third row, C joins the project and A
grants ownership rights to part of the code.

Figure 2: User C works on the part of the owner code and
distributes it to A and B with the new code included

It is certain that having temporary code or avoiding
modifications completely is not possible, but this option
of the system allows giving a little more control to the
process and as it is based on the rules defined for the
system, they are still flexible enough to support a more
relaxed working style. This same example can be used
for collaborative writing instead of programming
classes just by segmenting the document in sections and
sub sections

3.3 Synchronizing the work

Synchronization must be possible when working
synchronously as well as asynchronously. When
working synchronously the information about changes
of any type is sent to all connected participants. When a
latecomer joins a working session with one or more
other participants, their records are compared to update
information about changes. Only code changes which
are issued by the owner of the code are forcibly
exchanged so there is no conflict about which is the
latest version, since the owner issues a correlative
number when its code is ready to be distributed. This
number is also used to check if the change has been
incorporated already. When an owner wants to publish
a new version of a code a file with an XML content
containing metadata and data for the code is generated

176

and signed with his digital signature. The same is done
for distributing information about changes to the code
ownership and new members.

In order to support the fact that some participants
could be seldom on-line simultaneously with the rest of
the group or that various subgroups do not meet each
other frequently E-Breaker offers an asynchronous
mechanism based on the use of e-mail. The XML files
with the changes are sent to all email addresses of the
project. Users can download them and process them
off-line.

3.4 Assigning Roles

E-Breaker is aimed to support more a flat project
structure in which every participant has the same rights
and responsibilities. However, sometimes even in small
projects there may be a need for having a certain
hierarchy in order to maintain the synchronization
among the participants. E-Breaker introduces two
mechanisms which allow this with flexibility. The first
one is, when a user is created it may or not receive the
right of accepting new participants for the project. The
number of participants which is allowed to invite can be
also be specified. This rule helps to keep the control
about the number of participants in the project. The
second one is about receiving the ownership of a code.
A user may receive or not the permission of passing the
ownership of a code to a third one. This may be used to
assign responsibilities to certain members of the team
which they will not able to avoid by granting rights to
another member. With these simple two rules it is
possible to assign administrative roles to certain people.

4. Documents Architecture

Our synchronization method applies to document
types which can be described by a LALR grammar.
Some examples are Java files or a limited version of a
text document. The idea of applying this to text
documents is very interesting, since we can synchronize
documents written in Latex and Open Office for
example, the only limitation is that the document format
is limited and that the editor used should implement the
merging method. Every file processed generates an
XML file; this XML represents the abstract parse tree
of the LALR grammar. The representation is direct but
has some issues when synchronizing. The main
problem is for example if we have the grammar shown
in table 1.

If the functions 1 and 2 have not been modified, the
only change is that the third function has been added. If
we watch the parse tree, function2 has been shifted one
level below and function3 uses its place in the tree. To
solve this problem, we consider every non-terminal
symbol that is used to describe list of components that
are in the same level and we mark them as not able to

be represented. By doing this, we have all the functions
of the example in the same level of the tree, and the
synchronization is easier, because we have look for a
match in the same level for both trees. In the example,
every non-terminal symbols that should not be printed
are marked with a “*”. In the formal definition of the
grammar we just have to add a binary vector which
describes which non-terminal symbols should be
printed.

Table 1: A problematic grammar
*CompilationUnit→CompilationUnit Class|Enum
 |

Class→ClassName ListMinUnits

*ListMinUnits→varDeclaration | Method | StaticBlock
 |

varDeclaration→Modifiers Type Id [= Expression]

Method →MethodName Modifiers ParamList ReturnType
StatementsBlock

StaticBlock→static StatementsBlock

The main problem with this approach is that if we

have two versions of a Java file, for example:

class Example {
 function1() {...}
 function2() {...}
}

Version 1

class Example {
 function1() {...}
 function3() {...}
 function2() {...}
}

Version 2

The file generated is an XML file in which every tag
represents a printable element of the grammar. We add
three fields to every node: key, date and owner. Those
fields are used for the synchronization, to maintain
versions and historic information. Owner specifies the
user which owns the node or the component
represented by it. The date field stores the time of the
last modification to that component, and the key stores
a hash function which is used to identify changes
during the synchronization, using this key we can skip
from synchronizing complete branches of the tree.

An example of a XML file generated from a Java
file is shown in table 2 and the resulting XML file,
parsing this code with the same grammar shown in table
3.

177

Table 2: An example of the XML generated from the Java
class Complex {
 double r,i;
public Complex(double r, double i) {

 this.r = r;
 this.i = i;
 }
...
}

Table 3: The generated XML code
<?xml version='1.0' encoding='UTF-8'?>
<javaxml>
 <class name="Complex">
 <source>
 <field type="double">
 <var name="r">
 </var>
 <var name="i">
 </var>
 </field>
 <method name="Complex" public="true">
 <parameters>
 <parameter>double r</parameter>
 <parameter>double i</parameter>
 </parameters>
 <code><![CDATA[{
 this.r = r;
 this.i = i;
 }
]]></code>
...
 </source>
 </class>
</javaxml>

5. The System architecture

5.1 The file Architecture

For implementing the logical management of the
code as described in chapter 3 e-Breaker uses three
logical layer file system architecture as seen in figure 3.
The bottom layer is the physical layer, containing the
accepted Java files. The middle layer is the meta data
layer containing data for access management and
presentation of the code. The upper layer is the logical
file system which implements the emulated file system
using the data stored in the other two layers.

 Logical Layer

Metadata Layer

Physical Layer

Emulated File System

 XML

 Definitive Files

Temporary

Figure 3: The three layer architecture of e-Breaker

The D-Files layer contains the files with content that

is accepted by their owner. It is used to create
distributions of the software, giving an alternative to
build a patched version also, including code that has not
been accepted yet. The Temporary Files layer contains
the copy made for every file containing modifications
which are still not approved by the owner of the code.
The XML Files layer has an XML for every file with
the information about the owner, permissions and
information needed for the merging phase.

The Emulated File System: Is the logical layer that
manages the logical access to the physical files and
presents the information about which part of the code is
owned by which user and whether the local code has
been approved or released by the owner. For this, it
uses the information stored in the XML files. It also
implements a transparent file system for the user
merging the temporary files with the accepted ones
when corresponds.

This file organization allows users to manage their
own versions of every file, but without losing the real
branch of the whole document being written. The
system should always have a copy of the “real files”,
that is, the files containing code accepted by the owner.
The reason for having a XML file for every file in the
system is to simplify the merging phase every time a
user has the chance to synchronize his working copy.
The merging of the code, including the detailed and
complex permission system of the system is almost
impossible without any other information and very
uncomfortable if this information is stored in the source
itself.

5.2 The software Architecture

The software architecture of E-Breaker is a typical
three-layer architecture. The Awareness layer
implements the interface between the application and
the graphical interface (which is optional, since the
current version of E-breaker is implemented as a set of
commands). The Core layer implements the logic of
the application. The Communication layer implements
the communication with other running instances of E-
Breaker. The Core layer includes the Project Admin
module which implements the administration of an E-
Braker project. The User Admin module implements
the user administration tasks. The Code Admin module
implements the code administration which includes
mainly maintaining the three-layer files system with the
source code, the temporal information and the meta-
data. The Sync module implements the synchronization
of the information which includes receiving a new
version of the project of publishing the own version.

The Peer Detection module detects other currently
online and announces to other users the presence of this
instance. For this it users uses the JXTA™ [13]

178

technology, which provides libraries and several APIs
to make the implementation of peer-to-peer networks
more reliable. E-Breaker uses this technology to
discover the participants of the developing team in the
LAN and to establish a connection between them.
JXTA also allows the system to be extended for many
users, so that they can be connected from anywhere in
the Internet, even though firewalls.

The Send/Receive module is in charge of sending
and receiving synchronization information to/from
other users. It communicates with the Core module in
order to pass the information received from other users
in order to synchronize the files and receives the
information to send to other users.

6. Conclusions

With the system presented in this document it should
be possible to support a collaborative document
creation, giving the opportunity to the small to medium-
size working team to use a tool that is flexible enough
to work without having troubles because of a
complicated tool. The simplicity behind this idea gives
the tool a real chance to be competitive in the market.

The authors have been engaged in developing
software for medium-size enterprises, with their own
small size developing Software Company. The problem
and opportunity of these development teams is that they
are not really tied to a fixed working place. It is very
common that small companies work without a common
physical place and in many cases without a common
working schedule. This causes that often a member of
the team is not able to work for a fixed period of time.
The roles also change very dynamically within the
project with people getting in and out of the project
during the development. The existing tools are unable
to maintain the order needed in this situation. They
mostly consist of separated tools for the development
and the administration. This imposes an extra human
effort for keeping the order of the developing process
with the consequent resource consumption in a situation
where it cannot be accepted, because it is too expensive
compared to the size of the project being developed

The rules that the system implements about
ownership of the code or document segments for
controlling the coordination of the participant's work
also support this fact and add more flexibility, so that
the user can create a project that works under the rules
that are most similar to the way his/her team really
works.

References
[1] Schümmer,T. ,Schümmer,J. : Support for Distributed

Teams in eXtreme Programming,In eXtreme
Programming Examined, edited by Succi, Giancarlo,
Marchesi, Michele , Addison Wesley, 2001.

[2] Bowen,S.,Maurer,F. : Designing a Distributed Software
Development Support System Using a Peer-to-Peer

Architecture, 26th Int. Comp. Software and Apps. Conf.
(COMPSAC 2002), pp. 1087-1092, 2002.

[3] Berliner,B : CVS II:Parallelizing Software Development,
1989.

[4] SourceForge,http://www.vasoftware.com , last visited on
14 February 2008.

[5] Van der Hoek, A. , Heimbigner,D. , Wolf, A.L. : A
generic, peer-to-peer repository for distributed
configuration management, icse, pp. 308, 18th
International Conference on Software Engineering
(ICSE'96), 1996.

[6] Magnusson,B. ,Asklund,U.,Minör,S. : Fine-grained
revision control for collaborative software development,
Proceedings of the 1st ACM SIGSOFT symposium on
Foundations of software engineering, pp. 33 – 41, 1993.

[7] Xu1,B., Lian,W., Gao,Q. : A General Framework for
Constructing Application Cooperating System in Wind,
ACM SIGSOFT Software Engineering Notes
,Volume 28 , Issue 2 (March 2003), pp. 15

[8] Neary,D. : Subversion - a better CVS,
http://www.linux.ie/articles/subversion/ last visited on 13
February 2008

[9] Thomas,D. , Johnson,K. : Orwel, a configuration
management system for team programming, Conference
on Object Oriented Programming Systems Languages
and Applications, pp. 135 – 141, 1988.

[10] Schümmer,T. ,Schümmer,J. : TUKAN: A Team
Environment for Software Implementation. OOPSLA'99
Companion. OOPSLA '99, Denver, CO, pp. 35-36, 1999.

[11] IBM Rational ClearCase, Integrated SCM for
Rational Developer products and Eclipse,
ftp://ftp.software.ibm.com/software/rational/web/whitepa
pers/int-scm-rad- eclipse.pdf, White papers of
IBM, December 2004

[12] Netbeans, Sun Microsystems,
http://www.netbeans.org, last visited on 13 February
2008.

[13] JXTA Technology: Creating Connected
Communities, Sun Microsystems,
https://jxta.dev.java.net/, last visited on 13 February 2008.

[14] N. Baloian, R. Konow, F. Claude, M. Matsumoto: A
decentralized and flexible tool supporting extreme
programming software development. Procs. CRIWG’06,
Medina del Campo, Spain, September 2006, LNCS 4154,
2006, pp. 179-186.

