
CC3301 Programación de Software de Sistemas
Examen – Semestre Otoño 2013 – Prof.: Luis Mateu

Pregunta 1
En una calle hay 5 estacionamientos al lado derecho y ninguno al lado
izquierdo. Se identifican como 0, 1, 2, 3 y 4. Un auto necesita solo 1
estacionamiento, una camioneta necesita 2 que estén contiguos, un camión 3
contiguos pero si tiene remolque necesita los 5 estacionamientos.

Los automovilistas son representados por threads que invocan las funciones
reservar y liberar para controlar el uso de los estacionamientos. Cuando un
automovilista llega invoca la función reservar indicando su nombre (nom) y
cuantos estacionamientos contiguos necesita (k). Si hay k estacionamientos
contiguos disponibles, esta función los reserva y retorna de inmediato la
identificación del primer estacionamiento en la serie otorgada. De lo
contrario, reservar espera hasta que hayan k estacionamientos contiguos
disponibles. Cuando un automovilista se va invoca la función liberar
indicando su nombre (nom). Esta función libera todos los estacionamientos de
la serie otorgada previamente a ese automovilista con reservar, y por lo tanto
pueden ser otorgados a otros vehículos.

Programe en C las funciones reservar y liberar. Sus encabezados son:

 int reservar(char *nom, int k);
 void liberar(char *nom);

Importante: En reservar Ud. debe crear una copia del nombre, porque el
nombre original será destruido en el llamador. Del mismo modo, en la función
liberar, debe liberar el espacio de la copia.
Vea el ejemplo de uso de la pregunta 2. Le servirá para entender mejor qué deben
hacer estas funciones. No es necesario evitar la hambruna. No necesita validar que un
automovilista haya llamado reservar antes de liberar. Le será útil programar primero
una función ubicar, con la misma funcionalidad que reservar, excepto que retorna -1
cuando no hay k estacionamientos contiguos en vez de esperar. Priorice la simplicidad
por sobre la eficiencia.

Pregunta 2
Programe un servidor y un cliente para la reserva de los estacionamientos de la
pregunta 1 por Internet. El servidor se llama calle, corre siempre en
localhost y escucha a los clientes en el puerto 3000. El cliente se llama auto,
el que invocan los choferes para reservar o liberar los estacionamientos. La
tabla de arriba a la derecha muestra un ejemplo de uso. Juan, Eva, Pato y Ana
son choferes. Las filas están ordenadas cronológicamente.

En la celda A, Juan reserva el estacionamiento 0. En B, Eva reserva 1 y 2. En
C, Pato solicita 3 estacionamientos que no hay, por lo tanto espera. En D, Ana
reserva el estacionamiento 3. En E, Eva libera 1 y 2. Ahora hay 3
estacionamientos libres pero no son contiguos por lo que Pato sigue
esperando. En F, Juan libera 0. Ahora sí hay 3 estacionamientos contiguos, 0,

1 y 2, que se otorgan a Pato y por lo tanto su espera termina (ver celda G).

Hint: Use en el servidor las funciones de la pregunta 1. Suponga que no se
producen errores de sockets o entrada/salida (j_bind, j_connect, read, write,
etc.).

Juan Eva Pato Ana
% auto juan r 1
0
% (A)

% auto eva r 2
1
% (B)

% auto pato r 3
(espera, C)

% auto ana r 1
3
% (D)

% auto eva l
% (E)

% auto juan l
%

(F)
0
% (G)

Pregunta 3
i. Complete en este programa los espacios marcados como … de modo que el
programa no arroje errores de compilación o warnings.

typedef struct { … } Str;
typedef … Fun …;
int proc(Fun f, Str *p, char *q) {
 … r= &q;
 … s= &r;
 p->d= **s;
 return (*f)(p);
}

ii. Un proceso se comunica con 2 sockets que entregó j_accept. Sus
descriptores son fd1 y fd2. Se sabe que llegarán datos, pero no se sabe si lo
harán por fd1 o fd2. Escriba un trozo de código que lea los datos en cuanto
lleguen. No puede usar threads. Observe que si lee de fd1, pero los datos
llegan por fd2, el proceso se quedará bloqueado indefinidamente, y viceversa.

iii. Considere la función leerInt de más abajo. En ella si p apunta a una
dirección inválida, se gatillará la señal SIGSEGV, es decir segmentation fault,
lo que normalmente termina el programa.

int leerInt(int *p) {
 return *p;
}

Modifique la función de tal forma que si la dirección es inválida, leerInt
entregue 0 en vez de terminar el programa. Hint: Ud. debe capturar la señal
SIGSEGV y usar setjmp/longjmp.

