
Software Engineering for Millennials, by Millennials∗

Jocelyn Simmonds
Department of Computer Science,

University of Chile
jsimmond@dcc.uchile.cl

Maíra Marques Samary
Department of Computer Science,

University of Chile
mmarques@dcc.uchile.cl

Milenko Tomic
Department of Computer Science,

University of Chile
mtomic@dcc.uchile.cl

Francisco Madrid
Department of Computer Science,

University of Chile
fmadrid@dcc.uchile.cl

Constanza Escobar
Department of Computer Science,

University of Chile
cescobar@dcc.uchile.cl

ABSTRACT
Software engineers need to manage both technical and professional
skills in order to be successful. Our university offers a 5.5 year
program that mixes computer science, software and computer en-
gineering, where the first two years are mostly math and physics
courses. As such, our students’ first real teamwork experience is
during the introductory SE course, where they modify open source
projects in groups of 6-8. However, students have problems working
in such large teams, and feel that the course material and project are
“disconnected”. We decided to redesign this course in 2017, trying to
achieve a balance between theory and practice, and technical and
professional skills, with a maximum course workload of 150 hrs
per semester. We share our experience in this paper, discussing the
strategies we used to improve teamwork and help students learn
new technologies in a more autonomous manner. We also discuss
what we learned from the two times we taught the new course.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;

KEYWORDS
Project and problem-based learning, peer evaluation, gender

ACM Reference Format:
Jocelyn Simmonds,MaíraMarques Samary,Milenko Tomic, FranciscoMadrid,
and Constanza Escobar. 2018. Software Engineering for Millennials, by Mil-
lennials. In SEEM’18: SEEM’18:IEEE/ACM International Workshop on Software
Engineering Education for Millennials , May 27-June 3 2018, Gothenburg, Swe-
den. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3194779.
3194787

∗We picked this title because the teaching staff for 2017 are all Millennials.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SEEM’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5750-0/18/05. . . $15.00
https://doi.org/10.1145/3194779.3194787

1 INTRODUCTION
Successful software engineers must be technically competent, but
must also effectively communicate with clients and users, work
in teams, design and develop solutions, etc. The ACM Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineer-
ing (SE2014) [9] indicate that graduates of undergraduate software
engineering (SE) programs should demonstrate a mastery of SE and
technical knowledge, designing solutions tailored to the project
context, evaluating trade-offs, while being effective team mem-
bers and leaders. Chilean educational institutions offer two general
computer-related programs: Computer Science Engineering1 (CS
Engineering) and Computer Science Technology2 (CS Technology).
With a duration of 5-6 years, these programs start with 2 years
of physics and mathematics, and then cover the fundamentals of
computer science, computer and software engineering. Marques
et al. [10] studied the CS Engineering and Technology programs
offered by 20 Chilean universities, concluding that these programs
only include an average of 3.4 and 2.8 SE related courses, respec-
tively, representing only 7.4% and 9.3% of the courses covered by
these programs.

As such, Chilean students encounter their first SE course around
their 4th year. Students at our university have 3 mandatory SE
courses: CC4401 - Software Engineering I (4th year), CC5401 - Soft-
ware Engineering II (5th year), and CC5402 - Software Project (5th
year). Both CC4401 and CC5401 have a regular workload (150 hrs
of expected dedication over 15 weeks). CC5402 is a capstone course
and has double workload. Prior to taking CC4401, students have
worked on individual coding assignments, requiring at most 500
lines of code (LOC), in Java, Python or C. Students have a varied
level of experience with frameworks and development tools. They
rarely engage in teamwork, preferring to work alone and not letting
others’ (lack of) work affect their grades, because of the competitive
environment at the University of Chile, which is consistently one
of the top ranked engineering schools in Chile.

In this paper, we discuss how we redesigned the CC4401 course
in order to achieve a better balance between technical and profes-
sional skills. The original course had students working in teams
of 6-8 on maintaining an open source desktop application (1-10
million LOC in Java, like the BlueJ Java IDE3). Teams needed to pro-
pose the change requests for their projects, following Rajlich’s [11]

1In Spanish: Ingeniería Civil en Computación and/or Informática.
2In Spanish: Ingeniería en Ejecución con mención en Computación and/or Informática.
3https://www.bluej.org/

https://doi.org/10.1145/3194779.3194787
https://doi.org/10.1145/3194779.3194787
https://doi.org/10.1145/3194779.3194787
https://www.bluej.org/

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden J. Simmonds et al.

maintenance and evolution process. There were three 4-week itera-
tions, each iteration ended with a demo of the software. Students
also attended two 1.5 hr lectures per week, sat for two mandatory
written evaluations and an optional exam.

Given their lack of teamwork and development experience, most
students felt “lost” with such a big project, and often sliced it up
to avoid teamwork. We decided to redesign CC4401 in order to
achieve a better balance between technical and professional skills.
We also have to cover SE fundamentals and give students enough
time to work on their projects. Another reason behind this decision
was student motivation. Students want more time to work on their
own projects, and are quick to express their frustration with what
they consider “busywork”, assignments which seem disconnected
to real world problems. Given the low amount of hours dedicated to
SE courses in Chile, we believe that other universities face similar
challenges in their programs.

The new version of CC4401 has a similar evaluation structure
as the previous version (project, written evaluations, exam). The
course project has changed: students now create a web applica-
tion from scratch using Django4. We picked Django because it has
a soft learning curve. We also incorporated more partial evalua-
tions in order to reinforce professional skills (report, presentation,
peer-evaluation). The teaching staff designs the project, picking a
problem that should appeal to most students, like building an appli-
cation that will let them to buy lunch on campus in a quicker fashion.
Students begin working in teams of 3-4 people, with the project di-
vided up into 4 smaller, more focused iterations (requirements, user
interfaces, development, and evolution & testing). Students vote for
the user interfaces that will be developed during the third iteration,
as well as the code base for the fourth iteration. Our goal with this
strategy was to make students read and modify code written by
others, one of the key aspects of the original course project.

We wanted to understand if the changes to CC4401 made a
difference in student grades, attitudes and motivation. In order to
avoid conflating changes to the course design with changes to the
teaching staff, we present the data from the three semesters where
the main author of this paper taught the course: the 2nd semester5
of 2014 (original version), and the 1st and 2nd semester of 2017 (new
version). The main difference between the two 2017 semesters is
that students created the teams during the 1st semester, and we used
a diagnostic test to set up teams during the 2nd semester. We also
checked whether this strategy had an impact on student grades: it
did not. Also, we found that switching students between teams did
not affect their grades. Finally, we studied student peer evaluations,
finding that female students were better evaluated than their male
teammates, in general. We also discuss teaching evaluations for
2014 and 2017, students seem more motivated by the new course.

This paper is structured as follows. We discuss related work in
Sect. 2. In Sect. 3, we describe the original CC4401 course and the
issues that we detected, and then describe the new version and how
it addresses the previously identified issues. We then talk about
our experience teaching both versions of the course in Sect. 4. We
discus the lessons we learned from this experience in Sect. 5.

4https://www.djangoproject.com/
5Semesters last 15 weeks, with the 1st semester spanning March-June, and the 2nd
one August-December

2 RELATEDWORK
Before describing our experience redesigning the CC4401 course,
we first discuss related work. We first give an overview of how
others have introduced and enforced teamwork among students (c.f.
Sect. 2.1), and how others have tried to achieve a balance between
technical and professional skills (c.f. Sect 2.2). Finally, we give an
overview of other experiences in SE course design (c.f. Sect. 2.3).

2.1 Enforcing teamwork among students
Borrego et al. [3] carried out a literature review regarding teamwork
in engineering student projects. Many primary studies selected in
this work report experiences from SE courses. According to this
work, the major goals of team projects in engineering programs
should be: encourage and promote teamwork, designing innovative
and creative solutions taking into account ethics and efficiency, and
develop communication skills, all this in a setting similar to what
they should experience in industry once graduated. In order to
motivate and retain students, programs should focus on real world
problems. This is all in sync with the learning outcomes of CC4401.

CC4401 can be considered a hybrid course, with elements of both
project-based learning [2] and problem-based learning [1]. The
course project is divided into 3-4 iterations, where each iteration
can be considered a “problem”, since there is a clear problem state-
ment and goals which students must achieve, delivering a “solution”
(requirements, user interfaces, source code, test cases and documen-
tation). According to Blumenfeld et al. [2], project-based learning
is a comprehensive perspective focused on teaching by engaging
students in research activities. Within this framework, students
pursue solutions to non-trivial problems by asking and refining
research questions, debating ideas, making predictions, designing
plans and/or experiments, collecting and analyzing data, drawing
conclusions, communicating their ideas and findings to others, ask-
ing new questions and creating artifacts. Project-based learning
also places students in realistic, contextualized problem solving
environments. In so doing, projects can serve to build bridges be-
tween phenomena in the classroom and real life experiences; the
questions and answers that arise in the students’ daily work gain
value and are shown to be open to systematic inquiry.

According to Barrett [1], under the problem-based learning ap-
proach, students are divided into teams and are presented with a
problem they need to solve. Each group studies the problem, dis-
cusses and identifies what they should do in order to solve the
problem. In the case of CC4401, teams focus on a different aspect of
the course project during each iteration, building a “mini-project”
solution, like designing adequate user interfaces. At the end of each
iteration, the students present their solutions to the rest of course,
and all teams discuss the solutions presented and must reach a
consensus of which “solution” best solves the problem at hand.

2.2 Achieving a balance between teaching
technical and professional skills

Schlimmer et al. [14] mention that new graduates of SE programs
“are also frequently unaware of current software practices and have
difficulty fitting into an organized framework of software production.
They need a more even balance between practical and theoretical
knowledge.” Students are not used to working in teams, so they are

https://www.djangoproject.com/

Software Engineering for Millennials, by Millennials SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

not always good at expressing their ideas, be it in writing or orally.
They may also have attitudes that hinder effective communication.
The authors conclude that undergraduate educators should make
it their goal to make sure that students a conceptual and practical
understanding of SE, as well as develop interpersonal working skills.
As such, any SE curriculum should include project-based classes,
providing an adequate combination of theory and practice.

Soska et al. [15] analyzed job profiles for SE regarding cross-
disciplinary competences, and the most important item that came
up in the job posts is the ability to work in a team, with 53% of the
advertisements listing teamwork as needed. Furthermore, almost
30% of the ads required that software engineers possess group
communication and coordination skills. In the rest of this paper,
a team is a group that “performs a defined, specialized task within
a definite period, and whose members are generally cross-functional
and disband after project termination” [6]. Roshandel et al. [13] state
that many SE courses now include projects: team-based SE projects
that students must develop using techniques learned in classroom.

2.3 Other introductory SE teaching experiences
During the first SE course, students usually work on tasks or small
projects that look to solve only one part of a SE problem [8]. These
are usually either design tasks/projects or requirements elicitation
and specification tasks. Rajlich [12] presented the introductory SE
course that he teaches at Wayne University, where students work in
teams on open source projects selected by the instructor, who also
acts as a guide for these projects. Broman et al. [4] report that at
Linköping University, the focus of the introductory SE course is on
the software development process, where students develop small
software projects that are not technically challenging. Drappa and
Ludewig [7] report the use of a simulation “game” to teach students
the reality of SE. Bull and Whittle [5] report that at Lancaster
University, the introductory SE course is offered as a dedicated
“studio” course for its students, the goal is to make students dive
into the project and make the studio their second home.

3 REDESIGNING CC4401
In this section, we first describe the original CC4401 course and the
issues that we identified (c.f. Sect. 3.1).We then describe the new ver-
sion of the course, explaining the mechanisms we added/changed
in order to address the previously identified issues (c.f. Sect. 3.2).

3.1 The original version of the course
Table 1 shows the program for the original version of CC4401. The
first two weeks give students an overview of why SE emerged as a
discipline, why building quality software is hard, and the principles
that we follow as a discipline. We also explain the course project
during the first lecture. Students must organize themselves into
teams of 6-8 people, and by the end of the second week (Demo 0),
each team must present the open source project that they plan to
modify. This project must be an open source Java desktop applica-
tion with 1-10 million LOC (our students are most familiar with
Java). Students modified projects like the BlueJ and JEdit6 editors.

Each team define candidate change requests for their project
duringDemo 0 (bug fixes or new features), these are revised by the
6http://www.jedit.org/

Table 1: Original course program, 2014.

W1 Introduction The Nature of Software
W2 Principles of SE Demo 0
W3 No lecture Requirements
W4 Software Evolution Student strike
W5 Concept Location Impact Analysis
W6 Change Propagation Review
W7 Evaluation 1 Demo 1

Week-long student vacation
W8 Refactoring Analysis Techniques
W9 Testing Techniques Modularization
W10 Design Patterns Design Patterns
W11 Architecture Demo 2
W12 Review Evaluation 2
W13 SW Processes SE in Practice
W14 No lectures, teams work on projects
W15 No lecture Demo 3

teaching staff. Each team appoints a coordinator for each iteration,
who is in charge of making sure that the team will meet their obli-
gations for the iteration. Over the next 4 weeks (W3-W6), students
learn about the requirements engineering, as well as the software
evolution process as formalized by Rajlich [11]. During the first
iteration, teams formalize their change requests as requirements,
using concept location to identify where changes must be made,
and evaluating the impact of the planned changes (Demo 1).

During W7, students sat for an individual written evaluation,
testing their knowledge of the SE concepts and techniques discussed
in the lectures. Teams also present their first demo. We evaluated
teams on how well they extracted requirements from their change
requests (20% of the demo grade), the quality of issues that they
opened on Github (15%), how orderly and systematic their concept
location (20%) and impact analysis (20%) processes were. Finally,
we also graded them on the quality of their oral presentations
(10%), their use of Github (10%, to encourage frequent commits),
and whether or not they defined a team coordinator (5%).

Teams continued working on their projects during weeks 8-11,
and in lectures we discussed topics like refactoring, code inspec-
tions, testing, design and modularization, design and architectural
patterns. During Demo 2, teams give a live demo of the issues
they have been working on, explaining which issues have been
closed and which ones remain open. This demo is graded differ-
ently from Demo 1. 30% of the demo grade is an individual grade
based on Github use. Another 30% depends on how well the team
used Github: were the individual branches merged back to the mas-
ter branch? was the project adequately documented? The final 40%
of the grade depends on the quality of the live demo and slides.
We also asked students to assess their teammates work habits and
attitudes. These peer-evaluations were aggregated and sent to the
students (without names), to help them identify how they could
improve their teamwork.

During W12, students again sit for a written evaluation, now
about the concepts discussed duringW8-11.Wewrap up the lectures
with a discussion about software development processes and SE in
practice. The course ends with Demo 3, which is quite similar to
Demo 2. The week after the semester ends, students can sit for a
written exam (mandatory for students with less than an A- average
in the written evaluations). In order to pass the course, students
must pass both the written evaluations and the project demos.

http://www.jedit.org/

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden J. Simmonds et al.

Table 2: New course program, 2017 (first semester).

W1 Introduction SW Quality
W2 Requirements Requirements
W3 SW Processes SW Processes
W4 SW Design User Interaction
W5 Wireframes & Prototypes Usability
W6 Architecture Architectural Patterns
W7 Modularization Demo 1
W8 Review Evaluation 1
W9 Maintenance & Evolution Maintenance & Evolution

Week-long student vacation
W10 No lectures, teams work on projects
W11 Demo 2 Demo 2
W12 Analysis Techniques Functional Testing
W13 Testing Techniques OO Testing
W14 Review Evaluation 2
W15 Demo 3 Demo 3

A teaching assistant (TA) held weekly discussion sessions (1.5
hrs), half of this time was used to answer questions about the lecture
material, the rest of the time was used to show students how to
use the tools required by the course (mainly Git and the JRipples 7

plugin for Eclipse). Students are expected to spend 10 hrs per week
on this course. Two lectures and a discussion session meant that
students have 5.5 hrs per week to work on their projects, prepare
the demos and study for the written evaluations.

We detected several issues with this version of the course:
I1 : Students felt that therewas a certain disconnection between

the lectures and their projects, especially after Demo 1.
I2 : Since the projects were large, some students felt perpetually

“lost” and this affected their level of motivation.
I3 : Some teams became groups, with students breaking the

project up into chunks that they could handle by themselves.
I4 : Some students felt that they were just coding to get a grade,

and did little to improve their professional skills. For example,
some teams delegated these tasks to those that they knew
could do them more efficiently.

I5 : The TA took too much time to give teams feedback.
I6 : Feedback about presentations was given orally, and no de-

tailed feedback was given about the project documentation.
I7 : Students could not switch teams when there were personal

conflicts, since the learning curve for each project got steeper
as the semester advanced.

3.2 The redesigned version
Table 2 shows the program for the new version of CC4401. Most
of the topics are the same, albeit in a different order and depth.
For example, the 4 lectures on software evolution (originally W4-
6), have been reduced to two lectures during W9. We merged the
second and third lectures, focusing on software quality. We also
removed the lecture on Refactoring, since it is covered in depth in
a pre-requisite course. We added extra lectures about requirements,
software processes, user interaction, wireframes and prototypes,
usability, and testing. With respect to the course project, we divided
it into 4 iterations, where the last three have a live demo. The
week-long student vacation is scheduled to coincide with national
holidays, which is why it falls on a different week.

7http://jripples.sourceforge.net/

Teams no longer define their projects. Instead, the teaching staff
presents a problem statement that the entire course will work on.
We pick problems that we believe will motivate most students,
like building a system to help them get lunch during the campus
lunch rush-hour. Students are expected to build a simple web-based
information system, allowing different types of users to edit, list
and filter different elements. We also try to include API and library
use, e.g., by asking them to geolocate data. The problem statement
is intentionally vague, so that teams need to use the elicitation
techniques discussed in class. Each team has up until W3 to pose
up to 5 questions about the problem statement to the teaching staff,
we use a shared Google Drive document. Each question is given a
unique identifier, and we register which team asked the question.

The teaching staff answers these questions role-playing as users,
usually once a day during W2-3, based on the idea of the system
that we want students to develop. We try to be as precise as possible
when answering, but will intentionally give vague answers when
the questions are too open. We also sometimes tell students that
we do not understand their questions, instead of answering what
we think they tried to ask. This is because our students can get
very technical, asking users how would they like a certain feature
to be implemented. Once the deadline for the Q&A part of this
activity has passed, we publish a curated version of this document
on the course website, this is the only source of information that
students can use to define project requirements. Teams then have
until the beginning of W4 to hand in a requirements specification
document. To avoid “busywork”, we do not ask teams to write a
full requirements specification, instead asking them to define 10
functional and 3 non-functional requirements. They must clearly
indicate which Q&As were the source for these requirements, as
well as how they would test them once the system is implemented.

There are 3 live demos during the semester. Right after the stu-
dents hand in their requirements, we give them our list of require-
ments, which we use to guide the development process. The list is
longer than what the students should be able to implement during
the semester, because we want students to get used to the idea that
software development is an open-ended activity and that there is no
clear “end” to a project. However, we are careful to clearly specify
which requirements should be considered for each iteration.

During Demo 1, teams showcase the user interface wireframes
and/or prototypes that they developed to address certain require-
ments. Teams are free to use whatever technology they please
during this phase. We do this to make them consider the different
technologies seen in class, it is their responsibility to pick the best
fit for their team (capability and time-wise). The only restriction
is that they have to design interfaces for both desktop and mobile
browsers. At the end of Demo 1, there is a vote. Students must
individually vote for the set of interfaces that they believe the whole
course should implement. The team that wins gets a bonus point
for the next demo.

We then specify the requirements for the next iteration, teams
must implement the back-end for these requirements, connect-
ing it to the provided user interfaces. This includes implementing
mock-ups according to the look & feel defined by the winning
team. DuringDemo 2, teams must discuss the data model that they
developed and demo their software. However, since we are now
starting with smaller teams (3-4 people) and have a higher number

http://jripples.sourceforge.net/

Software Engineering for Millennials, by Millennials SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

of students, we schedule two demo days. This increase in students
was expected, as students that are up to date with their courses
take CC4401 during the first semester of the corresponding year.
All teams must hand in their slides the night before the first demos,
and tag their code, thus no team has more time to prepare. Students
must again vote, now picking the code base that will be used by all
the teams during the final iteration.

During the final iteration, most teams are now working with
code that they did not developed (only the user interfaces remain
unchanged), so we first ask them to develop a testing plan for the
code, so as help them familiarize themselves with it and identify
bugs. We then ask the teams to fix any bugs they find and finish
implementing incomplete features. Wemay ask teams to implement
new requirements, depending on how buggy the code is.

The tight coupling between lectures and the project iterations
helped us address issue I1. During the first two iterations (require-
ments and user interfaces), teams start from scratch and get to pick
the tools they want to use, which helps address I2. Also, the TA cov-
ers the basics of web development and Django during the weekly
discussion sessions. In order to address I3, the TA helps teams set
up and assign issues on Github, and we check the teams’ Github
activity when grading. There is still some “slicing” and “chunking”
going on, but much less than before.

To address issue I4, teams must hand in technical reports for
Demos 1-3, these are marked according to a rubric that takes into
consideration both content and form. A well-formatted, -written
and -structured report with the required content will get the top
marks; one with the required content but with formatting/spelling
errors will receive less marks, etc. The same goes for presentations,
where we randomly pick a team member that has not yet presented.
The use of rubrics also let us address issues I5 and I6. For starters,
the iteration grades are usually ready within a week. However, we
only publish these grades once the course has selected a winning
team – more on this in Sect. 5! The rubrics are published at the
beginning of the corresponding iteration, so students know what to
expect. Comments about the content, structure, format and writing
style of the reports are given in writing. This feedback allows teams
to better prepare the following reports and presentations.

For each iteration, the report and presentation are worth 60% and
30% of the grade, respectively. The final 10% corresponds to team
peer-evaluations, where students use a 5-point Likert scale to grade
their teammates on: their commitment to the project, whether they
achieve their assigned tasks, whether they show initiative during
development, whether they communicate and coordinate their work
with the rest of the team, whether they hand in quality work, and if
they are able to admit to mistakes and receive constructive criticism.
They can (optionally) indicate positive and negative things about
their teammates’ behavior. All this is done using a web application,
each student can see their own evaluation, all data is presented
anonymously.

These peer-evaluations also let us know when there were prob-
lems within a team that, if left unattended, would affect the quality
of the project, or even lead to failure. When we could not resolve an
issue between team members, we opted to switch students between
teams, ending up with teams of 4-5 people during the final itera-
tion. This was possible since all the students are all working on the
same code base, thus addressing issue I7. We did not use the Github

Table 3: Student demographic data.

2014, 2nd sem. 2017, 1st sem. 2017, 2nd sem.
Students 21 40 28
Female students 2 7 4
Teams (start) 3 12 9
Teams (end) 3 9 7
Avg. project grade 5.400 6.1237 6.1340
Avg. eval. grade 5.0095 5.3575 5.5143
Avg. final grade 5.1750 5.8538 5.7407
SD final grade 1.2045 0.5234 0.70567

activity to grade students or teams during 2017, instead using it to
corroborate situations where the team reported that someone did
not do their share of the work.

There are three slight differences between the 1st and 2nd semes-
ter of 2017. First, during the 1st semester, we let the students pick
their own teams. In practice what happened was that: a) friends
quickly teamed up, b) those without friends but that are more out-
going, quickly asked around and found suitable teams, and c) the
quieter students had to make due with what was left. Since it was
not clear if teams with these characteristics will actually work on
their teamwork, we decided to create the teams during the second
semester. We asked students to answer a simple diagnostic test,
with 5 questions about their level of knowledge about the technol-
ogy that they will use to develop the project, and 12 questions about
their teamwork capabilities. We then used these scores to make
sure that the initial teams were balanced with respect to technical
knowledge, as well as teamwork capabilities. We also used these
scores to make decisions when switching people between teams.

The second difference is that during the 1st semester, we did
not ask students to do peer-evaluations during the requirements
iteration. We later realized that this was a missed opportunity to
give the students feedback, and since then we have included peer-
evaluations in all iterations. Finally, the last difference between the
two semesters is that we added a small, individual assignment at
the beginning of the 2nd semester. Students were asked to build a
simple to-do list using Django, due during W2. This was to ensure
that students attended the first TA session on Django, and used the
technology required by the course project in an early fashion.

4 RESULTS
Table 3 shows data for three semesters of CC4401. First, we can
see that there has been a slight increase in the number of female
students between 2014 and 2017. Also, we did not change any of
the student teams during 2014, starting and ending with 3 teams.
During 2017, some teams changed up to two times (gained or lost
a member), and we ended with less teams. Finally, rows 5-7 of
Tab. 3 show different averages: project, written evaluations, and
final grades. All student grades are on a scale of 1.0 (min.) to 7.0
(max.), and 4.0 is a passing grade. The final grades for 2017 are
slightly higher than those for 2014, and there is less variation in
these grades. Note however that in 2014, the written examinations
were worth more of the final grade (60% instead of 50%). We also
used rubrics to evaluate the project artifacts during 2017, which
may explain why there is less variation in these grades. We now
analyze the data for 2017 in more depth.

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden J. Simmonds et al.

Table 4: Student evaluations - 2017, 1st sem.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
Report PE Report PE Pres. Report PE Pres. Report PE Pres. Eval. 1 Eval. 2

General 6.3000 - 6.5125 5.8450 6.7375 6.3000 5.8875 5.9550 5.8128 5.2692 6.5000 5.0375 5.7436
Teams with women (TW) 6.2533 - 6.5800 6.6833 5.7200 6.2800 6.0917 5.7400 6.2333 6.5208 5.6667 5.1700 5.9333
Teams without women (TWW) 6.2479 - 6.4857 6.7679 5.8714 6.3714 5.8786 6.1286 4.8917 6.4167 4.2917 4.9750 5.5964
Diff. % TW and TWW 0.0867% - 1.4537% -1.2489% -2.5791% -1.4350% 3.6249% -6.3403% 27.4276% 1.6234% 32.0388% 3.9196% 6.0200%

Table 5: Student evaluations - 2017, 2nd sem.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
Report PE Report PE Pres. Report PE Pres. Report PE Pres. Eval. 1 Eval. 2

General 6.1036 6.2846 6.6536 5.6536 6.1643 5.6071 5.2393 6.3040 6.1786 5.5964 5.4964 5.6392 5.4778
Teams with women (TW) 6.3000 6.6146 7.0000 6.8000 6.0750 5.5938 6.4750 5.4750 5.2688 6.5750 5.6188 5.6125 5.5979
Teams without women (TWW) 5.8167 5.9931 6.2200 5.7633 5.2400 5.6150 6.2600 5.0550 5.8000 5.6500 5.5667 5.6333 5.3600
Diff. % TW and TWW 8.3095% 10.3708% 12.5402% 17.9873% 15.9351% -0.3785% 3.4345% 8.3086% -9.1595% 16.3717% 0.9356% -0.3698% 4.4387%

Since teams with women usually had at most one, we wanted
to understand how they fared. We first look at the averages per
iteration: for all teams (General), for teams with women (TW) and
for teams without women (TWW) (c.f. Tables 4 and 5 for the 1st
and 2nd semester of 2017, respectively). We did not include the final
exam, since it is optional. Also, as explained in the previous section,
there was no peer-evaluation (PE) during iteration 1 during the 1st
semester. In the case of iterations 2-3, the report is worth 60%, peer-
evaluations 10% and presentations 30%. During the first semester,
we see that the teams with women got lower presentation grades in
iterations 2 and 3, and much higher grades during iteration 4. We
checked who presented each time: during iteration 2, three of the 5
teams with women had female presenters, during iteration 3 this
number fell to 2 out of 5, and finally dropped to 1 out of 5 for the last
iteration. We need to study this further: did these teams get better
presentation grades at the end because less women presented? If
so, what can we do to make the classroom a more welcoming space
for women? On the other hand, we see that during the second
semester, the teams with women always got better grades during
presentations (iteration 2: 2 teams out of 4 had female presenters;
iteration 3: 1 out of 4; iteration 4: 2 out of 4).

We also studied how women fared in the peer-evaluations. Ta-
bles 6 and 7 show the average peer-evaluation scores only for teams
that had at least one female team member (1st and 2nd semester
of 2017, respectively). In general, women were better evaluated by
their peers, except for team E during the 1st semester. This team
can be considered an outlier: personal issues between these team-
mates meant that they could not continue working together, so we
assigned each student to a separate team during the next iteration8.

Each semester, we needed to reassigned some students to new
teams and disbanded at least one team. This could affect student
grades, especially during the 2nd semester, where we picked the
initial teams. So, we analyzed the average grades for teams that
did not change during the semester, and those that changed once
or twice (c.f. Tables 8 and 9 for the 1st and 2nd semester). No
teams changed more than 2 times. To our surprise, there is no big
difference between the teams that were stable during the whole
semester and the teams were one or two changes occurred.

8All three students have already passed CC5401, the next SE course, where students
develop a real system from scratch in bigger teams. So we would like to believe that
they learned something about teamwork from their experience in CC4401.

Table 6: Comparison between female andmale average peer-
evaluations (APE-F and APE-M, respectively) for teamswith
women - 2017, 1st sem.

Iter. Team APE-F APE-M Diff. % APE-F and APE-M

2

A 7.0000 7.0000 0.0000%
B 7.0000 7.0000 0.0000%
C 7.0000 7.0000 0.0000%
D 7.0000 6.7500 3.7037%
E 7.0000 5.6667 23.5294%

3

A 6.4000 5.5000 16.3636%
B 7.0000 6.8000 2.9412%
C 7.0000 7.0000 0.0000%
D 6.9000 6.8250 1.0989%
E 3.7000 4.3333 -14.6154%

4

A 6.9000 6.5800 4.8632%
B 7.0000 7.0000 0.0000%
C 5.9000 6.2500 -5.6000%
D 6.2000 6.2200 -0.3215%
E 7.0000 6.2250 12.4498%

Table 7: Comparison between female andmale average peer-
evaluations (APE-F and APE-M, respectively) for teamswith
women - 2017, 2nd sem.

Iter. Team APE-F APE-M Diff. % APE-F and APE-M

1

A 6.5000 6.1617 5.4054%
B 6.6000 6.6000 0.000%
C 7.00 6.9250 1.0830%
D 7.0000 6.7667 3.4483%

2

A 7.0000 7.0000 0.0000%
B 6.9000 6.9667 -0.9569%
C 7.0000 7.0000 0.0000%
D 6.4000 6.2333 2.6738%

3

A 7.0000 6.9000 1.4493%
B 7.0000 6.6000 6.0606%
C 6.0000 5.4000 11.1111%
D 7.0000 7.0000 0.0000%

4

A 6.9000 6.9750 -1.0753%
B 5.5000 7.0000 27.2727%
C 6.9000 6.8250 1.0989%
D 7.0000 7.0000 0.0000%

Table 8: Iteration grades and team changes - 2017, 1st sem.

Iter. 1 Iter. 2 Iter. 3 Iter. 4
Teams without changes 6.3213 6.1583 5.9003 5.6969
Teams with 1 change 6.3083 6.3285 6.3366 5.9529
Team with 2 changes 6.2833 6.3317 6.0467 6.5350
General 6.3213 6.1583 5.90003 5.6969

Software Engineering for Millennials, by Millennials SEEM’18, May 27-June 3 2018, Gothenburg, Sweden

Table 9: Iteration grades and team changes - 2017, 2nd sem.

Iter. 1 Iter. 2 Iter. 3 Iter. 4
Teams without changes 6.1217 6.3046 5.5665 5.9357
Teams with 1 change 6.5094 6.2783 5.5963 5.5469
Team with 2 changes 5.7000 6.7267 5.7000 6.4450
General 6.1217 6.3046 5.5665 5.9357

Figure 1: How did you fare in the course?

Figure 2: How would you assess the course workload?

At the end of each semester, our campus carries out student teach-
ing evaluations. This survey is anonymous, and only consolidated
data is made available. We now present the data for the 2014 course,
as well as both 2017 semesters (all taught by the same instructor,
the main author). We see in Fig. 1 that the new version of the course
had a positive impact on the average grades, as perceived by the
students9. In Fig. 2, we see students’ opinions on the perceived
workload. During the 1st semester of 2017, students perceived a
higher workload than 2014, but this has returned to normal levels
with the changes we made last semester. Figure 3 shows that the
strategy of picking a course project has been well-perceived by the
students. Finally, in Fig. 4, we see that students perceive that they
receive slightly more feedback about evaluations, although there is
still some room for improvement here.

Students can also give their opinion about the positive and nega-
tive aspects of the course (optional) in the survey. So what follows
is anecdotal. During 2014, there were 4 positive comments, all about
the teaching staff; and 5 negative comments, all about the course
methodology. For example: “The lectures seem disconnected from
the project after the first written evaluation. Since this is the first

9The 1st and 2nd semesters are “Autumn” and “Spring”, respectively.

Figure 3: The professor creates a space for reflection, posing
relevant and challenging problems.

Figure 4: The professor gives adequate and timely feedback
about course evaluations.

time we are working on software projects, it would be better to work
on software that we already know, or that at least the TA knows”.
On the other hand, there were 11 positive comments after the 1st
semester of 2017: 5 about the teaching staff and the rest about the
course methodology. For example, one student said: “Apart from
SE, I learned a lot about Django and web apps, which I have put to
use in my personal projects. Before this, I knew practically nothing
about web development. I also learned a lot about teamwork. It was a
new experience to work with people that I did not know. It was also
nice to put things into practice, given that there are few mandatory
courses that do this, at least for now ... I loved the team changes during
the last iteration (I’m not sure if this is because I saw new faces, or
because I was now part of a larger group). I would consider doing this
after each delivery. I think that the weight of the peer-evaluation was
ideal; I would keep it that way”. There were also 16 negative com-
ments, most of them about how the TA discussion sessions were
run and the contents of these sessions. Students expected a more
guided introduction to Django and web technologies like Angular
and React. After the 2nd semester of 2017, there were 8 positive
and 6 negative comments. The positive ones were mostly about
the course, e.g.: “This course is useful for LIFE. You could see that the
professor really cared about how well we did, she adapted the course
according to our needs. I liked that the project we developed can be
of real use to society” (they created a platform for reporting animal
abuse). Again, the negative comments focused the TA sessions.

SEEM’18, May 27-June 3 2018, Gothenburg, Sweden J. Simmonds et al.

5 LESSONS LEARNED
In our opinion, this course teaches both theoretical and practical
aspects of SE in a balanced manner, within a limited time frame (150
hrs). The dynamics of this course are quite changing: students have
no guarantees that they will remain in the same team the whole
semester, nor that they will continue working with their own code.
In practice, students have to learn to get along and work with new
people, toiling on code produced by others, which in all probability
is buggy and incomplete. This is the nature of Millennials, changing,
always getting challenged.

The same goes for the teaching team: CC4401 is an ongoing
learning experience for us. As an all-Millennial team, we chose to
have an extremely flat team structure, meaning that we all took
part in: designing the new teaching strategy, defining the course
project and tools, make decisions about student teams, writing up
evaluation questions and marking rubrics, as well as sharing part
of the marking load. Also, since the course required some effort
to run smoothly, we created a Telegram10 group to quickly share
information about student teams, grades, etc., limiting the number
of face-to-face meetings. We also stored all course documents on
Google Drive, we all have full edition permissions.

The social aspects of the course were also especially motivating
for us as a teaching team. Not all software projects are money-
oriented, a message that is sometimes lost in the discussion of
project budgets, start-ups and large (rich) technology companies.
The social slant that we gave the course project let us talk about
social innovations in a very practical manner. This does require a
certain amount of effort to set up, so for 2018 we have teamed up
with Depachi, an on-campus student organization that focuses on
developing software for non-profit organizations, our students will
be developing a system for them.

We feel that students learn more from the autonomy that we
give them. This includes letting them pick what they consider to be
the best “solution” for each iteration. This is why we only publish
the grades for an iteration once a winning team has been picked –
we do not want them to pick the team that we thought was best,
we want them to use the techniques they have learned in class to
evaluate their classmates’ solutions. Thus far, our students have
owned up to their decisions, and have learned far more than we
could have managed using more academic examples.

For example, during the 1st semester of 2017, the team that won
the iteration 3 vote had one of the most entertaining demos, since
the team used memes and photos of the teaching staff. We had
already discussed code reviews at this point in the lectures, so we
were not expecting this team to win, as their code was a bit of a
mess. They had implemented their own login system, since they
decided that the one offered by Django was “too powerful for their
needs”. Most teams ended up refactoring the code so that they could
use the Django login, since they quickly realized that the code they
received was quite buggy! If we had designed this experience as
part of the course, in all probability we would have had to bear
the brunt of the students’ frustration – why would someone de-
cide to reimplement such a fundamental component of the Django
framework?! However, since their own classmates contributed this
code, the teams focused on fixing it so that they could meet the

10Instant messaging application, similar to WhatsApp.

requirements for the iteration. They also wanted to understand
why someone would make an implementation decision like this.
Students rarely ask questions during iteration presentations, in this
case the team was bombarded with questions!

During 2017, we only switched students between teams as a
last resort, since we believed that the process would negatively
affect student grades. However, it as been a pleasant surprise to see
that this fear was unfounded, and that some students were very
positive about this experience. We believe that the main reason
for this is how we designed the project iterations: students must
start with a new but somewhat familiar project each iteration. Even
though we did not see any significant difference between letting
students pick their teams and setting them up ourselves, we have
decided to continue setting up the teams next semester. First, there
is a question of fairness: when we pick the teams, they all start
with a similar level of technical knowledge. Second, students are
given an “academic” excuse to get to know new people, which is
sometimes challenging for Millennials. Third, and last, the results
of the diagnostic test can help figure out what needs to be covered
by the TA in a more structured manner, which is an aspect of the
course that still needs to be improved.

REFERENCES
[1] Terry Barrett. 2010. The problem-based learning process as finding and being in

flow. Innovations in Education and Teaching International 47, 2 (2010), 165–174.
[2] Phyllis C Blumenfeld, Elliot Soloway, Ronald W Marx, Joseph S Krajcik, Mark

Guzdial, and Annemarie Palincsar. 1991. Motivating project-based learning:
Sustaining the doing, supporting the learning. Educational psychologist 26, 3-4
(1991), 369–398.

[3] Maura Borrego, Jennifer Karlin, Lisa D McNair, and Kacey Beddoes. 2013. Team
effectiveness theory from industrial and organizational psychology applied to
engineering student project teams: A research review. Journal of Engineering
Education 102, 4 (2013), 472–512.

[4] David Broman. 2010. Should software engineering projects be the backbone or
the tail of computing curricula?. In Software Engineering Education and Training
(CSEE&T), 2010 23rd IEEE Conference on. IEEE, 153–156.

[5] Christopher N Bull and JonWhittle. 2014. Observations of a software engineering
studio: Reflecting with the studio framework. In Software Engineering Education
and Training (CSEE&T), 2014 IEEE 27th Conference on. IEEE, 74–83.

[6] François Chiocchio and Hélène Essiembre. 2009. Cohesion and performance: A
meta-analytic review of disparities between project teams, production teams,
and service teams. Small group research 40, 4 (2009), 382–420.

[7] Anke Drappa and Jochen Ludewig. 2000. Simulation in software engineering
training. In Software Engineering, 2000. Proceedings of the 2000 International
Conference on. IEEE, 199–208.

[8] Francisco Jose Garcia and María N Moreno. 2004. Software modeling techniques
for a first course in software engineering: A workshop-based approach. IEEE
Transactions on Education 47, 2 (2004), 180–187.

[9] Association for ComputingMachinery (ACM) Joint Task Force onComputing Cur-
ricula and IEEE Computer Society. 2015. Software Engineering 2014: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering. ACM,
New York, NY, USA.

[10] Maíra R Marques, Cecilia Bastarrica, and Sergio F Ochoa. 2016. Software Engi-
neering Education in Chile - Status Report. In ITICSE. ACM.

[11] Vaclav Rajlich. 2011. Software Engineering: The Current Practice (1st ed.). Chapman
& Hall/CRC.

[12] Václav Rajlich. 2013. Teaching developer skills in the first software engineering
course. In Proceedings of the 2013 International Conference on Software Engineering.
IEEE Press, 1109–1116.

[13] Roshanak Roshandel, Jeff Gilles, and Richard LeBlanc. 2011. Using community-
based projects in software engineering education. In Software Engineering Educa-
tion and Training (CSEE&T), 2011 24th IEEE-CS Conference on. IEEE, 472–476.

[14] Jeffrey C Schlimmer, Justin B Fletcher, and Leonard A Hermens. 1994. Team-
oriented software practicum. IEEE Transactions on education 37, 2 (1994), 212–220.

[15] Alexander Soska, Irmgard Schroll-Decker, and Jurgen Mottok. 2014. Imple-
mentation of practical exercises in software engineering education to improve
the acquirement of functional and non-functional competences: A field report
about project-based learning in software engineering. In Interactive Collaborative
Learning (ICL), 2014 International Conference on. IEEE, 338–345.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Enforcing teamwork among students
	2.2 Achieving a balance between teaching technical and professional skills
	2.3 Other introductory SE teaching experiences

	3 Redesigning CC4401
	3.1 The original version of the course
	3.2 The redesigned version

	4 Results
	5 Lessons Learned
	References

