Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
Inversion is a fundamental operation for schema mapping management.
The study of the inverse operator has mainly focused on foundational issues.

Fagin-Inverse, Quasi-Inverse, Maximum Recovery:

- Have focused on the (important) problem of defining a good semantics for inversion.
The study of the inverse operator has mainly focused on foundational issues.

Fagin-Inverse, Quasi-Inverse, Maximum Recovery:

- Have focused on the (important) problem of defining a good semantics for inversion.

From a practical point of view they have some problems:

- Some are too restrictive.
The study of the inverse operator has mainly focused on foundational issues.

Fagin-Inverse, Quasi-Inverse, Maximum Recovery:

- Have focused on the (important) problem of defining a good semantics for inversion.

From a practical point of view they have some problems:

- Some are too restrictive.
- Some need too much expressive power to be specified (far from practical settings).
The study of the inverse operator has mainly focused on foundational issues.

Fagin-Inverse, Quasi-Inverse, Maximum Recovery:

- Have focused on the (important) problem of defining a good semantics for inversion.

From a practical point of view they have some problems:

- Some are too restrictive.
- Some need too much expressive power to be specified (far from practical settings).
- All the algorithms proposed so far work in exponential time.
The study of the inverse operator has mainly focused on foundational issues.

Fagin-Inverse, Quasi-Inverse, Maximum Recovery:
- Have focused on the (important) problem of defining a good semantics for inversion.

From a practical point of view they have some problems:
- Some are too restrictive.
- Some need too much expressive power to be specified (far from practical settings).
- All the algorithms proposed so far work in exponential time.

We propose solutions to the above issues.
Inverting Schema Mappings: Bridging the Gap between Theory and Practice

Marcelo Arenas, Jorge Pérez, Cristian Riveros, Juan Reutter

Computer Science Department, PUC – Chile
Main results

1. A new notion of inverse based on queries

2. A proof that when focusing on CQ, inverses of tgds can be expressed in a language that has the same good properties as tgds for data exchange (we provide an algorithm).

3. Algorithm for computing all the previous notions of inverse in polynomial time (drawback: uses an SO language)
Main results

1. A new notion of inverse based on queries

2. A proof that when focusing on CQ, inverses of tgds can be expressed in a language that has the same good properties as tgds for data exchange (we provide an algorithm).

3. Algorithm for computing all the previous notions of inverse in polynomial time (drawback: uses an SO language)

In this talk only 1 and 2
A bit of notation...

A *mapping* \mathcal{M} is a set of pairs (I, J) with

- I a source instance,
- J a target instance.
A bit of notation...

A mapping \mathcal{M} is a set of pairs (I, J) with

- I a source instance,
- J a target instance.

The composition $\mathcal{M} \circ \mathcal{M}'$ is the set of pairs (I_1, I_2) such that:

- there exists J with $(I_1, J) \in \mathcal{M}$ and $(J, I_2) \in \mathcal{M}'$.
A bit of notation...

A mapping \mathcal{M} is a set of pairs (I, J) with
- I a source instance,
- J a target instance.

The composition $\mathcal{M} \circ \mathcal{M}'$ is the set of pairs (I_1, I_2) such that:
- there exists J with $(I_1, J) \in \mathcal{M}$ and $(J, I_2) \in \mathcal{M}'$.

If $(I, J) \in \mathcal{M}$ then J is a solution for I under \mathcal{M}
- $J \in \text{Sol}_\mathcal{M}(I)$.
A bit of notation...

A *mapping* \mathcal{M} is a set of pairs (I, J) with
- I a source instance,
- J a target instance.

The *composition* $\mathcal{M} \circ \mathcal{M}'$ is the set of pairs (I_1, I_2) such that:
- there exists J with $(I_1, J) \in \mathcal{M}$ and $(J, I_2) \in \mathcal{M}'$.

If $(I, J) \in \mathcal{M}$ then J is a solution for I under \mathcal{M}
- $J \in \text{Sol}_{\mathcal{M}}(I)$.

We say that \mathcal{M} is specified by a set of formulas Σ if
- $(I, J) \in \mathcal{M}$ iff (I, J) satisfies Σ.
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a *certain answer* for Q over I iff
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J)$$
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J)$$

We denote by $\text{certain}_\mathcal{M}(Q, I)$ the set of certain answers
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a *certain answer* for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)$$

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

$$\mathcal{M}: \ A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$$

$$I: \ \{A(1, 1)\}$$
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)$$

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

$\mathcal{M} : A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$

$I : \{ A(1, 1) \}$
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a *certain answer* for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J)$$

We denote by $\text{certain}_\mathcal{M}(Q, I)$ the set of certain answers

Example

$\mathcal{M}: A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$

$I: \{ A(1, 1) \}$

$\text{Sol}_\mathcal{M}(I):$
Certain answers: tuples present in all the solutions

Given a mapping \(\mathcal{M} \) and a source instance \(I \)

\[
\bar{a} \text{ is a } \textit{certain answer} \text{ for } Q \text{ over } I \text{ iff } \\
\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)
\]

We denote by \(\text{certain}_{\mathcal{M}}(Q, I) \) the set of certain answers

Example

\[
\mathcal{M} : \quad A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y) \quad \leftarrow \text{tgd}
\]

\[
I : \quad \{ \ A(1, 1) \ \} \\
\text{Sol}_{\mathcal{M}}(I) : \quad \{ \ T(1, 1), R(1, 1) \}
\]
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\[\bar{a} \text{ is a } \textit{certain answer} \text{ for } Q \text{ over } I \text{ iff } \]

\[\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J) \]

We denote by $\text{certain}_\mathcal{M}(Q, I)$ the set of certain answers

Example

\[\mathcal{M} : \ A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y) \leftarrow \text{tgd} \]

\[I : \ \{ A(1, 1) \} \]

\[\text{Sol}_\mathcal{M}(I) : \ \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \} \]
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J)$$

We denote by $\text{certain}_\mathcal{M}(Q, I)$ the set of certain answers

Example

\mathcal{M}: $A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$ \hspace{1cm} \leftarrow \text{tgd}$

I: $\{ A(1, 1) \}$

$\text{Sol}_\mathcal{M}(I)$: $\{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a *certain answer* for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J)$$

We denote by $\text{certain}_\mathcal{M}(Q, I)$ the set of certain answers

Example

$\mathcal{M} : A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$ ← tgd

$I : \{ A(1, 1) \}$

$\text{Sol}_\mathcal{M}(I) : \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

$Q_1(u) : \exists Z \ T(u, Z) \land \exists V \ R(V, u)$
Certain answers: tuples present in all the solutions

Given a mapping \(\mathcal{M} \) and a source instance \(I \)

\[\bar{a} \text{ is a certain answer for } Q \text{ over } I \text{ iff} \]

\[\bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J) \]

We denote by \(\text{certain}_\mathcal{M}(Q, I) \) the set of certain answers

Example

\(\mathcal{M} : \quad A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y) \quad \leftarrow \text{tgd} \)

\(I : \quad \{ A(1, 1) \} \)

\(\text{Sol}_\mathcal{M}(I) : \quad \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \perp), R(\perp, 1) \}, \ldots \)

\(Q_1(u) : \quad \exists Z \ T(u, Z) \land \exists V \ R(V, u) \quad \leftarrow \text{CQ} \)
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)$$

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

$\mathcal{M} : \ A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$ ← tgd

$I : \ \{ A(1, 1) \}$

$\text{Sol}_{\mathcal{M}}(I) : \ \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

$Q_1(u) : \ \exists Z \ T(u, Z) \land \exists V R(V, u)$ ← CQ

$certain_{\mathcal{M}}(Q_1, I) = \{ 1 \}$
Certain answers: tuples present in all the solutions

Given a mapping \(\mathcal{M} \) and a source instance \(I \)

\[
\bar{a} \text{ is a certain answer for } Q \text{ over } I \text{ iff } \bar{a} \in \bigcap_{J \in \text{Sol}_\mathcal{M}(I)} Q(J)
\]

We denote by \(\text{certain}_\mathcal{M}(Q, I) \) the set of certain answers

Example

\(\mathcal{M} : \quad A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y) \quad \leftarrow \text{tgd} \)

\(I : \quad \{ A(1, 1) \} \)

\(\text{Sol}_\mathcal{M}(I) : \quad \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots \)

\(Q_2(u) : \quad \exists Z \ R(Z, u) \land Z \neq u \)
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)$$

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

$\mathcal{M} : A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$ ← tgd

$I : \{ A(1, 1) \}"

$\text{Sol}_{\mathcal{M}}(I) : \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

$Q_2(u) : \exists Z \ R(Z, u) \land Z \neq u$ ← CQ
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\[
\bar{a} \text{ is a} \text{ certain answer for } Q \text{ over } I \text{ iff }
\]
\[
\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)
\]

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

$\mathcal{M} : \quad A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$

$\quad I : \quad \{ A(1, 1) \}$

$\text{Sol}_{\mathcal{M}}(I) : \quad \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

$Q_2(u) : \quad \exists Z \ R(Z, u) \land Z \neq u$

\[
\text{certain}_{\mathcal{M}}(Q_2, I) = \{ \}
\]
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)$$

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

\[\mathcal{M} : \quad A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y) \quad \leftarrow \text{tg}d \]

\[I : \quad \{ A(1, 1) \} \]

$\text{Sol}_{\mathcal{M}}(I) : \quad \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

\[Q_3(u) : \quad T(u, u) \lor \exists Z \ R(Z, u) \land Z \neq u \]
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_{\mathcal{M}}(I)} Q(J)$$

We denote by $\text{certain}_{\mathcal{M}}(Q, I)$ the set of certain answers

Example

$\mathcal{M} : \quad A(x, y) \rightarrow \exists Z \ T(x, Z) \land R(Z, y)$

$I : \quad \{ A(1, 1) \}$

$\text{Sol}_{\mathcal{M}}(I) : \quad \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

$Q_3(u) : \quad T(u, u) \lor \exists Z \ R(Z, u) \land Z \neq u$
Certain answers: tuples present in all the solutions

Given a mapping \mathcal{M} and a source instance I

\bar{a} is a certain answer for Q over I iff

$$\bar{a} \in \bigcap_{J \in \text{Sol}_M(I)} Q(J)$$

We denote by $\text{certain}_M(Q, I)$ the set of certain answers

Example

$\mathcal{M} : A(x, y) \rightarrow \exists Z \; T(x, Z) \land R(Z, y)$ ← tgd

$I : \{ A(1, 1) \}$

$\text{Sol}_M(I) : \{ T(1, 1), R(1, 1) \}, \{ T(1, 2), R(2, 1) \}, \{ T(1, \bot), R(\bot, 1) \}, \ldots$

$Q_3(u) : T(u, u) \lor \exists Z \; R(Z, u) \land Z \neq u$ ← UCQ≠

$$\text{certain}_M(Q_3, I) = \{ 1 \}$$
Recovering sound information wrt a query

source

/

target
Recovering sound information wrt a query
Recovering sound information wrt a query
Recovering sound information wrt a query

source \(I \) \[\mathcal{M} \] target \(J_2 \)
Recovering sound information wrt a query

\[M \]

source \[I \]

\[J_1, J_2, J_3 \]
target
Recovering sound information wrt a query
Recovering sound information wrt a query

source

\(M \)

\(J_3 \)

\(J_2 \)

\(J_1 \)

target

\(M' \)
Recovering sound information wrt a query

\[M \]

source \[I \]
\[K_1 \]
\[K_2 \]
\[K_3 \]

\[\cdots \]

\[\mathcal{M} \]

target \[\mathcal{M}' \]
\[J_1 \]
\[J_2 \]
\[J_3 \]

\[\cdots \]
Recovering sound information w.r.t. a query

\(M' \) recovers sound information for \(M \) w.r.t. a query \(Q \) if
Recovering sound information wrt a query

\[M \] recovers sound information for \(M \) wrt a query \(Q \) if

\[Q(K_1) \]
Recovering sound information wrt a query

\[M \]

\[\mathcal{M}' \]

A target graph with \(J_2 \) and \(J_3 \) for the query \(Q \).

\(M' \) recovers sound information for \(M \) wrt a query \(Q \) if

\[Q(K_1) \cap \]
Recovering sound information wrt a query

\mathcal{M}' recovers sound information for \mathcal{M} wrt a query Q if

$Q(K_1) \cap Q(K_2)$
Recovering sound information wrt a query

\[M \] recovers sound information for \[M \] wrt a query \(Q \) if

\[Q(K_1) \cap Q(K_2) \cap \]

\(M' \) recovers sound information for \(M \) wrt a query \(Q \) if

\[Q(K_1) \cap Q(K_2) \cap \]

\[Q(K_3) \]
Recovering sound information wrt a query

\mathcal{M}' recovers sound information for \mathcal{M} wrt a query Q if

$$Q(K_1) \cap Q(K_2) \cap Q(K_3)$$
Recovering sound information wrt a query

\[\mathcal{M}' \text{ recovers sound information for } \mathcal{M} \text{ wrt a query } Q \text{ if } \]

\[Q(K_1) \cap Q(K_2) \cap Q(K_3) \cap \cdots \]
Recovering sound information wrt a query

\[M' \text{ recovers sound information for } M \text{ wrt a query } Q \text{ if } \]

\[Q(K_1) \cap Q(K_2) \cap Q(K_3) \cap \cdots \subseteq \]
Recovering sound information wrt a query

\(\mathcal{M} \) recovers sound information for \(\mathcal{M} \) wrt a query \(Q \) if

\[
Q(K_1) \cap Q(K_2) \cap Q(K_3) \cap \cdots \subseteq Q(I)
\]
Recovering sound information wrt a query

\[\mathcal{M}' \text{ recovers sound information for } \mathcal{M} \text{ wrt a query } Q \text{ if} \]

\[Q(K_1) \cap Q(K_2) \cap Q(K_3) \cap \cdots \subseteq Q(I) \]

\[\underbrace{\text{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q, I)} \]
Recovering sound information wrt a query

\[\mathcal{M}' \] recovers sound information for \(\mathcal{M} \) wrt a query \(Q \) if

\[
Q(K_1) \cap Q(K_2) \cap Q(K_3) \cap \ldots \subseteq Q(I)
\]

is certain for \(\mathcal{M} \circ \mathcal{M}'(Q, I) \)
Recovering sound information wrt a query

\[\mathcal{M}' \text{ recovers sound information for } \mathcal{M} \text{ wrt a query } Q \text{ if } \]

\[
\text{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q, I) \subseteq Q(I)
\]

for every source instance \(I\).
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U P(x, y, U) \]
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U P(x, y, U) \]
\[M' : P(x, y, u) \rightarrow A(x, y, x) \]
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U P(x, y, U) \]
\[M' : P(x, y, u) \rightarrow A(x, y, x) \]
Recovering sound information: example

\[M : \ A(x, y, z) \to \exists U \ P(x, y, U) \]
\[M' : \ P(x, y, u) \to A(x, y, x) \]
\[Q_1(x) : \ \exists U \exists V \ A(x, U, V) \]
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U P(x, y, U) \]
\[M' : P(x, y, u) \rightarrow A(x, y, x) \]

\[Q_1(x) : \exists U \exists V A(x, U, V) \]

\[\triangleright M' \text{ is a } Q_1\text{-recovery of } M \]
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U \ P(x, y, U) \]
\[M' : P(x, y, u) \rightarrow A(x, y, x) \]

\[Q_1(x) : \exists U \exists V \ A(x, U, V) \]
\[Q_2(z) : \exists U \exists V \ A(U, V, z) \]

\[\implies M' \text{ is a } Q_1\text{-recovery of } M \]
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U \ P(x, y, U) \]
\[M' : P(x, y, u) \rightarrow A(x, y, x) \]

\[Q_1(x) : \exists U \exists V \ A(x, U, V) \]
\[Q_2(z) : \exists U \exists V \ A(U, V, z) \]

- \(M' \) is a \(Q_1 \)-recovery of \(M \)
- \(M' \) is not a \(Q_2 \)-recovery of \(M \)
Recovering sound information: example

\[\mathcal{M} : A(x, y, z) \rightarrow \exists U \ P(x, y, U) \]
\[\mathcal{M}' : P(x, y, u) \rightarrow A(x, y, x) \]

\[Q_1(x) : \exists U \exists V \ A(x, U, V) \]
\[Q_2(z) : \exists U \exists V \ A(U, V, z) \]

- \(\mathcal{M}' \) is a \(Q_1 \)-recovery of \(\mathcal{M} \)
- \(\mathcal{M}' \) is not a \(Q_2 \)-recovery of \(\mathcal{M} \)
 - \(I = \{ A(1, 2, 3) \} \)
Recovering sound information: example

\[M : A(x, y, z) \rightarrow \exists U P(x, y, U) \]
\[M' : P(x, y, u) \rightarrow A(x, y, x) \]

\[Q_1(x) : \exists U \exists V A(x, U, V) \]
\[Q_2(z) : \exists U \exists V A(U, V, z) \]

- \(M' \) is a \(Q_1 \)-recovery of \(M \)
- \(M' \) is not a \(Q_2 \)-recovery of \(M \)
 - \(I = \{ A(1, 2, 3) \} \)
 - \(\text{certain}_{M \circ M'}(Q_2, I) = \{1\} \)
Recovering sound information: example

\[\mathcal{M} : A(x, y, z) \rightarrow \exists U \ P(x, y, U) \]
\[\mathcal{M}' : P(x, y, u) \rightarrow A(x, y, x) \]

\[Q_1(x) : \exists U \exists V \ A(x, U, V) \]
\[Q_2(z) : \exists U \exists V \ A(U, V, z) \]

- \(\mathcal{M}' \) is a \(Q_1 \)-recovery of \(\mathcal{M} \)
- \(\mathcal{M}' \) is not a \(Q_2 \)-recovery of \(\mathcal{M} \)
 - \(l = \{ A(1, 2, 3) \} \)
 - \(\text{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q_2, l) = \{1\} \)
 - \(Q_2(l) = \{3\} \)
Recovering sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that \mathcal{M}' is a \mathcal{C}-recovery of \mathcal{M} if
Recovering sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that \mathcal{M}' is a \mathcal{C}-recovery of \mathcal{M} if

$$\text{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q, I) \subseteq Q(I)$$
Recovering sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that \mathcal{M}' is a \mathcal{C}-recovery of \mathcal{M} if

$$\text{certain}_{\mathcal{M} \circ \mathcal{M}'}(Q, I) \subseteq Q(I)$$

for every source instance I and for every query $Q \in \mathcal{C}$.
Recovering sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that \mathcal{M}' is a \mathcal{C}-recovery of \mathcal{M} if

$$\text{certain}_{\mathcal{M}\circ \mathcal{M}'}(Q, I) \subseteq Q(I)$$

for every source instance I and for every query $Q \in \mathcal{C}$.

For example:

- **All**-recovery: sound information for all possible queries
- **CQ**-recovery: sound information for all conjunctive queries
Comparing C-recoveries

Assume that we have two C-recoveries \mathcal{M}_1 and \mathcal{M}_2 such that
Comparing C-recoveries

Assume that we have two C-recoveries \mathcal{M}_1 and \mathcal{M}_2 such that

$$\text{certain}_{\mathcal{M}_1 \circ \mathcal{M}_2}(Q, I)$$
Comparing C-recoveries

Assume that we have two C-recoveries \mathcal{M}_1 and \mathcal{M}_2 such that

$$\text{certain}_{\mathcal{M}_0\mathcal{M}_2}(Q, I) \subseteq \text{certain}_{\mathcal{M}_0\mathcal{M}_1}(Q, I)$$
Comparing C-recoveries

Assume that we have two C-recoveries M_1 and M_2 such that

$$\text{certain}_{M \circ M_2}(Q, I) \subseteq \text{certain}_{M \circ M_1}(Q, I) \subseteq Q(I)$$
Comparing \mathcal{C}-recoveries

Assume that we have two \mathcal{C}-recoveries \mathcal{M}_1 and \mathcal{M}_2 such that

$$\text{certain}_{\mathcal{M}_0 \mathcal{M}_2}(Q, I) \subseteq \text{certain}_{\mathcal{M}_0 \mathcal{M}_1}(Q, I) \subseteq Q(I)$$

for every I and $Q \in \mathcal{C}$, then
Comparing C-recoveries

Assume that we have two C-recoveries \mathcal{M}_1 and \mathcal{M}_2 such that

$$\text{certain}_{\mathcal{M}_2 \circ \mathcal{M}_2}(Q, I) \subseteq \text{certain}_{\mathcal{M}_1 \circ \mathcal{M}_1}(Q, I) \subseteq Q(I)$$

for every I and $Q \in C$, then

\mathcal{M}_1 is a better that \mathcal{M}_2 as a C-recovery of \mathcal{M}.
Comparing C-recoveries

Assume that we have two C-recoveries \mathcal{M}_1 and \mathcal{M}_2 such that

\[
\text{certain}_{\mathcal{M}_0\mathcal{M}_2}(Q, I) \subseteq \text{certain}_{\mathcal{M}_0\mathcal{M}_1}(Q, I) \subseteq Q(I)
\]

for every I and $Q \in \mathcal{C}$, then

\mathcal{M}_1 is a **better** that \mathcal{M}_2 as a C-recovery of \mathcal{M}.

We want a mapping such that the certain answers are **as close as possible** to $Q(I)$.
Recovering the maximum amount of sound information wrt a class of queries

Definition
Given a class of queries C, we say that M_1 is a C-maximum recovery of M
Recovering the maximum amount of sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that

\mathcal{M}_1 is a \mathcal{C}-maximum recovery of \mathcal{M}

if for every \mathcal{C}-recovery \mathcal{M}_2 of \mathcal{M}, it holds that
Recovering the maximum amount of sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that M_1 is a \mathcal{C}-maximum recovery of M if for every \mathcal{C}-recovery M_2 of M, it holds that

$$\text{certain}_{M \circ M_2}(Q, I)$$
Recovering the maximum amount of sound information wrt a class of queries

Definition
Given a class of queries C, we say that M_1 is a C-maximum recovery of M if for every C-recovery M_2 of M, it holds that

$$\operatorname{certain}_{M_1 \circ M_2}(Q, I) \subseteq \operatorname{certain}_{M_1 \circ M_1}(Q, I)$$
Recovering the maximum amount of sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that \mathcal{M}_1 is a \mathcal{C}-maximum recovery of \mathcal{M} if for every \mathcal{C}-recovery \mathcal{M}_2 of \mathcal{M}, it holds that

$$\text{certain}_{\mathcal{M}_2 \circ \mathcal{M}_1}(Q, I) \subseteq \text{certain}_{\mathcal{M}_2 \circ \mathcal{M}_1}(Q, I) \subseteq Q(I)$$
Recovering the maximum amount of sound information wrt a class of queries

Definition

Given a class of queries \mathcal{C}, we say that M_1 is a \mathcal{C}-maximum recovery of M if for every \mathcal{C}-recovery M_2 of M, it holds that

$$\text{certain}_{M \circ M_2}(Q, I) \subseteq \text{certain}_{M \circ M_1}(Q, I) \subseteq Q(I)$$

for every source instance I and for every query $Q \in \mathcal{C}$.

Recovering the maximum amount of sound information wrt a class of queries

Definition
Given a class of queries \mathcal{C}, we say that \mathcal{M}_1 is a \mathcal{C}-maximum recovery of \mathcal{M} if for every \mathcal{C}-recovery \mathcal{M}_2 of \mathcal{M}, it holds that

$$\text{certain}_{\mathcal{M}_1 \circ \mathcal{M}_2}(Q, I) \subseteq \text{certain}_{\mathcal{M}_1 \circ \mathcal{M}_1}(Q, I) \subseteq Q(I)$$

for every source instance I and for every query $Q \in \mathcal{C}$.

\mathcal{M}_1 is better than any other possible \mathcal{C}-recovery!
Previous notions of inverse correspond to particular classes of queries

Let \mathcal{M} be specified by tgds:
Previous notions of inverse correspond to particular classes of queries

Let \mathcal{M} be specified by tgds:

Theorem

- If \mathcal{M} has a Fagin-inverse, then:

 \mathcal{M}' is a Fagin-inverse of \mathcal{M} iff \mathcal{M}' is a UCQ^\neq-maximum recovery of \mathcal{M}.
Previous notions of inverse correspond to particular classes of queries

Let \mathcal{M} be specified by tgds:

Theorem

- If \mathcal{M} has a Fagin-inverse, then:

 \mathcal{M}' is a Fagin-inverse of \mathcal{M} iff \mathcal{M}' is a $\text{UCQ} \neq$-maximum recovery of \mathcal{M}.

Theorem

- If \mathcal{M} has a quasi-inverse, then there exists a class of queries $\mathcal{C} \subseteq \text{UCQ} \neq$ such that:

 \mathcal{M}' is a quasi-inverse of \mathcal{M} iff \mathcal{M}' is a \mathcal{C}-maximum recovery of \mathcal{M}.
Previous notions of inverse correspond to particular classes of queries

Let \mathcal{M} be specified by tgds:

Theorem

- If \mathcal{M} has a Fagin-inverse, then:

 \mathcal{M}' is a Fagin-inverse of \mathcal{M} iff \mathcal{M}' is a $\text{UCQ} \neq$-maximum recovery of \mathcal{M}.

Theorem

- If \mathcal{M} has a quasi-inverse, then there exists a class of queries $\mathcal{C} \subseteq \text{UCQ} \neq$ such that:

 \mathcal{M}' is a quasi-inverse of \mathcal{M} iff \mathcal{M}' is a \mathcal{C}-maximum recovery of \mathcal{M}.

If \mathcal{M}' is a maximum recovery of \mathcal{M} then \mathcal{M}' is an **All**-maximum recovery of \mathcal{M}.
Why do we need another notion of inverse?
Why do we need another notion of inverse?

Problem 1:

- Fagin-inverses rarely exist for tgds
Why do we need another notion of inverse?

Problem 1:
▶ Fagin-inverses rarely exist for tgds

Problem 2:
▶ Quasi-inverse and maximum recovery of tgds need disjunctions to be expressed:

tgds with disjunctions in the right-hand side.
Why do we need another notion of inverse?

Problem 1:

- Fagin-inverses rarely exist for tgds

Problem 2:

- Quasi-inverse and maximum recovery of tgds need disjunctions to be expressed:
 - tgds with disjunctions in the right-hand side.
- How do we exchange data using tgds with disjunctions?
Why do we need another notion of inverse?

Problem 1:
- Fagin-inverses rarely exist for tgds

Problem 2:
- Quasi-inverse and maximum recovery of tgds need disjunctions to be expressed:
 - tgds with disjunctions in the right-hand side.
- How do we exchange data using tgds with disjunctions?

We would like a natural notion of inverse such that:
- tgds always have an inverse, and
- such inverse can be expressed in a language with the same good properties as tgds for data exchange.
When focusing on CQ these issues can be solved

Main Theorem

Every mapping specified by tgds has a CQ-maximum recovery that can be specified by tgds with \neq and $C(\cdot)$ in the left-hand side.
When focusing on \textbf{CQ} these issues can be solved

\textbf{Main Theorem}

Every mapping specified by tgds has a \textbf{CQ}-maximum recovery that can be specified by \text{tgds with } \neq \text{ and } \mathcal{C}(\cdot) \text{ in the left-hand side.}

\textbf{Proof idea}

We provide an algorithm to compute \textbf{CQ}-maximum recoveries of \text{tgds that} has as output a set of \text{tgds} \neq \mathcal{C}, and prove its correctness.
Query rewriting: a key concept in the algorithm

Query rewriting:

- Q' is a *rewriting* of Q under \mathcal{M} if

$$\text{certain}_\mathcal{M}(Q, I)$$
Query rewriting: a key concept in the algorithm

Query rewriting:

- Q' is a *rewriting* of Q under \mathcal{M} if

$$\text{certain}_{\mathcal{M}}(Q, I) = Q'(I)$$

for every I.
Query rewriting: a key concept in the algorithm

Query rewriting:

- Q' is a *rewriting* of Q under \mathcal{M} if
 \[
 \text{certain}_{\mathcal{M}}(Q, I) = Q'(I)
 \]
 for every I.

Well-known result:

If \mathcal{M} is specified by tgds, then for every query $Q \in \mathcal{CQ}$, there exists a query $Q' \in \mathcal{UCQ}^=$ that is a rewriting of Q under \mathcal{M}.
Step 1: compute a **CQ**-maximum recovery using rewriting of queries.

For a mapping \mathcal{M} specified by tgds, compute \mathcal{M}' as follows:

Step 1

For every dependency $\varphi(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y})$ defining \mathcal{M}:
Step 1: compute a CQ-maximum recovery using rewriting of queries.

For a mapping \mathcal{M} specified by tgds, compute \mathcal{M}' as follows:

Step 1

For every dependency $\varphi(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y})$ defining \mathcal{M}:

- Let $\alpha(\bar{x}) \in \text{UCQ}^-$ be a rewriting of $\exists \bar{y} \psi(\bar{x}, \bar{y})$ under \mathcal{M}.
Step 1: compute a CQ-maximum recovery using rewriting of queries.

For a mapping \mathcal{M} specified by tgds, compute \mathcal{M}' as follows:

Step 1
For every dependency $\varphi(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y})$ defining \mathcal{M}:

- Let $\alpha(\bar{x}) \in \text{UCQ}^-$ be a rewriting of $\exists \bar{y} \psi(\bar{x}, \bar{y})$ under \mathcal{M}.
- Add to the definition of \mathcal{M}' the dependency

$$\exists \bar{y} \psi(\bar{x}, \bar{y}) \land \textbf{C}(\bar{x}) \rightarrow \alpha(\bar{x}).$$
Step 1: compute a **CQ**-maximum recovery using rewriting of queries.

For a mapping \(M \) specified by tgds, compute \(M' \) as follows:

Step 1

For every dependency \(\varphi(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y}) \) defining \(M \):

- Let \(\alpha(\bar{x}) \in \text{UCQ}^{=} \) be a rewriting of \(\exists \bar{y} \psi(\bar{x}, \bar{y}) \) under \(M \).
- Add to the definition of \(M' \) the dependency

\[
\exists \bar{y} \psi(\bar{x}, \bar{y}) \land \text{C}(\bar{x}) \rightarrow \alpha(\bar{x}).
\]

Lemma

\(M' \) is a **CQ**-maximum recovery of \(M \).
Step 1: compute a **CQ**-maximum recovery using rewriting of queries.

For a mapping \(\mathcal{M} \) specified by tgds, compute \(\mathcal{M}' \) as follows:

Step 1

For every dependency \(\varphi(\bar{x}) \rightarrow \exists \bar{y} \psi(\bar{x}, \bar{y}) \) defining \(\mathcal{M} \):

- Let \(\alpha(\bar{x}) \in \text{UCQ} \subseteq \mathcal{M} \) be a rewriting of \(\exists \bar{y} \psi(\bar{x}, \bar{y}) \) under \(\mathcal{M} \).
- Add to the definition of \(\mathcal{M}' \) the dependency

\[
\exists \bar{y} \psi(\bar{x}, \bar{y}) \land C(\bar{x}) \rightarrow \alpha(\bar{x}).
\]

Lemma

\(\mathcal{M}' \) is a **CQ**-maximum recovery of \(\mathcal{M} \).

Problem: disjunctions and equalities in the right-hand side.
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \quad \rightarrow \quad R(x, y) \lor (P(x) \land x = y) \lor S(x) \land T(y) \]
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \quad \rightarrow \quad R(x, y) \quad \lor \quad (P(x) \land x = y) \quad \lor \quad S(x) \land T(y) \]

\[\Downarrow \]
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \quad \rightarrow \quad R(x, y) \lor (P(x) \land x = y) \lor S(x) \land T(y) \]

\[
\downarrow
\]

\[A(x, y) \land x \neq y \quad \rightarrow \]

\[A(x, y) \land x \neq y \quad \rightarrow \]
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \quad \rightarrow \quad R(x, y) \lor (P(x) \land x = y) \lor S(x) \land T(y) \]

\[A(x, y) \land x \neq y \quad \rightarrow \quad R(x, y) \lor S(x) \land T(y) \]
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \quad \rightarrow \quad R(x, y) \quad \lor \quad (P(x) \land x = y) \quad \lor \quad S(x) \land T(y) \]

\[A(x, y) \land x \neq y \quad \rightarrow \quad R(x, y) \quad \lor \quad S(x) \land T(y) \]

\[A(x, x) \quad \rightarrow \]
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \rightarrow R(x, y) \lor (P(x) \land x = y) \lor S(x) \land T(y) \]
\[A(x, y) \land x \neq y \rightarrow R(x, y) \lor S(x) \land T(y) \]
\[A(x, x) \rightarrow R(x, x) \lor P(x) \lor S(x) \land T(x) \]
Step 2: eliminate right-hand side equalities

Example:

\[
\begin{align*}
A(x, y) & \quad \rightarrow \quad R(x, y) \lor (P(x) \land x = y) \lor S(x) \land T(y) \\
A(x, y) \land x \neq y & \quad \rightarrow \quad R(x, y) \lor S(x) \land T(y) \\
A(x, x) & \quad \rightarrow \quad R(x, x) \lor P(x) \lor S(x) \land T(x)
\end{align*}
\]

Step 2

- Let \(\mathcal{M}' \) be the mapping constructed in Step 1.
- Construct \(\mathcal{M}'' \) from \(\mathcal{M}' \) by replacing right-hand side equalities by inequalities in the left-hand side.
Step 2: eliminate right-hand side equalities

Example:

\[
\begin{align*}
A(x, y) & \rightarrow R(x, y) \lor (P(x) \land x = y) \lor S(x) \land T(y) \\
A(x, y) \land x \neq y & \rightarrow R(x, y) \lor S(x) \land T(y) \\
A(x, x) & \rightarrow R(x, x) \lor P(x) \lor S(x) \land T(x)
\end{align*}
\]

Step 2

- Let \(M' \) be the mapping constructed in Step 1.
- Construct \(M'' \) from \(M' \) by replacing right-hand side equalities by inequalities in the left-hand side.

Lemma

\(M'' \) is a CQ-maximum recovery of \(M \).
Step 2: eliminate right-hand side equalities

Example:

\[A(x, y) \rightarrow R(x, y) \vee (P(x) \land x = y) \vee S(x) \land T(y) \]
\[A(x, y) \land x \neq y \rightarrow R(x, y) \vee S(x) \land T(y) \]
\[A(x, x) \rightarrow R(x, x) \vee P(x) \vee S(x) \land T(x) \]

Step 2

- Let \(\mathcal{M}' \) be the mapping constructed in Step 1.
- Construct \(\mathcal{M}'' \) from \(\mathcal{M}' \) by replacing right-hand side equalities by inequalities in the left-hand side.

Lemma

\(\mathcal{M}'' \) is a CQ-maximum recovery of \(\mathcal{M} \).

Problem: formulas still have disjunctions in the right-hand side.
Key concept in Step 3:
Cartesian product of queries (intuition)

\[Q_1(x_1, x_2) : T(x_1, x_2) \land R(x_1, x_1) \]
\[Q_2(x_1, x_2) : \exists y \ T(x_1, y) \land R(x_2, x_2) \]
Key concept in Step 3: *Cartesian product* of queries (intuition)

\[Q_1(x_1, x_2) : T(x_1, x_2) \land R(x_1, x_1) \]
\[Q_2(x_1, x_2) : \exists y \ T(x_1, y) \land R(x_2, x_2) \]

If we know that tuple \((a, b)\) is an answer to one of the two queries

What can we *certainly infer* about tables \(T\) and \(R\)?
Key concept in Step 3:
Cartesian product of queries (intuition)

\[
Q_1(x_1, x_2) : \ T(x_1, x_2) \land R(x_1, x_1) \\
Q_2(x_1, x_2) : \ \exists y \ T(x_1, y) \land R(x_2, x_2)
\]

If we know that tuple \((a, b)\) is an answer to one of the two queries, what can we *certainly infer* about tables \(T\) and \(R\)?

- element \(a\) is in the first component of \(T\)
Key concept in Step 3: *Cartesian product* of queries (intuition)

\[Q_1(x_1, x_2) : T(x_1, x_2) \land R(x_1, x_1) \]
\[Q_2(x_1, x_2) : \exists y \ T(x_1, y) \land R(x_2, x_2) \]

If we know that tuple \((a, b)\) is an answer to one of the two queries, what can we *certainly infer* about tables \(T\) and \(R\)?

- element \(a\) is in the first component of \(T\)
- there is *some element* in both components of \(R\)
Key concept in Step 3: *Cartesian product* of queries (intuition)

$Q_1(x_1, x_2) : T(x_1, x_2) \land R(x_1, x_1)$

$Q_2(x_1, x_2) : \exists y \ T(x_1, y) \land R(x_2, x_2)$

If we know that tuple (a, b) is an answer to one of the two queries, what can we *certainly infer* about tables T and R?

- element a is in the first component of T
- there is *some element* in both components of R

$Q(x_1) : \exists u \exists v \ T(x_1, u) \land R(v, v)$
Key concept in Step 3:
Cartesian product of queries (intuition)

\[Q_1(x_1, x_2) : T(x_1, x_2) \land R(x_1, x_1) \]
\[Q_2(x_1, x_2) : \exists y \ T(x_1, y) \land R(x_2, x_2) \]

If we know that tuple \((a, b)\) is an answer to one of the two queries

What can we *certainly infer* about tables \(T\) and \(R\)?

- element \(a\) is in the first component of \(T\)
- there is *some element* in both components of \(R\)

\[Q(x_1) : \exists u \exists v \ T(x_1, u) \land R(v, v) \]

\(Q(x_1)\) is the *Cartesian product* of \(Q_1(x_1, x_2)\) and \(Q_2(x_1, x_2)\).
Key concept in Step 3: *Cartesian product* of queries (formalization)

Definition

Homomorphism between conjunctive queries: function \(h \) that

- maps existential variables to free or existential variables
- is the identity over free variables
Key concept in Step 3:
Cartesian product of queries (formalization)

Definition
Homomorphism between conjunctive queries: function h that
- maps existential variables to free or existential variables
- is the identity over free variables

\[
\exists u \exists v \quad T(x_1, u) \land R(v, v) \quad \xrightarrow{h_1} \quad T(x_1, x_2) \land R(x_1, x_1)
\]
Key concept in Step 3:
Cartesian product of queries (formalization)

Definition

Homomorphism between conjunctive queries: function h that
- maps existential variables to free or existential variables
- is the identity over free variables

\[\exists u \exists v \ T(x_1, u) \land R(v, v) \xrightarrow{h_1} T(x_1, x_2) \land R(x_1, x_1) \]
\[h_1(u) = x_2 \]
Key concept in Step 3:
Cartesian product of queries (formalization)

Definition

Homomorphism between conjunctive queries: function h that
- maps existential variables to free or existential variables
- is the identity over free variables

\[\exists u \exists v \ T(x_1, u) \land R(v, v) \xrightarrow{h_1} T(x_1, x_2) \land R(x_1, x_1) \]

\[
\begin{align*}
h_1(u) &= x_2 \\
h_1(v) &= x_1
\end{align*}
\]
Key concept in Step 3:
Cartesian product of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the *Cartesian product* of Q_1 and Q_2 if it is the *closest query* to both Q_1 and Q_2 in terms of homomorphism.
Key concept in Step 3:
Cartesian product of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the *Cartesian product* of Q_1 and Q_2 if it is the *closest query* to both Q_1 and Q_2 in terms of homomorphism.

$$Q_1 \quad Q_2$$

$$Q$$
Key concept in Step 3: *Cartesian product* of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the *Cartesian product* of Q_1 and Q_2 if it is the *closest query* to both Q_1 and Q_2 in terms of homomorphism.
Key concept in Step 3: *Cartesian product* of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the *Cartesian product* of Q_1 and Q_2 if it is the closest query to both Q_1 and Q_2 in terms of homomorphism.
Key concept in Step 3: \textit{Cartesian product} of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the \textit{Cartesian product} of Q_1 and Q_2 if it is the \textit{closest query} to both Q_1 and Q_2 in terms of homomorphism.

\[
\begin{array}{ccc}
Q_1 & h_1 & Q_2 \\
& Q & h_2 \\
Q' & h_1' & Q'
\end{array}
\]
Key concept in Step 3: \textit{Cartesian product} of queries (formalization)

Definition (semantic version)

The conjunctive query Q is the \textit{Cartesian product} of Q_1 and Q_2 if it is the closest query to both Q_1 and Q_2 in terms of homomorphism.
Key concept in Step 3: *Cartesian product* of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the *Cartesian product* of Q_1 and Q_2 if it is the *closest query* to both Q_1 and Q_2 in terms of homomorphism.

$$Q = Q_1 \times Q_2$$
Key concept in Step 3: *Cartesian product* of queries (formalization)

Definition (semantic version)

The conjuntive query Q is the *Cartesian product* of Q_1 and Q_2 if it is the *closest query* to both Q_1 and Q_2 in terms of homomorphism.

$$Q = Q_1 \times Q_2$$

In the paper we give an algorithm for the Cartesian product:

- a simple extension of the Cartesian product of graphs.
Step 3: eliminate disjunctions

Step 3

- Let \mathcal{M}'' be the mapping constructed in Step 2.
- Construct \mathcal{M}^* by replacing every dependency

\[\varphi(\bar{x}) \rightarrow \beta_1(\bar{x}) \lor \beta_2(\bar{x}) \lor \cdots \lor \beta_n(\bar{x}) \]

by
Step 3: eliminate disjunctions

Let \mathcal{M}'' be the mapping constructed in Step 2.

Construct \mathcal{M}^* by replacing every dependency

$$\varphi(\bar{x}) \rightarrow \beta_1(\bar{x}) \lor \beta_2(\bar{x}) \lor \cdots \lor \beta_n(\bar{x})$$

by

$$\varphi(\bar{x}) \rightarrow \beta_1(\bar{x}) \times \beta_2(\bar{x}) \times \cdots \times \beta_n(\bar{x})$$
Step 3: eliminate disjunctions

Let M'' be the mapping constructed in Step 2.

Construct M^* by replacing every dependency

$$\varphi(\bar{x}) \rightarrow \beta_1(\bar{x}) \lor \beta_2(\bar{x}) \lor \cdots \lor \beta_n(\bar{x})$$

by

$$\varphi(\bar{x}) \rightarrow \beta_1(\bar{x}) \times \beta_2(\bar{x}) \times \cdots \times \beta_n(\bar{x})$$

Lemma

M^* is a CQ-maximum recovery of M.
Algorithm

Let \mathcal{M} be a mapping specified by tgds:

1. Compute a **CQ**-maximum recovery by using rewriting.
2. Eliminate equalities using inequalities in the left-hand side.
Summing up...

Algorithm

Let \mathcal{M} be a mapping specified by tgds:

1. Compute a CQ-maximum recovery by using rewriting.
2. Eliminate equalities using inequalities in the left-hand side.

The mapping \mathcal{M}^* returned by the algorithm is a CQ-maximum recovery of \mathcal{M} specified by $\text{tgds} \neq \text{C}$.
Summing up...

Algorithm

Let \mathcal{M} be a mapping specified by tgds:
1. Compute a CQ-maximum recovery by using rewriting.
2. Eliminate equalities using inequalities in the left-hand side.

The mapping \mathcal{M}^* returned by the algorithm is a CQ-maximum recovery of \mathcal{M} specified by $\text{tgds}\neq_C$.

Highlights of the algorithm:
- We use query-rewriting to compute CQ-maximum recoveries:
Algorithm

Let \mathcal{M} be a mapping specified by tgds:

1. Compute a CQ-maximum recovery by using rewriting.
2. Eliminate equalities using inequalities in the left-hand side.

The mapping \mathcal{M}^* returned by the algorithm is a CQ-maximum recovery of \mathcal{M} specified by $\text{tgds}^\neq,\text{C}$.

Highlights of the algorithm:

- We use query-rewriting to compute CQ-maximum recoveries:
 - exponential-time worst case, but
Summing up...

Algorithm

Let M be a mapping specified by tgds:

1. Compute a CQ-maximum recovery by using rewriting.
2. Eliminate equalities using inequalities in the left-hand side.

The mapping M^* returned by the algorithm is a CQ-maximum recovery of M specified by tgds\neq C.

Highlights of the algorithm:

- We use query-rewriting to compute CQ-maximum recoveries:
 - exponential-time worst case, but
 - we can reuse the large body of work on query-rewriting.
The language of \textbf{CQ}-maximum recoveries

\textbf{Theorem}

The language of $\text{tgds} \neq \mathcal{C}$ is the minimal language needed to specify CQ-maximum recoveries of tgds.
The language of **CQ**-maximum recoveries

Theorem

*The language of $\text{tgds}^{\neq};\mathcal{C}$ is the minimal language needed to specify **CQ**-maximum recoveries of tgds.*

The language has the same good properties as tgds, in particular:

- the *chase* procedure can be used to exchange data,
- a *canonical universal solution* (and a *core*) exists for every source instance.
Concluding remarks

- A new notion of inverse of schema mappings based on queries and certain answers
- Previously proposed notions of inverse can be obtained by considering specific query languages.
- When focusing on CQ some practical issues are solved, in particular:

 Every mapping specified by tgds has a CQ-maximum recovery specified in a language with the same good properties as tgds for data exchange.
Inverting Schema Mappings: Bridging the Gap between Theory and Practice

Marcelo Arenas, Jorge Pérez, Cristian Riveros, Juan Reutter

Computer Science Department, PUC – Chile