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RDF Linked Data representation of DBLP (real data!)

◮ DBpedia (RDF representation of Wikipedia)

◮ Bio2RDF, GeoNames, FreeBase, FOAF, ...

◮ Facebook, Twitter, ...



Formalisms to exchange graph databases

First define a graph mapping language, then

◮ Exchanging graph databases

◮ Computing solutions and answering target queries

◮ Advanced schema mapping operations

◮ composition
◮ inversion
◮ ...



Outline

Graph mapping language

Computing solutions & answering queries

Composing graph schema mappings
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Conjunctions over RPQs, 2RPQs, and NREs

∃ȳ
(

(u1, r1, u
′
1) ∧ · · · ∧ (uk , rk , u

′
k
)
)

CRPQs, C2RPQs, CNREs
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Review on expressiveness

NREs 6⊆ C2RPQs
(binary) CRPQs 6⊆ NREs

Example

(creator− · [ partOf · series ] · creator)+

cannot be expressed as a C2RPQ

tree-shaped binary C2RPQs ≡ ( )∗-[ ] alternation-free NREs
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◮ via a PDL-like recursive labeling procedure

NREs properly extends a linear-time fragment of C2RPQs
maintaining the complexity of evaluation



Review on complexity

Evaluation problem for NREs can be solved in O(|G | × |expr |)

◮ via a PDL-like recursive labeling procedure

NREs properly extends a linear-time fragment of C2RPQs
maintaining the complexity of evaluation

Evaluation problem for CRPQs is NP-complete

◮ it is in NP for CNREs
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◮ Graph mapping: M = (ΣS,ΣT,T ) s.t. T contains rules

ϕS(x̄) −→ ψT(x̄)

ϕS and ψT are CNREs over ΣS and ΣT, resp.
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Graph mapping language

Consider two (disjoint) graph alphabets ΣS and ΣT

◮ Graph mapping: M = (ΣS,ΣT,T ) s.t. T contains rules

ϕS(x̄) −→ ψT(x̄)

ϕS and ψT are CNREs over ΣS and ΣT, resp.

◮ L1-to-L2 mapping: ϕS ∈ L1 and ψT ∈ L2

◮ L-GAV mapping: ϕS ∈ L and ψT is (x , a, y) with a ∈ ΣT
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Graph mapping language: example

2RPQ-GAV:

(creator− · creator)+ −→ connected

C2RPQ-to-CRPQ:

(y , creator−, x) ∧ (x , partOf · series,w) −→
(y , makes, x) ∧ (x , inConf,w)

NRE-GAV:

(creator− · [ partOf·series ] ·creator)+ −→ confConn
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◮ Let M = (ΣS,ΣT,T ) be a graph mapping

◮ Let GS be a source graph database

◮ GT is a solution for GS under M if
◮ for every ϕS(x̄) → ψT(x̄) in T and
◮ for every tuple ā of values in GS, we have that

if ā is in the evaluation of ϕS over GS, then
ā is in the evaluation of ψT over GT.



Solutions in graph data exchange

◮ Let M = (ΣS,ΣT,T ) be a graph mapping

◮ Let GS be a source graph database

◮ GT is a solution for GS under M if
◮ for every ϕS(x̄) → ψT(x̄) in T and
◮ for every tuple ā of values in GS, we have that

if ā is in the evaluation of ϕS over GS, then
ā is in the evaluation of ψT over GT.

SolM(GS) is the set of solutions for GS under M.
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Interesting expressive power

Example

Copy from source to target all paths of the form

a(aa)∗b

changing the first a by a′, remaining aa by a′′, and b by b′

We can express this by NRE-mappings

a · [(aa)∗b] → a′

[(a−a−)∗a−] · aa · [(aa)∗b] → a′′

[(a−a−)∗a−] · b → b′

Any regular source path can be synchronized in the same way
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Graph patterns as universal representatives

Graph patterns are graphs such that

◮ Nodes can be labeled with null values

◮ Edges can be labeled with (nested) regular expressions

π:

X n

m

a[a]b∗

b+ b
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Semantics of graph patterns in terms of homomorphisms:

Given a pattern π, graph database G is in rep(π) iff there exists
homomorphism h from nulls in π to nodes in G s.t.

for every (u, expr , v) in π there is a path in G
from h(u) to h(v) that satisfies expr .



Graph patterns: semantics

Semantics of graph patterns in terms of homomorphisms:

Given a pattern π, graph database G is in rep(π) iff there exists
homomorphism h from nulls in π to nodes in G s.t.

for every (u, expr , v) in π there is a path in G
from h(u) to h(v) that satisfies expr .

π:

X n

m

a[a]b∗

b+ b G :

s t n

u m

a b

b a

b

b

X −→ s
G ∈ rep(π)
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Computing universal representatives

Definition

πT is a universal representative for graph GS under M if

SolM(GS) = rep(πT)

Proposition

◮ Given graph GS and mapping M, a universal representative
always exists and can be computed in polynomial space

◮ For fixed M it can be computed in polynomial time

just a simple adaptation of the chase procedure...
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Universal representatives can be in general of size exponential
in the size of the mapping

Proposition

Computing universal representatives is FPNP[log]-hard even
restricted to inputs ensuring univ representatives of polynomial size



Feasible universal representative computation

Universal representatives can be in general of size exponential
in the size of the mapping

Proposition

Computing universal representatives is FPNP[log]-hard even
restricted to inputs ensuring univ representatives of polynomial size

Proposition

Given NRE-to-CNRE mapping M a universal representative can be
computed in O(|GS|

2 × |M|) (tight bound)
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Certain answers

Definition

certainM(QT,GS) =
⋂

GT∈SolM(GS)

QT(GT)

Observation: if πT is a unviersal representative, then

certainM(QT,GS) =
⋂

GT∈rep(πT)

QT(GT)

CertAns

Input: Graph GS, mapping M, target query QT, and tuple ā
Ouput: Is ā in certainM(QT,GS)?
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Complexity of computing certain answers

Theorem

(1) CertAns is in EXPSPACE for CNRE-to-CNRE mappings
and CNRE queries

(2) CertAns is EXPSPACE-hard for CRPQ-to-CRPQ mappings
and CRPQ queries

◮ (2) follows from known EXPSPACE-hard complexity of
query containment for CRPQs (Calvanese et al.)

◮ (1) needed the adaptation of techniques in (Calvanese et al.):

Alternating 2-way automata to represent canonical solutions

e1 · [e2] · [e3] · (e4 · [e5])
∗ e1

e2

e3
e4

e5
e4

e5
e4

e5

need to run over (a restricted class of) trees
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Even data complexity is hard

CertAns(M,QT)

Input: Graph GS, and tuple ā
Ouput: Is ā in certainM(QT,GS)?

Theorem

1. CertAns(M,QT) is coNP-complete for every
CNRE-to-CNRE mapping and CNRE query.

2. CertAns(M,QT) is coNP-hard even for RPQ-to-RPQ
mappings and RPQ queries.

In the paper:

◮ Structural properties ensuring tractable data complexity
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Tractable query answering

High complexity if we allow conjunctions in rules or regular
expressions in the right-side

◮ Need to focus on GAV mappings.

By just computing a universal representative we obtain

Corollary

For NRE-GAV mappings and NRE queries, CertAns can be
solved in time

O(|GS|
2 × |M| × |expr |)

But we can do better

Theorem

For NRE-GAV mappings and NRE queries, CertAns can be
solved in time

O(|GS| × |M| × |expr |)
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Composing mappings

SB SCSA

MAB MBC

MAC???

Intuitively, MAC must have the same effect
as applying MAB and then MBC

MAC = MAB ◦MBC

◮ how to compute the composition?

◮ what is the language needed to express it?

◮ is there a language closed under composition?
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Example

M1: ∃u (x , creator−
, y) ∧ (y , partOf · series, u) → (x , confAuthor, y)

M2: (x , (confAuthor · confAuthor
−)+, y) → (x , confConnected, y)

M1 ◦M2???

Example

M1: creator
−
· [ partOf · series ] → confAuthor

M2: (confAuthor · confAuthor
−)+ → confConnected

M1 ◦M2:
((creator− · [ partOf · series ]) · ([ partOf · series ] · creator))+ →

confConnected



CRPQs are not suitable for composing graph mappings

Example

M1: ∃u (x , creator−
, y) ∧ (y , partOf · series, u) → (x , confAuthor, y)

M2: (x , (confAuthor · confAuthor−)+, y) → (x , confConnected, y)

M1 ◦M2???

Example

M1: creator−
· [ partOf · series ] → confAuthor

M2: (confAuthor · confAuthor
−)+ → confConnected

M1 ◦M2:
(creator−

· [ partOf · series ] · creator)+ → confConnected
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NRE-GAV mappings are closed under composition

Theorem

The composition of NRE-GAV mappings can always
be specified by an NRE-GAV mapping

Corollary

The composition of tree-shaped C2RPQ-GAV mappings can always
be specified by an NRE-GAV mapping
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Composition in the presence of conjunctions

Known result in relational data exchange:

◮ CQ-GAV mappings are closed under composition

Proposition

There exist CRPQ-GAV mappings s.t. their composition cannot be
specified by a CNRE-GAV mapping

Open question:
What is the language needed to compose CRPQ-GAV mappings?
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Concluding remarks

We have initiated the study of Graph Data Exchange

◮ Some techniques can be adapted from the relational case

◮ Query answering is highly complex

◮ Schema mapping operators is a challenging topic

◮ NREs add expressive power compared with 2RPQs maintaining
the complexity plus giving good properties for composition

We would like to explore new formalisms to specify mappings

◮ Can we add expressive power maintaining the complexity?
◮ Good candidate to start: GraphXPath

◮ More natural (and expressive) synchronization between paths

(a/a′)(aa/a′′)∗(b/b′)
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