
16

Semantics and Complexity of SPARQL

JORGE PÉREZ and MARCELO ARENAS

Pontificia Universidad Católica de Chile

and

CLAUDIO GUTIERREZ

Universidad de Chile

SPARQL is the standard language for querying RDF data. In this article, we address systematically

the formal study of the database aspects of SPARQL, concentrating in its graph pattern matching

facility. We provide a compositional semantics for the core part of SPARQL, and study the

complexity of the evaluation of several fragments of the language. Among other complexity results,

we show that the evaluation of general SPARQL patterns is PSPACE-complete. We identify a

large class of SPARQL patterns, defined by imposing a simple and natural syntactic restriction,

where the query evaluation problem can be solved more efficiently. This restriction gives rise to

the class of well-designed patterns. We show that the evaluation problem is coNP-complete for

well-designed patterns. Moreover, we provide several rewriting rules for well-designed patterns

whose application may have a considerable impact in the cost of evaluating SPARQL queries.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query lan-
guages

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Complexity, query language, RDF, semantic Web, SPARQL

ACM Reference Format:
Pérez, J., Arenas, M., and Gutierrez, C. 2009. Semantics and complexity of SPARQL. ACM Trans.

Database Syst. 34, 3, Article 16 (August 2009), 45 pages.

DOI = 10.1145/1567274.1567278 http://doi.acm.org/10.1145/1567274.1567278.

1. INTRODUCTION

The Resource Description Framework (RDF) [Manola and Miller 2004] is a data
model for representing information about World Wide Web resources. Jointly

This article is an extended and revised version of Pérez et al. [2006a].

M. Arenas was supported by Fondecyt grants 1070732 and 1090565; C. Gutierrez was supported

by Fondecyt grant 1070348; J. Pérez was supported by Conicyt Ph.D. Scholarship.

Authors’ addresses: J. Pérez, M. Arenas, Department of Computer Science, Pontificia Universidad

Católica de Chile, Chile; email: {jperez,marenas}@ing.puc.cl; C. Gutierrez, Department of Computer

Science, Universidad de Chile, Chile; email: cgutierr@dcc.uchile.cl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0362-5915/2009/08-ART16 $10.00

DOI 10.1145/1567274.1567278 http://doi.acm.org/10.1145/1567274.1567278

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:2 • J. Pérez et al.

with its release in 1998 as Recommendation of the World Wide Web Consortium
(W3C), the natural problem of querying RDF data was raised. Since then, sev-
eral designs and implementations of RDF query languages have been proposed
(see Haase et al. [2004] and Furche et al. [2006] for detailed comparisons of
RDF query languages). In 2004, the RDF Data Access Working Group, part of
the W3C Semantic Web Activity, released a first public working draft of a query
language for RDF, called SPARQL [Prud’hommeaux and Seaborne 2008].1 Since
then, SPARQL has been rapidly adopted as the standard for querying semantic
Web data. In January 2008, SPARQL became a W3C Recommendation.

RDF is a directed labeled graph data format and, thus, SPARQL is essen-
tially a graph-matching query language. SPARQL queries are composed by
three parts. The pattern matching part, includes several interesting features
of pattern matching of graphs, like optional parts, union of patterns, nesting,
filtering values of possible matchings, and the possibility of choosing the data
source to be matched by a pattern. The solution modifiers, once the output of the
pattern has been computed (in the form of a table of values of variables), allow
to modify these values applying classical operators like projection, distinct, or-
der, and limit. Finally, the output of a SPARQL query can be of different types:
yes/no queries, selections of values of the variables which match the patterns,
construction of new RDF data from these values, and descriptions of resources.

The definition of a formal semantics for SPARQL has played a key role in
the standardization process of this query language. Although taken one by one
the features of SPARQL are intuitive and simple to describe and understand,
it turns out that the combination of them makes SPARQL into a complex lan-
guage. Reaching a consensus in the W3C standardization process about a for-
mal semantics for SPARQL was not an easy task. The initial efforts to define
SPARQL were driven by use cases, mostly by specifying the expected output
for particular example queries. In fact, the interpretations of examples and
the exact outcomes of cases not covered in the initial drafts of the SPARQL
specification were a matter of long discussions in the W3C mailing lists. In
the conference version of this article (see Pérez et al. [2006a]), we presented
one of the first formalizations of a semantics for a fragment of the language.
Currently, the official specification of SPARQL [Prud’hommeaux and Seaborne
2008], endorsed by the W3C, formalizes a semantics based on our work [Pérez
et al. 2006a, 2006b; Arenas et al. 2007].

A formalization of a semantics for SPARQL is beneficial for several reasons,
including to serve as a tool to identify and derive relations among the construc-
tors that stay hidden in the use cases, identify redundant and contradicting
notions, to drive and help the implementation of query engines, and to study
the complexity, expressiveness, and further natural database questions like
rewriting and optimization. The broad goal of our work is the formalization
and study of the database aspects of SPARQL.

In this article, we present a thorough study of the pattern-matching facil-
ity of SPARQL, which constitutes the core of the language. In this direction,

1The name SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query
Language.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:3

we address three main areas. We first provide a streamlined version of the
core fragment of SPARQL with precise algebraic syntax and a formal composi-
tional semantics. One of the delicate issues in the definition of a semantics for
SPARQL is the treatment of optional matching and incomplete answers. The
idea behind optional matching is to allow information to be added if the infor-
mation is available in the data source, instead of just failing to give an answer
whenever some part of the pattern does not match. This feature of optional
matching is crucial in semantic Web applications, and more specifically in RDF
data management, where it is assumed that every application has only partial
knowledge about the resources being managed. We formalize the semantics of
SPARQL by using partial mappings between variables in the patterns and ac-
tual values in the data source. This formalization allows us to deal with partial
answers in a clean way. Our formalization is based on the extension of some
classical relational algebra operators to work over sets of partial mappings.

A fundamental issue in every query language is the complexity of query eval-
uation and, in particular, what is the influence of each component of the lan-
guage in this complexity. As a second contribution, we present a thorough study
of the complexity of the evaluation of SPARQL graph patterns. In this study, we
consider several fragments of SPARQL built incrementally, and present com-
plexity results for each such fragment. Among other results, we show that the
complexity of the evaluation problem for general SPARQL graph patterns is
PSPACE-complete, and that this high complexity is obtained as a consequence
of unlimited use of nested optional parts.

Given the high complexity of the evaluation problem for general SPARQL
graph patterns, an important question is whether one can find interesting
classes of patterns where the query evaluation problem can be solved more ef-
ficiently. Our third contribution is the identification of a large class of patterns
with the previous characteristic, and defined by a simple and natural syntactic
restriction. This class of patterns is obtained by forbidding a special form of in-
teraction between variables appearing in optional parts. We call well-designed
patterns the patterns satisfying this condition. We show that some counterin-
tuitive outcomes may be obtained when evaluating nonwell-designed patterns.
For instance, we have mentioned that the intuition behind the optional match-
ing is to allow information to be added if the information is available, but not
to reject if the information is not present. We formalize this intuition and show
that it does hold for well-designed patterns but fails in the nonwell-designed
case.

Well-designed patterns form a natural fragment of SPARQL that is very com-
mon in practice. Furthermore, well-designed patterns have several interesting
features. We show that the complexity of the query evaluation problem for
well-designed patterns is considerably lower, namely coNP-complete. We also
prove that the property of being well designed has important consequences for
the optimization of SPARQL queries. We present several rewriting rules for
well-designed patterns whose application may have a considerable impact in
the cost of evaluating SPARQL queries, and prove the existence of a normal
form for well-designed patterns based on the application of these rewriting
rules.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:4 • J. Pérez et al.

Organization of the Article. Section 2 presents a formalized algebraic syntax
and a compositional semantics for SPARQL. Section 3 presents the complex-
ity study of the language. Section 4 introduces the fragment of well-designed
patterns and presents its properties. Finally, Section 5 discusses related work
and Section 6 gives some concluding remarks. For the sake of readability, some
proofs and technical results are included in the Appendix.

2. SYNTAX AND SEMANTICS OF SPARQL

In this section, we give an algebraic formalization of the core fragment of
SPARQL over simple RDF, that is, RDF without RDFS vocabulary and literal
rules. This allows us to take a close look at the core components of the language
and identify some of its fundamental properties.

We introduce first the necessary notions about RDF (for details on RDF for-
malization see Gutierrez et al. [2004], or Marin [2004] for a complete reference
including RDFS vocabulary). Assume there are pairwise disjoint infinite sets I ,
B, and L (IRIs [Durst and Suignard 2005], Blank nodes, and Literals, respec-
tively). A triple (s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L) is called an RDF triple. In this
tuple, s is the subject, p the predicate, and o the object. Assume additionally the
existence of an infinite set V of variables disjoint from the previous sets.

Definition 2.1. An RDF graph [Klyne et al. 2004] is a set of RDF triples. In
our context, we refer to an RDF graph as an RDF dataset, or simply a dataset.

SPARQL is essentially a graph-matching query language. A SPARQL query
is of the form H ← B, where B, the body of the query, is a complex RDF graph
pattern expression that may include RDF triples with variables, conjunctions,
disjunctions, optional parts, and constraints over the values of the variables,
and H, the head of the query, is an expression that indicates how to construct
the answer to the query. The evaluation of a query Q against a dataset D
is done in two steps: The body of Q is matched against D to obtain a set of
bindings for the variables in the body, and then using the information on the
head of Q , these bindings are processed applying classical relational operators
(projection, distinct, etc.) to produce the answer to the query, which can have
different forms, such as a yes/no answer, a table of values, or a new RDF dataset.
In this article, we concentrate on the body of SPARQL queries, that is, in the
graph pattern-matching facility.

2.1 Syntax of SPARQL Graph Pattern Expressions

The official syntax of SPARQL [Prud’hommeaux and Seaborne 2008] considers
operators OPTIONAL, UNION, and FILTER, and concatenation via a point symbol
(.), to construct graph pattern expressions. The syntax also considers { } to
group patterns, and some implicit rules of precedence and association. For ex-
ample, the point symbol (.) has precedence over OPTIONAL, and OPTIONAL is
left associative. In order to avoid ambiguities in the parsing, we present the
syntax of SPARQL graph patterns in a more traditional algebraic formalism,
using binary operators AND (.), UNION (UNION), OPT (OPTIONAL), and FILTER
(FILTER). We fully parenthesize expressions making explicit the precedence and

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:5

association of operators. A SPARQL graph pattern expression is defined recur-
sively as follows.

(1) A tuple from (I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a graph pattern (a triple
pattern).

(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),
and (P1 UNION P2) are graph patterns (conjunction graph pattern, optional
graph pattern, and union graph pattern, respectively).

(3) If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).

A SPARQL built-in condition is constructed using elements of the set I ∪ L ∪ V
and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >), the
equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus other
features (see Prud’hommeaux and Seaborne [2008] for a complete list). In this
article, we restrict to the fragment where the built-in condition is a Boolean
combination of terms constructed by using = and bound, that is:

(1) If ?X , ?Y ∈ V and c ∈ I ∪ L, then bound(?X), ?X = c and ?X =?Y are
built-in conditions.

(2) If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2)
are built-in conditions.

Let P be a SPARQL graph pattern. In the rest of the article, we use var(P) to
denote the set of variables occurring in P . In particular, if t is a triple pattern,
then var(t) denotes the set of variables occurring in the components of t. Sim-
ilarly, for a built-in condition R, we use var(R) to denote the set of variables
occurring in R.

2.2 Semantics of SPARQL Graph Pattern Expressions

To define the semantics of SPARQL graph pattern expressions, we need to
introduce some terminology. A mapping μ from V to U is a partial function
μ : V → U . Abusing notation, for a triple pattern t we denote by μ(t) the
triple obtained by replacing the variables in t according to μ. The domain of
μ, denoted by dom(μ), is the subset of V where μ is defined. Two mappings μ1

and μ2 are compatible when for all ?X ∈ dom(μ1) ∩ dom(μ2), it is the case that
μ1(?X) = μ2(?X), that is, when μ1 ∪ μ2 is also a mapping. Intuitively, μ1 and
μ2 are compatibles if μ1 can be extended with μ2 to obtain a new mapping, and
vice versa. Note that two mappings with disjoint domains are always compat-
ible, and that the empty mapping μ∅ (i.e., the mapping with empty domain) is
compatible with any other mapping.

Let �1 and �2 be sets of mappings. We define the join of, the union of, and
the difference between �1 and �2 as

�1 � �2 = {μ1 ∪ μ2 | μ1 ∈ �1, μ2 ∈ �2 and μ1, μ2 are compatible mappings},
�1 ∪ �2 = {μ | μ ∈ �1 or μ ∈ �2},
�1 � �2 = {μ ∈ �1 | for all μ′ ∈ �2, μ and μ′ are not compatible}.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:6 • J. Pérez et al.

Based on the previous operators, we define the left outer-join as

�1 � �2 = (�1 � �2) ∪ (�1 � �2).

Intuitively, �1 � �2 is the set of mappings that result from extending mappings
in �1 with their compatible mappings in �2, and �1 ��2 is the set of mappings
in �1 that cannot be extended with any mapping in �2. The operation �1 ∪�2 is
the usual set-theoretical union. A mapping μ is in �1 �2 if it is the extension
of a mapping of �1 with a compatible mapping of �2, or if it belongs to �1

and cannot be extended with any mapping of �2. These operations resemble
relational algebra operations over sets of mappings (partial functions).

We are ready to define the semantics of graph pattern expressions as a func-
tion [[·]]D which takes a pattern expression and returns a set of mappings. We
follow the approach in Gutierrez et al. [2004] defining the semantics as the
set of mappings that matches the dataset D. For the sake of readability, the
semantics of filter expressions is presented in a separate definition.

Definition 2.2. The evaluation of a graph pattern P over an RDF dataset
D, denoted by [[P]]D, is defined recursively as follows.

(1) If P is a triple pattern t, then [[P]]D = {μ | dom(μ) = var(t) and μ(t) ∈ D}.
(2) If P is (P1 AND P2), then [[P]]D = [[P1]]D � [[P2]]D.

(3) If P is (P1 OPT P2), then [[P]]D = [[P1]]D [[P2]]D.

(4) If P is (P1 UNION P2), then [[P]]D = [[P1]]D ∪ [[P2]]D.

The idea behind the OPT operator is to allow for optional matching of pat-
terns. Consider pattern expression (P1 OPT P2) and let μ1 be a mapping in
[[P1]]D. If there exists a mapping μ2 ∈ [[P2]]D such that μ1 and μ2 are compati-
ble, then μ1 ∪μ2 belongs to [[(P1 OPT P2)]]D. But if no such a mapping μ2 exists,
then μ1 belongs to [[(P1 OPT P2)]]D. Thus, operator OPT allows information to
be added to a mapping μ if the information is available, instead of just rejecting
μ whenever some part of the pattern does not match. This feature of optional
matching is crucial in semantic Web applications, and more specifically in RDF
data management, where it is assumed that every application has only partial
knowledge about the resources being managed.

The semantics of filter expressions goes as follows. Given a mapping μ and
a built-in condition R, we say that μ satisfies R, denoted by μ |= R, if:

(1) R is bound(?X) and ?X ∈ dom(μ);

(2) R is ?X = c, ?X ∈ dom(μ) and μ(?X) = c;

(3) R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y);

(4) R is (¬R1), R1 is a built-in condition, and it is not the case that μ |= R1;

(5) R is (R1 ∨ R2), R1 and R2 are built-in conditions, and μ |= R1 or μ |= R2;

(6) R is (R1 ∧ R2), R1 and R2 are built-in conditions, μ |= R1 and μ |= R2.

Definition 2.3. Given an RDF dataset D and a filter expression
(P FILTER R),

[[(P FILTER R)]]D = {μ ∈ [[P]]D | μ |= R}.
ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:7

In the rest of the article, we usually represent sets of mappings as tables where
each row represents a mapping in the set. We label every row with the name
of a mapping, and every column with the name of a variable. If a mapping is
not defined for some variable, then we simply leave empty the corresponding
position. For instance, the table

?X ?Y ?Z ?V ?W
μ1 : a b
μ2 : c d
μ3 : e

represents the set � = {μ1, μ2, μ3} where

—dom(μ1) = {?X , ?Y }, μ1(?X) = a, and μ1(?Y) = b,

—dom(μ2) = {?Y , ?W }, μ2(?Y) = c, and μ2(?W) = d ,

—dom(μ3) = {?Z }, and μ3(?Z) = e.

Sometimes we write {{?X → a, ?Y → b}, {?Y → c, ?W → d }, {?Z → e}} for the
preceding set of mappings.

Example 2.4. Consider an RDF dataset D storing information about pro-
fessors in a university.

D = { (B1, name, paul), (B1, phone, 777-3426),

(B2, name, john), (B2, email, john@acd.edu),

(B3, name, george), (B3, webPage, www.george.edu),

(B4, name, ringo), (B4, email, ringo@acd.edu),

(B4, webPage, www.starr.edu), (B4, phone, 888-4537) }

The following are graph pattern expressions and their evaluations over D ac-
cording to the previous semantics:

— P1 = ((?A, email, ?E) OPT (?A, webPage, ?W)). Then

[[P1]]D =
?A ?E ?W

μ1 : B2 john@acd.edu
μ2 : B4 ringo@acd.edu www.starr.edu

— P2 = (((?A, name, ?N) OPT (?A, email, ?E)) OPT (?A, webPage, ?W)). Then

[[P2]]D =

?A ?N ?E ?W
μ1 : B1 paul
μ2 : B2 john john@acd.edu
μ3 : B3 george www.george.edu
μ4 : B4 ringo ringo@acd.edu www.starr.edu

— P3 = ((?A, name, ?N) OPT ((?A, email, ?E) OPT (?A, webPage, ?W))). Then

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:8 • J. Pérez et al.

[[P3]]D =

?A ?N ?E ?W
μ1 : B1 paul
μ2 : B2 john john@acd.edu
μ3 : B3 george
μ4 : B4 ringo ringo@acd.edu www.starr.edu

Notice the difference between [[P2]]D and [[P3]]D. These two examples show
that [[((A OPT B) OPT C)]]D �= [[(A OPT (B OPT C))]]D in general.

— P4 = ((?A, name, ?N) AND ((?A, email, ?E) UNION (?A, webPage, ?W))).
Then

[[P4]]D =

?A ?N ?E ?W
μ1 : B2 john john@acd.edu
μ2 : B3 george www.george.edu
μ3 : B4 ringo ringo@acd.edu
μ4 : B4 ringo www.starr.edu

— P5 = (((?A, name, ?N) OPT (?A, phone, ?P)) FILTER ?N = paul). Then

[[P5]]D = ?A ?N ?P
μ1 : B1 paul 777-3426

2.3 Simple Algebraic Properties

We say that two graph patterns P1 and P2 are equivalent, denoted by P1 ≡ P2,
if [[P1]]D = [[P2]]D for every RDF dataset D. The following lemma states some
simple algebraic properties of AND and UNION operators. These properties
are direct consequence of the semantics of AND and UNION, both based on
set-theoretical union.

LEMMA 2.5. The operators AND and UNION are associative and commuta-
tive and the operator AND distributes over UNION. That is, if P1, P2, and P3

are graph patterns, then it holds that:

— (P1 AND P2) ≡ (P2 AND P1);
— (P1 UNION P2) ≡ (P2 UNION P1);
— (P1 AND (P2 AND P3)) ≡ ((P1 AND P2) AND P3);
— (P1 UNION (P2 UNION P3)) ≡ ((P1 UNION P2) UNION P3);
— (P1 AND (P2 UNION P3)) ≡ ((P1 AND P2) UNION (P1 AND P3)).

The previous lemma permits us to avoid parentheses when writing sequences
of either AND operators or UNION operators. This is consistent with the defini-
tions of Group Graph Pattern and Union Graph Pattern in Prud’hommeaux and
Seaborne [2008]. We use Lemma 2.5 to simplify the notation in the following
sections.

2.4 On the Semantics of SPARQL by the W3C

The definition of a formal semantics for SPARQL has played a key role in the
standardization process of the language. In the conference version of this article

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:9

(see Pérez et al. [2006a]), we presented one of the first formalizations of a seman-
tics for a fragment of the language (we have included in Section 5 a discussion
about other approaches to formalize the semantics of SPARQL). Currently, the
official specification of SPARQL [Prud’hommeaux and Seaborne 2008], that is
a W3C Recommendation since January 2008, formalizes a semantics based on
our work [Pérez et al. 2006a, 2006b; Arenas et al. 2007]. Nevertheless, the se-
mantics that we present in this article has some differences with the standard
semantics. We review them in this section.

Set semantics versus bag semantics. The official specification of SPARQL
uses a bag (multiset) semantics for the evaluation of graph patterns. Specif-
ically, the evaluation of a graph pattern is a set of mappings together with
a cardinality function that states how many duplicates of a mapping occurs
in the evaluation. In the technical report [Pérez et al. 2006b], we formalize a
semantics for SPARQL by considering bags of mappings. That work was the
starting point of the bag semantics for SPARQL currently adopted by the W3C.
In this article, we have decided to follow the same path as in the study of rela-
tional query languages, and we have focused on the set-based formalization of
SPARQL. Although in practice SQL has a bag semantics, the study of relational
algebra with set semantics has shown to be of fundamental importance in the
development and implementation of SQL. We expect that the same will happen
in the context of SPARQL.

It should be pointed out that the complexity results that we present in the
following sections rely on the assumption that the evaluation of a SPARQL
pattern is a set of mappings. We left for future work the extension of these
results to the bag-semantics case.

FILTER evaluation. One of the main differences between the formalization
presented in this article and the official specification is the evaluation of built-
in conditions. The standard SPARQL language uses three values to evaluate
a condition: true, false, and error. In this article, we have adopted a standard
two-valued semantics for a query language. An example in which this issue
makes a difference is the evaluation of a condition with unbounded variables.
For instance, if μ is a mapping and ?X is a variable such that ?X /∈ dom(μ),
then according to our definition μ �|= (?X = a) and, thus, μ |= ¬(?X = a).
Therefore, we assign value true to the expression ¬(?X = a). On the other
hand, the SPARQL standard specification assigns value error to both (?X = a)
and ¬(?X = a). Thus, if D is an RDF graph and P a pattern such that μ ∈ [[P]]D,
then according to our definition μ ∈ [[(P FILTER ¬(?X = a))]]D, while according
to the official specification, the mapping μ is not in the evaluation of pattern
(P FILTER ¬(?X = a)) over D.

Although this difference between the two semantics could be considered im-
portant, it does not play a substantial role in any of the results presented in this
article. In fact, we have not used this difference to obtain any of the complexity
and optimization results presented in the following sections.

Evaluation of FILTER in OPT expressions. The standard semantics of
SPARQL has mostly adopted a compositional form of evaluation in the spirit of

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:10 • J. Pérez et al.

our work. However, there is still a single case in which a SPARQL expression
must be evaluated in a noncompositional way according to the standard seman-
tics. This happens when the righthand side of an OPT operator is a FILTER
expression, that is, for expressions of the form (P1 OPT (P2 FILTER R)). As an
example, consider the following pattern.

(?X , a, ?Y) OPT ((?X , b, ?Z) FILTER ?Y =?Z) (1)

Notice that the variable ?Y mentioned in the condition ?Y =?Z does not oc-
cur in the lefthand side of the FILTER expression. Under our compositional
semantics, the preceding expression is evaluated unambiguously by following
the parentheses, that is, expression ((?X , b, ?Z) FILTER ?Y =?Z) is evaluated
first.

To evaluate expression (1) according to the official SPARQL semantics, one
has to follow a different process, since in this case the FILTER condition must
be used as a left-outer join condition when evaluating OPT [Prud’hommeaux
and Seaborne 2008]. In other words, the evaluation of (1) over a graph D is
given by

[[(?X , a, ?Y)]]D (?Y =?Z)
[[(?X , b, ?Z)]]D.

Although this mismatch could be considered a significant difference, it was
recently shown in Angles and Gutierrez [2008] that in terms of expressiveness,
the compositional semantics of SPARQL that we use in this article is equivalent
to the noncompositional semantics proposed by the W3C. It should be pointed
out that we do not use this difference to obtain any of the complexity results
shown in the following section. In particular, we focus in Section 4 on the class
of well-designed patterns that only consider safe FILTER expressions, that is,
FILTER expressions of the form (P FILTER R) where all the variables that
occur in R also occur in P , excluding expressions like (1).

3. COMPLEXITY OF EVALUATING GRAPH PATTERN EXPRESSIONS

A fundamental issue in every query language is the complexity of query evalua-
tion and, in particular, what is the influence of each component of the language
in this complexity. In this section, we address these issues for graph pattern
expressions.

As is customary when studying the complexity of the evaluation problem for
a query language [Vardi 1982], we consider its associated decision problem. We
denote this problem by Evaluation and we define it as follows.

INPUT : An RDF dataset D, a graph pattern P and a mapping μ.
QUESTION : Is μ ∈ [[P]]D?

It is important to notice that the evaluation problem that we study considers
the mapping as part of the input. In other words, we study the complexity by
measuring how difficult it is to verify whether a given mapping is a solution
for a pattern evaluated over an RDF dataset. This is the standard decision
problem considered when studying the complexity of a query language [Vardi
1982], as opposed to the computation problem of actually listing the set of so-
lutions (finding all the mappings). To focus on the decision problem allows us

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:11

to obtain a fine-grained analysis of the complexity of the evaluation problem,
classifying the complexity for different fragments of SPARQL in terms of stan-
dard complexity classes. Also notice that the pattern and the dataset are both
inputs for EVALUATION. Thus, we study the combined complexity of the query
language [Vardi 1982].

In this section, we present a thorough analysis of the complexity of the eval-
uation problem for SPARQL graph patterns. In particular, we show that the un-
limited use of the optional operator leads to high complexity, namely PSPACE-
completeness. Let us give some intuition about the reasons for this high com-
plexity. Given an RDF dataset D, a mapping μ is in [[(P1 OPT P2)]]D if either
μ is [[(P1 AND P2)]]D, or μ is in [[P1]]D and for every mapping μ′ in [[P2]]D, μ is
not compatible with μ′. Thus, the evaluation of (P1 OPT P2) implicitly refers
to a universal quantification (for every mapping μ′) and a negation (μ′ is not
compatible with μ). In particular, this shows that evaluating a nested optional
pattern (P1 OPT (P2 OPT P3)) implies a quantifier alternation. It is well known
that the alternation of quantifiers in some problems related to propositional
logic and first-order logic leads to PSPACE-completeness, and this fact is used
in the proof of Theorem 3.3 to show the PSPACE-completeness of the evalua-
tion problem for SPARQL patterns including the OPT operator. In this section,
we also consider some fragments of SPARQL that do not use the OPT operator,
and show that the evaluation problem can be solved more efficiently for these
fragments.

We start this study by considering the fragment consisting of graph pattern
expressions constructed by using only AND and FILTER operators. This simple
fragment is interesting as it does not use the two most complicated operators in
SPARQL, namely UNION and OPT. Given an RDF dataset D, a graph pattern
P in this fragment, and a mapping μ, it is possible to efficiently check whether
μ ∈ [[P]]D by using the following algorithm. First, for each triple t in P , verify
whether μ(t) ∈ D. If this is not the case, then return false. Otherwise, by using a
bottom-up approach, verify whether the expression generated by instantiating
the variables in P according to μ satisfies the FILTER conditions in P . If this is
the case, then return true, else return false. Thus, we conclude the next theorem.

THEOREM 3.1. EVALUATION can be solved in time O(|P |·|D|) for graph pattern
expressions constructed by using only AND and FILTER operators.

We continue this study by adding the UNION operator to the AND-FILTER
fragment. It is important to notice that the inclusion of UNION in SPARQL is
one of the most controversial issues in the definition of this language. In the
following theorem, we show that the inclusion of UNION operator makes the
evaluation problem for SPARQL considerably harder.

THEOREM 3.2. EVALUATION is NP-complete for graph pattern expressions con-
structed by using only AND, FILTER, and UNION operators.

PROOF. It is straightforward to prove that EVALUATION is in NP for the
case of graph pattern expressions constructed by using only AND, UNION,
and FILTER operators. To prove the NP-hardness of EVALUATION for this case,
we show how to reduce in polynomial time the satisfiability problem for

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:12 • J. Pérez et al.

propositional formulas in CNF (SAT-CNF) to our problem. An instance of SAT-
CNF is a propositional formula ϕ of the form C1 ∧ · · · ∧ Cn, where each Ci

(i ∈ [1, n]) is a clause, that is, a disjunction of propositional variables and nega-
tions of propositional variables. Then the problem is to verify whether there
exists a truth assignment satisfying ϕ. It is well known that SAT-CNF is NP-
complete [Garey and Johnson 1979].

In the reduction from SAT-CNF, we use a fixed RDF dataset D = {(a, b, c)}.
Assume that x1, . . . , xm is the list of propositional variables mentioned in ϕ. For
each xi (i ∈ [1, m]), we use SPARQL variables ?X i, ?Yi to represent xi and ¬xi,
respectively. Then for each clause C in ϕ of the form

xi1 ∨ · · · ∨ xik ∨ ¬x j1
∨ · · · ∨ ¬x j� ,

we define a graph pattern PC as

((a, b, ?X i1) UNION · · · UNION (a, b, ?X ik) UNION

(a, b, ?Y j1
) UNION · · · UNION (a, b, ?Y j�)),

and we define a graph pattern Pϕ for ϕ as

(P AND ((PC1
AND · · · AND PCn) FILTER R)),

where

P = ((a, b, ?X 1) AND (a, b, ?Y1) AND · · · AND (a, b, ?X m) AND (a, b, ?Ym)),

R = ((¬ bound(?X 1) ∨ ¬ bound(?Y1)) ∧ · · · ∧ (¬ bound(?X m) ∨ ¬ bound(?Ym))).

Let μ = {?X 1 → c, . . . , ?X m → c, ?Y1 → c, . . . , ?Ym → c}. We now prove
that ϕ is satisfiable if and only if μ ∈ [[Pϕ]]D.

Assume first that μ ∈ [[Pϕ]]D, then we need to show that ϕ is satisfiable. Let
Qϕ be the pattern ((PC1

AND · · · AND PCn) FILTER R). Since Pϕ = (P AND Qϕ)
and μ ∈ [[P]]D, there exists a mapping ν that is compatible with μ and such
that ν ∈ [[Qϕ]]D. Consider the truth assignment σ defined as

σ (xi) =
{

1 if ?X i ∈ dom(ν)

0 if ?X i /∈ dom(ν)

for every variable xi in ϕ (i ∈ [1, m]). We claim that σ is a truth assignment
that satisfies ϕ. By the construction of Qϕ and since ν ∈ [[Qϕ]]D, we know that
for each clause C in ϕ there exists a variable ?V in PC such that ?V ∈ dom(ν).
Now, if ?V is equal to ?X i for some i ∈ [1, m], then we have that xi is a literal
in C and that σ (xi) = 1 and, thus, σ satisfies clause C. On the other hand, if ?V
is equal to ?Yi for some i ∈ [1, m], then we know that ¬xi is a literal in C. In
this case, since (¬ bound(?X i) ∨ ¬ bound(?Yi)) is a conjunction in the FILTER
condition of Qϕ , we obtain that ?X i /∈ dom(ν) and thus σ (xi) = 0. Hence, since
¬xi is a literal in the clause C and σ (xi) = 0, we have that σ satisfies C. We
have shown that for every clause C in ϕ, it holds that σ satisfies C and, thus, σ

satisfies ϕ. This shows that ϕ is satisfiable.
To prove the reverse implication, assume that ϕ is satisfiable. We need to

show that μ ∈ [[Pϕ]]D. Let σ be a truth assignment that satisfies ϕ. Consider a

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:13

mapping ν constructed from σ as follows.

ν = {?X i → c | σ (xi) = 1} ∪ {?Yi → c | σ (xi) = 0}
In other words, if σ (xi) = 1, then dom(ν) contains the variable ?X i and
ν(?X i) = c, and if σ (xi) = 0, then dom(ν) contains the variable ?Yi and
ν(?Yi) = c. Notice that since σ is a truth assignment, the variables ?X i

and ?Yi do not simultaneously belong to dom(ν), for every i ∈ [1, m].
Thus, we have that ν |= R. Moreover, since σ satisfies each clause in
ϕ, it is easy to see that ν ∈ [[(PC1

AND · · · AND PCn)]]D. Therefore, we
have that ν ∈ [[((PC1

AND · · · AND PCn) FILTER R)]]D. Finally, since
μ ∈ [[P]]D, μ and ν are compatible, and μ ∪ ν = μ, we obtain that μ ∈
[[(P AND ((PC1

AND · · · AND PCn) FILTER R))]]D = [[Pϕ]]D. This concludes
the proof of the theorem.

We study now the problem when the OPT operator is added to the AND-
FILTER fragment. The OPT operator is probably the most complicated in graph
pattern expressions and, definitively, the most difficult to define. The following
theorem shows that the inclusion of OPT to the AND-FILTER fragment makes
the evaluation problem even harder compared with the AND-FILTER-UNION
fragment.

THEOREM 3.3. EVALUATION is PSPACE-complete for graph pattern expres-
sions constructed by using only AND, FILTER, and OPT operators.

PROOF. The membership in PSPACE is given by Algorithm 1. Given a map-
ping μ, a (general) pattern P , and an RDF dataset D, the algorithm verifies
whether μ ∈ [[P]]D. In the procedure, we use pos(P, D) to denote the set of
mappings ν such that dom(ν) ⊆ var(P) and for every variable ?X ∈ dom(ν), it
holds that ν(?X) is a value in D.

It is easy to see that the procedure is correct (it is essentially applying the
definition of the semantics of every SPARQL operator). Given that the size
needed to store the name of a variable in var(P) is O(log |P |) and the size
needed to store an element of D is O(log |D|), we obtain that the size of a
mapping in pos(P, D) is O(|P | · (log |P |+ log |D|)). Thus, given that the depth of
the tree of recursive calls to Eval is O(|P |), we have that procedure Eval can
be implemented by using a polynomial amount of space. It should be pointed
out that this shows that the evaluation problem for general graph patterns
(constructed by using AND, FILTER, UNION, and OPT) is in PSPACE. Thus,
in particular, we obtain that the evaluation problem is in PSPACE for pattern
constructed by using only AND, FILTER and OPT operators.

To prove the PSPACE-hardness of EVALUATION for the case of graph pattern
expressions constructed by using only AND, FILTER, and OPT operators, we
show how to reduce in polynomial time the Quantified Boolean Formula prob-
lem (QBF) to our problem. An instance of QBF is a quantified propositional
formula ϕ of the form

∀x1∃ y1∀x2∃ y2∀x3∃ y3 · · · ∀xm∃ ym ψ,

where ψ is a quantifier-free formula of the form C1 ∧ · · · ∧ Cn, with each Ci
(i ∈ [1, n]) being a disjunction of literals, that is, a disjunction of propositional

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:14 • J. Pérez et al.

Algorithm 1. Eval (μ: mapping, P : graph pattern, G: RDF graph)

case:
P is a triple pattern t:

if dom(μ) = var(t) and μ(t) ∈ D then return true
return false

P is a pattern of the form (P1 FILTER R):

if Eval(μ, P1, D) = true and μ |= R then return true
return false

P is a pattern of the form (P1 UNION P2):

if Eval(μ, P1, D) = true or Eval(μ, P2, D) = true then return true
return false

P is a pattern of the form (P1 AND P2):

for each pair of mappings μ1 ∈ pos(P1, D) and μ2 ∈ pos(P2, D)

if Eval(μ1, P1, D) = true and Eval(μ2, P2, D) = true and μ = μ1 ∪ μ2 then
return true

return false
P is a pattern of the form (P1 OPT P2):

if Eval(μ, (P1 AND P2), D) = true then return true
if Eval(μ, P1, D) = true then

for each mapping μ′ ∈ pos(P2, D)

if Eval(μ′, P2, D) = true and μ is compatible with μ′ then return false
return true

return false

variables xi and yi, and negations of propositional variables. Then the problem
is to verify whether ϕ is valid. It is known that QBF is PSPACE-complete [Garey
and Johnson 1979].

In the reduction from QBF, we use a fixed RDF dataset.

D = {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)}
Moreover, the SPARQL variables ?X 1, . . . , ?X m and ?Y1, . . . , ?Ym represent
propositional variables x1, . . . , xm and y1, . . . , ym, respectively.

To represent the propositional formula ψ , consider first a filter expression
Rψ constructed from ψ by maintaining the conjunctions and disjunctions of ψ ,
and replacing every positive occurrence of xi and yi by ?X i = 1 and ?Yi = 1,
respectively, and every occurrence of ¬xi and ¬ yi by ?X i = 0 and ?Yi = 0,
respectively. For instance, if ψ is the formula (x1 ∨ ¬ y2) ∧ (¬x2 ∨ y1), then Rψ

is the filter expression (?X 1 = 1 ∨ ?Y2 = 0) ∧ (?X 2 = 0 ∨ ?Y1 = 1). Then we
define a graph pattern Pψ as

(((a, tv, ?X 1) AND · · · AND (a, tv, ?X m) AND

(a, tv, ?Y1) AND · · · AND (a, tv, ?Ym)) FILTER Rψ).

It is easy to see that ψ is satisfiable if and only if there exists a mapping
μ ∈ [[Pψ]]D. In particular, for each mapping μ, there exists a truth assignment

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:15

σμ defined as σμ(v) = μ(?V) for every variable v in ψ , such that μ ∈ [[Pψ]]D if
and only if σμ satisfies ψ .

Now we explain how we represent a quantified propositional formula ϕ as
a graph pattern expression Pϕ . In Pϕ we use SPARQL variables ?A0, ?A1, . . . ,
?Am, ?B0, ?B1, . . . , ?Bm and nested OPT and AND operators to represent the
quantifier sequence ∀x1∃ y1 · · · ∀xm∃ ym. More precisely, for every i ∈ [1, m], we
define graph pattern expressions Pi and Qi as follows.

Pi := (
(a, tv, ?X 1) AND · · · AND (a, tv, ?X i) AND

(a, tv, ?Y1) AND · · · AND (a, tv, ?Yi−1) AND

(a, false, ?Ai−1) AND (a, true, ?Ai)
)
,

Qi := (
(a, tv, ?X 1) AND · · · AND (a, tv, ?X i) AND

(a, tv, ?Y1) AND · · · AND (a, tv, ?Yi) AND

(a, false, ?Bi−1) AND (a, true, ?Bi)
)

Then we define Pϕ as

((a, true, ?B0) OPT (P1 OPT (Q1 OPT (P2 OPT (Q2 OPT (· · ·
(Pm OPT (Qm AND Pψ)) · · ·))))))

Next we show that we can use graph expression Pϕ to check whether ϕ is valid.
More precisely, we show that ϕ is valid if and only if μ ∈ [[Pϕ]]D, where μ is a
mapping such that dom(μ) = {?B0} and μ(?B0) = 1.

(⇐) Assume that μ ∈ [[Pϕ]]D. Given that P1 =
(a, tv, ?X 1) AND (a, false, ?A0) AND (a, true, ?A1), we have that
[[P1]]D = {μ0, μ1}, where μ0 = {?X 1 → 0, ?A0 → 0, ?A1 → 1} and
μ1 = {?X 1 → 1, ?A0 → 0, ?A1 → 1}. Given that P1 mentions triple
(a, true, ?A1) and P2 mentions triple (a, false, ?A1), there is no mapping in
[[P1]]D compatible with some mapping in [[P2]]D. Thus, since μ0 and μ1 are
compatible with μ and μ ∈ [[Pϕ]]D, there exist mappings ν0 and ν1 in [[Q1]]D

such that μ0, ν0 are compatible, μ1, ν1 are compatible, and

μ0 ∪ ν0 ∈ [[(P1 OPT (Q1 OPT (P2 OPT (Q2 OPT (· · ·
(Pm OPT (Qm AND Pψ)) · · ·)))))]]D, (2)

μ1 ∪ ν1 ∈ [[(P1 OPT (Q1 OPT (P2 OPT (Q2 OPT (· · ·
(Pm OPT (Qm AND Pψ)) · · ·)))))]]D. (3)

We note that ν0(?X 1) = μ0(?X 1) = 0, ν1(?X 1) = μ1(?X 1) = 1 and ν0(?Y1), ν1(?Y1)
are not necessarily distinct.

Given Q1 mentions (a, true, ?B1) and Q2 mentions triple (a, false, ?B1),
there is no mapping in [[Q1]]D compatible with some mapping in [[Q2]]D. Thus,
given that (2) holds, for every mapping ζ ∈ [[P2]]D, we have that if ν0 and ζ are
compatible, then there exists ξ ∈ [[Q2]]D such that ζ and ξ are compatible and

ζ ∪ ξ ∈ [[(P2 OPT (Q2 OPT (· · · (Pm OPT (Qm AND Pψ)) · · ·)))]]D.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:16 • J. Pérez et al.

There are two mappings in [[P2]]D which are compatible with ν0.

μ00 = {?X 1 → 0, ?X 2 → 0, ?Y1 → ν0(?Y1), ?A1 → 0, ?A2 → 1}
μ01 = {?X 1 → 0, ?X 2 → 1, ?Y1 → ν0(?Y1), ?A1 → 0, ?A2 → 1}

Thus, from the previous discussion we conclude that there exist mappings ν00

and ν01 such that μ00, ν00 are compatible, μ01, ν01 are compatible, and

μ00 ∪ ν00 ∈ [[(P2 OPT (Q2 OPT (· · · (Pm OPT (Qm AND Pψ)) · · ·)))]]D,

μ01 ∪ ν01 ∈ [[(P2 OPT (Q2 OPT (· · · (Pm OPT (Qm AND Pψ)) · · ·)))]]D.

Similarly, there are two mappings in [[P2]]D which are compatible with ν1.

μ10 = {?X 1 → 1, ?X 2 → 0, ?Y1 → ν1(?Y1), ?A1 → 0, ?A2 → 1}
μ11 = {?X 1 → 1, ?X 2 → 1, ?Y1 → ν1(?Y1), ?A1 → 0, ?A2 → 1}

Thus, given that (3) holds, we conclude that there exist mappings ν10 and ν11

such that μ10, ν10 are compatible, μ11, ν11 are compatible, and

μ10 ∪ ν10 ∈ [[(P2 OPT (Q2 OPT (· · · (Pm OPT (Qm AND Pψ)) · · ·)))]]D,

μ11 ∪ ν11 ∈ [[(P2 OPT (Q2 OPT (· · · (Pm OPT (Qm AND Pψ)) · · ·)))]]D.

If we continue in this fashion, we conclude that for every i ∈ [2, m − 1] and
n1 · · · ni ∈ {0, 1}i, and for the following mappings in [[Pi+1]]D

μn1···ni0 = {?X 1 → n1, . . . , ?X i → ni, ?X i+1 → 0,

?Y1 → νn1
(?Y1), . . . , ?Yi → νn1···ni (?Yi), ?Ai−1 → 0, ?Ai → 1}

μn1···ni1 = {?X 1 → n1, . . . , ?X i → ni, ?X i+1 → 1,

?Y1 → νn1
(?Y1), . . . , ?Yi → νn1···ni (?Yi), ?Ai−1 → 0, ?Ai → 1}

there exist mappings νn1···ni0 and νn1···ni1 in [[Qi+1]]D such that μn1···ni0, νn1···ni0 are
compatible, μn1···ni1, νn1···ni1 are compatible, and

μn1···ni0 ∪ νn1···ni0 ∈ [[(Pi+1 OPT (Qi+1 OPT (· · ·
(Pm OPT (Qm AND Pψ)) · · ·)))]]D,

μn1···ni1 ∪ νn1···ni1 ∈ [[(Pi+1 OPT (Qi+1 OPT (· · ·
(Pm OPT (Qm AND Pψ)) · · ·)))]]D.

In particular, for every n1 · · · nm ∈ {0, 1}m, given that νn1···nm ∈ [[(Qm AND Pψ)]]D,
Qm is a conjunction of triple patterns and var(Pψ) ⊆ var(Qm), we conclude that
νn1···nm ∈ [[Pψ]]D. Hence, if σn1···nm is a truth assignment defined as σn1···nm(x) =
νn1···nm(?X) for every variable x in ψ , then σn1···nm satisfies ψ . Next we show this
implies that ϕ is valid.

To prove that ϕ is valid, consider the following tree.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:17

Given that for every n1 · · · nm ∈ {0, 1}m, it holds that σn1···nm satisfies ψ and

μn1···ni (?X j) = νn1···ni (?X j) = μn1···nm(?X j) i ∈ [1, m], j ∈ [1, i]
μn1···ni (?Yk) = νn1···ni (?Yk) = μn1···nm(?Yk) i ∈ [1, m], k ∈ [1, i − 1]

νn1···ni (?Yi) = μn1···nm(?Yi) i ∈ [1, m]

we have that every path from the root to a leaf in the preceding tree represents
a satisfying assignment for ψ . Thus, we conclude that ϕ is valid from the fact
that for every i ∈ [1, m] and n1 · · · ni−1 ∈ {0, 1}i−1, it holds that μn1···ni−10(?X i) = 0
and μn1···ni−11(?X i) = 1.

(⇒) The proof that ϕ is valid implies μ ∈ [[Pϕ]]D is similar to the previous
proof.

The following result shows that the combination of OPT and UNION is also
an important source of complexity when evaluating SPARQL patterns.

THEOREM 3.4. EVALUATION is PSPACE-complete for graph pattern expres-
sions constructed by using only AND, UNION, and OPT operators.

PROOF. Membership in PSPACE follows from the proof of Theorem 3.3 (pro-
cedure Eval in that proof considers operators AND, FILTER, UNION, and
OPT). To prove the PSPACE-hardness of EVALUATION, we use a reduction from
QBF similar to the one used in the proof of Theorem 3.3. In that proof, we encode
a quantified propositional formula ϕ of the form ∀x1∃ y1∀x2∃ y2 · · · ∀xm∃ ym ψ ,
with a pattern that uses AND and FILTER operators to encode the satisfiabil-
ity of ψ , and uses OPT and AND operators to encode the quantifier alternation.
We show here how to encode the satisfiability of ψ by using the UNION operator
instead of the FILTER operator.

Formula ψ is a quantifier-free formula of the form C1 ∧ · · · ∧ Cn, with each Ci

(i ∈ [1, n]) being a disjunction of literals, that is, a disjunction of propositional
variables xi and yi, and negations of propositional variables. In the reduction
we use the same dataset D = {(a, tv, 0), (a, tv, 1), (a, false, 0), (a, true, 1)} as
in the proof of Theorem 3.3. Consider now the graph pattern expression Qψ

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:18 • J. Pérez et al.

constructed from ψ as follows: (a) Replace every positive occurrence of xi and
yi in ψ by the triple patterns (a, true, ?X i) and (a, true, ?Yi), respectively, (b)
replace every occurrence of ¬xi and ¬ yi by the triple patterns (a, false, ?X i)
and (a, false, ?Yi), respectively, and (c) replace every disjunction by a UNION
operator, and every conjunction by an AND operator. For instance, if ψ is the
formula (x1 ∨ ¬ y2) ∧ (¬x2 ∨ y1), then Qψ is the pattern expression

((a, true, ?X 1) UNION (a, false, ?Y2)) AND

((a, false, ?X 2) UNION (a, true, ?Y1)).

We define then the pattern Sψ as

(Qψ AND (a, tv, ?X 1) AND (a, tv, ?Y1) AND · · ·
AND (a, tv, ?X m) AND (a, tv, ?Ym)).

It is straightforward to show that ψ is satisfiable if and only if there exists a
mapping μ ∈ [[Sψ]]D. Moreover, for each such mapping μ, the truth assignment
σμ defined as σμ(v) = μ(?V) for every propositional variable v in ψ , is such that
μ ∈ [[Sψ]]D if and only if σμ satisfies ψ . The rest of the proof follows the proof of
Theorem 3.3 but replacing pattern Pψ by Sψ .

Notice that procedure Eval in the proof of Theorem 3.3 shows that the eval-
uation problem for general graph patterns is in PSPACE. Then as a corollary of
the two previous theorems we obtain that, in general, the evaluation problem
for SPARQL is PSPACE-complete.

COROLLARY 3.5. EVALUATION is PSPACE-complete.

When verifying whether μ ∈ [[P]]D, it is natural to assume that the size of
P is considerably smaller than the size of D. This assumption is very common
when studying the complexity of a query language. In fact, it is named data
complexity in the database literature [Vardi 1982], and it is defined as the
complexity of the evaluation problem for a fixed query. More precisely, for the
case of SPARQL, given a graph pattern expression P , the evaluation problem
for P , denoted by EVALUATION(P), has as input an RDF dataset D and a mapping
μ, and the problem is to verify whether μ ∈ [[P]]D.

THEOREM 3.6. EVALUATION(P) is in LOGSPACE for every graph pattern ex-
pression P.

PROOF. Consider the procedure Eval in the proof of Theorem 3.3. Given that
the size needed to store a mapping in pos(P, D) is O(|P | · (log |P |+ log |D|)), this
bound becomes O(log |D|) when P is considered to be fixed. Thus, given that the
depth of the tree of recursive calls to Eval is a fixed constant if P is considered
to be fixed, we obtain that Eval can be implemented by using logarithmic space
in this case.

An important question is whether one can find interesting classes of graph
patterns, constructed by imposing simple and natural syntactic restrictions,
such that one can obtain lower complexity bounds for the evaluation problem
on these classes. In the following section, we introduce a first such restriction.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:19

3.1 A Simple Normal Form for Graph Patterns

Recall that two graph patterns P1 and P2 are equivalent, denoted by P1 ≡ P2, if
[[P1]]D = [[P2]]D for every RDF dataset D. In Lemma 2.5, we show that AND dis-
tributes over UNION. The following lemma states that OPT and FILTER also
distribute over UNION. The proof of this lemma can be found in the Appendix.

LEMMA 3.7. Let P1, P2, and P3 be graph pattern expressions and R a built-in
condition. Then:

(1) ((P1 UNION P2) OPT P3) ≡ ((P1 OPT P3) UNION (P2 OPT P3)).
(2) ((P1 UNION P2) FILTER R) ≡ ((P1 FILTER R) UNION (P2 FILTER R)).

The application of Lemmas 2.5 and 3.7 allows to translate every graph pat-
tern into an equivalent one where UNION is the outermost operator. More pre-
cisely, we say that a pattern P is UNION-free if P is constructed by using only
operators AND, OPT, and FILTER. Then we have the following proposition.

PROPOSITION 3.8. Every graph pattern P is equivalent to a pattern of the
form

(P1 UNION P2 UNION P3 UNION · · · UNION Pn), (4)

where each Pi (1 ≤ i ≤ n) is UNION-free.

Notice that we omit the parentheses in the expression (4) given the associa-
tivity of UNION.

PROOF. By induction on the structure of P . If P is a triple pattern, then
the property trivially holds. Assume that the property holds for patterns P1

and P2, that is, there exist expressions (P1
1 UNION · · · UNION P1

m) and

(P2
1 UNION · · · UNION P2

n) such that: (1) P1 ≡ (P1
1 UNION · · · UNION P1

m),

(2) P2 ≡ (P2
1 UNION · · · UNION P2

n), (3) each pattern P1
i (i ∈ {1, . . . , m}) is

UNION-free, and (4) each pattern P2
i (i ∈ {1, . . . , n}) is UNION-free. Next we

show that the property holds for (P1 UNION P2), (P1 AND P2), (P1 OPT P2),
and (P1 FILTER R), where R is a built-in condition.

It is easy to see that the property holds for P = (P1 UNION P2). Thus, we
consider first the case of P = (P1 AND P2). By induction hypothesis and Lemma
2.5, we have that

P ≡ (
P1

1 AND P2
1

)
UNION · · · UNION

(
P1

1 AND P2
n

)
UNION · · ·

UNION
(
P1

m AND P2
1

)
UNION · · · UNION

(
P1

m AND P2
n

)
.

Second, if P = (P1 FILTER R), then we conclude from Lemma 2.5, Lemma 3.7,
and induction hypothesis that(

P1 FILTER R
) ≡ (

P1
1 FILTER R

)
UNION · · · UNION

(
P1

m FILTER R
)
.

Finally, assume that P = (P1 OPT P2). By induction hypothesis and Lemma
3.7, we conclude that P is equivalent to the graph pattern expression(

P1
1 OPT P2

)
UNION · · · UNION

(
P1

m OPT P2

)
.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:20 • J. Pérez et al.

Thus, to conclude the proof, we need to show that the condition of the proposition
holds for each one of the expressions (P1

i OPT P2). To show this, we use the
following claim.

CLAIM 3.9. Let Q be a UNION-free graph pattern. For every RDF dataset D
and pair of mappings μ1, μ2 ∈ [[Q]]D, if μ1 and μ2 are compatible, then μ1 = μ2.

PROOF OF CLAIM 3.9. By induction on the structure of the UNION-free pat-
tern Q . If Q is a triple pattern, then the property trivially holds. Assume first
that Q = (Q1 AND Q2), where Q1 and Q2 satisfy the condition, that is, if
ξ, ζ ∈ [[Qi]]D (i = 1, 2) and ξ , ζ are compatible, then ξ = ζ . Let μ1 and μ2 be com-
patible mappings in [[Q]]D. Then there exist ν1, ω1 ∈ [[Q1]]D and ν2, ω2 ∈ [[Q2]]D

such that μ1 = ν1 ∪ω1 and μ2 = ν2 ∪ω2. Given that μ1 and μ2 are compatible, we
have that ν1, ν2 are compatible and ω1, ω2 are compatible. Thus, by induction
hypothesis we have that ν1 = ν2 and ω1 = ω2 and, hence, μ1 = μ2. Second,
assume that Q = (Q1 OPT Q2), and let μ1 and μ2 be compatible mappings in
[[Q]]D. We consider four cases.

(1) If there exist ν1, ω1 ∈ [[Q1]]D and ν2, ω2 ∈ [[Q2]]D such that μ1 = ν1 ∪ ω1 and
μ2 = ν2∪ω2, then we conclude that μ1 = μ2 as in the case Q = (Q1 AND Q2).

(2) If μ1, μ2 ∈ [[Q1]]D and both are not compatible with any mapping in [[Q2]]D,
then by induction hypothesis we conclude that μ1 = μ2.

(3) If μ1 ∈ [[Q1]]D, μ1 is not compatible with any mapping in [[Q2]]D, μ2 = ν2∪ω2,
ν2 ∈ [[Q1]]D and ω2 ∈ [[Q2]]D, then given that μ1 and μ2 are compatible,
we have that μ1 and ν2 are compatible. Thus, by induction hypothesis we
conclude that μ1 = ν2 and, therefore, μ1 is compatible with ω2 ∈ [[Q2]]D,
which contradicts our initial assumption.

(4) If μ1 = ν1 ∪ ω1, ν1 ∈ [[Q1]]D, ω1 ∈ [[Q2]]D, μ2 ∈ [[Q1]]D and μ2 is not compat-
ible with any mapping in [[Q2]]D, then we obtain a contradiction as in the
previous case.

Finally, assume that Q = (Q1 FILTER R), where Q1 satisfies the condition of
the claim. Let μ1 and μ2 be compatible mappings in [[Q]]D. Then μ1 ∈ [[Q1]]D,
μ1 |= R, μ2 ∈ [[Q1]]D, μ2 |= R and, thus, μ1 = μ2 by induction hypothesis. This
concludes the proof of the claim.

Let i ∈ {1, . . . , m}. Next we show that the condition of the proposition holds
for (P1

i OPT P2). Assume that ?X 1, . . . , ?X n, ?Y1, . . . , ?Yn, ?Z1, . . . , ?Zn are
variables that are mentioned neither in P1

i nor in P2. Moreover, for every j ∈
{1, . . . , n}, let Q j be the graph pattern (P1

i OPT (P2
j AND (?X j , ?Y j , ?Z j))), and

assume that Q is the graph pattern (Q1 AND · · · AND Qn). Next we show that
(P1

i OPT P2) is equivalent to

(
P1

i AND P2
1

)
UNION · · · UNION

(
P1

i AND P2
n

)
UNION(

Q FILTER
(¬ bound(?X 1) ∧ · · · ∧ ¬ bound(?X n)

))
. (5)

We note that the previous formula is of the form (4), from which we conclude that
the proposition holds for (P1

i OPT P2) and, more generally, holds for (P1 OPT P2).

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:21

(⇒) Assume that D is an RDF dataset and μ ∈ [[(P1
i OPT P2)]]D. Then we have

that either μ ∈ ([[P1
i]]D�[[P2]]D) or μ ∈ ([[P1

i]]D � [[P2]]D). If μ ∈ ([[P1
i]]D�[[P2]]D),

we have that there exist compatible mappings μ1 ∈ [[P1
i]]D and μ2 ∈ [[P2]]D such

that μ = μ1 ∪ μ2. Thus, given that P2 ≡ (P2
1 UNION · · · UNION P2

n), we have

that μ2 ∈ [[P2
j]]D for some j ∈ {1, . . . , n}. We conclude that μ ∈ [[(P1

i AND P2
j)]]D

and, thus, μ belongs to the evaluation of (5) over D. If μ ∈ ([[P1
i]]D � [[P2]]D),

we have that μ ∈ [[P1
i]]D and no mapping in [[P2]]D is compatible with μ. Let

j ∈ {1, . . . , n}. Given that no mapping in [[P2]]D is compatible with μ and
P2 ≡ (P2

1 UNION · · · UNION P2
n), we have that no mapping in [[P2

j]]D is compat-

ible with μ and, therefore, no mapping in [[(P2
j AND (?X j , ?Y j , ?Z j))]]D is com-

patible with μ. Thus, we have that μ ∈ [[(P1
i OPT (P2

j AND (?X j , ?Y j , ?Z j)))]]D.

Moreover, given that ?X j , ?Y j and ?Z j are mentioned neither in P1
i nor in P2,

we have that ?X j �∈ dom(μ), that is, ¬ bound(?X j) holds for μ. Given that the
previous conditions hold for every j ∈ {1, . . . , n}, we conclude that μ belongs to
the evaluation of (5) over D.

(⇐) Assume that D is an RDF dataset and μ belongs to the evaluation of
(5) over D. To prove that μ ∈ [[(P1

i OPT P2)]]D, we consider two cases. Assume
first that there exists j ∈ {1, . . . , n} such that μ ∈ [[(P1

i AND P2
j)]]D. Then we

have that there exist compatible mappings μ1 ∈ [[P1
i]]D and μ2 ∈ [[P2

j]]D such

that μ = μ1 ∪ μ2. Given that P2 ≡ (P2
1 UNION · · · UNION P2

n), we have that

μ2 ∈ [[P2]]D and, therefore, μ ∈ [[(P1
i OPT P2)]]D. Second, assume that

μ ∈ [[(Q FILTER (¬ bound(?X 1) ∧ · · · ∧ ¬ bound(?X n)))]]D.

Then we have that μ ∈ [[Q]]D and μ |= (¬ bound(?X 1) ∧ · · · ∧ ¬ bound(?X n)),
that is, ?X j �∈ dom(μ) for every j ∈ {1, . . . , n}. By definition of Q , we
have that there exist compatible mappings μ1 ∈ [[Q1]]D, . . . , μn ∈ [[Qn]]D

such that μ = μ1 ∪ · · · ∪ μn. Let j ∈ {1, . . . , n}. Given that ?X j �∈ dom(μ j)
and μ j ∈ [[Q j]]D, we have that μ j ∈ [[P1

i]]D and μ j is not compatible with
any mapping in [[(P2

j AND (?X j , ?Y j , ?Z j))]]D. Next we use this fact to prove

that μ j is not compatible with any mapping in [[P2
j]]D. For the sake of con-

tradiction, assume that there exists a mapping ξ ∈ [[P2
j]]D such that μ j and

ξ are compatible, and let ξ ′ be an arbitrary mapping in [[(?X j , ?Y j , ?Z j)]]D.
Given that ?X j , ?Y j , and ?Z j are not mentioned in P2

j , we have that ξ and

ξ ′ are compatible and, hence, ξ ∪ ξ ′ ∈ [[(P2
j AND (?X j , ?Y j , ?Z j))]]D. But ?X j ,

?Y j , and ?Z j are not mentioned in P1
i and, thus, ξ ∪ ξ ′ is compatible with

μ j (since ξ is compatible with μ j), which contradicts the fact that no map-
ping in [[(P2

j AND (?X j , ?Y j , ?Z j))]]D is compatible with μ j . Therefore, we have

that μ j ∈ [[P1
i]]D and no mapping in [[P2

j]]D is compatible with μ j , for every

j ∈ {1, . . . , n}. Given that P1
i is a UNION-free graph pattern, we have from

Claim 3.9 that μ1 = μ2 = · · · = μn. Thus, given that μ = μ1 ∪ · · · ∪ μn, we have
that μ ∈ [[P1

i]]D and no mapping in [[P2
j]]D is compatible with μ, for every j ∈

{1, . . . , n}. But we know that P2 ≡ (P2
1 UNION · · · UNION P2

n), from which we

conclude that μ ∈ [[P1
i]]D and no mapping in [[P2]]D is compatible with μ. Hence,

we have that μ ∈ [[(P1
i OPT P2)]]D. This concludes the proof of the proposition.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:22 • J. Pérez et al.

We say that a graph pattern is in UNION normal form if the pattern is in the
form (4).2 The following result shows that for graph patterns in UNION normal
form that do not use the OPT operator, the evaluation problem can be solved
efficiently. It is a direct consequence of Theorem 3.1.

COROLLARY 3.10. EVALUATION can be solved in time O(|P | · |D|) for graph
patterns in UNION normal form constructed by using only AND, FILTER, and
UNION operators.

We have managed to lower the complexity of the AND-FILTER-UNION frag-
ment by imposing a simple normal form. However, Theorem 3.3 implies that
when the OPT operator is allowed in graph patterns, the complexity of the
evaluation problem is PSPACE-hard even if we restrict to patterns in UNION
normal form. In the following section, we introduce a simple and natural syn-
tactic condition that patterns usually satisfy in practice. Under this condition,
the complexity of the evaluation of graph patterns in UNION normal form is
lower even if the OPT operator is allowed.

4. WELL-DESIGNED GRAPH PATTERNS

The exact semantics of graph pattern expressions has been extensively dis-
cussed on the mailing list of the W3C. One of the most delicate issues in the
definition of a semantics for graph pattern expressions is the semantics of the
OPT operator. The idea behind the OPT operator is to allow for optional match-
ing of patterns, that is, to allow information to be added if it is available, instead
of rejecting whenever some part of a pattern does not match. This intuition
fails in some simple, but unnatural, examples. For instance, consider the graph
pattern

P = ((?X , name, john) OPT ((?Y , name, mick) OPT (?X , email, ?Z))). (6)

What is unnatural about graph pattern P is the fact that (?X , email, ?Z) is
giving optional information for (?X , name, john), but in P appears as giving
optional information for (?Y , name, mick). For example, (B2, name, john) and
(B2, email, john@ac.edu) are triples in the dataset D of Example 2.4, but the
evaluation of P results in the set {{?X → B2}} (since [[(?Y , name, mick)]]D = ∅)
without giving information about the email of john.

A careful examination of the examples that produce conflicts reveals a com-
mon pattern: A graph pattern P mentions an expression P ′ = (P1 OPT P2) and
a variable ?X occurring both inside P2 and outside P ′ but not occurring in P1.
In general, graph pattern expressions satisfying this condition are not natural.

To present the main definition of this section, we need to introduce some
terminology. We say that a graph pattern Q is safe if for every subpattern

2In the conference version of this article [Pérez et al. 2006a], the proof of the existence of a UNION

normal form uses the equivalence (P1 OPT (P2 UNION P3)) ≡ ((P1 OPT P2) UNION (P1 OPT P3))

(see Proposition 1 in Pérez et al. [2006a]). It was pointed out to us by M. Schmidt that the proof of this

rule in Pérez et al. [2006a] is incorrect, and that this rule does not hold in general (see Schmidt et al.

[2008]). In the proof of Proposition 3.8, we use a corrected version of this rule (see expression (5)).

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:23

(P FILTER R) of Q , it holds that var(R) ⊆ var(P). This safety condition is
present in many database query languages.

Definition 4.1. A UNION-free graph pattern P is well designed if P is safe
and, for every subpattern P ′ = (P1 OPT P2) of P and for every variable ?X
occurring in P , the following condition holds.

if ?X occurs both inside P2 and outside P ′, then it also occurs in P1.

For instance, pattern (6) given earlier is not well designed, while all the
UNION-free patterns in Example 2.4 are well designed. We can extend Defini-
tion 4.1 to patterns in UNION normal form: We say that a pattern of the form
(P1 UNION P2 UNION · · · UNION Pn) is well designed if every Pi (1 ≤ i ≤ n)
is a UNION-free well-designed graph pattern.

The pattern used to obtain a PSPACE lower bound in Theorem 3.3 is not
well designed. In that proof, pattern Pϕ is defined as

((a, true, ?B0) OPT (P1 OPT (Q1 OPT (P2 OPT (Q2 OPT (· · ·
(Pm OPT (Qm AND Pψ)) · · ·)))))),

and for every i ∈ [1, m − 1], there exists a variable that occurs in Pi and in Pi+1

that does not occur in Qi. Thus, an immediate question is whether the com-
plexity of evaluating well-designed graph pattern expressions is lower than
in the general case. We show in this section that this is indeed the case, and
we prove a coNP upper bound for the case of well-designed graph patterns.
But not only that; in this section we also consider the problem of optimizing
well-designed graph patterns. Since the beginning of the relational data model,
several techniques for optimizing the evaluation of relational algebra expres-
sions have been developed. In fact, one of the reasons why relational algebra
is so extensively used to implement SQL is the existence of simple reordering
and optimization rules for this language. Unfortunately, the development of
this type of rules for SPARQL is limited by the presence of the OPT opera-
tor. However, we show in this section that well-designed patterns are suitable
for reordering and optimization, demonstrating the significance of this class of
queries from the practical point of view.

We note first that the well-designed property can be checked efficiently by a
straightforward procedure. Let P be a pattern. Then for every subpattern P ′ of
P of the form (P1 OPT P2), we construct three sets: sets VP1

and VP2
, containing

the variables occurring in P1 and P2, respectively, and set OP ′ containing the
variables that occur outside P ′. To construct VP1

, we collect variables by making
a bottom-up traversal of the subpatterns of P1. We repeat this procedure in P2

to construct VP2
. To construct OP ′ , we make a bottom-up traversal of the entire

pattern P , but not taking into consideration P ′. Having these three sets, we
check whether VP2

∩ OP ′ ⊆ VP1
, that is, we check whether every variable that

occurs inside P2 and outside P ′ also occurs inside P1, which is exactly the well-
designed condition. We must repeat this test for every OPT subpattern of P .
Notice that the test for every OPT subpattern takes linear time in the size of P ,
and then, the entire process takes time proportional to the size of P times the
number of OPT subpatterns of P . We can then state the following proposition.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:24 • J. Pérez et al.

PROPOSITION 4.2. Testing if a pattern P is well designed can be done in time
O(|P |2).

The rest of this section is organized as follows. In Section 4.1, we present
a characterization of the evaluation of well-designed graph patterns based on
the notions of reduction of patterns and subsumption of mappings. We then use
this characterization to derive a coNP upper bound for the complexity of the
evaluation problem for well-designed patterns. In Section 4.2, we further show
that well-designed patterns are suitable for reordering and optimization. We
present several optimization rules and define a normal form for well-designed
patterns.

4.1 Complexity of Evaluating Well-Designed Patterns

Intuitively, if we delete some optional parts of a pattern P to obtain a new
pattern P ′, the mappings in the evaluation of P ′ over a dataset D could not be
more informative than the mappings in the evaluation of P over D. In other
words, the optional matchings of a pattern must only serve to extend solutions
with new information, but not to reject solutions if some information is not
provided. We formalize this intuition and show, in Lemma 4.3, that the intuition
is indeed correct for the case of well-designed graph patterns. We then use this
lemma to develop a characterization of the evaluation of well-designed graph
patterns.

We say that a mapping μ is subsumed by a mapping μ′, denoted by μ � μ′, if
μ and μ′ are compatible and dom(μ) ⊆ dom(μ′), that is, μ is subsumed by μ′ if
μ agrees with μ′ in every variable for which μ is defined. For sets of mappings
� and �′, we write � � �′ if for every mapping μ ∈ �, there exists a mapping
μ′ ∈ �′ such that μ � μ′.

We say that a pattern P ′ is a reduction of a pattern P , if P ′ can
be obtained from P by replacing a subformula (P1 OPT P2) of P by P1,
that is, if P ′ is obtained by deleting some optional part of P . For ex-
ample, P ′ = (t1 AND (t2 OPT (t3 AND t4))) is a reduction of P =
((t1 OPT t2) AND (t2 OPT (t3 AND t4))) since P ′ can be obtained from P by
replacing (t1 OPT t2) by t1. The reflexive and transitive closure of the reduction
relation is denoted by �. Thus, for example, if P ′′ = (t1 AND t2), then P ′′ � P
since P ′′ is a reduction of P ′ and P ′ is a reduction of P . We note that if P ′ � P
and P is well designed, then P ′ is well designed. If P ′ � P and P ′ �= P , then
we say that P ′ is a proper reduction of P , denoted by P ′ � P .

We can now state the result that formalizes the intuition mentioned at the
beginning of this section.

LEMMA 4.3. Let P be a UNION-free well-designed graph pattern, and P ′ a
pattern such that P ′ � P. Then [[P ′]]D � [[P]]D for every dataset D.

Before proving the lemma, we show that it does not hold for patterns that
are not well designed. Consider dataset D = {(1, a, 1), (2, a, 2), (3, a, 3)} and
nonwell-designed pattern

P = ((?X , a, 1) OPT ((?Y , a, 2) OPT (?X , a, 3))).

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:25

The evaluation of P results in the set {{?X → 1}}. By deleting the optional part
(?X , a, 3) of P , we obtain the reduction P ′ = ((?X , a, 1) OPT (?Y , a, 2)) of P . The
evaluation of P ′ results in the set {{?X → 1, ?Y → 2}}. Thus, we have that
[[P ′]]D �� [[P]]D.

PROOF OF LEMMA 4.3. The proof is by induction on the structure of P . In the
basis case, we have that P is a triple pattern and, thus, P ′ = P and the property
trivially holds. For the inductive step, we need to consider three cases. In all
these cases, we need to show that if P ′ � P and μ′ ∈ [[P ′]]D, then there exists
μ ∈ [[P]]D such that μ′ � μ.

(1) If P = (P1 AND P2), then P ′ = (P ′
1 AND P ′

2) for P ′
1 � P1 and P ′

2 � P2. Thus,
μ′ = μ′

1 ∪ μ′
2 with μ′

1 ∈ [[P ′
1]]D and μ′

2 ∈ [[P ′
2]]D. By induction hypothesis,

there exist mappings μ1 ∈ [[P1]]D and μ2 ∈ [[P2]]D such that μ′
1 � μ1 and

μ′
2 � μ2. Next we show that μ1 is compatible with μ2, which implies that

μ′
1 ∪ μ′

2 � μ1 ∪ μ2 and, hence, μ′ � μ for μ = μ1 ∪ μ2 ∈ [[P]]D.
Let ?X be a variable in dom(μ1) ∩ dom(μ2). We need to show that μ1(?X) =
μ2(?X). Given that ?X ∈ var(P1) and ?X ∈ var(P2), we have that for every
pattern O � P1, it is the case that ?X ∈ var(O) (otherwise we would obtain
a contradiction with the fact that P = (P1 AND P2) is well designed). Then
given that P ′

1 � P1 we also have that ?X ∈ var(O) for every pattern O � P ′
1.

Therefore, by using the following claim, we conclude that ?X ∈ dom(μ′
1).

CLAIM 4.4. Given a dataset D, a well-designed pattern Q, and a variable
?X ∈ var(Q), if for every pattern O � Q we have that ?X ∈ var(O), then
?X ∈ dom(μ) for every μ ∈ [[Q]]D.

The proof of this claim can be found in the Appendix. Using a similar argu-
ment, we obtain that ?X ∈ dom(μ′

2) and, thus, given that μ′
1 is compatible

with μ′
2, μ′

1 � μ1 and μ′
2 � μ2, we have that μ1(?X) = μ′

1(?X) = μ′
2(?X) =

μ2(?X).

(2) Suppose that P = (P1 OPT P2). We need to consider two cases. First, assume
that P ′ � P1. By induction hypothesis, we have that [[P ′]]D � [[P1]]D. Thus, if
μ′ ∈ [[P ′]]D, then there exists μ1 ∈ [[P1]]D such that μ′ � μ1, and we conclude
that there exists μ ∈ [[P]]D such that μ′ � μ since [[P1]]D � [[(P1 OPT P2)]]D.
Second, assume that P ′ = (P ′

1 OPT P ′
2) with P ′

1 � P1 and P ′
2 � P2. If

μ′ ∈ [[P ′]]D, then μ′ ∈ [[(P ′
1 AND P ′

2)]]D or μ′ ∈ ([[P ′
1]]D �[[P ′

2]]D). In the former
case, we conclude that there exists μ ∈ [[P]]D such that μ′ � μ since from
Eq. (1) we know that [[(P ′

1 AND P ′
2)]]D � [[(P1 AND P2)]]D. Furthermore,

if μ′ ∈ ([[P ′
1]]D � [[P ′

2]]D), then μ′ ∈ [[P ′
1]]D. By induction hypothesis, we

have that [[P ′
1]]D � [[P1]]D and, hence, there exists μ1 ∈ [[P1]]D such that

μ′ � μ1. We conclude that there exists μ ∈ [[P]]D such that μ′ � μ since
[[P1]]D � [[(P1 OPT P2)]]D.

(3) If P = (P1 FILTER R), then P ′ = (P ′
1 FILTER R) for P ′

1 � P1. Let μ′ ∈
[[P ′]]D. Given that P is well designed, we have that P ′ is well designed.
Recall that a well-designed pattern is safe by definition and, thus, for every
?X ∈ var(R) and O � P ′

1, it is the case that ?X ∈ var(O). Therefore, by using
Claim 4.4, we conclude that var(R) ⊆ dom(μ′). By induction hypothesis,

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:26 • J. Pérez et al.

we know that [[P ′
1]]D � [[P1]]D and, hence, there exists μ1 ∈ [[P1]]D such

that μ′ � μ1 (since [[P ′]]D ⊆ [[P ′
1]]D). Furthermore, given that μ′ |= R

and var(R) ⊆ dom(μ′), we conclude that μ1 |= R. Thus, μ1 ∈ [[P]]D and,
therefore, there exists μ ∈ [[P]]D such that μ′ � μ. This concludes the proof
of the lemma.

We have mentioned that, when evaluating an optional part of a pattern,
one is trying to extend mappings with optional information. Another intuition
behind the OPT operator is that, when a pattern has several optional parts,
one wants to extend the solutions as much as possible, that is, one does not
want to lose information when the information is present. We formalize this
intuition with the notion of partial solution for a pattern. Informally, a partial
solution for a pattern P is a mapping that is an exact match for some P ′ such
that P ′ � P . We show then, in Proposition 4.5, that the evaluation of a well-
designed graph pattern P is exactly the set of maximal partial solutions for
P with respect to �, that is, the solutions that retrieve as much information
as possible. This proposition gives us an alternative characterization of the
evaluation of well-designed graph patterns.

Given a pattern P , define and(P) to be the pattern obtained from P
by replacing every OPT operator in P by an AND operator. For example,
if P = ((t1 OPT t2) AND (t2 OPT (t3 AND t4))), we have that and(P) =
((t1 AND t2) AND (t2 AND (t3 AND t4))). Notice that, by the semantics of the
OPT operator, for every (not necessarily well designed) pattern P and every
dataset D, we have that [[and(P)]]D ⊆ [[P]]D.

A mapping μ is a partial solution for a pattern P over a dataset D if μ ∈
[[and(P ′)]]D, for some P ′ � P . Partial solutions and the notion of subsumption
of mappings give us the following characterization of the evaluation of well-
designed graph patterns.

PROPOSITION 4.5. Given a UNION-free well-designed graph pattern P, a
dataset D, and a mapping μ, we have that μ ∈ [[P]]D if and only if μ is a
maximal (with respect to �) partial solution for P over D.

PROOF. (⇒) The proof goes by induction on P . For the basis case, suppose P is
a triple pattern t. Given that dom(μ) = var(t) for every μ ∈ [[P]]D, we have that
each μ ∈ [[P]]D is a maximal (with respect to �) partial solution for P over D.
For the inductive step, we need to consider three cases.

(1) Suppose that P = (P1 AND P2). If μ ∈ [[P]]D, then μ = μ1 ∪ μ2 for μ1 ∈
[[P1]]D and μ2 ∈ [[P2]]D. By induction hypothesis, μ1 and μ2 are maximal
partial solutions for P1 and P2, respectively. Thus, μ is a partial solution
for P = (P1 AND P2), and we only need to show that μ is maximal. Suppose
that there is a partial solution μ′ for P such that μ � μ′. We need to show
that μ = μ′ to prove that μ is maximal. Given that μ′ is a partial solution
for P , we have that μ′ ∈ [[(and(P ′

1) AND and(P ′
2))]]D for some P ′

1 � P1 and
P ′

2 � P2, and μ′ = μ′
1 ∪ μ′

2 for μ′
1 and μ′

2 partial solutions for P1 and P2,
respectively. By maximality of μ1 and μ2, we have that μ′

1 � μ1 and μ′
2 � μ2,

and, hence, μ′ = μ′
1 ∪ μ′

2 � μ1 ∪ μ2 = μ, which implies that μ′ = μ.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:27

(2) Suppose that P = (P1 OPT P2). We need to consider two subcases.
(a) Assume that μ ∈ [[(P1 AND P2)]]D. Then μ = μ1 ∪μ2 for μ1 ∈ [[P1]]D and

μ2 ∈ [[P2]]D. By induction hypothesis, μ1 and μ2 are maximal partial
solutions for P1 and P2, respectively, implying that μ is a partial solution
for P . To prove the maximality of μ, suppose that there is a partial
solution μ′ for P such that μ � μ′. We need to prove that μ = μ′. Now,
we have that either μ′ ∈ [[(and(P ′

1) AND and(P ′
2))]]D for P ′

1 � P1 and
P ′

2 � P2, or μ′ ∈ [[and(P ′
3)]]D for some P ′

3 � P1. In the former case, we
proceed exactly as in (1) to prove that μ′ = μ. For the latter case, we
have that μ′ is a partial solution for P1 and then by the maximality of
μ1 we obtain μ′ � μ1 � μ, which also implies that μ′ = μ.

(b) Assume that μ ∈ ([[P1]]D � [[P2]]D). Since μ ∈ [[P1]]D, by induction hy-
pothesis we know that μ is a maximal partial solution for P1. Fur-
thermore, since P1 � P , we obtain that μ is a partial solution for P .
Now, suppose that there is a partial solution μ′ for P such that μ � μ′.
Again we need to show that μ = μ′ to prove the maximality of μ. We
have that, either μ′ ∈ [[and(P ′

1)]]D or μ′ ∈ [[(and(P ′
1) AND and(P ′

2))]]D

for some P ′
1 � P1 and P ′

2 � P2. In the former case, we have that μ′

is a partial solution for P1 and then by maximality of μ we obtain
μ′ � μ. Next we show that the latter case leads to a contradiction.
Suppose that μ′ = μ′

1 ∪ μ′
2 for μ′

1 and μ′
2 such that μ′

1 ∈ [[and(P ′
1)]]D

and μ′
2 ∈ [[and(P ′

2)]]D. Then μ � μ′
1 ∪ μ′

2, which implies that μ is
compatible with both μ′

1 and μ′
2. Given that μ′

2 ∈ [[and(P ′
2)]]D and

[[and(P ′
2)]]D ⊆ [[P ′

2]]D and P2 is well designed, we have by Lemma 4.3
that there is a mapping ν ∈ [[P2]]D such that μ′

2 � ν. Furthermore,
given that μ ∈ ([[P1]]D � [[P2]]D), we know that μ is not compatible with
any mapping in [[P2]]D and, in particular, μ is not compatible with ν.
This implies that there is a variable ?X ∈ dom(μ) ∩ dom(ν) such that
μ(?X) �= ν(?X). Given that μ′

2 is compatible with both μ and ν, we have
that ?X �∈ dom(μ′

2) and, therefore, we have that ?X �∈ var(P ′
2) since

dom(μ′
2) = var(P ′

2) (given that μ′
2 ∈ [[and(P ′

2)]]D). Since ν ∈ [[P2]]D, we
know that ?X ∈ var(P2), and we conclude that there is a subpattern
(O1 OPT O2) of P2 such that ?X ∈ var(O2) and ?X �∈ var(O1). But this
contradicts the fact that P is well designed since ?X ∈ var(P1) (given
that ?X ∈ dom(μ) and μ ∈ [[P1]]D).

(3) Suppose that P = (P1 FILTER R). If μ ∈ [[P]]D, then μ ∈ [[P1]]D and
μ |= R. By induction hypothesis, μ is a maximal partial solution for P1 and,
hence, μ is a partial solution for P . Now suppose that there is a partial
solution μ′ for P such that μ � μ′, again we need to show that μ = μ′.
Now, μ′ ∈ [[and(P ′

1)]]D for P ′
1 � P1, that is, μ′ is a partial solution for P1.

Thus, by maximality of μ as a partial solution for P1, we conclude that
μ′ � μ.

(⇐) If μ is a maximal partial solution for P , then μ ∈ [[and(P ′)]]D for some
P ′ � P . Thus, μ ∈ [[P ′]]D and, hence, by Lemma 4.3 we conclude that there
is a mapping ν ∈ [[P]]D such that μ � ν. By the other direction of the proof,
we have that ν is a partial solution for P and, hence, by maximality of μ we

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:28 • J. Pérez et al.

obtain that μ = ν, which implies that μ ∈ [[P]]D. This concludes the proof of the
proposition.

Using the characterization of the evaluation of well-designed graph patterns
from Proposition 4.5, we can prove the main result of this section.

THEOREM 4.6. EVALUATION is coNP-complete for UNION-free well-designed
graph pattern expressions.

PROOF. For the membership of EVALUATION in coNP, consider the problem of
determining given a well-designed pattern P , a dataset D, and a mapping μ,
whether μ is not in [[P]]D. To test this condition, we use the negation of the
characterization in Proposition 4.5, that is, we use the fact that μ /∈ [[P]]D if
and only if (1) μ is not a partial solution for P or, (2) μ is a partial solution for
P but it is not maximal. We first show that it can be tested in polynomial time
whether a mapping is a partial solution for a pattern.

CLAIM 4.7. Given a UNION-free well-designed pattern P, a dataset D, and
a mapping μ, it can be tested in polynomial time whether μ is a partial solution
for P over D.

The proof of the claim can be found in the Appendix.
We now provide a nondeterministic polynomial-time algorithm to test

whether μ /∈ [[P]]D. The algorithm first checks in polynomial time whether
μ is not a partial solution for P over D (condition (1)), and if this is the case, it
returns true. Otherwise, the algorithm guesses a mapping μ′, and then checks,
in polynomial time, whether μ′ is also a partial solution for P over D such that
μ � μ′ and μ′ �� μ (condition (2)). If this is the case, then the algorithm returns
true since μ is not a maximal partial solution for P .

To complete the proof, we show that EVALUATION is coNP-hard for well-
designed graph patterns. We provide here a simple polynomial-time reduction
from the complement of the 3-COLORABILITY problem for graphs. An instance
of 3-COLORABILITY is an undirected graph G = (N , E), and the problem is to
verify whether there exists a function f : N → {0, 1, 2} such that, for every
(u, v) ∈ E it holds that f (u) �= f (v). If such a function exists for G, then we say
that G is 3-colorable. It is well known that 3-COLORABILITY is an NP-complete
problem [Garey and Johnson 1979].

In the reduction we use a fixed dataset.

D = {(a, b, a), (0, c, 1), (0, c, 2), (1, c, 0), (1, c, 2), (2, c, 0), (2, c, 1)}
Let G = (N , E) be an undirected graph and assume that N = {1, 2, . . . , n} and
E = {e1, e2, . . . , em} ⊆ N × N . First, we construct a graph pattern PG such that
[[PG]]D �= ∅ if and only if G is 3-colorable. For every k ∈ [1, m], define a triple pat-
tern tk as (?X i, c, ?X j) if ek = (i, j). Now, let PG = (t1 AND t2 AND · · · AND tm).
It is straightforward to prove that there is a mapping μ ∈ [[PG]]D if and only if
G is 3-colorable. Consider now the well-designed graph pattern

P = ((?X , b, ?X) OPT PG).

It is easy to see that mapping μ = {?X → a} is in[P]]D if and only if[PG]]D = ∅.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:29

Therefore, we have that μ = {?X → a} is in [[P]]D if and only if G is not
3-colorable.

In the hardness part of the previous proof, we use a pattern including only
AND and OPT operators. Thus, we also have the following result.

COROLLARY 4.8. EVALUATION is coNP-complete for well-designed graph pat-
tern expressions constructed by using only AND and OPT operators.

The characterization of the evaluation of well-designed graph pat-
terns in Proposition 4.5 can be extended to patterns in UNION nor-
mal form. For a well-designed pattern in UNION normal form P =
(P1 UNION P2 UNION · · · UNION Pn), a mapping μ, and a dataset D, it holds
that μ ∈ [[P]]D if and only if μ is a maximal partial solution (with respect to �)
for some Pi (1 ≤ i ≤ n). Then the evaluation problem for well-designed patterns
in UNION normal form is still in coNP: To test whether μ is not in [[P]]D, we
only have to check whether μ is not a partial solution for every Pi (condition (1)
in the proof of Theorem 4.6), and for every i such that this test fails, we have to
guess a mapping μi that shows that μ is not a maximal partial solution for Pi

(condition (2) in the proof of Theorem 4.6). Thus, we have the following corollary.

COROLLARY 4.9. EVALUATION is coNP-complete for well-designed graph pat-
tern expressions in UNION normal form.

4.2 Optimization of Well-Designed Patterns

Due to the evident similarity between certain operators of SPARQL and rela-
tional algebra, a natural question is whether the classical results of normal
forms and optimization for relational algebra are applicable in the SPARQL
context. The answer is not straightforward, at least for the case of optional
patterns and its relational counterpart, the left-outer join. The classical re-
sults about outer-join query reordering and optimization by Galindo-Legaria
and Rosenthal [1997] are not directly applicable in the SPARQL context be-
cause they assume constraints on the relational queries that are rarely sat-
isfied in SPARQL. The first and most problematic issue is the assumption on
predicates used for joining/outer-joining relations to be null-rejecting [Galindo-
Legaria and Rosenthal 1997]. A predicate p is null-rejecting if it evaluates
to false (or undefined) whenever a null value is used in p. In SPARQL, those
predicates are implicit in the variables that graph patterns share and, by the
definition of compatible mappings, they are never null-rejecting. In fact, people
who have developed algorithms for translating SPARQL queries into relational
algebra and SQL queries (e.g. Cyganiak [2005]) have used NULL to represent un-
bound variables, IS NULL in predicates for joining/outer-joining, and COALESCE
for merging the values of different columns into a single column. These fea-
tures are explicitly prohibited in Galindo-Legaria and Rosenthal [1997] since
they may imply a violation of the null-rejecting requirement (see the related
work for further discussion on these topics). Since the application of classical
results is not straightforward, it would be desirable to develop specific tech-
niques in the SPARQL context. In what follows, we show that the property of

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:30 • J. Pérez et al.

being well designed has important consequences for the study of normalization
and optimization for SPARQL.

PROPOSITION 4.10. Let P1, P2, and P3 be graph pattern expressions and R a
built-in condition. Consider the rewriting rules.

((P1 OPT P2) FILTER R) −→ ((P1 FILTER R) OPT P2) (7)

(P1 AND (P2 OPT P3)) −→ ((P1 AND P2) OPT P3) (8)

((P1 OPT P2) AND P3) −→ ((P1 AND P3) OPT P2) (9)

Let P be a UNION-free well-designed pattern, and assume that P ′ is a pattern
obtained from P by applying either rule (7), or rule (8), or rule (9). Then P ′ is a
UNION-free well-designed pattern equivalent to P.

PROOF. It is straightforward to prove that the application of rules (7), (8),
and (9) preserve the property of being well designed. Thus, we only show here
that the application of these rules does not affect the evaluation of the pattern.

Rule (7). We show that [[((P1 OPT P2) FILTER R)]]D =
[[((P1 FILTER R) OPT P2)]]D for every dataset D. We show first that
[[((P1 OPT P2) FILTER R)]]D ⊆ [[((P1 FILTER R) OPT P2)]]D. Let μ be a
mapping in [[((P1 OPT P2) FILTER R)]]D. Then μ ∈ [[(P1 OPT P2)]]D and
μ |= R. We need to consider two cases: (a) μ = μ1 ∪μ2 for compatible mappings
μ1 ∈ [[P1]]D and μ2 ∈ [[P2]]D, and (b) μ ∈ [[P1]]D and μ is not compatible with
any mapping μ2 ∈ [[P2]]D. Consider first case (b). We have that μ ∈ [[P1]]D,
μ |= R, and μ is not compatible with any mapping μ2 ∈ [[P2]]D, which imply
that μ ∈ [[((P1 FILTER R) OPT P2)]]D. Consider now case (a). We know
that μ1 ∪ μ2 |= R (since μ = μ1 ∪ μ2 and μ |= R). Next we show that also
μ1 |= R, and then μ = μ1 ∪ μ2 ∈ [[((P1 FILTER R) OPT P2)]]D. Given that
((P1 OPT P2) FILTER R) is well designed, if a variable ?X occurs in R and in
P2, then ?X also occurs in P1. Moreover, ?X occurs in every pattern O � P1,
and then, by Claim 4.4, it holds that ?X ∈ dom(μ1) for every μ1 ∈ [[P1]]D. We
conclude that, for every ?X such that ?X ∈ var(R) and ?X ∈ dom(μ2), it holds
that ?X ∈ dom(μ1). Therefore, from μ1 ∪ μ2 |= R, we obtain that μ1 |= R.

We show now that [[((P1 FILTER R) OPT P2)]]D ⊆
[[((P1 OPT P2) FILTER R)]]D. Let μ be a mapping in
[[((P1 FILTER R) OPT P2)]]D. We need to consider two cases: (a) μ = μ1 ∪ μ2

for compatible mappings μ1 ∈ [[(P1 FILTER R)]]D and μ2 ∈ [[P2]]D, and
(b) μ ∈ [[(P1 FILTER R)]]D and μ is not compatible with any mapping
μ2 ∈ [[P2]]D. Consider first case (b). We have that μ ∈ [[P1]]D, μ is not
compatible with any mapping μ2 ∈ [[P2]]D and μ |= R, which imply that
μ ∈ [[((P1 OPT P2) FILTER R)]]D. Consider now case (a). We know that
μ1 ∈ [[P1]]D and μ1 |= R. Next we show that it is also the case that μ |= R, and,
thus, μ ∈ [[((P1 OPT P2) FILTER R)]]D. As in the previous part of the proof,
using the fact that the pattern ((P1 OPT P2) FILTER R) is well designed and
Claim 4.4, it can be shown that, for every variable ?X such that ?X ∈ var(R)
and ?X ∈ dom(μ2), it holds that ?X ∈ dom(μ1). Then given that μ1 and μ2 are
compatible and μ1 |= R, we conclude that μ1 ∪ μ2 |= R and, thus, μ |= R.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:31

Rule (8) We show that [[(P1 AND (P2 OPT P3))]]D = [[((P1 AND P2) OPT P3)]]D

for every dataset D. We show first that [[(P1 AND (P2 OPT P3))]]D ⊆
[[((P1 AND P2) OPT P3)]]D. Let μ be a mapping in [[(P1 AND (P2 OPT P3))]]D.
Then, μ = μ1∪μ′ for compatible mappings μ1 ∈ [[P1]]D and μ′ ∈ [[(P2 OPT P3)]]D.
We need to consider two cases: (a) μ′ ∈ [[(P2 AND P3)]]D, and (b) μ′ ∈ [[P2]]D

and μ′ is not compatible with any mapping μ3 ∈ [[P3]]D. In case (a), we ob-
tain that μ = μ1 ∪ μ′ ∈ [[(P1 AND (P2 AND P3))]]D, and, therefore, μ ∈
[[((P1 AND P2) OPT P3)]]D. In case (b), given that μ′ ∈ [[P2]]D, we obtain that
μ = μ1 ∪ μ′ ∈ [[(P1 AND P2)]]D. Furthermore, given that μ′ is not compati-
ble with any mapping μ3 ∈ [[P3]]D, we have that μ is not compatible with any
mapping μ3 ∈ [[P3]]D, and, thus, μ ∈ [[((P1 AND P2) OPT P3)]]D.

We show now that [[((P1 AND P2) OPT P3)]]D ⊆ [[(P1 AND (P2 OPT P3))]]D.
Let μ be a mapping in [[(P1 AND P2) OPT P3))]]D. We need to consider two
cases: (a) μ ∈ [[((P1 AND P2) AND P3)]]D, and (b) μ ∈ [[(P1 AND P2)]]D and for
every μ3 ∈ [[P3]]D, μ is not compatible with μ3. In case (a), we obtain that μ ∈
[[(P1 AND (P2 AND P3))]]D and, thus, μ ∈ [[(P1 AND (P2 OPT P3))]]D. In case (b),
we have that μ = μ1 ∪μ2 for compatible mappings μ1 ∈ [[P1]]D and μ2 ∈ [[P2]]D,
and μ = μ1 ∪μ2 is not compatible with any mapping μ3 ∈ [[P3]]D. Next we show
that μ2 is not compatible with any mapping μ3 ∈ [[P3]]D, which implies that
μ2 ∈ [[(P2 OPT P3)]]D and, therefore, μ = μ1 ∪ μ2 ∈ [[(P1 AND (P2 OPT P3))]]D.
Let μ3 ∈ [[P3]]D. Given that μ = μ1 ∪ μ2 is not compatible with μ3, we have
that either μ2 is not compatible with μ3, or μ1 is not compatible with μ3. If μ2

is not compatible with μ3, then there is nothing to prove. Thus, assume that
μ1 is not compatible with μ3. Then there exists a variable ?X such that ?X ∈
dom(μ1), ?X ∈ dom(μ3), and μ1(?X) �= μ3(?X). This last statement implies that
?X ∈ var(P1) and ?X ∈ var(P3). Given that pattern (P1 AND (P2 OPT P3)) is
well designed, and given that ?X ∈ var(P1) and ?X ∈ var(P3), we obtain that
?X ∈ var(P2). Furthermore, we know that for every pattern O � P2, it is the
case that ?X ∈ var(O), otherwise we would obtain a contradiction with the fact
that (P1 AND (P2 OPT P3)) is well designed. Hence, by applying Claim 4.4,
we conclude that ?X ∈ dom(μ2). Thus, given that ?X ∈ dom(μ1), μ1 and μ2 are
compatible mappings and μ1(?X) �= μ3(?X), we obtain that μ2 is not compatible
with μ3. That was to be shown.

Rule (9) Follows from rule (8) and the commutativity of the AND operator.

It is worth mentioning that the previous rules are not applicable to
nonwell-designed graph patterns. For example, consider dataset D =
{(1, a, 1), (2, a, 2), (3, a, 3)} and nonwell-designed pattern

P = ((?X , a, 1) AND ((?Y , a, 2) OPT (?X , a, 3))).

The evaluation of P results in the empty set of mappings. If we apply rule (8)
to P , we obtain pattern P ′ = (((?X , a, 1) AND (?Y , a, 2)) OPT (?X , a, 3)). The
evaluation of P ′ results in the set {{?X → 1, ?Y → 2}} and, thus, we have that
[[P]]D �= [[P ′]]D.

We say that a UNION-free graph pattern P is in OPT normal form if either:
(1) P is constructed by using only the AND and FILTER operators, or (2) P =
(O1 OPT O2), with O1 and O2 patterns in OPT normal form. For example,

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:32 • J. Pérez et al.

consider a pattern:

P = ((((t1 AND t2) FILTER R1) OPT (t3 OPT ((t4 FILTER R2) AND t5)))

OPT (t6 FILTER R3)),

where every ti is a triple pattern, and every R j is a built-in condition. Then P is
in OPT normal form. The following theorem shows that for every well-designed
graph pattern, an equivalent pattern in OPT normal form can be efficiently
obtained.

THEOREM 4.11. For every UNION-free well-designed pattern P, an equiva-
lent pattern in OPT normal form can be obtained after O(|P |2) applications of
rules (7) through (9).

PROOF. Let α1, α2, . . . , αk be an enumeration of the subpatterns of P of the
form either (P1 AND P2), or (P1 FILTER R), or (P1 OPT P2). For instance, let
P be pattern

((((t1 OPT t2) AND (t3 AND (t4 AND (t1 OPT t2))))) FILTER R),

where t1, t2, t3, t4 are triple patterns and R is a built-in condition.
Then the following sequence is an enumeration of the subpatterns of P
of the form mentioned before: α1 = (t1 OPT t2), α2 = (t1 OPT t2),
α3 = (t4 AND (t1 OPT t2)), α4 = (t3 AND (t4 AND (t1 OPT t2))), α5 =
(((t1 OPT t2) AND (t3 AND (t4 AND (t1 OPT t2))))), and α6 = P . Consider,
for every subpattern α of the form (O1 OPT O2), a measure d (α) defined as
follows: d (α) is the number of patterns β of the form either (Q1 AND Q2), or
(Q1 FILTER R), such that α is a subpattern of β in P . In other words, d (α) rep-
resents the number of AND and FILTER operators in a traversal of the parse
tree of P from α to the root. In the preceding example, d (α1) = 2 and d (α2) = 4.

For the entire pattern P , define measure D(P) as the sum of the mea-
sures d (α) for every OPT subpattern α of P . In the example previous, we
have that D(P) = 6. By a simple induction argument, it can be shown that
P is in OPT normal form if and only if D(P) = 0. Also notice that d (α)
is linear in the size of P , and then, measure D(P) is quadratic in the size
of P .

Now, the application of every one of the rules (7) through (9) to a pattern
P decreases D(P). Specifically, if P ′ is obtained from P by applying one of the
rules (7) through (9), then D(P ′) < D(P). From this last argument plus the fact
that D(P) is quadratic in the size of P , we conclude that a pattern P
 such that
P ≡ P
 and D(P
) = 0, can be obtained from P after O(|P |2) applications of
rules (7) through (9). This concludes the proof of the theorem.

The application of rules (7) through (9) may have a considerable impact in the
cost of evaluating graph patterns. One can measure this impact by analyzing
the intermediate sizes of the sets of mappings produced when evaluating a
pattern. By the semantics of the OPT operator, when evaluating an expression
of the form (P1 OPT P2) over a dataset D, the number of mappings obtained is
at least the number of mappings obtained when evaluating P1 over D. In other
words, the application of the OPT operator never implies a reduction in the size

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:33

of the intermediate results in the evaluation of a graph pattern expression. In
contrast, it is clear that operators AND and FILTER may imply a reduction in
the size of intermediate results. Thus, for optimization purposes, it would be
convenient to perform all the AND and FILTER operations first, delaying the
OPT operations to the last step of the evaluation. A pattern in OPT normal form
has its operators ordered in a way that the bottom-up evaluation of the pattern
follows exactly this strategy: All AND and FILTER operations are executed
prior to the execution of the OPT operations.

5. RELATED WORK

As we mentioned before, this article is an extended and revised version of Pérez
et al. [2006a]. Our first goal in Pérez et al. [2006a] was to introduce a formal
semantics for SPARQL. At the time when Pérez et al. [2006a] was published,
there were two main proposals for the semantics of graph pattern expressions.
The first was an operational semantics, consisting essentially in the execution
of a depth-first traversal of parse trees of graph patterns, and the use of the
intermediate results to avoid some computations. At that time, this approach
was followed by ARQ [ARQ 2006] (a language developed by HPLabs), and by
the W3C when evaluating graph pattern expressions containing nested option-
als [Seaborne 2006]. For instance, the computation of the mappings satisfying
(A OPT (B OPT C)) was done by first computing the mappings that match A,
then checking which of these mappings match B, and for those who match B
checking whether they also match C [Seaborne 2006]. The second approach,
compositional in spirit and the one advocated in Pérez et al. [2006a], extended
classical conjunctive query evaluation [Gutierrez et al. 2004], and was based on
a bottom-up evaluation of parse trees of graph pattern expressions, borrowing
notions of relational algebra evaluation [Cyganiak 2005; Harris and Shadbolt
2005] plus some additional features.

Our second goal in Pérez et al. [2006a] was to study some fundamental prop-
erties of the compositional semantics proposed in that paper. In particular, we
provided in Pérez et al. [2006a] some complexity bounds for the evaluation
problem for graph pattern expressions, and we compared our compositional se-
mantics with the depth-first traversal semantics mentioned earlier. In fact, the
notion of well-designed pattern was proposed in Pérez et al. [2006a] as a simple
condition under which the semantics mentioned before coincide.

Currently, the official specification of SPARQL [Prud’hommeaux and
Seaborne 2008], endorsed by the W3C, formalizes a semantics based on our
work [Pérez et al. 2006a, 2006b; Arenas et al. 2007]. Thus, the motivation of
this article is different from the motivation of Pérez et al. [2006a]. In the first
place, a more thorough analysis of the complexity of the evaluation problem for
graph pattern expressions is given in this article. Special attention is paid to the
proofs of the complexity lower bounds, which were not provided in Pérez et al.
[2006a]. These proofs help in identifying cases where graph pattern expressions
are difficult to evaluate. In the second place, since graph patterns tend to satisfy
the well-designed condition introduced in Pérez et al. [2006a], in this article we
study the complexity of the evaluation problem for this class of graph pattern

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:34 • J. Pérez et al.

expressions. In particular, we prove that the evaluation problem for well-
designed graph pattern expressions is coNP-complete. It should be noticed that
no complexity bounds for this problem were provided in Pérez et al. [2006a]. The
coNP upper bound shows that the notion of well-designed pattern is a promis-
ing direction for further research, as these expressions can be evaluated more
efficiently than general graph patterns (assuming that coNP �= PSPACE). In
fact, in this article we also show that well-designed patterns are suitable for
reordering and optimization, and provide several rewriting rules whose ap-
plication may have a considerable impact in the cost of evaluating SPARQL
queries.

In the rest of this section, we continue with the review of the related work.
In Section 5.1, we discuss previous work on the semantics of SPARQL. In Sec-
tion 5.2, we consider other proposals for query languages for RDF. Finally, in
Section 5.3, we consider the related work on complexity and optimization of
classical query languages.

5.1 Semantics of SPARQL

Cyganiak [2005] presents a relational model of SPARQL. The author uses mod-
ified versions of the standard relational algebra operators (join, left-outer join,
projection, selection, etc.) to model SPARQL SELECT clauses. The central idea
in Cyganiak [2005] is to make a correspondence between SPARQL queries
and relational algebra queries over a single relation Triple(subject, predicate,
object), that stores RDF graphs in the form of triples. The author discusses
some drawbacks of using classical relational algebra operators to define the
semantics of SPARQL and identifies cases in which his formalization does not
match the SPARQL official specification. Additionally, a translation system be-
tween SPARQL and SQL is also outlined in Cyganiak [2005]. The system exten-
sively use COALESCE and IS NULL/IS NOT NULL operators to accurately resemble
some SPARQL features. With different motivations, but similar philosophy,
Harris and Shadbolt [2005] present an implementation of a simple fragment of
SPARQL in a relational database engine. They use relational algebra operators
similar to the ones used in Cyganiak [2005].

As noted in Cyganiak [2005], the treatment of null values is the major prob-
lem encountered when trying to specify the semantics of SPARQL using stan-
dard relational algebra. Since mappings must be modeled as relational tuples,
null values need to be used to model unbounded variables in graph pattern
evaluation. Zaniolo introduces in Zaniolo [1984] a formal algebra to deal with
null values in relational databases. The author interprets null values as stand-
ing for “no information,” as opposed with the more complex “unknown” and
“nonexistent” interpretations [Imielinski and Lipski 1984]. In Zaniolo [1984],
a relation with null values is defined as a set of tuples of not necessarily the
same arity that possibly contain null values in some of its components. The au-
thor then defines operations over those relations with nulls that generalize the
standard relational algebra operations. The treatment of null values in Zaniolo
[1984] matches the treatment of unbounded variables in SPARQL. Thus, the
operators over sets of mappings introduced in Section 2 can be easily modeled
within the framework of Zaniolo [1984]. Although the formalization in Zaniolo

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:35

[1984] can be used to define the SPARQL semantics, we follow a simplified ap-
proach formalizing only what is strictly necessary in the SPARQL context, and
thus simplifying the subsequent study of the language.

de Bruijn et al. [2005] study the semantics of the conjunctive fragment of
SPARQL (graph patterns using only the AND operator, plus SELECT clause) from
a logical point of view. It slightly differs from the definition in Prud’hommeaux
and Seaborne [2008] on the issue of blank nodes. Although de Bruin et al.’s
definition allows blank nodes in graph patterns, it is similar to our definition
(where blanks nodes are not allowed in patterns). In their approach, blanks
play the role of “nondistinguished” variables, that is, variables that are not
presented in the answer.

In Polleres [2007], Polleres studies the problem of translating SPARQL
queries into Datalog queries. Based on our previous work [Pérez et al.
2006a], the author proposes three different semantics: (1) bravely-joining,
(2) cautiously-joining, and (3) strictly-joining semantics. These semantics
are obtained by strengthening the notion of compatible mappings, and thus
strengthening the conditions under which unbound variables are joined.
Strictly-joining semantics essentially resembles the inner-join condition of SQL,
allowing a simple translation into Datalog. Bravely-joining semantics coincide
with the semantics presented in Section 2. To translate bravely-joining seman-
tics into Datalog, a special predicate BOUND(·) is needed to test whether a
variable is bounded to a nonnull value. As a result, the translation generates
a program with disjunctions in the bodies of the rules that extensively uses
¬BOUND(·). The program is then transformed into Datalog by using standard
techniques [Polleres 2007].

5.2 Semantics of RDF Query Languages

There are several works on the semantics of RDF query languages which tan-
gentially touch the issues addressed in the definition of SPARQL. Gutierrez
et al. [2004] discuss the basic issues of the semantics and complexity of a
conjunctive query language for RDF, which underlies the basic evaluation ap-
proach of SPARQL. Haase et al. [2004] present a comparison of functionali-
ties of pre-SPARQL query languages, many of which served as inspiration for
the constructs of SPARQL. Another in-depth comparison of RDF query lan-
guages (including SPARQL), in terms of their constructs and evaluation meth-
ods, can be found in Furche et al. [2006]. Nevertheless, neither Haase et al.
[2004] nor Furche et al. [2006] presents formal semantics for the languages
compared.

The idea of having an algebraic query language for RDF is not new. In fact,
there are several proposals. Chen et al. [2005] present a set of operators for
manipulating RDF graphs, Frasincar et al. [2004] study algebraic operators on
the lines of the RQL query language [Karvounarakis et al. 2002], and Robert-
son [2004] introduces an algebra of triadic relations for RDF. Although these
authors show the power of having an algebraic approach for querying RDF,
it is not clear how to model SPARQL using the frameworks introduced by
them.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:36 • J. Pérez et al.

Finally, Serfiotis et al. [2005] study RDFS query fragments using a logical
framework, presenting results on the classical database problems of contain-
ment and minimization of queries for a model of RDFS. They concentrate on
patterns using the RDFS vocabulary of classes and properties in conjunctive
queries, making the overlap with our fragment and approach almost empty.

5.3 Complexity and Optimization

A natural question is whether some of the complexity lower bounds of Section 3
can be obtained by first mapping a known query language Q into SPARQL
graph patterns, and then using complexity lower bounds for the evaluation of
Q-queries. The first natural candidate is relational algebra/SQL. To the best
of our knowledge, there is no complexity study of the fragment of relational
algebra/SQL including outer-join, outer-union, and IS NULL (IS NOT NULL) in
join, outer-join, and selection predicates. Thus, we cannot directly obtain com-
plexity bounds from relational algebra. Although the complexity of query-
ing incomplete databases has been extensively studied for different settings
and interpretations of null values (refer to Abiteboul et al. [1991]), to the
best of our knowledge, there is no complexity study for the fragment of the
relational algebra with null values introduced in Zaniolo [1984] that corre-
sponds to the fragment of SPARQL studied in this article. Another natural
question is whether one can obtain the PSPACE-hard lower bounds of The-
orems 3.3 and 3.4 directly from the lower bound for the evaluation of first-
order logic queries. The answer again is negative since, in the fragment of
SPARQL we consider, we do not allow projection and then existential quan-
tification cannot be simulated. On the contrary, the complexity bounds for
SPARQL presented in Section 3 can be used to derive results for extensions (or
fragments) of known query languages (e.g., relational algebra/SQL plus outer-
join and outer-union, and the relational algebra with null values presented in
Zaniolo [1984]).

We now discuss previous work related with well-designed graph patterns.
The notion of join-tree [Beeri et al. 1983] has been widely used for study-
ing optimization of conjunctive queries. Let T = (N , E) be a tree such
that every node a ∈ N is labeled with set of variables V (a). Tree T is
a join-tree if and only if, for every path (a1, a2, . . . , an) in T , and every
?X ∈ V (a1) ∩ V (an), it holds that ?X ∈ V (ai) for every i ∈ {1, . . . , n}. It
turns out that the join-tree condition can be used to test whether a SPARQL
graph pattern is well designed. Consider the parse tree TP of a UNION-
free graph pattern P . For example, Figure 1(a) shows the parse tree of P =
(((?X , a, ?Y) OPT (?Y , b, ?Z)) AND ((?X , c, ?Y) OPT ((?Z , d , ?V) FILTER ?V =
0))). Now, consider tree JP constructed by recursively labeling the nodes of TP

as follows. For a subpattern P ′ of P , its label V (P ′) is:

(1) var(P ′) if P ′ is either a triple pattern t or a built-in condition R;

(2) V (P1) ∪ V (P2) if P ′ = (P1 AND P2);

(3) V (P1) ∪ V (R) if P ′ = (P1 FILTER R);

(4) V (P1) if P ′ = (P1 OPT P2).

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:37

Fig. 1. Trees TP and JP for pattern P = (((?X , a, ?Y) OPT (?Y , b, ?Z)) AND ((?X , c, ?Y) OPT

((?Z , d , ?V) FILTER ?V = 0))). Tree JP is not a join-tree and, hence, P is not well designed.

It is straightforward to show that a pattern P is well designed if and only
if P is safe and its associated labeled tree JP is a join-tree. For example,
Figure 1(b) shows the labeled tree JP for the pattern P of Figure 1(a). JP is not
a join-tree since both paths from the node with label {?Y , ?Z } to the nodes with
label {?Z , ?V }, violate the condition for join trees. Therefore, P is not well de-
signed. The well-designed condition for graph patterns was initially motivated
by a variation of this join-tree condition. We decide to keep Definition 4.1 for
simplicity.

Although the notions of well-designed pattern and join-tree are related,
the optimization results for the evaluation of relational join queries based
on join-trees cannot be used for general well-designed patterns. The opti-
mization of relational join queries via join-trees rests in the fact that joins
are associative and commutative, and thus queries can be reordered in sev-
eral ways without affecting the output. These properties are violated by well-
designed patterns since these patterns are constructed by using AND, OPT,
and FILTER operators, and, for example, OPT is neither associative nor
commutative.

There is an important amount of work on the problem of optimizing the eval-
uation of conjunctive queries [Chandra and Merlin 1977; Yannakakis 1981;
Beeri et al. 1983; Gottlob et al. 2001] (see also Abiteboul et al. [1995]). All
these results can be almost directly used to optimize the evaluation of the con-
junctive fragment of SPARQL graph patterns, that is, patterns constructed by
using only the AND operator. As we have mentioned, the OPT operator can be

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:38 • J. Pérez et al.

simulated by using the relational algebra/SQL outer-join operator plus some
additional features to deal with null values. What is not straightforward in
this case is the application of classical outer-join optimization results to OPT
graph patterns. The classical results about outer-join query reordering and op-
timization by Galindo-Legaria and Rosenthal [1997] are not directly applicable
in the SPARQL context. In Galindo-Legaria and Rosenthal [1997], two restric-
tions are imposed on queries containing outer-joins: (a) all predicates used for
joining and outer-joining relations must be null-rejecting, (b) predicates used in
outer-joins must mention only two relations. A predicate p is null-rejecting if it
evaluates to false (or undefined) whenever a null value is used in p. For example,
a predicate like A = B OR A IS NULL, used in the WHERE clause of an SQL query,
is not null-rejecting since it evaluates to true if A is a null value. Another type of
queries that violate the null-rejecting condition are “queries that coalesce val-
ues from multiple sources into a single column and then compute predicates on
the coalesced column” [Galindo-Legaria and Rosenthal 1997]. Both IS NULL and
COALESCE are explicitly prohibited in Galindo-Legaria and Rosenthal [1997], al-
though both features are needed to accurately map SPARQL into relational
algebra/SQL. Therefore, in general, SPARQL queries violate restriction (a) just
given. Regarding restriction (b), the predicates used for outer-joining graph
patterns in SPARQL are implicit in the variables that the patterns share, and
then several parts of a graph pattern could be mentioned when performing
an outer-join. In Bhargava et al. [1995], Braghava et al. relax restriction (b)
by using hypergraphs to study the reorderability of outer-join queries. How-
ever, the restriction of predicates being null-rejecting is still imposed in Bhar-
gava et al. [1995]. Then a possible way to optimize SPARQL queries is to map
SPARQL graph patterns into relational algebra/SQL queries, check whether
some of the IS NULL and COALESCE operations generated are not necessary or
do not violate the null-rejection condition, and then apply the optimization
rules in Galindo-Legaria and Rosenthal [1997] and Bhargava et al. [1995].
In our work, we follow an alternative approach by developing specific rules
for reordering and optimizing the fragment of well-designed SPARQL graph
patterns.

6. CONCLUSIONS

The query language SPARQL has been in the process of standardization since
2004. In this process, the semantics of the language has played a key role.
A formalization of a semantics is beneficial on several grounds: help identify
relationships among the constructors that stay hidden in the use cases, identify
redundant and contradicting notions, study the expressiveness and complexity
of the language, help in optimization, etc.

In this article, we provide such a formal semantics for the graph pattern-
matching facility, which is the core of SPARQL. We isolate a fragment which is
rich enough to present the main issues and favor a good formalization. Further-
more, we study several properties of SPARQL. We present a thorough analysis
of the complexity of the evaluation of graph patterns showing, among other re-
sults, that unlimited use of optional parts in graph patterns could lead to high

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:39

complexity, namely PSPACE. In this respect, we introduce the class of well-
designed graph patterns, where the query evaluation problem can be solved
more efficiently. This class is defined by imposing a simple and natural syntac-
tic restriction on optional parts. We also prove that well-designed patterns are
suitable for reordering and optimization, and provide several rewriting rules
whose application may have a considerable impact in the cost of evaluating
SPARQL queries.

APPENDIX

A. PROOFS

A.1 Proof of Lemma 3.7

(1) To prove that ((P1 UNION P2) OPT P3)) ≡
((P1 OPT P3) UNION (P2 OPT P3)), we consider two cases.
First, we show that for every RDF dataset D, we have that
[[((P1 UNION P2) OPT P3)]]D ⊆ [[((P1 OPT P3) UNION (P2 OPT P3))]]D. Let
D be an RDF dataset and assume that μ ∈ [[((P1 UNION P2) OPT P3)]]D.
Then either (a) there exist μ1 ∈ [[(P1 UNION P2)]]D and μ2 ∈ [[P3]]D such
that μ1 and μ2 are compatible and μ = μ1∪μ2, or (b) μ ∈ [[(P1 UNION P2)]]D

and there is no μ3 ∈ [[P3]]D such that μ and μ3 are compatible. In case
(a), if μ1 ∈ [[P1]]D, then μ = μ1 ∪ μ2 ∈ [[(P1 OPT P3)]]D. In case (a), if
μ1 ∈ [[P2]]D, then μ = μ1 ∪ μ2 ∈ [[(P2 OPT P3)]]D. In case (b), if μ ∈ [[P1]]D,
then μ ∈ [[(P1 OPT P3)]]D since μ is not compatible with any μ3 ∈ [[P3]]D. In
case (b), if μ ∈ [[P2]]D, then μ ∈ [[(P2 OPT P3)]]D since μ is not compatible
with any μ3 ∈ [[P3]]D. In any of the previous cases, we conclude that
μ ∈ [[((P1 OPT P3) UNION (P2 OPT P3))]]D. Second, we show that for every
RDF dataset D, we have that [[((P1 OPT P3) UNION (P2 OPT P3))]]D ⊆
[[((P1 UNION P2) OPT P3))]]D. Let D be an RDF dataset and assume that
μ ∈ [[((P1 OPT P3) UNION (P2 OPT P3))]]D. Without loss of generality, we
assume that μ ∈ [[(P1 OPT P3)]]D. Then either (a) there exists μ1 ∈ [[P1]]D

and μ2 ∈ [[P3]]D such that μ1 and μ2 are compatible and μ = μ1 ∪ μ2,
or (b) μ ∈ [[P1]]D and there is no μ3 ∈ [[P3]]D such that μ and μ3 are
compatible. In case (a), we have that μ1 ∈ [[(P1 UNION P2)]]D and, hence,
μ = μ1 ∪ μ2 ∈ [[((P1 UNION P2) OPT P3)]]D. In case (b), we have that
μ ∈ [[(P1 UNION P2)]]D and, therefore, μ ∈ [[((P1 UNION P2) OPT P3)]]D

since μ is not compatible with any μ3 ∈ [[P3]]D. This concludes
the proof of the equivalence of ((P1 UNION P2) OPT P3) and
((P1 OPT P3) UNION (P2 OPT P3)).

(2) Clearly, for every RDF dataset D and built-in condition R, we have
that {μ ∈ [[P1]]D | μ |= R} ⊆ {μ ∈ [[(P1 UNION P2)]]D | μ |= R}
and {μ ∈ [[P2]]D | μ |= R} ⊆ {μ ∈ [[(P1 UNION P2)]]D | μ |= R}
since [[P1]]D ⊆ [[(P1 UNION P2)]]D and [[P2]]D ⊆ [[(P1 UNION P2)]]D.
Thus, we only need to show that for every RDF dataset D and built-
in condition R, it is the case that [[((P1 UNION P2) FILTER R)]]D ⊆
[[((P1 FILTER R) UNION (P2 FILTER R))]]D. Assume that μ ∈

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:40 • J. Pérez et al.

[[((P1 UNION P2) FILTER R)]]D. Then μ ∈ [[(P1 UNION P2)]]D and
μ |= R. Thus, if μ ∈ [[P1]]D, then μ ∈ [[(P1 FILTER R)]]D, and if
μ ∈ [[P2]]D, then μ ∈ [[(P2 FILTER R)]]D. Therefore, we conclude that
μ ∈ [[((P1 FILTER R) UNION (P2 FILTER R))]]D.

A.2 Proof of Claim 4.4

The proof is by induction on the structure of pattern Q . If Q is a triple pattern,
then the property trivially holds. For the inductive step, first suppose that Q =
(Q1 AND Q2). Since ?X ∈ var(Q ′) for every Q ′ � Q , we have that ?X ∈
var(Q ′

1) for every Q ′
1 � Q1, or ?X ∈ var(Q ′

2) for every Q ′
2 � Q2. Assume,

without loss of generality, that ?X ∈ var(Q ′
1) for every Q ′

1 � Q1. Then by
induction hypothesis, we have that ?X ∈ dom(μ1) for every μ1 ∈ [[Q1]]D, from
which we conclude that ?X ∈ dom(μ) for every μ ∈ [[(Q1 AND Q2)]]D. Second,
suppose that Q = (Q1 OPT Q2). Since ?X ∈ var(Q ′) for every Q ′ � Q , and
since Q1 � Q , we have that ?X ∈ var(Q ′

1) for every Q ′
1 � Q1. By induction

hypothesis, ?X ∈ dom(μ) for all μ ∈ [[Q1]]D and, hence, by the definition of
OPT, we conclude that ?X ∈ dom(μ) for every μ ∈ [[(Q1 OPT Q2)]]D. Third,
suppose that Q = (Q1 FILTER R). Since Q is safe, if ?X ∈ var(Q) then ?X ∈
var(Q1), and, thus, we have that ?X ∈ var(Q ′

1) for every Q ′
1 � Q1. By induction

hypothesis, we have that ?X ∈ dom(μ) for every μ ∈ [[Q1]]D and thus, given
that [[(Q1 FILTER R)]]D ⊆ [[Q1]]D, we conclude that ?X ∈ dom(μ) for every
μ ∈ [[(Q1 FILTER R)]]D.

A.3 Proof of Claim 4.7

To prove the claim, we show that the following properties hold for every mapping
μ, pattern P , and dataset D. Let Rμ = {P ′ � P | dom(μ) = var(P ′)}.
(a) If Rμ is not empty, then there exists an element Pμ ∈ Rμ such that Pμ � P ′

for every P ′ ∈ Rμ, that is, Pμ is a minimum (with respect to �) element of
Rμ.

(b) Deciding whether Rμ is empty can be done in polynomial time in the size
of P and μ. Moreover, if Rμ is not empty, pattern Pμ can be constructed in
polynomial time in the size of P and μ.

(c) Mapping μ is a partial solution for P over D if and only if Rμ �= ∅ and
μ ∈ [[and(Pμ)]]D.

Using these properties and Theorem 3.1, it is straightforward to see that we
can test in polynomial time whether μ is a partial solution for P over D: we
first check whether Rμ is not empty, and if this is the case, we construct Pμ and
check in polynomial time (Theorem 3.1) whether μ ∈ [[and(Pμ)]]D.

Throughout the proof, we use the following terminology. Given a pattern
P , we say that α1, . . . , αk is an OPT-enumeration for P if α1, . . . , αk is an
enumeration of all the subpatterns of P of the form (P1 OPT P2). For exam-
ple, if P = ((t1 OPT t2) AND (t2 OPT (t1 OPT t2))), then α1 = (t1 OPT t2),
α2 = (t2 OPT (t1 OPT t2)) and α3 = (t1 OPT t2) is an OPT-enumeration
for P . Fix an OPT-enumeration α1, . . . , αk for a pattern P . We say that
I ⊆ {1, . . . , k} is consistent with α1, . . . , αk if for every i, j ∈ {1, . . . , k}, if i ∈ I ,

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:41

α j = (P1 OPT P2) and αi is a subpattern of P2, then j ∈ I . Given I ⊆ {1, . . . , k}
consistent with α1, . . . , αk , define PI as a reduction of P obtained by replac-
ing every subpattern α j = (P1 OPT P2) by P1 if j ∈ {1, . . . , k} \ I . Intuitively,
the indexes in I represent the OPT subpatterns of P that were not reduced
when obtaining PI . Following the previous example, the set {2, 3} is consis-
tent with the OPT-enumeration α1 = (t1 OPT t2), α2 = (t2 OPT (t1 OPT t2))
and α3 = (t1 OPT t2) of P = ((t1 OPT t2) AND (t2 OPT (t1 OPT t2))),
and P{2,3} = (t1 AND (t2 OPT (t1 OPT t2))). Similarly, we have P{1,2} =
((t1 OPT t2) AND (t2 OPT t1)), and P{1} = ((t1 OPT t2) AND t2). We note that
{1, 3} is not consistent with the previous OPT-enumeration.

For every P ′ � P , there exists a unique IP ′ ⊆ {1, . . . , k} such that P ′ = PIP ′ .
Furthermore, given two reductions P1 and P2 of P , we have that P1 � P2 if
and only if IP1

⊆ IP2
, and, if P1 � P2 denotes the maximal (with respect to �)

element of {P ′ | P ′ � P1 and P ′ � P2}, then IP1�P2
= IP1

∩ IP2
. For instance,

in the example of the previous paragraph we have that P{2,3} � P{1,2} = P{2} =
(t1 AND (t2 OPT t1)).

We now proceed with the proof. Let D be a dataset, P a well-designed pattern,
and μ a mapping, and let Rμ and Pμ be as defined earlier.

(a) For the sake of contradiction, assume that Rμ �= ∅ and Rμ does not have
a minimum element with respect to �. Then given that Rμ �= ∅ and Rμ

is finite, we know that Rμ has at least two distinct minimal elements
P1, P2 ∈ Rμ, that is, for every P ′ ∈ Rμ, we have that P ′ � P1 and P ′ � P2.
In particular, we have that P1 � P2 and P2 � P1. Next we show that
var(P1 � P2) � var(P1). On the contrary, assume that var(P1 � P2) = var(P1).
Then given that var(P1�P2) = var(P1) = dom(μ), we have that P1�P2 ∈ Rμ,
which contradicts the minimality of P1 since P1 � P2 � P1 (given that
P1 � P2 � P2 and P1, P2 are distinct minimal elements of Rμ). In the
same way, we conclude that var(P1 � P2) � var(P2). Therefore, given that
var(P1) = dom(μ) = var(P2), there exists a variable ?X such that ?X ∈
dom(μ) and ?X /∈ var(P1�P2). Hence, if α1, . . . , αk is an OPT-enumeration for
P , then there exist i, j ∈ {1, . . . , k} such that (1) αi = (O1 OPT O2), i ∈ IP1

,
i �∈ IP1�P2

, ?X ∈ var(O2) and ?X /∈ var(O1), and (2) α j = (Q1 OPT Q2),
j ∈ IP2

, j �∈ IP1�P2
, ?X ∈ var(Q2) and ?X /∈ var(Q1). Given that i ∈ IP1

and i �∈ IP1�P2
, we have that i �∈ IP2

(since IP1�P2
= IP1

∩ IP2
), and

given that j ∈ IP2
and j �∈ IP1�P2

, we have that j �∈ IP1
. Thus, we con-

clude that i �= j . Next we show that the existence of i and j leads to a
contradiction.

First note that α j is not a subpattern of αi: (1) α j is not a subpattern of
O1 since ?X /∈ var(O1) and ?X ∈ var(Q2), and (2) α j is not a subpattern of
O2 since IP2

is consistent with the OPT-enumeration of P and j ∈ IP2
but

i /∈ IP2
. Moreover, we also have that αi is not a subpattern of α j : (1) αi is not

a subpattern of Q1 since ?X /∈ var(Q1) and ?X ∈ var(O2), and (2) αi is not
a subpattern of Q2 since IP1

is consistent with the OPT-enumeration of P
and i ∈ IP1

but j /∈ IP1
. Therefore, we only need to consider the case where

αi is not a subpattern of α j and α j is not a subpattern of αi. In this case, we
conclude that P is not well designed since αi = (O1 OPT O2), ?X ∈ var(O2),

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:42 • J. Pérez et al.

?X �∈ var(O1) and ?X ∈ var(α j), which contradicts the hypothesis of the
claim. This concludes the proof of part (a).

(b) In order to prove this part of the claim, we present an algorithm that has
as input a pattern P and a mapping μ, and returns Pμ if Rμ is not empty,
and null otherwise. To simplify the exposition of the algorithm, we need
to introduce some terminology. Let α1, . . . , αk be an OPT-enumeration for
P , and assume that the pattern αi = (P1 OPT P2) is such that P2 does not
contain OPT operators. Then we denote by P−i the reduction of P obtained
by replacing (P1 OPT P2) by P1. Notice that for such an i, the set {1, . . . , k}\
{i} is consistent with α1, . . . , αk , and P−i = P{1,... ,k}\{i}.

Algorithm 2. FindMin (μ: mapping, P : pattern)

P
 := P
let E := α1, . . . , αk be an OPT-enumeration for P

while there exists αi = (P1 OPT P2) in E, with P2 not containing OPT operators

and dom(μ) ⊆ var((P
)−i) do
P
 := (P
)−i

update E to be an OPT-enumeration for P

if var(P
) = dom(μ) return P

else return null

Algorithm 2 shows the procedure FindMin that given a pattern P and a
mapping μ, returns Pμ if Rμ is not empty, and null otherwise. To prove
the correctness of FindMin, we show first that, if Rμ �= ∅, the property
Pμ � P
 is an invariant of the while loop. It is straightforward to prove
that before the first iteration the property holds. Now, assume that Pμ � P

and that α1, . . . , αk is an OPT-enumeration for P
. Let αi = (P1 OPT P2)
be an OPT subpattern of P
 such that P2 does not contain OPT operators
and dom(μ) ⊆ var((P
)−i). We have to show that Pμ � (P
)−i. First note
that, since Pμ � P
 and dom(μ) ⊆ var((P
)−i) we obtain that Pμ �= P

(otherwise Pμ is not minimum in Rμ) and, thus, Pμ � P
. Moreover, from
Pμ � P
 we know that there exists a set Iμ � {1, . . . , k} consistent with
α1, . . . , αk such that Pμ = (P
)Iμ

. Now we show by contradiction that Pμ �
(P
)−i. Assume then that Pμ �� (P
)−i. Thus, since Pμ � P
 and P2 does
not contain OPT operators, we have that P2 is necessarily a subpattern of
Pμ. This last fact implies that i ∈ Iμ. Consider now the set Iμ \ {i} and the
pattern (P
)Iμ\{i}. For the sake of simplicity, and slightly abusing notation,
call (Pμ)−i to the pattern (P
)Iμ\{i}. It is clear that (Pμ)−i � Pμ, and then
by the minimality of Pμ in Rμ, we have that var((Pμ)−i) � dom(μ). Thus
we have that there exists a variable, say ?X , such that ?X ∈ dom(μ) =
var(Pμ), ?X ∈ var(P2), but ?X /∈ var((Pμ)−i). Now, since we are assuming
that dom(μ) ⊆ var((P
)−i), we have that ?X ∈ var((P
)−i). Moreover, since
?X ∈ var((P
)−i), ?X /∈ var((Pμ)−i), and Pμ = (P
)Iμ

, there necessarily
exists j ∈ {1, . . . , k} such that j /∈ Iμ and α j = (O1 OPT O2), ?X ∈ var(O2)
but ?X /∈ var(O1). Next we show that the existence of j leads to our desired
contradiction.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:43

First note that αi is not a subpattern of α j : (1) αi is not a subpattern of
O1 since ?X /∈ var(O1) and ?X ∈ var(P2), and (2) αi is not a subpattern
of O2 since Iμ is consistent with the OPT-enumeration of P
 and j /∈ Iμ.
Moreover, since P2 does not contain OPT operators, we also have that α j is
not a subpattern of P2. Therefore, we only need to consider two cases.
—α j is a subpattern of P1. In this case. we conclude that P
 is not well

designed since ?X ∈ var(O2), ?X �∈ var(O1) and ?X ∈ var(P2).
—α j is not a subpattern αi, and αi is not a subpattern of α j . In this case, we

conclude that P
 is not well designed since ?X ∈ var(O2), ?X �∈ var(O1)
and ?X ∈ var(αi).

Since P
 � P , in both cases we obtain a contradiction with the fact that P
is well designed.
We have shown that Pμ � P
 is an invariant provided that Rμ �= ∅. We
now use this invariant to prove the correctness of FindMin. We show first
that, when the loop halts, if Rμ �= ∅ then P
 = Pμ. On the contrary, assume
that P
 �= Pμ. Given that Rμ �= ∅, we know that the invariant Pμ � P

holds. Thus, given that P
 �= Pμ, we have that Pμ � P
 which contradicts
the termination of the loop. We show now that when the loop halts, if
Rμ = ∅ then dom(μ) �= var(P
). On the contrary, assume that dom(μ) =
var(P
), then P
 ∈ Rμ which contradicts the fact that Rμ = ∅. We have
shown that, when the loop halts, if Rμ �= ∅ then P
 = Pμ, and if Rμ = ∅
then dom(μ) �= var(P
). Then FindMin returns Pμ if Rμ �= ∅, and returns
null otherwise.

(c) (⇐) If Rμ �= ∅ and μ ∈ [[and(Pμ)]]D, then μ is a partial solution for P since
Pμ � P .
(⇒) Assume that μ is a partial solution for P . Then there exists P ′ � P
such that μ ∈ [[and(P ′)]]D. Thus, since P and P ′ are safe we have that
var(P ′) = dom(μ) and, hence, Rμ is not empty. Therefore, from (a) we have
that Rμ has a minimum (with respect to �) element Pμ. In particular, we
have that Pμ � P ′, which implies that [[and(P ′)]]D ⊆ [[and(Pμ)]]D, since
var(P ′) = dom(μ) = var(Pμ), the only operators in and(P ′) and and(Pμ) are
AND and FILTER, and every filter condition in and(Pμ) is also present in
and(P ′). We deduce that μ ∈ [[and(Pμ)]]D.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their careful reading of the ar-
ticle, and for providing many useful comments. We would also like to thank
M. Schmidt for many helpful comments on earlier versions of this article.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.

ABITEBOUL, S., KANELLAKIS, P., AND GRAHNE, G. 1991. On the representation and querying of sets

of possible worlds. Theor. Comput. Sci. 78, 1, 158–187.

ANGLES, R. AND GUTIERREZ, C. 2008. The expressive power of sparql. In Proceedings of the Inter-
national Semantic Web Conference (ISWC), 114–129.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

16:44 • J. Pérez et al.

ARENAS, M., GUTIERREZ, C., PARSIA, B., PÉREZ, J., POLLERES, A., AND SEABORNE, A. 2007. SPARQL—

Where are we? Current state, theory and practice. Full day tutorial, European Semantic Web
Conference.

ARQ, 2006. A SPARQL processor for Jena, version 1.3 March 2006, Hewlett-Packard Develop-

ment Company. http://jena.sourceforge.net/ARQ.

BEERI, C., FAGIN, R., MAIER, D., AND YANNAKAKIS, M. 1983. On the desirability of acyclic database

schemes. J. ACM 30, 3, 479–513.

BHARGAVA, G., GOEL, P., AND IYER, B. 1995. Hypergraph based reorderings of outer join queries

with complex predicates. In Proceedings of the SIGMOD International Conference of Management
of Data, 304–315.

CHANDRA, A. AND MERLIN, P. 1977. Optimal implementation of conjunctive queries in relational

data bases. In Proceedings of the Symposium on the Theory of Computing (STOC), 77–90.

CHEN, L., GUPTA, A., AND KURUL, E. 2005. A semantic-aware RDF query algebra. In Proceedings
of the International Conference on Management of Data (COMAD).

CYGANIAK, R. 2005. A relational algebra for sparql. Tech. rep. HPL-2005-170, HP-Labs.

http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

DE BRUIJN, J., FRANCONI, E., AND TESSARIS, S. 2005. Logical reconstruction of normative RDF. In

Proceedings of the OWL—Experiences and Directions Workshop (OWLED).
DURST, M. AND SUIGNARD, M. 2005. Rfc 3987, internationalized resource identifiers (IRIS).

http://www.ietf.org/rfc/rfc3987.txt.

FRASINCAR, F., HOUBEN, G.-J., VDOVJAK, R., AND BARNA, P. 2004. RAL: An algebra for querying RDF.

World Wide Web 7, 1, 83–109.

FURCHE, T., LINSE, B., BRY, F., PLEXOUSAKIS, D., AND GOTTLOB, G. 2006. RDF querying: Language

constructs and evaluation methods compared. In Reasoning Web, 1–52.

GALINDO-LEGARIA, C. A. AND ROSENTHAL, A. 1997. Outerjoin simplification and reordering for query

optimization. ACM Trans. Datab. Syst. 22, 1, 43–73.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman.

GOTTLOB, G., LEONE, N., AND SCARCELLO, F. 2001. The complexity of acyclic conjunctive queries. J.
ACM 48, 3, 431–498.

GUTIERREZ, C., HURTADO, C. A., AND MENDELZON, A. O. 2004. Foundations of semantic Web

databases. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS),
95–106.

HAASE, P., BROEKSTRA, J., EBERHART, A., AND VOLZ, R. 2004. A comparison of RDF query languages.

In Proceedings of the International Semantic Web Conference (ISWC), 502–517.

HARRIS, S. AND SHADBOLT, N. 2005. SPARQL query processing with conventional relational

database systems. In Proceedings of the WISE Workshops, 235–244.

IMIELINSKI, T. AND LIPSKI, W. 1984. Incomplete information in relational databases. J. ACM 31, 4,

761–791.

KARVOUNARAKIS, G., ALEXAKI, S., CHRISTOPHIDES, V., PLEXOUSAKIS, D., AND SCHOLL, M. 2002. RQL:

A declarative query language for RDF. In Proceedings of the International Conference on World
Wide Web (WWW), 592–603.

KLYNE, G., CARROLL, J. J., AND MCBRIDE, B. 2004. Resource description framework (RDF): Concepts

and abstract syntax. W3C recommendation. http://www.w3.org/TR/rdf-concepts/.

MANOLA, F. AND MILLER, E. 2004. RDF primer, W3C recommendation.

http://www.w3.org/TR/rdf-concepts/.

MARIN, D. 2004. A formalization of RDF (applications de la logique á la sémantique du Web). Tech.

rep., École Polytechnique, Universidad de Chile. Department of Computer Science, Universidad

de Chile, TR/DCC-2006-8.

PÉREZ, J., ARENAS, M., AND GUTIERREZ, C. 2006a. Semantics and complexity of SPARQL. In Pro-
ceedings of the International Semantic Web Conference (ISWC). 30–43.

PÉREZ, J., ARENAS, M., AND GUTIERREZ, C. 2006b. Semantics of SPARQL. Tech. rep., Universidad

de Chile. Department of Computer Science, Universidad de Chile, TR/DCC-2006-17.

POLLERES, A. 2007. From SPARQL to rules (and back). In Proceedings of the International Con-
ference on World Wide Web (WWW), 787–796.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

Semantics and Complexity of SPARQL • 16:45

PRUD’HOMMEAUX, E. AND SEABORNE, A. 2008. SPARQL query language for RDF. W3C recommen-

dation. http://www.w3.org/TR/rdf-sparql-query/.

ROBERTSON, E. L. 2004. Triadic relations: An algebra for the semantic Web. In Proceedings of the
International Workshop on Semantic Web and Databases (SWDB), 91–108.

SCHMIDT, M., MEIER, M., AND LAUSEN, G. 2008. Foundations of SPARQL query optimization.

http://arxiv.org/abs/0812.3788.

SEABORNE, A. 2006. Personal communication.

SERFIOTIS, G., KOFFINA, I., CHRISTOPHIDES, V., AND TANNEN, V. 2005. Containment and minimization

of RDF/S query patterns. In Proceedings of the International Semantic Web Conference (ISWC),
607–623.

VARDI, M. Y. 1982. The complexity of relational query languages (extended abstract). In Proceed-
ings of the Symposium on the Theory of Computing (STOC), 137–146.

YANNAKAKIS, M. 1981. Algorithms for acyclic database schemes. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), 82–94.

ZANIOLO, C. 1984. Database relations with null values. J. Comput. Syst. Sci. 28, 1, 142–166.

Received April 2008; revised December 2008; accepted June 2009

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 16, Publication date: August 2009.

