
Hate Speech Detection is Not as Easy as You May Think:
A Closer Look at Model Validation

Aymé Arango
aarango@dcc.uchile.cl

Department of Computer Science
University of Chile

IMFD, Chile

Jorge Pérez
jperez@dcc.uchile.cl

Department of Computer Science
University of Chile

IMFD, Chile

Barbara Poblete
bpoblete@dcc.uchile.cl

Department of Computer Science
University of Chile

IMFD, Chile

ABSTRACT
Hate speech is an important problem that is seriously affecting the
dynamics and usefulness of online social communities. Large scale
social platforms are currently investing important resources into au-
tomatically detecting and classifying hateful content, without much
success. On the other hand, the results reported by state-of-the-art
systems indicate that supervised approaches achieve almost perfect
performance but only within specific datasets. In this work, we
analyze this apparent contradiction between existing literature and
actual applications.We study closely the experimental methodology
used in prior work and their generalizability to other datasets. Our
findings evidence methodological issues, as well as an important
dataset bias. As a consequence, performance claims of the current
state-of-the-art have become significantly overestimated. The prob-
lems that we have found are mostly related to data overfitting and
sampling issues. We discuss the implications for current research
and re-conduct experiments to give a more accurate picture of the
current state-of-the art methods.

CCS CONCEPTS
•Computingmethodologies→Machine learning approaches;
Cross-validation; • Information systems→ Social tagging.
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1 INTRODUCTION
Automatic detection of hate speech has become an increasingly
relevant research topic in the past few years [11, 26, 27]. The world-
wide adoption of online social networks has created an explosion
in the volume of text-based social exchanges. Social media com-
munications can strongly influence public opinion and some social
platforms are said to have enough social capital to influence the
outcome of democratic processes [10]. Therefore, correctly assess-
ing hate speech and other forms of online harassment has become
a pressing need, to guarantee non-discriminatory access to digital
forums, among other things [9].

Large social media providers, such as Facebook and Twitter have
mechanisms for users to report hate speech. However, this approach
requires efficient automatization techniques for the evaluation of
such content, which does not appear to be simple: user accounts that
constantly post potentially dangerous hateful expressions have in-
correctly been deemed as harmless, and blatantly offensive content
can go unreported for long periods of time [20]. Given the enor-
mous volume of content posted daily in these platforms, human
editorial approaches have become unfeasible. Hence, the incorrect
assessment of toxic content can be most likely attributed to the
lack of reliable mechanisms for its automatic detection. Twitter, for
example, has publicly declared its commitment to “serve healthy
conversations” and “to help increase the collective health, openness,
and civility of public conversation, and to hold ourselves publicly
accountable towards progress.”1. Among other things, Twitter has
even announced funding initiatives for academic research on this
topic.2

Despite the apparent difficulty of the hate speech detection prob-
lem evidenced by social-media providers, current state-of-the-art
approaches reported in the literature show near-perfect perfor-
mance. Within-dataset experiments on labeled hate-speech datasets
using supervised learning achieve F1 scores above 93% [1, 2, 6, 11].
Nevertheless, there are only a few studies towards determining how
generalizable the resulting models are, beyond the data collection
upon which they were built on, nor on the factors that may affect
this property [18]. Furthermore, recent literature that surveys cur-
rent work also views the state of the art under a more conservative
and cautious light [11, 18].

In this work, we take a close look at the experimental methodol-
ogy utilized for achieving the results described by the state-of-the-
art methods. We focus on two methods reporting the best results
for hate-speech detection over Twitter data: the work by Badjatiya

1https://twitter.com/jack/status/969234275420655616
2https://blog.twitter.com/official/en_us/topics/company/2018/measuring_healthy_
conversation.html
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et al. [2] (93% F1 –WWW 2017), and by Agrawal and Awekar [1]
(94% F1 micro and macro-average F1 – ECIR 2018). At first, our
intention was to replicate these findings to then measure how these
models would perform on similar yet different datasets. However, a
closer look at the papers and the code provided by the authors for
replicating experiments, revealed details in their implementation
which can produce data overfitting. In both cases there were very
subtle issues that are not directly apparent from the description
of the methods nor from the companion code. For the case of the
work by Badjatiya et al. [2], the issue is produced in the way that
the authors compute features from the input data. In the work by
Agrawal and Awekar [1] the issue is produced by how the authors
perform the oversampling of the minority classes.

To study the effects of the aforementioned methodological issues
that we observed in prior work, we replicated these methods exactly
as presented by the authors. This was done to ensure we could
obtain their reported performance using their code and the same
data. Next, we made corrections to avoid data-overfitting and re-
evaluated the generalization error of such approaches.

As a result, we were able to give a more accurate picture of the
actual performance of current state-of-the art methods (at least
for the particular datasets in which they are trained and tested).
Our re-evaluation indicated a significant drop in the main metrics.
In particular, the performance of both methods measured in F1
dropped from over 90% (Table 1) to below 80% (Table 2). In addition,
we found that this performance dropped even further to below 50%
F1 (Table 3) when the resulting models were applied to different
datasets (even if these were from the same domain).

We were able to attribute the poor cross-dataset generalization
of these models to overfitting due to bias in the benchmark dataset.
In particular, one of the most widely used datasets, that of Waseem
and Hovy [30], which contains thousands of labelled hate-speech
messages, has a strong user bias. Most of the hateful messages were
generated by only a few users: This is, 65% of the messages marked
as hateful (“sexist” or “racist”) in Waseem and Hovy’s dataset [30]
were produced by only 2 users. Since this bias is not evident from the
dataset description, prior works using this data [1, 2, 6, 13, 18, 23, 32]
have trained on the same sets of users on which they have later
evaluated their models, involuntarily inducing a user-overfitting
effect. To prove this, we empirically show that when previously
unseen users are sampled for testing, the performance of state-of-
the-art models drops below 44% macro-average F1 for the same
dataset (Table 4). We finally try to alleviate this issue by enriching
the Waseem and Hovy [30] dataset with a different yet similar
dataset [8] restricting the maximum number of tweets per user.
We show that the generalization of the methods increases when
the user distribution is more carefully taken into account (Tables 5
and 6).

In summary, our work shows that although state-of-the-art meth-
ods report impressive performances [1, 2], hate-speech detection
is far from solved. We provide an explanation for this by expos-
ing some methodological issues, but also by showing the impact
of some inherent biases in the datasets that are publicly available
and widely used [30]. In light of our findings we believe that it is
important to pay careful attention to experimental evaluation and
how predictive models generalize. In addition, it becomes urgent to

disclose more information about existing datasets, in particular, in-
formation about user distribution, to allow researchers to improve
their sampling techniques.

Most of the code and datasets that we used are already available
online and we mention each source when describing the specific
datasets and methods. Nevertheless, for reproducibility issues, we
made available a centralized repository including all the code and
datasets3 used in this paper.

2 RELATEDWORK
The field of hate-speech automatic detection and classification has
evolved rapidly in the past years. Interest has increased as social
media and social platforms have grown in terms of influence and
user adoption. Similarly to the field of sentiment analysis, auto-
matic hate speech identification research has stemmed from two
types of approaches: those based on the use of lexicons and those
based on machine learning. In this literature overview we focus on
machine learning approaches for detecting hate speech in social
media textual content. Most work focuses on hate speech detection
for Twitter messages, also known as tweets, which are short text
messages. Thus, we also focus our review on works that use this
type of data.

Several previous works have tried a diverse range of classic
machine-learning strategies [5, 8, 19, 30]. These usually have an
initial feature-extraction phase, such as computing Term-Frequency
Inverse-Document-Frequency scores or Bag-of-Words vectors, but
also combining it with meta-information such as information from
the user account and information about the network structure (fol-
lowers, replies, etc.) [5, 22, 28]. These features are then used as
input for methods such as Logistic Regression, SVM, or Random
Forest classifiers. Surveys on the topic [11, 26, 27] provide a nice
general view on these methods for Twitter and other domains.

More recently, Deep Learning methods have attracted interest
to hate-speech detection [1, 2, 13, 18, 23, 32]. As opposed to more
traditional methods, Deep-Learning methods are able to automat-
ically learn representations of the input data that can be used as
features to classify it [15]. One distinctive characteristic of Deep
Learning approaches is that they solve the problems end-to-end
using the labelled data for feature extraction and classification at
the same time [15]. Architectures such as Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), in particular
Long Short-Term Memory networks (LSTMs) and Gated Recurrent
Units (GRUs), are nowadays the methods of choice for several Nat-
ural Language Processing tasks [14]. In the context of hate speech,
Gambäck and Sikdar [13] and Park and Fung [23] use CNNs for
classification achieving near 80% F1 over the Waseem and Hovy’s
dataset [30]. Similar results are reported by Zhang et al. [32] using
an architecture that combines CNNs and GRUs. The best results
are by Badjatiya et al. [2] and Agrawal and Awekar [1] reporting
over 93% F1. Both methods are based on LSTMs (see Section 4 for a
detailed exposition of these methods).

There is some recent work on testing the generalization of the
state-of-the-art methods to other datasets and domains [1, 6, 18].
Most of this work has been focused on Deep Learning methods.
Agrawal and Awekar [1] test the performance of models trained

3https://github.com/aymeam/User_distribution_experiments



on tweets [30] classifying on Wikpedia data [31] and Formspring
data [25]. The authors show that transfer learning from Twitter to
the two other domains performs poorly achieving less than 10% F1.
In a similar study, Dadvar and Eckert [6] perform transfer learn-
ing from Twitter to a dataset of Youtube comments [7] showing a
performance of 15% F1. Gröndahl et al. [18] present a comprehen-
sive study reproducing several state-of-the-art models. Specially
important for us is the experiment transferring Badjatiya et al.’s
model [2] trained on the Waseem and Hovy’s dataset [30] to two
other similarly labeled tweet datasets [8, 32]. Even in this case the
performance drops significantly, obtaining 33% and 47% F1 in those
sets. This is a 40+% drop from the 93% F1 reported by Badjatiya et al.
[2]. From these results,Gröndahl et al. [18] draw as a conclusion
that model architecture is less important than the type of data and
labeling criteria being used. In this paper our results are coherent
with those of Gröndahl et al. [18]. However, we take our research a
step further by investigating why this issue occurs.

3 DATASETS
One of the most important aspects for supervised learning is the
availability of labeled data. Therefore, we deem it necessary to pay
close attention to how the data used for hate speech analysis is
composed. We note that, due to the sensitive matter of hate-speech
content most of the existing datasets contain only text and labels,
but purposefully omit message and user identifiers. However, as we
argue in Section 6, for the particular task of hate-speech detection,
the knowledge of whether a certain user generated a set of messages
can be of critical importance. With the tweet identifiers one is able
to, for example, have access to the user distribution on the hate
vs non-hate texts. Next, we detail the datasets that we use in our
current work along with relevant properties obtained from our data
exploration process (some properties were not evident from the
original dataset papers).

Waseem and Hovy [30]. In most of our reported experiments
we use the public annotated dataset constructed by Waseem and
Hovy [30]. Although there is no standard dataset for hate-speech
detection, Waseem and Hovy’s dataset is one of the most popular
ones4. It is used in several hate-speech detection studies [1, 2, 6,
13, 18, 23, 32] and it is consistently mentioned as an important
source in the surveys about the subject [11, 26, 27]. This dataset is
composed of 16K tweet identifiers5 annotated as “sexist”, “racist”
and “non-hate”. We recovered the tweets using the Twitter API.6
At the time of recovering (late 2018), some of the tweets had been
eliminated and some users had been suspended. Therefore, the
dataset we obtained was composed of 14,949 tweets, of which 4,839
are hateful tweets (racist or sexist) and the rest (10,110) are labelled
as non-hateful.

As we have mentioned (and as we show in Section 6), knowing
the user distribution is a decisive feature when training classifiers.
For the Waseem and Hovy’s dataset only 1,590 users generates all
the data, from which 491 generate all the “sexist” tweets, and only
8 users generate all the “racist” ones. Moreover, just a few users
generate almost all the hateful data. For the “sexist” label, there is a

4189 citations according to Google Scholar as of January 2019.
5http://github.com/zeerakw/hatespeech
6https://developer.twitter.com/en/docs/api-reference-index.html

single user that generates 40% of all tweets, and for “racist” label,
there is a single user that generates more that 90% of all tweets.

Davidson et al. [8]. Davidson et al.’s dataset [8] was constructed
combining an automatic search for tweets containing words in a
hate-speech lexicon and an annotation using CrowdFlower workers.
The resulting set is composed by 24,802 tweets annotated in three
classes: hate speech, offensive but not hate speech, or neither offen-
sive nor hate speech. Although the original version of this dataset
contains only the text of each tweet and its label, the authors were
kind enough to provide us with additional information in order for
us to identify which tweets are produced by the same users.7

SemEval dataset [4]. We consider the SemEval 2019 dataset for
the “Multilingual detection of hate speech against immigrants and
women in Twitter” task [4]. This dataset is composed of 9,000 tweets,
3,783 of which are labelled as hateful and 5,217 as not hateful. The
publicly available version of this dataset only provides message
text and labels, no message identifiers nor user identifiers were
provided. We note that as we did for the Davidson et al. [8] dataset,
we wrote to the owners of the dataset requesting any information
that could help know which messages were produced by a same
user. However, in this exchange the SemEval team declined our
request on account of user privacy concerns under GDPR,8 but
more importantly, on the basis that hate-speech detection should
be focused on language and not users.9

In our current work, we do not argue against user privacy preser-
vation measures nor compliance under federal regulations. Nev-
ertheless, we argue in favor of the scientific value of knowing if
a certain hate speech message has been generated by the same
source. In this sense, we show empirical evidence in Section 6 that
language is not necessarily the only focus that research on this
topic should have.

4 REPLICATING THE STATE OF THE ART
In this section we take a closer look at the methodologies for hate
speech detection introduced by Badjatiya et al. [2] and by Agrawal
and Awekar [1]. According to our literature review and surveys
on the topic, discussed in Section 2, these approaches constitute
the state of the art for which we can attempt reproducibility, in the
sense that they provide code and use available datasets. Overall, we
provide a detailed description of the experimental methodologies
used by the authors of these works. In particular, we include many
details that are not explicit in the original papers for these methods.
We obtained these details after careful analysis of the source codes
provided as companionmaterial for the original publications. Hence,
as a means of performing a sanity check, in this section we include
reproducibility experiments using the same datasets as in prior
works, obtaining almost identical results to those of the authors. The
purpose of this analysis is to discuss in Section 5 the methodological
issues that we identify from our study of these approaches and their
implications.

7This data was obtained only for research purposes through personal communication
with the authors.
8General Data Protection Regulation https://eugdpr.org/
9https://groups.google.com/forum/#!topic/semeval2019-task5-hateval/wIxx6jWlJng
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We note that both of the aforementioned works use Deep Neural
Network architectures, hence this section assumes certain back-
ground knowledge since it is not possible for us to cover many
details on this topic at this point. Nevertheless, for more informa-
tion Goodfellow et al.’s book [15] provides a detailed description
of each of the mentioned architectures. We also refer the reader
to the excellent survey by Goldberg [14] that introduced several
of the needed concepts specifically tailored for Natural Language
Processing.

4.1 Badjatiya et al. [2], WWW 2017
Badjatiya et al. [2] experimented with various traditional machine-
learning models, deep neural models and the combination of both.
The best results that they reported was a 93% F1.10 This result was
obtained by using a combination of a Recurrent Neural Network to
construct word embeddings, and a decision-tree method that uses
these embeddings to classify a piece of text. A word embedding is
a dense-vector representation (vector of real values) of a word or
token [16, 21, 24]. The main idea is that semantically-similar words
are assigned to vectors that are close to each other in the vector
space [21]. Word embeddings are a crucial piece in the current
performance of Deep Learning methods for Natural Language Pro-
cessing [14]. Although word embeddings are usually learned in an
unsupervised way from big corpora, one can also learn embeddings
specifically tailored for some task if labelled data is available. This
last strategy is the one used by Badjatiya et al. [2]. They divided
their method in two phases:

Phase 1. The authors first use an architecture composed of an
Embedding Layer (dimension=200), followed by a Long Short-Term
Memory (LSTM) network (dimension=50), and finally a fully con-
nected layer with 3 neurons plus a Softmax activation to produce
the probabilities for classes “sexist”, “racist” and “non-hate”. This
architecture is trained end-to-end using the labelled tweets with
cross-entropy as loss function and the Adam optimizer with the
default learning rate for 10 epochs. Between the layers they use
Dropout (probabilities 0.25 and 0.5, respectively) for regularization.
Although this architecture can be directly used for the task of pre-
dicting the class of an input text, the authors use it only as a feature
extractor for Phase 2 (i.e., the embeddings learned in the Embedding
Layer are used as a feature space for the next phase).

Phase 2. Consider an input tweet t as the sequence of words t =
(w1,w2, . . . ,wk ). The authors used the Embedding Layer trained
in the previous phase to produce a sequence of vectors Et =
(xw1 , xw2 , . . . , xwk ), and then averaged them to obtain a single
vector Et . They then, use a Gradient-Boosted [12] Decision Tree
(GBDT) that has as input the vectors Et for every tweet t , and train
it using the labels for every tweet.

We were able to reproduce Badjatiya et al.’s reported perfor-
mance (see Table 1), following closely their paper description [2]
and the companion code11. We first use the whole dataset to train
the embeddings in Phase 1. Then we train Phase 2 with a 10-fold
cross validation. In Table 1 we report precision, recall and F1 for
10In [2] the authors did not mention if the F1 reported is a micro or macro average.
We include both metrics in our experiments.
11https://github.com/pinkeshbadjatiya/twitter-hatespeech

Table 1: Replication of results of the state of the art [1, 2].

Method Class Prec. Rec. F1

Badjatiya et al. [2] Neither 95.5 96.8 96.1
Emb. over all dataset Racist 94.5 93.5 94.0

Sexist 91.2 87.5 89.3

Micro avg. 94.6 94.6 94.6
Macro avg. 93.7 92.6 93.1

Agrawal and Awekar [1] Neither 95.1 91.7 93.4
Oversamp. all dataset Racist 94.9 96.0 95.4

Sexist 92.5 97.0 94.6

Micro avg. 94.4 94.4 94.4
Macro avg. 94.2 94.9 94.5

every class, and also a micro and macro average for all classes. We
obtained a micro-average F1 score of 94%, and a macro-average
F1 of 93%. The results are consistent with the results reported by
the authors [2]. We note that in this particular setting the embed-
dings were obtained using the complete labeled dataset. We discuss
this aspect of the methodology in more detail in Section 5, since it
induces overfitting, as features selection must be performed after
separating training and testing data.

4.2 Agrawal and Awekar [1], ECIR 2018
Agrawal and Awekar [1] also experimented with several models.
Similar to Badjatiya et al. [2] they observed that deep neural models
outperformed other methods. They reported results for Convolu-
tional networks, LSTMs, Bidirectional LSTMs (BiLSTM), and BiL-
STMs with Attention [3]. For all architectures the results reported
were similar [1], thus we only reproduce the results for BiLSTMs.
The detailed architecture is almost exactly the same as Phase 1
in Badjatiya et al. [2] with the sequence of layers Embedding →

Recurrent→ FullyConnected → Softmax. The recurrent layer is a
BiLSTM, in particular, a set of two LSTMs layers that process the
input in both directions concatenating the outputs of both LSTMs
at each step. The authors reported their results for embeddings of
dimension 50, and both LSTMs of dimension 50 (effective dimension
100). They also used Dropout with the same probabilities as [2] and
trained their model with the Adam optimizer for 10 epochs [1].

One of the keypoints of Agrawal and Awekar [1] was the impact
of oversampling. As the authors observed, training datasets for
hate-speech detection contain only a few posts marked as “hate”,
and they claimed that the class imbalance problem can be tackled by
oversampling the class with fewest examples [1]. They started their
process by oversampling the entire dataset, even before beginning
with the cross validation process. This is counter intuitive, since
oversampling must be done only on the training data partitions
and not on the test data, otherwise the model will be overfitted
to the artificial bootstrapping result (we detail this in Section 5).
Nevertheless, we replicated their exact same process and we were
able to reproduce their reported results with 94% micro and macro-
average F1 score (see Table 1).



5 THREATS TO THE VALIDITY OF THE
STATE OF THE ART

In this section we discuss threats to the validity of the results re-
ported in prior works, which we presented in Section 4. First, in Sec-
tions 5.1 and 5.2 we detail the methodological issues that we were
able to find and how they affect the validity of the reported results.
Specifically, we show that by modifying the methodology in each
case –to avoid data overfitting problems– and then re-conducting
experiments, produces model performance to drop significantly
in both cases. Secondly, in Section 5.3 we study the validity of
the results reported in prior work when applying these models to
different datasets from the same domain.

Deep Learning methods are sensible to hyperparameter tunning
such as changing the optimization algorithm, its learning rate, or
the dimensions of layers [15]. Nevetheless in the experiments in this
section we just use the methods proposed by Badjatiya et al. [2] and
Agrawal and Awekar [1] with the same hyperparameters presented
in their papers and companion code, without doing any additional
hyperparameter search. We left as future work a detailed hyperpa-
rameter tunning to see how it further affects the performance of
the methods.

5.1 Extracting features using the entire dataset
As discussed in Section 4.1, the method of Badjatiya et al. [2] was di-
vided in two: feature extraction (Phase 1) and classification (Phase 2).
This is a typical pipeline for a supervised-learning problem. How-
ever, the methodological issue in this case is that the features in
Phase 1 are obtained by considering the complete labeled dataset.
More specifically, let T be the labelled dataset and assume that it is
divided as T = Ttrain ∪ Ttest. For the feature extraction, the whole
set Ttrain ∪ Ttest is used, while for the classification phase, the set
Ttrain is used to train the classifier, and Ttest is used to evaluate it.
Thus, when one sees the complete pipeline, the set Ttest is simulta-
neously used to train the complete architecture and also validate
it. This may lead to an artificial increase in the performance of
the model; we are underestimating the generalization error due to
overfitting.

To empirically support our claim above, we re-run the same
method proposed by [2] but this time extracting features only from
the set Ttrain (by using the LSTM-based architecture), then training
the GBDT classifier with these features over the same set Ttrain,
and reporting all the metrics over Ttest. Table 2 shows the results
for a 10-fold cross validation reporting precision, recall, and F1 for
the three classes. By only making this change, we can observe that
the metrics obtained are significantly lower than those reported in
the original paper. This is, F1 for each class decreases from 96.1 to
88.1 (Neither), 94.0 to 70.2 (Racist), and 89.3 to 60.9 (Sexist), which
implies a macro-average F1 drop of 20 points (from 93.1 to 73.1).

5.2 Oversampling before the train-test split
The main issue that we were able to identify in the experimental
design by Agrawal and Awekar [1], discussed in Section 4, is the
oversampling phase. As the authors describe in their paper they
oversampled the data from “hate” class thrice, that is, they replicated
“hate” posts 3 times in their original dataset. As their results show,
this oversampling led them to an increase from ∼ 70 F1 to more

Table 2: Replication of the results of the state-of-the-art tak-
ing into account the methodological issues mentioned in
Section 5

Method Class Prec. Rec. F1

Badjatiya et al. [2] Neither 82.3 94.7 88.1
Emb. over train set Racist 78.0 64.0 70.2

Sexist 84.5 47.8 60.9

Micro avg. 82.3 82.1 80.7
Macro avg. 81.6 68.9 73.1

Agrawal and Awekar [1] Neither 90.3 86.5 88.3
Oversamp. train set Racist 69.6 81.3 75.0

Sexist 74.0 77.4 75.5

Micro avg. 84.7 84.1 84.3
Macro avg. 78.0 81.7 79.6

than 90 F1. Taking a closer look at the companion code provided by
the authors, the pipeline for the oversample process is as follows:
(1) first they oversample the complete dataset, then they (2) split the
dataset into train-test, and finally (3) train the model (see function
run_model in the DNNs.ipynb file in the companion code12).

Methodologically, oversampling the data before the train-test
split (i.e., before cross-validation) produces model overfitting to
the resulting data. This is why oversampling should be done after
train-test data partitions are generated. To see this with numbers,
assume that we have an initial unbalanced dataset T and we first
triplicate every tweet with a “hate” label to obtain a new dataset
T ′ where the portion of “hate” and “non-hate” labels is balanced
(50%-50%). For simplicity, assume that in the obtained dataset there
are no other repeated tweets beside the ones that we replicated.
Now let us partition T ′ with a 15%-85% split into T ′

test ∪T ′
train. One

can prove (see the appendix for a detailed exposition) that for every
“hate”-labelled tweet t , the probability that t appears simultaneously
in T ′

test and T ′
train is approximately 38%. With only this observation

one can construct a trivial classifier for the tweets in the test set
as follows: for every t ∈ T ′

test, if t ∈ T ′
test ∩ T ′

train then we classify
t as “hate”, and if t ∈ T ′

test \ T
′
train then we classify t as “non-hate”.

Notice that we do not make any mistake when we classify a tweet
as “hate”, thus for the “hate” class we obtain 100% precision, but
only 38% recall. This gives us an F1-score of 55%. On the other hand,
since every “non-hate” tweet is classified correctly, then we obtain
100% recall for the “non-hate” class. Computing the precision for
this class is a bit more complicated. First note that there is a 62%
(100% − 38%) of “hate” tweets in the test set that we classify as
“non-hate”. Thus there is a total of 31% (0.62× 0.5) of the whole test
set that is missclassified as “non-hate” and a 50% that is correctly
classified. This gives us a precision of 61% (0.5/(0.5 + 0.31)) for the
“non-hate” class, and thenwe obtain an F1-score of 76%. In summary,
we have 55% F1 for “hate” and 76% F1 for “non-hate” which gives
us an average of 66% F1. This result, which is 16% over the trivial
baseline, is obtained for free just by oversampling the data.

The net effect of the oversampling performed by [1] is actually
very similar to the issue described in the previous section; there

12https://github.com/sweta20/Detecting-Cyberbullying-Across-SMPs/blob/master/
DNNs.ipynb
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Table 3: Results using the Waseem and Hovy’s dataset [30]
as training set and SemEval 2019 [4] as testing set

Method Class Prec. Rec. F1.

Badjatiya et al. [2] None 60.1 95.9 73.9
on SemEval Hateful 69.1 12.5 21.1

Micro avg. 63.8 60.8 51.6
Macro avg. 64.6 54.2 47.5

Agrawal and Awekar [1] None 59.7 93.5 72.9
on SemEval Hateful 59.5 13.2 21.6

Micro avg. 59.6 59.7 59.7
Macro avg. 59.6 53.3 47.2

is a portion of the test data that is also used to train the classifier
which may lead to an artificial increase in the performance of the
model due to overfitting to the test set.

To empirically support our claim we re-conducted the same
method proposed by Agrawal and Awekar [1] but this time making
first the train-test splitting and then oversampling the train set
before training the models. Table 2 shows the results for a 10-fold
cross validation of this model. The metrics are significantly lower
than the ones reported in the original paper [1]. This is, F1 for each
class decreases from 93.4 to 88.3 (Neither), 95.4 to 75.0 (Racist), and
94.6 to 75.5 (Sexist) which implies a macro-average F1 drop of 15
points (from 94.5 to 79.6).

5.3 Generalization to other datasets
Table 2 shows amore conservative picture of the actual performance
of the state-of-the-art methods. A natural question at this point is
how well do these models generalize to other dataset from the same
domain. To estimate this, in our next experiment we evaluate those
models –generated on the complete Waseem and Hovy dataset– on
the SemEval 2019 dataset [4] (see Section 3).

The SemEval dataset considers only two classes: “hate” vs “non-
hate”. Thus, to evaluate the Badjatiya et al. [2] and Agrawal and
Awekar [1], we consider these models as binary classifiers; when-
ever the methods classify a text as either “sexist” or “racist”, we
mark it as “hateful” (and as “None” otherwise). Table 3 shows the
results of this experiment in which we can observe that model
performance on SemEval is much lower, hence evidencing that the
models do not generalize well to new data. More noticeably, the
“hateful” class classification drops in F1 score from ∼ 70 to 21.1
for [2] and from ∼ 75 to 21.6 for Agrawal and Awekar [1].

6 THE IMPACT OF USER DISTRIBUTION ON
MODEL GENERALIZATION

Similarly to what has been reported in fake news generation in
social media [17], hate speech generation can be attributed to a
very small portion of the overall community. This creates a consid-
erable class imbalance problem, which if not taken explicitly into
account can create important data bias issues in labeled datasets.
In this sense, user distribution can have a considerable impact in
the classification results. In particular, if the tweets in the datasets
are generated by only a small number of different users, then one

could potentially reduce the hate-speech detection problem to a
user-identification problem.

For example, in theWaseem and Hovy’s dataset [30], only 20% of
the tweets has the “sexist” label, and 12% the “racist” label. Moreover,
there is a single user that generates 44% of “sexist” comments, and a
single user that generates 96% of “racist” comments. To illustrate the
effect of user bias, let’s call the 2 aforementioned users us and ur ,
respectively. Then, as a thought experiment let’s assume that there is
a method that correctly identifies the tweets produced by these two
users. Thus, one could create a trivial classifier that assigns label
“sexist” to every tweet from us , assigns label “racist” to every tweet
from ur , and assigns “non-hate” label to every other tweet. One
can prove that given the distribution of users plus the imbalance
between the classes, this simple classifier that only identifies two
users gives 87% micro and macro-average F1.

Hence, we hypothesize that users distribution is another source
of overestimation in the performance of the state-of-the-art classi-
fiers [1, 2]. In order to support our hypothesis, we conducted some
additional experiments in which the data is split into train-test
sets, such that no tweet from a same user is simultaneously in both
sets. With this type of data sampling we ensure that identifying the
author of a message is totally useless for the classification. In other
words, we ensure that the classifier does not learn a secondary
task (i.e., identifying users) instead of the task for which it is being
trained for (i.e., identifying hate speech).

Table 4 shows the results over the Waseem and Hovy’s original
dataset under this new sampling requirement. We performed three
different partitions of users in the original dataset, ensuring that
no user is repeated between train and test set, and also ensuring at
least an 85% of tweets of each class are in the train set. We report the
average metrics for the three partitions for the binary classification
problem (details on the partitions can be found in the appendix).
However, given that the original dataset is extremely skewed, when
forcing the classifier not to learn users by avoiding having the same
users in training and testing, model performance drops dramatically
(Table 4).

These results show that models trained on the Waseem and
Hovy dataset [30], can be prone to severe user overfitting (i.e., the
model learns to identify users). In light of these results, it is our
belief that to avoid user overfitting issues we must resort to less
biased datasets. This is datasets in which hate speech data has been
sampled by a better distribution of users. Hence, the Waseem and
Hovy dataset, which has been widely used, is not a good fit to solve
this problem. In the following section, we present work towads
improving this existing dataset.

6.1 Fixing the user-overfitting problem
We attempt to alleviate the user-overfitting issue by enriching the
Waseem and Hovy’s dataset [30] with the Davidson et al. dataset [8].
The whole idea is to limit the number of tweets of the most prolific
users in the “hateful” class or less represented class in order to avoid
overfitting the model to prolific users.

We re-sample the data in the Waseem and Hovy dataset by
placing a limit of at most 250 tweets per class for each user. The
resulting dataset was reduced to 5,576 tweets, 1,490 of which were
in the “hateful” class. Since, even if using this criteria we still had



Table 4: Results using partitions of the Waseem and Hovy’s
dataset [30] into train set and test set considering the user
distribution (no overlapping users between train and test
sets)

Method Class Prec. Rec. F1

Badjatiya et al. [2] None 49.6 93.4 64.3
Hateful 68.8 15.4 23.5

Micro avg. 63.8 54.1 46.1
Macro avg. 59.2 54.4 43.9

Agrawal and Awekar [1] None 47.5 98.0 63.0
Hateful 75.3 03.5 06.7

Micro avg. 62.3 48.4 35.1
Macro avg. 61.4 50.8 34.9

Table 5: Results using a combination of the datasets of
Waseem and Hovy [30] and Davidson et al. [8] with no over-
lapping users between train and test sets

Method Class Prec. Rec. F1

Badjatiya et al. [2] None 83.3 92.4 87.6
Hateful 79.5 61.4 69.3

Micro avg. 82.1 82.3 81.7
Macro avg. 81.4 76.9 78.4

Agrawal and Awekar [1] None 85.8 73.2 77.4
Hateful 70.2 80.3 74.2

Micro avg. 80.0 78.1 77.7
Macro avg. 78.0 76.7 75.8

the “hateful” class dominated by few users we enriched this existing
dataset with additional users. To achieve this we added all of the
hateful tweets from the Davidson et al. dataset (preserving the
limit of at most 250 hateful messages per user), which resulted in
an overall of 7,006 examples, 2,920 of which corresponded to the
“hateful” class.13

In Table 5 we present the results for a 10-fold cross validation
considering partitions with no overlapping users between the train
and test sets using the enriched dataset. The performance of the
model on this new dataset should provide better generalization to
previously unseen data, with a performance across datasets more
similar to that reported with cross-validation. To corroborate the
generalization of the resulting model we use our newly created
dataset to train the models proposed by Badjatiya et al. [2] and
by Agrawal and Awekar [1]. Then we evaluate these models on
previously unseen data by classifying tweets in the SemEval 2019
set. The results of this process are shown in Table 6. We can observe
that in comparison to the results reported in Table 3 the metrics
improved substantially, specially the F1 score in the “hateful” class.
This is, when we used the original (unaltered) Waseem and Hovy
dataset for training and the SemEval dataset for testing, gener-
alization for the “hateful” class was poor, with F1 score for both
models of just 21% (Table 3). Nevertheless, when training on our

13https://github.com/aymeam/User_distribution_experiments

Table 6: Results using a combination of the datasets of
Waseem and Hovy [30] and Davidson et al. [8] as train set
ensuring a maximum number of tweets per user, and the Se-
mEval 2019 dataset [4] as test set

Method Class Prec. Rec. F1

Badjatiya et al. [2] None 62.2 42.4 50.4
Hateful 44.8 64.4 52.8

Micro avg. 54.9 51.7 51.4
Macro avg. 53.5 53.4 51.6

Agrawal and Awekar [1] None 78.0 32.5 45.9
Hateful 48.4 87.3 62.3

Micro avg. 65.5 55.5 52.8
Macro avg. 63.2 59.9 54.1

newly created dataset, the same metric improves to 52% F1 for the
Badjatiya et al. method and improved to 62% for the Agrawal and
Awekar method (Table 6). The macro average F1 also improved
from 47% for both methods (Table 3) to 51% and 54% respectively
(Table 6). We stress that this improvement is obtained even with
less examples; the new dataset contains half of the examples of the
Waseem and Hovy’s original dataset (7,006 vs 14,949), but a better
user distribution. This is additional evidence supporting our hy-
pothesis that user distribution is an important factor when training
for hate-speech detection.

7 CONCLUDING REMARKS AND
FUTUREWORK

Our work shows that there is an overestimation of the performance
of current state-of-the-art approaches for hate-speech detection on
twitter. In particular, we evidence potential methodological issues
that induce data overfitting that affect the validity of the results
reported by the works that we analyzed [1, 2]. In addition, we
discuss a previously unknown issue, that of user overfitting induced
by important user bias in labeled data. In this sense, we believe that
hate speech detection is not only about language, but also about
users.

Our findings contribute to understand why these methods that
show impressive performance in their original test sets do not
generalize well to other datasets, even if new data comes from the
same domain. Both methods that we analyzed are based on Deep
Learning techniques. Deep Learningmodels present two orthogonal
issues that should be taken into consideration when using these
types of approachess: they easily overfit the data, and they are
difficult to explain [15]. This is a dangerous combination as small
issues may mislead researchers into over-optimistic conclusions. As
we show, extremely high performances should be better analyzed.

We also perform experiments designed to alleviate state-of-the-
art issues and improve model generalization. Our proposed solu-
tions show improved cross-dataset performance and better model
performance estimation, providing a more accurate take on the
state of the art.

We conclude that it is important to pay more detailed attention
to experimental evaluation and how existing methods generalize. In
particular, we believe that it is urgent to disclose more information



about user distribution in existing datasets. In this regard, we agree
with the need to preserve user privacy. However, we believe that
for the purpose of scientific investigation, at least there should be
disclosure on whether there is an important portion of messages
coming from the same users. Or even better, to produce datasets
that do not contain important user bias.

For future work, one of our goals is to do hate-speech detection
in a cross-lingual scenario. Compared to the English language, there
is considerable less resources for other languages. Thus, transfer
learning from one language to another is a line of research that
we would like to explore. For this, we believe that improving gen-
eralization of existing methods for English is an important first
step.
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A APPENDIX
A.1 Probability of overlapping tweets after

oversampling
In this section we compute the probability that a tweet from the
“hateful” class appears in both test and train set if one performs the
oversampling before the data splitting. Thus, assume that dataset
T is the union of two sets, say Thate and Tnone, and assume that one
creates the new dataset (actually, a multiset) T ′ by replicating the
data in Thate three times. That is T ′ = Thate1 ∪Thate2 ∪Thate3 ∪Tnone
where Thatei is just a copy of Thate. Now assume that one uses a
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Table 7: Partitions detail for experiments in Table 4

Partition 1 Partition 2 Partition 3

Hate None Hate None Hate None

Train 4,099 8,636 3,441 9,122 3,504 9,408
Test 740 1,474 1,398 988 1,335 702

probability p to sample data to create a test and train sets from T ′

(p for test and (1 − p) for train). Consider an arbitrary tweet t⋆ in
Thate. Since t⋆ appears three times in T ′ the probability that one
copy of t⋆ appears in the test set and the other two copies appear
in the train set is

3 × p × (1 − p) × (1 − p).

Similarly, the probability that two copies of t⋆ appear in the test
set and one appears in the train set is

3 × p × p × (1 − p).

Thus, the total probability that t⋆ appears simultaneously in both
sets is the sum of both expressions above. In particular, if p = 0.15
then we obtain a probability of

3 × 0.15 × 0.85 × 0.85 + 3 × 0.15 × 0.15 × 0.85

which is approximately 0.38. That is, if we use a test-train split
in the proportion 15%-85% after oversampling three times every

tweet in the “hateful” class, then every “hateful” tweet has a 38%
probability of belonging simultaneously to the test and the train
sets.

A.2 Details on the partitions for Table 4
Table 7 shows some details on the partitions of not overlapping
users between train and test set for the Waseem and Hovy’s dataset.
The description on how we generate every partition is as follows:

• Partition 1: The users in the training set are the most prolific
users per class: top 1 for “racist” class, top 2 for “sexist” class,
and top 1 for the “none” class. We completed the training
set adding other prolific users that only belong to the “none”
class. The rest of the users were included in the testing set.

• Partition 2: In this partition, the second most prolific “sexist”
user was included in the testing set. Then, the users com-
posing the training set are: top 1 for “racist” class, top 1 for
“sexist” class and top 1 for the “none” class. We completed
the training set adding users belonging only to the “none”
and “sexist” class.

• Partition 3: The training set is composed by all the “sexist”
users except for the most prolific one, the top 1 most prolific
“racist” user and other prolific users that only belong to the
“none” class.
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