
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

SCHEMA MAPPING MANAGEMENT IN

DATA EXCHANGE SYSTEMS

JORGE PÉREZ

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Advisor:

MARCELO ARENAS

Santiago de Chile, May 2011

c© MMXI, JORGE PÉREZ

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

SCHEMA MAPPING MANAGEMENT IN

DATA EXCHANGE SYSTEMS

JORGE PÉREZ

Members of the Committee:

MARCELO ARENAS

CLAUDIO GUTIERREZ

PABLO BARCELÓ

YADRAN ETEROVIC

MARIANO P. CONSENS

CRISTIÁN VIAL

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor in Engineering Sciences

Santiago de Chile, May 2011

c© MMXI, JORGE PÉREZ

Dedicado a Constanza,

Marı́a José y Sebastián

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

SCHEMA MAPPING MANAGEMENT IN

DATA EXCHANGE SYSTEMS

Thesis submitted to the Office of Research and Graduate Studies in partial fulfillment of

the requirements for the Degree of Doctor in Engineering Sciences by

JORGE PÉREZ

ABSTRACT

A schema mapping is a high-level specification that describes how data from a source

schema is to be mapped to a target schema. In the last few years, a lot of attention has

been paid to the specification and subsequent manipulation of schema mappings, a problem

which is of fundamental importance in metadata management. In the metadata manage-

ment context, schema mappings are first class citizens, and high-level algebraic operators

are used to manipulate them.

In this dissertation, we present several contributions in the formalization and the the-

oretical study of schema-mapping algebraic operators. We begin our study by considering

the inverse operator that has been identified as one of the most fundamental operators in

schema mappings. We propose a new semantics for inverting mappings, present algorithms

for computing inverses and study expressiveness issues. We also generalize the previous

iv

notion to a family of inverses that allows us to solve the problem of finding a mapping-

specification language that is closed under inversion. Inversion together with the composi-

tion operator for schema mappings play a fundamental role in several data-interoperability

tasks. Thus, we also explore the issues that arise by combining these operators, and we

propose a mapping language that has good properties for inverting and composing schema

mappings. We then abstract away from studying particular operators, and we embark in

the analysis of the fundamental notions that all the proposals for the semantics of different

schema-mapping operators share. In this respect, we propose the notions of information

and redundancy in schema mappings and prove that they can provide a powerful unifying

framework for schema mapping management. In particular, we show that they are funda-

mental in the study of the inverse, the extract and the merge operators.

Keywords: Schema mappings, data exchange, inverse, composition, merge, extract,

metadata management

Members of the Doctoral Thesis Committee:

Marcelo Arenas

Claudio Gutierrez

Pablo Barceló

Yadran Eterovic

Mariano P. Consens

Cristián Vial

Santiago, May, 2011

v

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

MANEJO DE CORRESPONDENCIAS ENTRE ESQUEMAS

EN SISTEMAS DE INTERCAMBIO DE DATOS

Tesis enviada a la Dirección de Investigación y Postgrado en cumplimiento parcial de los

requisitos para el grado de Doctor en Ciencias de la Ingenierı́a.

JORGE ADRIÁN PÉREZ ROJAS

RESUMEN

Las correspondencias entre esquemas de bases de datos son especificaciones de alto

nivel que describen como mapear datos desde un esquema fuente a un esquema de destino.

En los últimos años, mucha atención se ha puesto en la especificación y subsiguiente ma-

nipulación de correspondencias entre esquemas, problema que ha provado ser fundamental

en el área de manejo de metadatos. En esta área, las correspondencias entre esquemas son

ciudadanos de primera categorı́a, y operadores algebráicos de alto nivel son usados para

manipularlas.

En este documento de tesis presentamos contribuciones en la formalización y estudio

teórico de operadores sobre correspondencias entre esquemas. Comenzamos con el op-

erador de inverso, proponiendo una nueva semántica para invertir correspondencias entre

esquemas, presentando algoritmos para computar inversas y estudiando problemas de ex-

presividad. También generalizamos la anterior noción a una familia de inversas que nos

vi

permite solucionar el problema de encontrar un lenguaje cerrado bajo inversión. Inversión

en conjunto con composición son fundamentales en la solución de variados problemas de

interoperabilidad. Por esto, estudiamos también las problemáticas que surgen al considerar

ambos operadores en conjunto, y proponemos un lenguaje con buenas propiedades para in-

versión y composición. Luego nos abstraemos del estudio de operadores particulares y nos

embarcamos en el estudio de las propiedades fundamentales que los operadores comparten.

En este punto proponemos las nociones de información y redundancia y mostramos como

estas pueden ser aplicadas para proveer una infraestructura unificadora para el problema de

manejo de correspondencias entre esquemas. En paticular, mostramos que estas nociones

son fundamentales en el estudio de la inversa y los operadores de extracción y mezcla.

Palabras Claves: Correspondencias entre esquemas, intercambio de datos, inversa,

composición, mezcla, extracción, manejo de metadatos

Miembros de la Comisión de Tesis Doctoral:

Marcelo Arenas

Claudio Gutierrez

Pablo Barceló

Yadran Eterovic

Mariano P. Consens

Cristián Vial

Santiago, mayo, 2011

vii

ACKNOWLEDGEMENTS

I want to thank my advisor Marcelo Arenas for his immense support and close collabo-

ration. I also want to thank Juan Reutter and Cristian Riveros. Marcelo, Juan, and Cristian,

participated in several discussions that shaped many of the contributions presented in this

thesis work. This work was supported by:

• CONICYT Ph.D. Grant (2007-2011)

• Microsoft Research Ph.D. Fellowship (2009/2010)

• Dirección de Investigación y Postgrado, Escuela de Ingenierı́a, PUC

• Vicerrectorı́a de Investigación, PUC

viii

TABLE OF CONTENTS

1. INTRODUCTION . 1

1.1. Contributions of this Dissertation . 4

1.1.1. Inverting mappings . 5

1.1.2. Query language-based inverses and closure properties 8

1.1.3. On the relationship between composition and inversion 10

1.1.4. Information and redundancy of schema mappings 12

1.1.5. The extract and merge operators . 16

2. NOTATION AND PRELIMINARIES . 17

2.1. Schema mappings . 17

2.2. Queries and definability of mappings . 18

2.3. Homomorphisms and universal solutions 21

2.4. Certain answers, query rewriting and the chase 22

2.5. Previous notions of inverse of schema mappings 25

3. THE MAXIMUM RECOVERY OF A SCHEMA MAPPING 27

3.1. Recoveries and Maximum Recoveries 27

3.1.1. Tools for studying recoveries and maximum recoveries 29

3.1.2. Comparison with inverses for the extended solutions semantics 32

3.2. An Application of Maximum Recoveries: Schema Evolution 38

3.3. Computing Maximum Recoveries . 42

3.3.1. Computing maximum recoveries in the general case 43

3.3.2. Justification for the output of the algorithm 48

3.3.3. Computing maximum recoveries in the full case 56

3.4. Complexity Results . 58

3.5. Maximal Recovery . 67

3.5.1. Characterizing Maximal Recoveries 68

3.5.2. Existence of maximal recoveries beyond FO-TO-CQ 72

ix

4. QUERY LANGUAGE-BASED INVERSES OF SCHEMA MAPPINGS 78

4.1. Recovering Sound Information w.r.t. a Query Language:

The Notions of C-Recovery and C-Maximum Recovery 78

4.1.1. On the existence of C-maximum recoveries 80

4.1.2. On the choice of a query language 85

4.2. C-Maximum Recovery and Previous Notions 90

4.2.1. C-Maximum Recovery and other notions of inverse 90

4.2.2. C-maximum recoveries and C-equivalence 101

4.3. A Schema Mapping Language Closed Under Inversion 103

4.3.1. CQC,6=-TO-CQ is closed under inversion 104

4.3.2. CQC,6=-TO-CQ is the right language 122

4.3.3. CQ-maximum recovery is the right notion 130

5. ON INVERTING AND COMPOSING SCHEMA MAPPINGS 135

5.1. The Language of Plain SO-tgds . 136

5.2. Plain SO-tgds are Closed under CQ-Composition 141

5.2.1. More properties of plain SO-tgds . 144

5.3. Inverting Plain SO-tgds (in Polynomial Time) 148

6. INFORMATION AND REDUNDANCY IN SCHEMA MAPPINGS 164

6.1. Transferring Source Information: The Order ¹S 164

6.1.1. Comparison with other notions of order 167

6.2. Fundamental Properties of the Order ¹S 174

6.2.1. Characterizing the order ¹S . 174

6.2.2. Fundamental algorithmic issues for the order ¹S 177

6.3. Two Applications of ¹S in Data Exchange 180

6.3.1. Inverting schema mappings . 180

6.3.2. Schema evolution . 185

6.4. Target Information and Redundancy . 187

6.4.1. Target information covered by a mapping 187

x

6.4.2. Target redundancy in schema mappings 191

6.4.3. Source redundancy . 196

6.5. Concluding Remarks . 198

7. THE EXTRACT AND MERGE OPERATORS 200

7.1. The Extract Operator . 200

7.1.1. Computing the extract operator . 203

7.1.2. On the semantics of the extract operator 210

7.2. The Merge Operator . 212

7.2.1. Computing the merge operator . 215

8. CONCLUSIONS AND FUTURE WORK 220

REFERENCES . 223

APPENDIX A. QUERY REWRITING TOOLS 229

A.1. Source Rewriting in Schema Mappings 229

A.1.1. Proof of Lemma 3.3.1 . 231

A.1.2. Proof of Lemma 3.3.9 . 241

A.2. Strong Determination and Target Rewritability in Schema Mappings . . . 242

A.2.1. Proof of Lemma 6.2.3 . 249

A.2.2. Proof of Lemma 6.2.4 . 256

A.2.3. Proof of Lemma 6.2.6 . 257

xi

1. INTRODUCTION

A schema mapping is a specification that describes how data from a source schema

is to be mapped to a target schema. Schema mappings are of fundamental importance in

data management today. In particular, they have proved to be the essential building block

for several data-interoperability tasks such as data exchange, data integration and peer data

management.

In the relational-database context, schema mappings are usually specified by using

a logical language considering the set of relation names (or table names) of the database

schemas as vocabulary. For example, consider two independent database schemas A and B

containing relations Emp(name, lives in, works in) and Shuttle(name, dest), respec-

tively. Relation Emp in schema A is used to store employees names and the places where

they live in and work in. Relation Shuttle in schema B is intended to store names of em-

ployees that must take the shuttle bus to reach the places where they work in (destination).

A possible way of relating schemas A and B is by using the following first-order logic

formula:

∀x∀z
(
∃y(Emp(x, y, z) ∧ y 6= z) → Shuttle(x, z)

)
. (1.1)

The above formula essentially states that if relation Emp stores an employee that lives in a

place different from which she/he works in, then the employee name and the place where

she/he works in should be stored in relation Shuttle. Formula (1.1) describes a mapping

between schemas A and B and states how data should be transformed or exchanged from

one schema to the other. The left-hand side of the formula (left of the implication symbol

→) is called the premise, and the right-hand side is called the conclusion. Formula (1.1) is

an example of what is called a source to target tuple-generating dependency (st-tgd) with

inequalities in the premise. The language of st-tgds is one of the most popular mapping

languages.

The research on the schema mapping area has mainly focused on performing data-

interoperability tasks using schema mappings. However, as Bernstein (2003) pointed out,

many information-system problems involve not only the design and integration of complex

1

application artifacts, but also their subsequent manipulation. Notice that the creation of

a schema mapping may imply a considerable work by an expert who needs to know the

semantics of the schema components. Only an expert can establish a meaningful high-

level correspondence between those components. Thus, a schema mapping reflects the

knowledge of the expert about the relationship between the schemas. This knowledge

could, in principle, be reused beyond the interoperability tasks for which the mapping

was initially created. Driven by these considerations, Bernstein (2003) proposed a general

framework for managing schema mappings. In this framework, schema mappings are first

class citizens, and high-level algebraic operators are used to manipulate and reuse them.

An example of mapping reuse that is conceptually easy to understand, is the compo-

sition of schema mappings. Consider three independent schemas A, B, and E, and the

schema mappings MAB and MBE that describe how data from A should be mapped to B,

and how data from B should be mapped to E, respectively. Assume that a new application

needs to exchange data between A and E. Creating a mapping between A and E could

imply a considerable work since, among other requirements, one needs to know the mean-

ing of every component of both schemas and how these components are related. Then we

would like to use MAB and MBE to automatically build a mapping MAE between A and

E. Intuitivelly, MAE should be the result of a composition operation between MAB and

MBE, and the new mapping MAE should be semantically consistent with the relationships

previously established by MAB and MBE.

There are several questions that immediately arise. What does it mean to compose in

this context? That is, what is the semantics of composing schema mappings? Notice that

schema mappings are given by logical formulas thus, it is no immediately clear what is

the meaning of composing this kind of specifications. Another important question is what

kind of mappings are needed to specify the composition, that is, how expressive a mapping

language should be in order to define the composition? Once a semantics for composition

is proposed, one would also want to device algorithms (ideally, efficient algorithms) to

automatically compute the composition of two mappings.

2

The composition of schema mapping has received a lot of attention (Madhavan &

Halevy, 2003; Fagin, Kolaitis, Popa, & Tan, 2005; Nash, Bernstein, & Melnik, 2005; Are-

nas, Pérez, Reutter, & Riveros, 2009a; Arocena, Fuxman, & Miller, 2010), and almost all

the questiones discussed above have been answered for this operator. Nevertheless, several

other operations between schema mappings have been identified as important, among them

the inverse, the merge and the extract operators (Bernstein, 2003; Fagin, 2007; Bernstein &

Melnik, 2007), and for every one of these operations, the same aforementioned questions

arise. This dissertation presents several contributions on the formalization and the theoret-

ical study of schema mappings operators. In particular, we propose a new semantics for

inverting mappings, present algorithms for computing inverses and study expressiveness

issues. We also generalize the previous notion of inverse to a family of inverses that allows

us to solve the problem of finding a mapping-specification language that is closed under

inversion. We also explore the issues that arise by combining inversion and composition,

and we propose a mapping language that has good properties for inverting and compos-

ing schema mappings. We then abstract away from studying particular operators, and we

embark in the analysis of the fundamental notions that all the proposals for the semantics

of different schema-mapping operators share. In this respect, we propose the notions of

information and redundancy in schema mappings and prove that they are essential to build

a general framework to study some fundamental properties of existing mapping operators

as well as to formalize new operators. In particular, we show that they are fundamental in

the study of the inverse, the extract and the merge operators.

Before going into the details of our contributions, let us exemplify some application

scenarios for the notions studied in this thesis. Regarding the inverse operator, in a data

exchange context (Fagin, Kolaitis, Miller, & Popa, 2005), if a mapping M is used to ex-

change data from a source to a target schema, an inverse of M can be used to exchange the

data back to the source, thus reversing the application of M. Another application is schema

evolution, where the inverse together with the composition play a crucial role (Bernstein

& Melnik, 2007; Fagin, Kolaitis, Popa, & Tan, 2011). Consider a mapping M between

schemas A and B, and assume that schema A evolves into a schema A
′. This evolution

3

can be expressed as a mapping M′ between A and A
′. Thus, the relationship between

the new schema A
′ and schema B can be obtained by inverting mapping M′ and then

composing the result with mapping M.

This dissertation also formalizes the notions of information and redundancy of schema

mappings. The former notion essentially measures the amount of information that can

be transferred by a schema mapping, while the latter measures how efficient is the map-

ping in terms of the resources used to store the information being transferred. In practical

scenarios, schema mappings may be generated automatically, either by applying mapping

operators, or by automatic tools performing schema matching techniques. Thus, it would

be desirable to have some tools to compare schema mappings in order to choose the one that

better satisfies certain criteria. The amount of information and redundancy of a mapping

can be useful criteria to discriminate between competing mappings. As an application sce-

nario, consider the extract operator that intuitively captures the idea of upgrading a legacy

database. Consider a database with schema S that stores legacy data, and an application

that consumes data from S by means of a mapping M. In general, not all the information

of S participates in the mapping and, thus, it is natural to ask whether one can upgrade the

legacy schema S into a new schema S
′ that stores only the information that is being mapped

by M. Thus, in S
′ one should store the same amount of information that is transfered by

M. Moreover, we would also want to be non redundant in the way that we store the in-

formation in S
′ since we do not want to store information from S that is not needed by the

application. One can readily see that the abstract notions of information and redundancy

are in the core of the extract operator.

1.1. Contributions of this Dissertation

This dissertation presents contributions on schema mapping management, in particular,

in the formalization and the theoretical study of schema mappings operators. Below we

describe the contributions of this dissertation.

4

1.1.1. Inverting mappings

One of the most fundamental operators in schema mapping management is the inver-

sion of schema mappings. Given a mapping M from a schema A to a schema B, an inverse

of M is a new mapping that describes the reverse relationship from B to A.

As our first contribution in this dissertation, we study the semantics of the inverse op-

erator. Fagin (2007) proposes a first formal definition for what it means for a schema map-

ping M′ to be an inverse of a schema mapping M. Roughly speaking, Fagin’s definition is

based on the idea that a mapping composed with its inverse should be equal to the identity

schema mapping. More formally, Fagin (2007) introduces an identity schema mapping Id,

suitably adapted for the case of mappings specified by source-to-target tuple-generating

dependencies (st-tgds). Then he says that M′ is an inverse of M if M composed with M′

coincides with the mapping Id. This notion turns out to be rather restrictive, as it is rare that

a schema mapping possesses an inverse. In view of this limitation, in a subsequent work,

Fagin, Kolaitis, Popa, and Tan (2008) introduce the notion of a quasi-inverse of a schema

mapping. The idea of the quasi-inverse is to relax the notion of inverse by not differenti-

ating between source instances that are equivalent for data exchange purposes. Although

numerous non-invertible schema mappings possess natural and useful quasi-inverses (Fa-

gin, Kolaitis, Popa, & Tan, 2008), there are still simple mappings specified by st-tgds that

have no quasi-inverse. Moreover, the notions of inverse and quasi-inverse are defined by

considering identity mapping Id, that is only appropriate for mappings that are closed down

on the left (Fagin, 2007) and, in particular, for mappings specified by st-tgds. This leaves

out numerous mappings of practical interest.

This dissertation revisits the problem of inverting schema mappings. Although our

motivation is similar to that of previous work, we follow a different approach to study this

problem. In fact, our main goal is to give an intuition for what it means for a schema

mapping M′ to recover sound information with respect to a schema mapping M. We

call such an M′ a recovery of M. Given that, in general, there may exist many possible

recoveries for a mapping, we introduce an order relation on recoveries. This naturally gives

5

rise to the notion of maximum recovery, which is a mapping that brings back the maximum

amount of sound information.

As a motivating example, let ME-S be the mapping specified by the dependency (1.1).

An example of a reverse mapping M1 that recovers sound information w.r.t. ME-S is

∀x∀z
(
Shuttle(x, z) → ∃u∃v Emp(x, u, v)

)
. (1.2)

The idea is that it is correct to bring back to relation Emp every employee name in relation

Shuttle. Notice that variables u and v are existentially quantified, and thus, this mapping

is only giving information about the names of the employees but not about the places where

they work in and live in. As another example, it is also correct to assume that if an employee

name and a destination appears in relation Shuttle, then the destination place is exactly

the place where the employee works in. Thus, mapping M2 defined by

∀x∀z
(
Shuttle(x, z) → ∃u Emp(x, u, z)

)
(1.3)

is also a correct way of recovering information w.r.t. ME-S. In this dissertation we propose

the notion of recovery of a schema mapping M that captures the intuition of bringing back

correct information that have been exchanged by using M. Under our definition, both M1

and M2 are recoveries of ME-S

Being a recovery is a sound but mild requirement. Then it would be desirable to have

some criteria to compare alternative recoveries. In our motivating example, if one has to

choose between M1 and M2 as a recovery of M, then one would probably choose M2,

since this mapping says not only that every employee that takes a shuttle bus works and

lives in some place, but also that the place where the employee works in is the destination

place of the shuttle bus. Intuitively, M2 is more informative than M1 w.r.t. ME-S. Is there

a mapping that is better than M2 for recovering correct information w.r.t. ME-S? If we

consider the mapping M4 defined by dependency:

∀x∀z
(
Shuttle(x, z) → ∃u (Emp(x, u, z) ∧ u 6= z)

)
(1.4)

6

then M4 is a recovery of ME-S that is more informative than M2; M4 additionally states

that although we do not know exactly the place where the employee lives in, if that em-

ployee was brought back from table Shuttle then the place where the employee lives in

must be different from the place where the employee works in. We formalize these intu-

itions by defining an order relation on recoveries that compares when a recovery is more

informative than another recovery. This order on recoveries naturally gives rise to the no-

tion of maximum recovery, which is the best way of bringing correct information back

to the source schema. In our example, it can be shown that mapping M4 is a maximum

recovery of ME-S.

In Chapter 3, we study in detail the notions of recovery and maximum recovery, and

some of our main contributions include the following. We first formalize the notions of re-

covery and maximum recovery in Section 3.1, and in Section 3.2 we show how the notion

of maximum recovery can be applied to study the schema evolution problem. In Sec-

tion 3.3, we present algorithms to compute maximum recoveries for mappings specified in

a language that extends the language of st-tgds, and we study several related problems. In

particular, in Section 3.3.1 we present an algorithm that given a mapping M specified by

st-tgds, returns a set of tgds that use disjunctions and equalities in the conclusion of de-

pendencies, and a special predicate C(·) in the premises of dependencies. In Section 3.3.2,

we show that the language used in the output of the algorithm is optimal as all its features

are necessary to specify maximum recoveries of mappings given by st-tgds. The set ob-

tained as output of our algorithm is of size exponential in the size of the input mappings.

In Section 3.3.2, we also show that this exponential blow-up is unavoidable. Furthermore,

in Section 3.3.3 we present a special algorithm to compute maximum recoveries of full

dependencies which are dependencies that do not use existential quantification in the con-

clusions. For this case our algorithm works in polynomial time.

In Section 3.4 we study the complexity of some decision problems related to the notion

of recovery. In particular, we settle the complexity of the problem of verifying, given

mappings M and M′, whether M′ is a recovery of M, for the cases in which M is

specified by full st-tgds and M′ is specified by either full or non-full st-tgds. We show that

7

if M′ is specified by full tgds then the problem is coNP-complete, and if M′ is specified

by (general) st-tgds then the problem is ΠP
2 -complete.

Finally, in Section 3.5 we present a relaxed notion of maximal recovery. We prove

that the notion maximal recovery is a strict relaxation of the notion of maximum recovery

by showing that the existence of maximal recoveries is guaranteed for a wider class of

mappings.

Some of the result presented in Chapter 3 were published in PODS (Arenas, Pérez, &

Riveros, 2008) and in TODS (Arenas, Pérez, & Riveros, 2009).

1.1.2. Query language-based inverses and closure properties

In the framework proposed by Bernstein (2003) schema mappings are first class cit-

izens, and high-level algebraic operators are used to manipulate and reuse them. In this

algebraic context, a natural question is whether a logical language for specifying mappings

is closed under the application of some operator; given schema mappings specified in a

language L and an algebraic operator, can the result of the operator be also specified in L?

Furthermore, complex transformations of schema mappings can be obtained by combining

several operators. Thus, one may wonder whether a closure property holds for a set of

operators. Such a closure property would ensure that the output of some operator can be

used as the input for subsequent operators. This has been raised as a “prominent issue” in

metadata management (Kolaitis, 2005).

The main goal of Chapter 4, is to find a mapping-specification language that is closed

under inversion. This goal amounts to (1) first choose a particular semantics for the inverse

operator, and then (2) prove that under this semantics, there exists a mapping language L

such that every schema mapping specified in L has an inverse also specified in L. Thus, we

have to deal with two parameters: the semantics for inverting mappings, and the language

used for specifying mappings. As a desiderata, we would like to have a natural and useful

semantics, and a mapping-specification language expressive enough to contain the class of

8

st-tgds. We show in Chapter 4 that the notions of Fagin-inverse (Fagin, 2007) and quasi-

inverse (Fagin, Kolaitis, Popa, & Tan, 2008) could not meet our requirements. We also

explain why the notion of maximum recovery that we introduce in Chapter 3 does not

admit a closed mapping language. Thus, necessarily, we need to look for a weaker notion

of inverse to obtain our desired closure result.

To this end, we first introduce in Section 4.1 a unifying framework that gives us a range

of natural and useful notions of inverse, that characterizes previous notions and allows us

to reach our goal. Our framework is based on the following idea. Intuitively, any natural

notion of inverse should capture the intuition that, if M describes how to exchange data,

its inverse must describe how to recover the initial data (or, at least, part of it). Moreover,

there is a soundness requirement; we would like to recover only sound information, that is,

information that was already present before the exchange. But, what does it mean to recover

sound information? By answering this simple yet fundamental question, we uncover a rich

theory. We measure the amount of information that can be recovered by considering classes

of queries. This gives rise to the notion of C-recovery of a mapping M, that is a mapping

that recovers sound information for M under a query language C. We further introduce

an order relation on C-recoveries, that leads to the notion of C-maximum recovery, which

is a mapping that recovers the maximum amount of information according to C. In fact,

we prove that there is a bound on the amount of information that can be recovered for a

given mapping M, that depends only on M and the query language C. We then prove that

a C-maximum recovery is a mapping that reaches that bound.

We study several other properties about C-maximum recoveries, and develop a set of

tools that play a central role in finding mapping languages closed under inversion. Among

others, in Section 4.1.1 we provide necessary and sufficient conditions for the existence

of C-maximum recoveries, for any given query language C. In Section 4.2 we also show

that this new notion is general enough to include the previously proposed notions of in-

verse (Fagin, 2007; Fagin, Kolaitis, Popa, & Tan, 2008), and that it is related to the recently

raised topic of schema-mapping optimization (Fagin, Kolaitis, Nash, & Popa, 2008).

9

Let CQ be the class of conjunctive queries. The main result of Chapter 4 is that, when

we consider the notion of CQ-maximum recovery as our semantics for inversion of map-

pings, there exists a language that contains the class of st-tgds and is closed under inversion.

More specifically, in Section 4.3 we show that the language of CQC,6=-TO-CQ dependen-

cies, that is, st-tgds extended with inequalities and predicate C(·) in the premises, satisfies

this property. Moreover, we provide an algorithm that, given a mapping M specified by

a set of CQC,6=-TO-CQ dependencies, returns a mapping specified by CQC,6=-TO-CQ de-

pendencies that is a CQ-maximum recovery of M. In Sections 4.3.2 and 4.3.3 we prove

several results that show that our choice of CQ-maximum recovery as the semantics for in-

version and CQC,6=-TO-CQ as the mapping-specification language is, in a precise technical

sense, optimal for obtaining a mapping language closed under inversion.

Some of the result presented in Chapter 4 were published in VLDB 2009 (Arenas,

Pérez, Reutter, & Riveros, 2009b). Some results in Chapter 4 are reported for the first time

in this dissertation, in particular, the result about the closure property for CQ-maximum

recovery and the language of CQC,6=-TO-CQ dependencies.

1.1.3. On the relationship between composition and inversion

Fagin, Kolaitis, Popa, and Tan (2005) show that the language of st-tgds does not have

good properties regarding composition. In view of this, Fagin, Kolaitis, Popa, and Tan

(2005) propose an extension of st-tgds with second-order existential quantification (the

language of SO-tgds) with good properties for composition. In particular, they show that

this language is closed under composition, and they also prove several results that show that

the language of SO-tgds is the right language to compose mappings. However, none of the

notions of inverse proposed for schema mappings (Fagin, 2007; Fagin, Kolaitis, Popa, &

Tan, 2008) have been applied to the case of SO-tgds. Studying the invertibility of mappings

specified by SO-tgds is a first step to understand the difficulties in combining inversion and

composition of schema mappings.

10

In Chapter 5 we show that, unfortunately, SO-tgds are not appropriate for our study;

we show that there exist mappings specified by SO-tgds that have no Fagin-inverse, quasi-

inverse and maximum recovery. In fact, we show that there exist mappings that do not

even admit CQ-maximum recoveries. Thus, although the language of SO-tgds is the right

language for composition, it has a bad behavior regarding inversion.

To overcome this limitation, we borrow the notion of composition w.r.t. conjunctive

queries (CQ-composition), introduced by Madhavan and Halevy (2003). Then in Sec-

tion 5.1 we propose a language called plain SO-tgds (which is a restriction of SO-tgds)

such that: the language of plain SO-tgds is closed under CQ-composition, and every map-

ping given by plain SO-tgds has a CQ-maximum recovery. In fact, we prove something

stronger, namely that every mapping specified by plain SO-tgds has a maximum recovery.

To prove this last property we provide a polynomial-time algorithm that given a mapping

M specified by a set of plain SO-tgds, returns a maximum recovery of M specified in a

language that extends the class of plain SO-tgds. This result is interesting in its own since

our algorithm is the first general polynomial-time algorithm to compute inverses of schema

mappings specified by st-tgds. However, the gain in efficiency comes with the price of a

stronger and less manageable mapping language for expressing inverses.

Besides the mentioned results, we prove some other interesting properties of mappings

specified by plain SO-tgds. More importantly, we show in Section 5.2.1 that plain SO-tgds

can be used to provide a negative answer to an open question posed by ten Cate and Kolaitis

(2009, 2010).

Some of the results presented in Chapter 5 were published in VLDB 2009 (Arenas,

Pérez, Reutter, & Riveros, 2009b) and in SIGMOD Record (Arenas, Pérez, Reutter, &

Riveros, 2009a). Some results in Chapter 5 are reported for the first time in this dissertation,

in particular, the relationship with the work by ten Cate and Kolaitis (2009, 2010).

11

S
′

S

T

M1

M2

M

(a) Extract

S2

S1

M

S M2

M1

(b) Merge

M
′

T

M

S

(c) Invertivility

FIGURE 1.1. Examples of schema mapping operators

1.1.4. Information and redundancy of schema mappings

Schema mapping management is an area of active research, where there had been many

achievements in the recent years. In fact, different proposals for several schema mapping

management operators are being studied and implemented. Nevertheless, little research has

being pursued towards understanding the fundamental notions that all these proposals seem

to share. In particular, abstract notions of information, redundancy and minimality are part

of almost every proposal for the semantics of schema mapping operators (Bernstein, 2003;

Pottinger & Bernstein, 2003; Melnik, 2004; Fagin, 2007; Arenas, Pérez, & Riveros, 2009;

Pottinger & Bernstein, 2008). Let us exemplify this with three operators: extract, merge,

and inverse.

– Extract (Melnik, 2004; Melnik, Bernstein, Halevy, & Rahm, 2005): Consider a

database with schema S that stores legacy data, and an application with schema

T that consumes data from S by means of a mapping M from S to T. In general,

not all the information of S participates in the mapping and, thus, it is natural

to ask whether one can upgrade the legacy schema S into a new schema S
′ that

stores only the information that is being mapped by M. This is the intended

meaning of the extract operator over M. A solution for extract is composed of

two mappings, M1 from S to S
′ to drive the migration from the old to the new

schema, and M2 from S
′ to T to relate the new schema with T. A diagram of the

complete process is shown in Figure 1.1(a) (the gray part represents the portion

12

of the schema that participates in the mappings). Intuitively, M1 should transfer

to S
′ the same amount of information that is transfered by M. Moreover,

mapping M1 should also be non redundant in the way that it stores information

in S
′ since we do not want to store information from S that is not needed by T.

– Merge (Melnik, 2004; Melnik et al., 2005): Consider two independent schemas

S1 and S2 and a mapping M between them, and assume that both schemas have

materialized data that is being queried by several applications. Mapping M de-

scribes how data in these schemas is related, and, thus, the relationship stated

by M leads to some redundancy of storage: there are corresponding pieces of

data stored twice in these schemas. Thus, it is natural to ask whether one can

have a single global schema S that simultaneously stores the data of S1 and S2

(and no more than that), but that is not redundant in the storage of the shared

information. This is the intended meaning of the merge operation over M. In a

solution for merge one also needs two mappings M1 and M2 that describe the

relationship between the new global schema and the initial schemas. These map-

pings ensure that an application that has used the initial schemas independently,

would also be able to obtain the required data from the new global schema. A

diagram of the complete process is shown in Figure 1.1(b).

– Inverse (Fagin, 2007): Consider a mapping M that is used to exchange data from

S to T and assume that after exchanging data one needs to undo the process.

That is, one needs to recover from T the initial information stored in S. An

inverse of M is a new mapping M′ that describes how to exchange data back

from T to S. A diagram of the inverse is shown in Figure 1.1(c). As described

by Fagin (2007), invertibility for a mapping M should intuitively coincide with

no loss of information.

In Chapter 6, we address the problem of providing foundations for schema mapping

management by focusing on the abstract notions of information and redundancy that, as

the previous examples show, lie in the core of schema mapping operators. The formaliza-

tion of these notions in a general setting would play an essential role in providing a unifying

13

framework for metadata management. The work by Melnik (2004) could be considered a

first effort towards the development of a general framework for the area. In Chapter 6, we

go a step further in this direction.

We develop theoretical tools to compare schema mappings in terms of the abstract no-

tions of information and redundancy, providing characterizations to deal with these criteria,

and showing their usefulness in defining and studying complex metadata management op-

erators.

As an example to motivate our notions, consider the following two mappings given by

st-tgds:

M1 : ∀x∀y∀z
(

A(x, y, z) → ∃uP (x, u)
)

M2 : ∀x∀y∀z
(

A(x, y, z) → R(x) ∧ S(x, y)
)

Intuitively, M2 transfers more information than M1 since the first and second components

of tuples in A are being transferred to the target under M2, while only the first component

is being transferred under M1. In fact, notice that the information transferred by M1 can

be obtained from the target of M2 by means of the mapping ∀x(R(x) → ∃uP (x, u)).

However, the opposite is not true; we cannot obtain the information transferred by M2

from the target of M1. Consider now the mapping M3 given by:

M3 : ∀x∀y∀z
(

A(x, y, z) → T (x, y)
)

Intuitively, mapping M3 transfers the same amount of information as M2. Nevertheless,

M3 is more efficient in the way that it structures the target data, as M2 stores redundant

information in table R. In this paper, we formalize the previous notions, that is, we develop

notions to compare mappings in terms of their ability to transfer source data and avoid

storing redundant information in its target schema, as well as the symmetric notions of

covering target data, and storing redundant information in the source schema. In fact, we

prove the usefulness of the proposed notions by showing that they can play a central role

in the study of complex metadata management operators.

14

More precisely, we start our investigation in Section 6.1 by defining a set of natural

conditions that an order on the amount of information transferred by a schema mapping

should satisfy. We then propose the order ¹S, that is provably the strictest relation satisfying

these conditions. Under our definition, the mappings in the above example satisfy that

M1 ¹S M2 but M2 6¹S M1. We study some fundamental properties of ¹S and, in

particular, we provide a characterization based on query rewriting that gives evidence of the

naturalness of our notion. We also contrast our proposal with previous work on comparing

mappings. Fagin, Kolaitis, Popa, and Tan (2009) propose a notion of information loss

for schema mappings specified by st-tgds, which gives rise to an order on this type of

mappings. In Section 6.1.1, we show that our notion coincides with the proposal of Fagin

et al. for the class of mappings defined by st-tgds. Moreover, we also prove that beyond

st-tgds, Fagin et al.’s notion does not satisfy the natural conditions that we impose over an

order to compare the amount of information transferred by mappings.

As shown in the previous example, there may exist multiple ways to transfer the same

information from a source schema. Thus, one also needs a way to distinguish between

different alternatives. In particular, if schemas are designed together with mappings, it is

desirable to use schemas that are optimal in the way they handle data. To deal with this

requirement, we introduce in Section 6.4.2 the notion of target redundancy, and show that it

captures the intuition of using the exact amount of resources needed to transfer information

using a schema mapping. In fact, our notion formally captures the intuition in the previous

example, as M2 is target redundant while M3 is not.

Furthermore, to complement our information framework, we devise two additional

concepts that allow us to compare mappings that share the same target schema. Symmet-

rically to the definition of ¹S, we introduce in Section 6.4.1 the order ¹T, that intuitively

measures the amount of information covered by a mapping, as well as a notion of source

redundancy in Section 6.4.3. We provide characterizations and tools for all the proposed

notions, and show that together they can be used as a powerful framework to study metadata

management operators.

15

As a proof of concept, in Section 6.3 we show how the machinery developed can be

used to study some metadata management problems in the context of data exchange. In

particular, we provide simpler proofs for some fundamental results regarding the inverse

operator proposed by Fagin (2007), and we also study the well-known schema evolution

problem (Melnik, 2004; Kolaitis, 2005; Fagin et al., 2011).

Some of the results presented in Chapter 6 were published in PODS 2010 (Arenas,

Pérez, Reutter, & Riveros, 2010).

1.1.5. The extract and merge operators

The extract and merge operators are considered as two of the most fundamental op-

erators to develop a general framework for schema mapping management (Melnik, 2004;

Melnik et al., 2005; Bernstein & Melnik, 2007).

In Section 7.1, we use all the machinery for the concepts of information and redun-

dancy developed in Chapter 6 to revisit the semantics of the extract operator (Melnik, 2004;

Melnik et al., 2005), that intuitively captures the idea of upgrading a legacy schema. We

formalize this operator in terms of the notions developed in Chapter 6. We also provide

in Section 7.1.1 an algorithm for computing it for a class of mappings that includes the

mappings specified by st-tgds, and we compare our proposal with previous proposals for

the same operator in Section 7.1.2.

Moreover, in Section 7.2 we also study the merge operator, that intuitively captures the

idea of constructing a global schema that simultaneously stores the data that is replicated

among several schemas but that it is not redundant in the storage of the shared informa-

tion. Finally, in Section 7.2.1 we provide an algorithm to compute the merge operator for

mappings specified by full st-tgds.

Some of the result presented in Chapter 7 were published in PODS 2010 (Arenas,

Pérez, Reutter, & Riveros, 2010).

16

2. NOTATION AND PRELIMINARIES

In this Chapter we present the notation that is used in this dissertation. A schema R is

a finite set {R1, . . . , Rk} of relation symbols, with each Ri having a fixed arity ni. Let D

be a countably infinite domain. An instance I of R assigns to each n-ary relation symbol

R of R a finite n-ary relation RI ⊆ D
n. The domain dom(I) of instance I is the set of

all elements that occur in any of the relations RI . If a tuple ā belongs to RI we say that

R(ā) is a fact in I . We sometimes describe an instance as a set of facts. The set Inst(R) is

defined to be the set of all instances of R. Given instances I, J ∈ Inst(R), we write I ⊆ J

to denote that, for every relation symbol R of R, it holds that RI ⊆ RJ .

As is customary in the data exchange literature, we consider instances with two types

of values: constants and nulls (Fagin, Kolaitis, Miller, & Popa, 2005; Fagin, 2007; Fagin,

Kolaitis, Popa, & Tan, 2008). More precisely, let C and N be infinite and disjoint sets of

constants and nulls, respectively, and assume that D = C ∪ N. An instance I is ground

if it is composed only by constant values (elements from C), and is non-ground if it is

composed by constant and null values (elements from C ∪ N). If we refer to a schema

R as a ground schema, then we assume that Inst(R) is the set of all ground instances of

R. Moreover, if we refer to a schema S as a source schema, then we assume that S is a

ground schema, and if we refer to a schema T as a target schema, then we assume that T

is a general schema, that is, Inst(T) contains instances with constants and null values. In

this paper, we usually use S to refer to a generic source schema and T to refer to a generic

target schema.

2.1. Schema mappings

Given schemas R1 and R2, a schema mapping (or just mapping) from R1 to R2 is a

nonempty subset of Inst(R1) × Inst(R2). If M is a mapping and (I, J) ∈ M, then we

say that J is a solution for I under M. The set of solutions for I under M is denoted

by SolM(I). The domain of M, denoted by dom(M), is defined as the set of instances I

17

such that SolM(I) 6= ∅, and the range of M, denoted by range(M) is defined as the set

of instances J that are a solution for some instance I ∈ dom(M). Furthermore, given a

mapping M, we denote by M−1 the mapping {(J, I) | (I, J) ∈ M}.

Some of our results are focused on a special class of mappings that we call source-to-

target mappings (st-mappings). Recall that we assume that a schema R is a source schema

if its instances are constructed by using only constants (elements from C), and a target

schema if its instances are constructed by constants and nulls (elements from C∪N). Thus

if we refer to M = (R1,R2, Σ) as an st-mapping, then we assume that R1 is a source

schema (that is, instances of R1 are constructed using only elements from C) and R2 is a

target schema (that is, instances of R2 are constructed by using elements from C and N).

Composition of mappings

Since general mappings are simply binary relations on sets of instances, the composi-

tion of mappings can be defined by considering the classical definition of composition of

binary relations. Given mappings M12 from R1 to R2 and M23 from R2 to R3, the com-

position of M12 and M23, denoted by M12 ◦M23 is defined as M12 ◦M23 = {(I1, I3) |

∃I2 : (I1, I2) ∈ M12 and (I2, I3) ∈ M23} (Melnik, 2004; Fagin, Kolaitis, Popa, & Tan,

2005).

2.2. Queries and definability of mappings

A k-ary query Q over a schema R, with k ≥ 0, is a function that maps every instance

I ∈ Inst(R) into a k-relation Q(I) ⊆ dom(I)k. Notice that if k = 0 (Q is a Boolean

query), then the answer to Q is either the set with one 0-ary tuple (denoted by true), or the

empty set (false). Thus, if Q is a Boolean query, then Q(I) is either true or false. As is

customary, we assume that queries are closed under isomorphisms.

We use CQ to denote the class of conjunctive queries and UCQ to denote the class

of unions of conjunctive queries. If we extend these classes by allowing equalities or in-

equalities, then we use superscripts = and 6=, respectively. Thus, for example, CQ= is the

18

class of conjunctive queries with equalities and UCQ 6= is the class of union of conjunctive

queries with inequalities. FO is the class of all first-order formulas with equality. Slightly

abusing notation, we use C(·) to denote a built-in unary predicate such that C(a) holds if

and only if a is a constant, that is, a ∈ C. If L is any of the previous query languages,

then LC is the extension of L allowing predicate C(·). For example, CQC,6= is the class of

conjunctive queries with inequalities and predicate C(·).

Dependencies

Let L1, L2 be query languages and R1, R2 be schemas with no relation symbols in

common. A sentence Φ over R1 ∪ R2 ∪ {C(·)} is an L1-TO-L2 dependency from R1 to

R2 if Φ is of the form

∀x̄ (ϕ(x̄) → ψ(x̄)),

where

(1) x̄ is the tuple of free variables in both ϕ(x̄) and ψ(x̄);

(2) ϕ(x̄) is an L1-formula over R1 ∪ {C(·)} if C(·) is allowed in L1, and over R1

otherwise, and

(3) ψ(x̄) is an L2-formula over R2 ∪ {C(·)} if C(·) is allowed in L2, and over R2

otherwise.

We call ϕ(x̄) the premise of Φ, and ψ(x̄) the conclusion of Φ. If S is a source schema and

T is a target schema, an L1-TO-L2 dependency from S to T is called an L1-TO-L2 source-

to-target dependency (L1-TO-L2 st-dependency), and an L1-TO-L2 dependency from T to

S is called an L1-TO-L2 target-to-source dependency (L1-TO-L2 ts-dependency).

Three fundamental classes of dependencies for data exchange, and in particular for in-

verting schema mappings, are source-to-target tuple-generating dependencies (st-tgds), full

source-to-target tuple-generating dependencies (full st-tgds) and target-to-source disjunc-

tive tuple-generating dependencies with inequalities and predicate C(·) (Fagin, Kolaitis,

Miller, & Popa, 2005; Fagin, Kolaitis, Popa, & Tan, 2008). The former corresponds to

the class of CQ-TO-CQ st-dependencies, and the latter to the class of CQ 6=,C-TO-UCQ

ts-dependencies. An FO-TO-CQ dependency is full if its conclusion does not include

19

existential quantifiers and, thus, the class of full st-tgds corresponds to the class of full

CQ-TO-CQ st-dependencies.

Semantics of dependencies, safeness

Let I be an instance of a schema R = {R1, . . . , Rm}. Instance I can be represented as

an (R∪{C(·)})-structure AI = 〈A,RA
1 , . . . , RA

m, CA〉, where A = dom(I) is the universe

of AI , RA
i = RI

i for i ∈ [1,m] and C
A = A ∩ C. This representation is used to define the

semantics of FO over source and target instances (here we assume familiarity with some

basic notions of first-order logic).

Let R1 = {S1, . . . , Sm} be a schema and I an instance of R1. If ϕ(x̄) is an FO-formula

over R1 ∪ {C(·)} and ā is a tuple of elements from dom(I), then we say that I satisfies

ϕ(ā), denoted by I |= ϕ(ā), if and only if AI |= ϕ(ā). Whenever it holds that I |= ϕ(ā),

we say that ā is an answer for ϕ over instance I . Furthermore, let R2 = {T1, . . . , Tn} be

a schema with no relation symbols in common with R1, and J an instance of R2. Then

K = (I, J) is an instance of R1 ∪ R2 defined as SK
i = SI

i and TK
j = T J

j , for i ∈ [1,m]

and j ∈ [1, n]. Notice that dom(K) = dom(I) ∪ dom(J). If ϕ(x̄) is an FO-formula over

R1 ∪ R2 ∪ {C(·)} and ā is a tuple of elements from dom(I) ∪ dom(J), then we say that

(I, J) satisfies ϕ(ā), denoted by (I, J) |= ϕ(ā), if and only if AK |= ϕ(ā). As usual, we say

that an instance satisfies a set Σ of dependencies if the instance satisfies each dependency

in Σ.

We impose the following safety condition on L1-TO-L2 dependencies. Recall that

an FO-formula ϕ(x̄) is domain-independent if its answer depends only on the database

instance but not on the underlying domain (Fagin, 1982). Let R1 and R2 be schemas with

no relation symbols in common and Φ = ∀x̄ (ϕ(x̄) → ψ(x̄)) an L1-TO-L2 dependency

from R1 to R2. Then we say that Φ is domain-independent if both ϕ(x̄) and ψ(x̄) are

domain-independent. The following strategy can be used to evaluate Φ: Given instances

I , J of R1 and R2, respectively, we have that (I, J) |= Φ if and only if for every tuple

ā of elements from dom(I), if I |= ϕ(ā), then every component of tuple ā is in dom(J)

20

and J |= ψ(ā). We note that this strategy cannot be used for non domain-independent

L1-TO-L2 dependencies.

Definability of mappings

Let R1 and R2 be schemas with no relation symbols in common and Σ a set of FO-

sentences over R1 ∪ R2 ∪ {C(·)}. We say that a mapping M from R1 to R2 is specified

by Σ, denoted by M = (R1,R2, Σ), if for every (I, J) ∈ Inst(R1) × Inst(R2), we have

that (I, J) ∈ M if and only if (I, J) |= Σ.

In this dissertation we assume that every set Σ of dependencies is finite, and if Σ is

a set of L1-TO-L2 dependencies, then we assume that every dependency in Σ is domain-

independent (as defined above). Furthermore, we usually omit the outermost universal

quantifiers from L1-TO-L2 dependencies and, thus, we write ϕ(x̄) → ψ(x̄) instead of

∀x̄ (ϕ(x̄) → ψ(x̄)). Finally, for the sake of readability, we usually write ϕ(x̄, ȳ) → ψ(x̄)

instead of (∃ȳ ϕ(x̄, ȳ)) → ψ(x̄) in some examples, as these two formulas are equivalent.

2.3. Homomorphisms and universal solutions

The class of universal solutions for st-mappings was identified as a class of solutions

that have good properties for data exchange (Fagin, Kolaitis, Miller, & Popa, 2005). To

formally introduce this concept, we first review the notion of homomorphism that will be

used in several proofs of this dissertation and that is also used to define universal solutions.

Let J1 and J2 be instances of the same schema R. A homomorphism h from J1 to J2

is a function h : dom(J1) → dom(J2) such that,

(1) h is the identity on C, that is, for every constant value a ∈ dom(J1)∩C we have

that h(a) = a, and

(2) for every R ∈ R and every tuple (a1, . . . , ak) ∈ RJ1 , it holds (h(a1), . . . , h(ak)) ∈

RJ2 .

Notice that a homomorphism may map a null value to either a constant or another null

value, but preserves all the constant values.

21

Let M be an st-mapping, I a source instance and J a solution for I under M. Then J

is a universal solution for I under M, if for every solution J ′ for I under M, there exists a

homomorphism from J to J ′. One of the important properties of universal solutions proved

by Fagin, Kolaitis, Miller, and Popa (2005) is that for every st-mapping M = (S,T, Σ)

with Σ a set of st-tgds and for every instance I of S, there always exists a universal solution

for I under M. Moreover, it can be shown that the same property holds for st-mappings

specified by FO-TO-CQ dependencies. In both cases, the chase procedure (Maier, Mendel-

zon, & Sagiv, 1979) can be used to construct a universal solution (see the next section for

the definition of the chase for mappings specified by FO-TO-CQ dependencies).

2.4. Certain answers, query rewriting and the chase

Let M be a mapping from R1 to R2 and Q a query over schema R2. Given an instance

I of R1, the set of certain answers of Q over I under M is the set of tuples that belong

to the evaluation of Q over every possible solution for I under M. We denote this set by

certainM(Q, I). Thus,

certainM(Q, I) =
⋂

J∈SolM(I)

Q(J).

Given a mapping M from S to T and a query Q over T, we say that a query Q′ is a

rewriting of Q over the source if Q′ is a query over S such that for every I ∈ Inst(S), it

holds that Q′(I) = certainM(Q, I). That is, to obtain the set of certain answers of Q over

I under M, we just have to evaluate its rewriting Q′ over instance I . We usually call Q′ a

source rewriting of Q under M.

Similarly, given a mapping M from S to T and a query Q′ over S, we say that a query

Q is a rewriting of Q′ over the target if Q is a query over T such that for every I ∈ Inst(S),

it holds that Q′(I) = certainM(Q, I). We call Q a target rewriting of Q′ under M.

As it is evident by the definitions, Q′ is a source rewriting of Q under M if and only if

Q is a target rewriting of Q′ under M.

22

The chase

Another notion that would be used in this document is the notion of chase (Maier et al.,

1979). This notion is tightly related with certain answers and rewriting of queries (Fagin,

Kolaitis, Miller, & Popa, 2005; Arenas, Barceló, Fagin, & Libkin, 2004).

Assume that M = (S,T, Σ) is an st-mapping, where Σ is a set of FO-TO-CQ depen-

dencies. Let I be an instance of S, and let JI be an instance of T constructed as follows.

For every dependency σ ∈ Σ of the form ϕ(x̄) → ∃ȳ ψ(x̄, ȳ), with x̄ = (x1, . . . , xm),

ȳ = (y1, . . . , yℓ) tuples of distinct variables, and for every m-tuple ā of elements from

dom(I) such that I |= ϕ(ā), do the following. Choose an ℓ-tuple n̄ of distinct fresh values

from N, and include all the conjuncts of ψ(ā, n̄) as facts in JI . We call instance JI the

chase of I with Σ, and write JI = chaseΣ(I). It is easy to see that chaseΣ(I) is unique

up-to renaming of null values.

The instance chaseΣ(I) has several desirable properties (Fagin, Kolaitis, Miller, &

Popa, 2005; Arenas et al., 2004). In particular, if M = (S,T, Σ) is an st-mapping with Σ

a set of FO-TO-CQ dependencies, then for every I it holds that chaseΣ(I) is a universal

solution for I under M. We call chaseΣ(I) the canonical universal solution of I under M.

Fagin, Kolaitis, Miller, and Popa (2005) showed that if J is a universal solution for I under

a mapping M, then for every conjunctive query Q it holds that certainM(Q, I) = Q(J)↓

where Q(J)↓ denotes the set of tuples obtained from Q(J) by eliminating all the tuples

that mention null values. In particular, if M = (S,T, Σ) is an st-mapping with Σ a set

of FO-TO-CQ dependencies, and Q is a conjunctive query over T, then for every instance

I we have that certainM(Q, I) = Q(chaseΣ(I))↓. This gives us an effective procedure

to compute the certain answers for conjunctive queries under an st-mapping specified by

FO-TO-CQ dependencies (Fagin, Kolaitis, Miller, & Popa, 2005; Arenas et al., 2004).

Moreover, notice that if Q′ is a rewriting over the source of a conjunctive query Q, then

it holds that Q′(I) = Q(chaseΣ(I))↓. This last property is used in several proofs of this

dissertation.

23

Disjunctive chase

We next introduce the notion of disjunctive chase defined by Fagin, Kolaitis, Popa,

and Tan (2008). Let Σ be a set of FOC-TO-UCQ dependencies from schema R1 to schema

R2. For every I ∈ Inst(R1), let JI be an instance of R2 constructed with the following

procedure. For every dependency σ ∈ Σ of the form

ϕ(x̄) → ∃ȳ1 β1(x̄, ȳ1) ∨ · · · ∨ ∃ȳk β1(x̄, ȳk)

with x̄ = (x1, . . . , xm) a tuple of distinct variables, and for every m-tuple ā of elements

from dom(I) such that I |= ϕ(ā), do the following. Choose an index i ∈ {1, . . . , k}.

Assume that ȳi = (y1, . . . , yℓ), then choose an ℓ-tuple n̄ of distinct fresh values from N,

and include all the conjuncts of βi(ā, n̄) in JI . We call JI a chase of I with Σ. Notice that

different instances are obtained by different choices of indexes in the process. Consider the

set JI = {J1
I , . . . , Jp

I } of all the instances that correspond to a chase of I . Then we say that

JI is the (disjunctive) chase of I with Σ, and write JI = chaseΣ(I) (Fagin, Kolaitis, Popa,

& Tan, 2008). It is easy to see that JI = chaseΣ(I) is finite and unique up-to renaming

of null values. As for the non-disjunctive chase, the disjunctive chase satisfies several

desirable properties. In particular, it can be shown (Fagin, Kolaitis, Popa, & Tan, 2008), that

for every pair of instances I, J , if (I, J) |= Σ, then there exists an instance K ∈ chaseΣ(I)

and a homomorphism from K to J . By using the results in (Fagin, Kolaitis, Miller, & Popa,

2005), it is also straightforward to prove that, if I is an instance composed only by constant

values and Q is a union of conjunctive queries, then the set of certain answers of I under

Σ, equals the set of tuples that belongs to Q(K)↓, for all K ∈ chaseΣ(I).

Chase of the chase

Fagin, Kolaitis, Popa, and Tan (2008) extend some of the above mentioned results of

the chase procedure. Let Σ be a set of FOC-TO-CQ dependencies from R1 to R2, and

Σ′ a set of CQC,6=-TO-UCQ dependencies from R2 to R3. Further assume that for every

inequality x 6= x′ that occurs in the premise of a dependency in Σ′, predicates C(x) and

C(x′) also occurs in the premise of the same dependency (these kind of dependencies are

24

called disjunctive tuple-generating dependencies with constants and inequalities among

constants). Fagin, Kolaitis, Popa, and Tan (2008) showed the following property of the

successive application of the chase procedure with Σ and Σ′. Let I be an instance composed

only by constant values, J = chaseΣ(I) and V = chaseΣ′(J). Let K ′ be an instance such

that there exists J ′ with (I, J ′) |= Σ and (J ′, K ′) |= Σ′. Then there exists an instance

K ∈ V and a homomorphism from K to K ′.

Considering mappings, let M = (S,T, Σ) be a source-to-target mappings with Σ a set

of FOC-TO-CQ dependencies, and M′ = (T,S, Σ′) a target-to-source mapping with Σ′ a

set of CQC,6=-TO-UCQ dependencies (fulfilling the above mentioned restriction). Let I be

a source instance, J = chaseΣ(I) and V = chase′Σ(J). Notice that, the instances in V are

not necessarily valid source instances since they may contain null values. That is, although

(I, J) |= Σ and (J,K) |= Σ′ for every K ∈ V , we have that (I,K) not necessarily belongs

to M ◦ M′. Nevertheless, we know that for every pair of source instances I, I ′ such that

(I, I ′) ∈ M ◦M′, there exists an instance K ∈ V and a homomorphism from K to I ′.

2.5. Previous notions of inverse of schema mappings

In this section we introduce the two notions of inverse previously proposed in the

literature. These notions will be used in several parts of this dissertation.

We start by recalling the definition of inverse proposed by Fagin (2007), that we call

here Fagin-inverse1. A mapping M is closed-down on the left if whenever (I, J) ∈ M

and I ′ ⊆ I , it holds that (I ′, J) ∈ M. Fagin (2007) defines a notion of inverse focusing on

mappings that satisfy this condition. More precisely, let S be a source schema. Fagin first

defines an identity mapping Id as

Id = {(I1, I2) | (I1, I2) ∈ Inst(S) × Inst(S) and I1 ⊆ I2},

1Fagin (2007) named his notion just as inverse of a schema mapping. In this dissertation we reserve the term

inverse to refer to this operator in general, and use the name Fagin-inverse for the notion proposed by Fagin

(2007).

25

which is appropriate for closed-down on the left mappings (Fagin, 2007). Then Fagin

propose the following definition for an inverse of a mapping.

DEFINITION 2.5.1 (Fagin, 2007). Let M be a mapping from S to T. A mapping M′

from T to S is a Fagin-inverse of M if and only if M◦M′ = Id.

Since it is rare that a schema mapping possesses a Fagin-inverse (Fagin, 2007; Fagin,

Kolaitis, Popa, & Tan, 2008), Fagin, Kolaitis, Popa, and Tan (2008) introduce the notion

of a quasi-inverse of a schema mapping. The idea behind quasi-inverses is to relax the

notion of inverse of a mapping by not differentiating between source instances that are

data-exchange equivalent. Let M be a mapping from a source schema S to a target schema

T. Instances I1 and I2 of S are data-exchange equivalent w.r.t. M, denoted by I1 ∼M

I2, if SolM(I1) = SolM(I2). Furthermore, given a mapping M1 from S to S, mapping

M1[∼M,∼M] is defined as {(I1, I2) ∈ Inst(S) × Inst(S) | ∃(I ′
1, I

′
2) : I1 ∼M I ′

1, I2 ∼M

I ′
2 and (I ′

1, I
′
2) ∈ M1}.

DEFINITION 2.5.2 (Fagin, Kolaitis, Popa, & Tan, 2008). Let M be a mapping from S

to T. A mapping M′ is a quasi-inverse of M if (M◦M′)[∼M,∼M] = Id[∼M,∼M].

26

3. THE MAXIMUM RECOVERY OF A SCHEMA MAPPING

In this chapter we present the notions of recovery and maximum recovery for schema

mappings, and study several related problems including how to compute maximum recov-

eries, the language needed to express maximum recoveries and the complexity of some

associated decision problems. We also introduce the relaxed notion of maximal recovery

and report our initial results about this notion.

3.1. Recoveries and Maximum Recoveries

Let M be a mapping from a schema R1 to a schema R2, and Id the identity schema

mapping over R1, that is, Id = {(I, I) | I ∈ Inst(R1)}. When trying to invert M, the ideal

would be to find a mapping M′ from R2 to R1 such that, M◦M′ = Id. If such a mapping

exists, we know that if we use M to exchange data, the application of M′ gives as result

exactly the initial source instance. Unfortunately, in most cases this ideal is impossible to

reach. For example, it is impossible to obtain such an inverse if M is specified by a set of

st-tgds (Fagin, 2007). The main problem with such an ideal definition of inverse is that,

in general, no matter what M′ we choose, we will have not one but many solutions for a

source instance under M◦M′.

If for a mapping M, there is no mapping M1 such that M ◦ M1 = Id, at least we

would like to find a schema mapping M2 that does not forbid the possibility of recovering

the initial source data. That is, we would like that for every instance I ∈ dom(M), the

space of solutions for I under M◦M2 contains I itself. Such a schema mapping M2 is

called a recovery of M.

DEFINITION 3.1.1. Let R1 and R2 be two schemas, M a mapping from R1 to R2 and

M′ a mapping from R2 to R1. Then M′ is a recovery of M iff (I, I) ∈ M◦M′ for every

instance I ∈ dom(M).

Being a recovery is a sound but mild requirement. Indeed, a schema mapping M from

R1 to R2 always has as recoveries, for example, mappings M1 = Inst(R2) × Inst(R1)

27

and M2 = M−1 = {(J, I) | (I, J) ∈ M}. If one has to choose between M1 and M2 as a

recovery of M, then one would probably choose M2 since the space of possible solutions

for a source instance I under M ◦ M2 is smaller than under M ◦ M1. In fact, if there

exists a mapping M3 such that M◦M3 = Id, then one would definitely prefer M3 over

M1 and M2. In general, if M′ is a recovery of M, then the smaller the space of solutions

generated by M◦M′, the more informative M′ is about the initial source instances. This

notion induces an order among recoveries:

DEFINITION 3.1.2. Let M be a mapping and M′, M′′ recoveries of M. We say that

M′ is at least as informative as M′′ for M, and write M′′ ¹M M′, iff M◦M′ ⊆ M◦M′′.

Moreover, we say that M′ and M′′ are equally informative for M, denoted by M′ ≡M

M′′, if M′′ ¹M M′ and M′ ¹M M′′.

Example 3.1.3. Let M be an st-mapping specified by st-tgd:

P (x, y) ∧ R(y, z, u) → T (x, y, z).

Then the ts-mapping M1 specified by T (x, y, z) → ∃vP (x, v) is a recovery of M, as

well as the ts-mapping M2 specified by T (x, y, z) → P (x, y) ∧ ∃uR(y, z, u). Intuitively,

both M1 and M2 recover sound information given the definition of M. Furthermore, it

can be shown that M1 ¹M M2, which agrees with the intuition that M2 recovers more

information than M1. ¤

If for a mapping M, there exists a recovery M′ that is at least as informative as any

other recovery of M, then M′ is the best alternative to bring exchanged data back, among

all the recoveries. Intuitively, such a mapping M′ recovers the maximum amount of sound

information. Such a mapping M′ is called a maximum recovery of M.

DEFINITION 3.1.4. Let M′ be a recovery of a mapping M. We say that M′ is a

maximum recovery of M if for every recovery M′′ of M, it is the case that M′′ ¹M M′.

28

Notice that if M1 and M2 are maximum recoveries of a mapping M, then they are

equally informative for M, that is, M1 ≡M M2.

Example 3.1.5. Consider st-mapping M and ts-mapping M2 from Example 3.1.3. Intu-

itively, M2 is doing the best effort to recover the information exchanged by M. In fact, it

can be shown that M2 is a maximum recovery of M. ¤

3.1.1. Tools for studying recoveries and maximum recoveries

In this section, we present some theoretical tools for studying maximum recoveries.

These tools include characterizations of when a mapping is a maximum recovery of another

mapping and a general necessary and sufficient condition for the existence of maximum re-

coveries. These results were previously reported by Riveros (2008) and we state them here

for completeness of this dissertation. The proofs of these results can be found in (Riveros,

2008; Arenas, Pérez, & Riveros, 2009).

Characterizing maximum recoveries

We first present characterizations of when a mapping M′ is a maximum recovery of a

mapping M. For doing this, we need the notion of reduced recovery. A mapping M′ is a

reduced recovery of M if M′ is a recovery of M and for every (I1, I2) ∈ M◦M′, it holds

that I2 ∈ dom(M). It is easy to see that whenever M′ is a recovery of M, one can extract

from M′ a reduced recovery M′′ of M by discarding all the pairs of instances (J, I) of

M′ such that I /∈ dom(M). The obtained reduced recovery M′′ is at least as informative

as M′ for M since M◦M′′ ⊆ M◦M′.

The following proposition shows two alternative conditions for checking whether a

mapping M′ is a maximum recovery of a mapping M, and that only depend on the struc-

ture of mappings M and M′. The proof of the proposition can be found in (Riveros, 2008;

Arenas, Pérez, & Riveros, 2009)

PROPOSITION 3.1.6 (Arenas et al., 2008; Riveros, 2008). Let M and M′ be mappings.

Then the following conditions are equivalent:

29

(1) M′ is a maximum recovery of M.

(2) M′ is a reduced recovery of M and M = M◦M′ ◦M.

(3) M′ is a recovery of M and for every (I1, I2) ∈ M ◦ M′, it is the case that

∅ Ã SolM(I2) ⊆ SolM(I1).

On the existence of maximum recoveries

The following definition introduces the notion of witness, that is used to provide a

necessary and sufficient condition for the existence of a maximum recovery for a mapping

M.

DEFINITION 3.1.7 (Arenas et al., 2008; Riveros, 2008). Let M be a mapping from a

schema R1 to a schema R2 and I ∈ Inst(R1). Then instance J ∈ Inst(R2) is a witness

for I under M if for every I ′ ∈ Inst(R1), if J ∈ SolM(I ′), then SolM(I) ⊆ SolM(I ′).

A witness for an instance I under a mapping M is not necessarily a solution for I

under M. An instance J is a witness solution for I if J is both a witness and a solution for

I . A witness solution can be considered as an identifier for a space of solutions as if J is a

witness solution for instances I1 and I2, then SolM(I1) = SolM(I2).

The following theorem provides a necessary and sufficient condition for the existence

of maximum recoveries. The proof of the theorem can be found in (Riveros, 2008; Arenas,

Pérez, & Riveros, 2009)

THEOREM 3.1.8 (Arenas et al., 2008; Riveros, 2008). A mapping M has a maximum

recovery iff for every I ∈ dom(M), there exists a witness solution for I under M.

Fagin, Kolaitis, Miller, and Popa (2005) identifies the class of universal solutions for

st-mappings as a class of solutions that has good properties for data exchange. Recall that

J is a universal solution for I under a mapping M, if J ∈ SolM(I) and for every solution

J ′ for I under M, there exists a homomorphism from J to J ′.

It is known that for st-mappings specified by FO-TO-CQ st-dependencies, universal

solutions exist for every source instance (Fagin, Kolaitis, Miller, & Popa, 2005; Arenas

30

et al., 2004). Moreover, st-mappings specified by FO-TO-CQ st-dependencies are closed

under target homomorphisms (ten Cate & Kolaitis, 2009). That is, if M is an st-mapping

specified by a set FO-TO-CQ dependencies, (I, J) ∈ M and there is a homomorphism

from J to J ′, then (I, J ′) ∈ M. With this last property it is straightforward to prove that

if M is an st-mapping specified by a set of FO-TO-CQ dependencies, then every universal

solution for I under M is a witness solution for I under M. Thus, we obtain the following

important result regarding the existence of maximum recoveries.

THEOREM 3.1.9 (Arenas et al., 2008; Riveros, 2008). If M is an st-mapping specified

by a set of FO-TO-CQ st-dependencies, then M has a maximum recovery.

Notice that the previous result implies that every st-mapping specified by st-tgds has a

maximum recovery.

Comparison with previous notions

In this section we report some results on the comparison of maximum recoveries and

the previous notions of Fagin-inverse and quasi-inverse (see Section 2.5 for the formaliza-

tion of Fagin-inverses and quasi-inverses).

Recall that a mapping M is total if dom(M) is the set of all source instances. The

definitions of Fagin-inverse and quasi-inverse are only appropriate for total mappings,

since if a mapping M is not total, then M is neither Fagin-invertible nor quasi-invertible.

Moreover, the definitions of Fagin-inverse and quasi-inverse are appropriate for closed-

down on the left mappings (see Section 2.5). In fact, some counterintuitive results are

obtained if one removes this restriction. For example, let S = {P (·)}, T = {R(·)}

and M be a mapping from S to T specified by dependency ∀x (P (x) ↔ R(x)). In

this case, mapping M′ specified by ∀x (R(x) ↔ P (x)) is an ideal inverse of M since

M ◦ M′ = Id = {(I, I) | I ∈ Inst(S)}. However, M′ is neither a Fagin-inverse nor a

quasi-inverse of M (although it is a maximum recovery of M).

From the discussion in the previous paragraph, to compare the notions of maximum re-

covery, Fagin-inverse and quasi-inverse, we need to focus on the class of total st-mappings

31

that are closed-down on the left. This class includes, for example, the st-mappings speci-

fied by UCQ 6=-TO-CQ st-dependencies. The following result establishes the relationship

between Fagin-inverses, quasi-inverses and maximum recoveries. The proof can be found

in (Riveros, 2008; Arenas, Pérez, & Riveros, 2009).

THEOREM 3.1.10 (Arenas et al., 2008; Riveros, 2008).

(1) Let M be a total st-mapping that is closed-down on the left, and assume that

M is Fagin-invertible. Then M′ is a Fagin-inverse of M iff M′ is a maximum

recovery of M.

(2) Let M be a total st-mapping that is closed-down on the left, and assume that M

is quasi-invertible. Then M has a maximum recovery and, furthermore, M′ is a

maximum recovery of M iff M′ is a quasi-inverse and a recovery of M.

It was shown in (Fagin, Kolaitis, Popa, & Tan, 2008) that there are mappings speci-

fied by st-tgds (even by full st-tgds) that has no quasi-inverse. Thus, the notion of max-

imum recovery has a clear advantage over quasi-inverses as a relaxation of the notion of

Fagin-inverse, since maximum recoveries coincide with Fagin-inverses for Fagin-invertible

mappings, and every mappings specified by st-tgds has a maximum recovery.

Example 3.1.11. Fagin, Kolaitis, Popa, and Tan (2008) showed that the schema mapping

M specified by full st-tgd E(x, z)∧E(z, y) → F (x, y)∧M(z) has neither a quasi-inverse

nor a Fagin-inverse. It is possible to show that the schema mapping M′ specified by:

F (x, y) → ∃u(E(x, u) ∧ E(u, y)),

M(z) → ∃v∃w(E(v, z) ∧ E(z, w)),

is a maximum recovery of M. ¤

3.1.2. Comparison with inverses for the extended solutions semantics

Fagin et al. (2009) made the observation that almost all the literature about data ex-

change and, in particular, the literature about inverses of schema mappings, assume that

32

source instances do not have null values. Although our definition of recovery and max-

imum recovery do not need this assumption, most of our results regarding inverses are

proved for the case of st-mappings, that is, mappings in which the source instances contain

only constant values while target instances may contain constant and null values. Fagin et

al. (2009) go a step further and propose new refined notions for inverting mappings that

consider nulls in the source. In particular, they propose the notions of extended inverse,

and of extended recovery and maximum extended recovery. In this section, we review the

definitions of the latter two notions and compare them with the previously proposed notions

of recovery and maximum recovery.

The first observation to make is that since null values are intended to represent missing

or unknown information, they should not be treated naively as constants (Imielinski &

Lipski, 1984). In fact, as shown by Fagin et al. (2009), if one treats nulls in that way, the

existence of a maximum recovery for mappings given by st-tgds is no longer guaranteed.

Example 3.1.12. Consider a source schema {S(·, ·)} where instances may contain null

values, and let M be a mapping specified by st-tgd S(x, y) → ∃z (T (x, z) ∧ T (z, y)).

Then M has no maximum recovery if one considers a naı̈ve semantics where null elements

are used as constants in the source (Fagin et al., 2009). ¤

Since nulls should not be treated naively when exchanging data, Fagin et al. (2009)

proposed a new way to deal with null values. Intuitively, the idea is to close mappings under

homomorphisms. This idea is supported by the fact that nulls are intended to represent

unknown data, thus, it should be possible to replace them by arbitrary values. Formaly, the

authors introduce the following concept.

DEFINITION 3.1.13 (Fagin et al., 2009). Let M be a mapping. The homomorphic

extension of M, denoted by e(M), is the mapping

e(M) = {(I, J) | ∃(I ′, J ′) : (I ′, J ′) ∈ M and there exist

homomorphisms from I to I ′ and from J ′ to J}.

33

The idea is that for a mapping M that has nulls in source and target instances, one

does not have to consider M but e(M) as the mapping to deal with for exchanging data

and computing mapping operators since e(M) treats nulls in a meaningful way (Fagin et

al., 2009). The following result shows that with this new semantics one can avoid anomalies

as the one shown in Example 3.1.12.

THEOREM 3.1.14 (Fagin et al., 2009). For every mapping M specified by a set of

st-tgds and with nulls in source and target instances, e(M) has a maximum recovery.

As mentioned above, Fagin et al. (2009) go a step further by introducing new notions

of inverse for mappings that consider nulls in the source. More specifically, the authors

introduce the following definitions

DEFINITION 3.1.15 (Fagin et al., 2009). Let M be a mapping from R1 to R2. Mapping

M′ is an extended recovery of M if (I, I) ∈ e(M) ◦ e(M′), for every instance I of R1.

Then given an extended recovery M′ of M, the mapping M′ is a maximum extended

recovery of M if for every extended recovery M′′ of M, it holds that e(M) ◦ e(M′) ⊆

e(M) ◦ e(M′′).

At a first glance, one may think that the notions of maximum recovery and maximum

extended recovery are incomparable. Nevertheless, the next result shows that there is a

tight connection between these two notions. In particular, it shows that the notion proposed

by Fagin et al. (2009) can be defined in terms of our notion of maximum recovery. In the

theorem we focus on mappings M from R1 to R2 such that e(M) is a total mapping, that

is, dom(e(M)) = Inst(R1). Notice that the notion of extended recovery of a mapping

M from R1 to R2 is defined only for the case when in which e(M) is total, since if there

exists an instance I of R1 such that I /∈ dom(e(M)), then for every mapping M′ we have

that (I, I) /∈ e(M) ◦ e(M′) and thus, M does not have an extended recovery.

THEOREM 3.1.16. Let M be a mapping such that e(M) is total. Then M has a

maximum extended recovery if and only if e(M) has a maximum recovery. Moreover, M′

34

is a maximum extended recovery of M if and only if e(M′) is a maximum recovery of

e(M).

PROOF. We first introduce some notation to simplify the exposition. Let I1 and I2 be

instances of the same schema R with values in C ∪ N. Recall that a homomorphism from

I1 to I2 is a function h : dom(I1) → dom(I2) such that, for every constant value a ∈ C,

it holds that h(a) = a, and for every R ∈ R and every tuple (a1, . . . , ak) ∈ RI1 , it holds

(h(a1), . . . , h(ak)) ∈ RI2 . Consider a binary relation → defined as follows:

→ = {(I1, I2) | there exists a homomorphism from I1 to I2}.

Fagin et al. (2009) introduced relation → to simplify the definition of the extended seman-

tics of a mapping. In fact, given a mapping M, we have that

e(M) = → ◦M ◦ → .

Notice that the relation → is idempotent, that is, it holds that (→ ◦ →) = →. In particular,

we have that

→ ◦ e(M) = e(M), (3.1)

e(M) ◦ → = e(M). (3.2)

Thus, if I1, I2, J are instances such that (I1, I2) ∈ → and (I2, J) ∈ e(M), then (I1, J) ∈

e(M). Hence, if (I1, I2) ∈ →, then it holds that Sole(M)(I2) ⊆ Sole(M)(I1). We use this

property in this proof.

Before proving the theorem, we make an additional observation. Let M be the map-

ping in the statement of the theorem. Recall that we are assuming that e(M) is a total

mapping, thus from Proposition 3.1.6 we have that M′ is a maximum recovery of e(M) if

and only if M′ is a recovery of e(M) and for every (I1, I2) ∈ e(M) ◦ M′, it holds that

Sole(M)(I2) ⊆ Sole(M)(I1). We extensively use this property in this proof.

Now we are ready to prove the theorem. Let M be a mapping from a schema S to a

schema T, and assume that source instances are composed by null and constant values. We

35

first show that e(M) has a maximum recovery if and only if M has a maximum extended

recovery.

We show now that if e(M) has a maximum recovery then M has a maximum extended

recovery. Thus, assume that e(M) has a maximum recovery, and let M′ be a maximum

recovery of e(M). We show next that M′ is also a maximum extended recovery of M.

Since M′ is a recovery of e(M), we have that (I, I) ∈ e(M) ◦ M′ for every instance

I of S. Moreover, from (3.2) we have that e(M) ◦ M′ = e(M) ◦ → ◦ M′ and, thus,

(I, I) ∈ e(M) ◦ → ◦M′ for every instance I of S. Thus, given that (I, I) ∈→ for every

instance I of S, we obtain that (I, I) ∈ e(M) ◦ → ◦ M′ ◦ → = e(M) ◦ e(M′) for every

instance I of S, which implies that e(M′) is a extended recovery of e(M).

Now, let M′′ be an extended recovery of M. Then, as above, we obtain that (I, I) ∈

e(M)◦e(M′′) for every instance I of S. Thus, we have that e(M′′) is a recovery of e(M).

Recall that M′ is a maximum recovery of e(M) and, hence, we have that e(M) ◦M′ ⊆

e(M)◦e(M′′), which implies that e(M)◦M′◦ →⊆ e(M)◦e(M′′) ◦ →. Therefore, given

that e(M) = e(M) ◦ → and e(M′′) ◦ → = e(M′′) by (3.2), we have that e(M) ◦ →

◦M′ ◦ → ⊆ e(M) ◦ e(M′′), which implies that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′). Thus,

we have shown that M′ is an extended recovery of M, and that for every other extended

recovery M′′ of M, it holds that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′), which implies that M′

is a maximum extended recovery of M, and thus, M has a maximum extended recovery.

We prove now the opposite direction, that is, we prove that if M has a maximum

extended recovery then e(M) has a maximum recovery. Thus, assume that M has a max-

imum extended recovery, and let M′ be a maximum extended recovery of M. Next we

show that e(M′) is a maximum recovery of e(M). Given that M′ is an extended recovery

of M, we have that (I, I) ∈ e(M) ◦ e(M′) for every instance I of S, which implies that

e(M′) is a recovery of e(M). Thus, by Proposition 3.1.6, to prove that e(M′) is a max-

imum recovery of e(M), it is enough to show that Sole(M)(I2) ⊆ Sole(M)(I1) for every

(I1, I2) ∈ e(M) ◦ e(M′). Let (I1, I2) ∈ e(M) ◦ e(M′). To prove that Sole(M)(I2) ⊆

36

Sole(M)(I1), we make use of the following mapping M⋆ from T to S:

M⋆ = {(J, I) | I is an instance of S and (I1, J) /∈ e(M)} ∪

{(J, I) | (I1, J) ∈ e(M) and Sole(M)(I) ⊆ Sole(M)(I1)}.

We show first that M⋆ is an extended recovery of M, that is, we show that for every

instance I of S, it holds that (I, I) ∈ e(M) ◦ e(M⋆). First, assume that Sole(M)(I) ⊆

Sole(M)(I1), and consider an arbitrary instance J⋆ such that (I, J⋆) ∈ e(M). Notice that

(I1, J
⋆) ∈ e(M) since Sole(M)(I) ⊆ Sole(M)(I1). Thus, we have that (J⋆, I) ∈ M⋆ and,

hence, (J⋆, I) ∈ e(M⋆). Therefore, given that (I, J⋆) ∈ e(M) and (J⋆, I) ∈ e(M⋆), we

conclude that (I, I) ∈ e(M) ◦ e(M⋆). Second, assume that Sole(M)(I) 6⊆ Sole(M)(I1).

Then there exists an instance J⋆ such that (I, J⋆) ∈ e(M) and (I1, J
⋆) /∈ e(M). By

definition of M⋆, we have that (J⋆, I) ∈ M⋆ and, thus, (J⋆, I) ∈ e(M⋆). Thus, we also

conclude that (I, I) ∈ e(M) ◦ e(M⋆) in this case.

We are now ready to prove that for every (I1, I2) ∈ e(M) ◦ e(M′), it holds that

Sole(M)(I2) ⊆ Sole(M)(I1). Let (I1, I2) ∈ e(M) ◦ e(M′). Given that M′ is a maximum

extended recovery of M and M⋆ is an extended recovery of M, we have that e(M) ◦

e(M′) ⊆ e(M) ◦ e(M⋆) and, therefore, (I1, I2) ∈ e(M) ◦ e(M⋆). Thus, given that

e(M) ◦ e(M⋆) = e(M) ◦ M⋆◦ → by (3.2), we conclude that there exist instances J of

T and I ′
2 of S such that (I1, J) ∈ e(M), (J, I ′

2) ∈ M⋆ and (I ′
2, I2) ∈ →. Hence, by

definition of M⋆, we have that Sole(M)(I
′
2) ⊆ Sole(M)(I1) (since (I1, J) ∈ e(M)). But we

also have that Sole(M)(I2) ⊆ Sole(M)(I
′
2) since (I ′

2, I2) ∈ →, and, therefore, we conclude

that Sole(M)(I2) ⊆ Sole(M)(I1), which was to be shown.

Up to this point, we have shown that e(M) has a maximum recovery if and only if M

has a maximum extended recovery. In fact, from the preceding proof, we conclude that:

(a) if e(M) has a maximum recovery M′, then M′ is a maximum extended recovery

of M, and

(b) if M has a maximum extended recovery M′, then e(M′) is a maximum recovery

of e(M).

37

Next we prove the second part of the theorem, that is, we prove that a mapping M′ is a

maximum extended recovery of M if and only if e(M′) is a maximum recovery of e(M).

It should be noticed that the “only if” direction corresponds to property (b) above and,

thus, we only need to show that if e(M′) is a maximum recovery of e(M), then M′ is a

maximum extended recovery of M.

Assume that e(M′) is a maximum recovery of e(M). Then we have that e(M′) is

a recovery of e(M) and, thus, M′ is an extended recovery of M. Now let M′′ be an

extended recovery of M. Then we have that e(M′′) is a recovery of e(M) and, hence,

e(M)◦e(M′) ⊆ e(M)◦e(M′′) since e(M′) is a maximum recovery of e(M). Therefore,

we conclude that M′ is an extended recovery of M, and for every extended recovery M′′

of M, it holds that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′), which means that M′ is a maximum

extended recovery of M. This completes the proof of the proposition. ¤

It was proved by Fagin et al. (2009) that every mapping specified by a set of st-tgds and

considering nulls in the source has a maximum extended recovery. It should be noticed that

this result is also implied by Theorems 3.1.14 and 3.1.16. Finally, another conclusion that

can be drawn from the above result is that all the machinery presented in this section for

the notion of maximum recovery, in particular, Proposition 3.1.6 and Theorem 3.1.8, can

be applied over maximum extended recoveries, and the extended semantics for mappings,

thus giving a new insight about inverses of mappings with null values in the source.

3.2. An Application of Maximum Recoveries: Schema Evolution

One of the main reasons for the study of the issues of composing and inverting schema

mappings is to solve the schema evolution problem (Bernstein, 2003; Bernstein & Melnik,

2007; Kolaitis, 2005; Fagin et al., 2011). Two main scenarios have been identified for this

problem, which are shown in Figure 3.1. In scenario (a), a mapping M from a schema S to

a schema T has already been constructed, and it has been decided that target schema T will

be replaced by a new schema U. In particular, the relationship between schemas T and U

has been given through a mapping M′. The schema evolution problem is then to provide a

38

M◦M
′

T

U

T

(a) (b)

M M

inv(M′) ◦M

S S

M
′

U

M
′

FIGURE 3.1. The schema evolution problem.

mapping from S to U, considering the metadata provided by M and M′. As pointed out

by Kolaitis (2005), the process of constructing a schema mapping is time consuming and,

thus, one would like to solve the schema evolution problem by automatically reusing the

metadata that is given. In scenario (a), it is possible to do this by using the composition op-

erator (Fagin, Kolaitis, Popa, & Tan, 2005; Kolaitis, 2005); the mapping M◦M′ correctly

represents the relationship between schemas S and U.

Scenario (b) in Figure 3.1 is similar to scenario (a), but in this case it has been decided

to replace source schema S by U. As in (a), the relationship between S and U is given

by a mapping, that is again called M′. The natural question at this point is whether a

combination of mappings M and M′ could be used to provide the right mapping, or at

least a good mapping, from U to T according to the metadata provided by M and M′. It

has been argued that the combination of the inverse and composition operators can be used

for this purpose, and the mapping inv(M′) ◦ M has been proposed as a solution for the

schema evolution problem (Fagin, 2007), where inv(M′) represents an inverse of mapping

M′. But, unfortunately, it has not been formally studied to what extend inv(M′)◦M is the

right solution for the schema evolution problem. In this section, we address this issue for

the common case of mappings given by st-tgds, and show that if inv(M′) is the maximum

recovery of M′, then inv(M′) ◦ M is the best solution in a precise sense for the schema

evolution problem.

For the rest of this section, let S be a source schema, T, U target schemas, M =

(S,T, Σ) and M′ = (S,U, Σ′), where Σ and Σ′ are sets of st-tgds. If M⋆ is a mapping

from U to T, what properties should it satisfy in order to be considered a good solution

39

for the schema evolution problem? Or, in other words, what properties should M⋆ satisfy

to be considered a good representation of the metadata provide by M and M′? Assume

that I is an instance of S, and let J be a solution for I under M′. If J properly represents

the information in I , then one would consider M⋆ a good representation of the metadata

provided by M and M′ if the space of solutions for I under M is the same as the space

of solutions for J under M⋆, that is, SolM(I) = SolM⋆(J). Or, at least, one would expect

that none of the instances in SolM(I) is ruled out by M⋆ when mapping data from J , that

is, SolM(I) ⊆ SolM⋆(J). In this section, we use this simple criterion to compare different

solutions for the schema evolution problem.

To formalize the criterion described above, for every instance I of S, we first need

to choose a particular solution J under M′. A natural candidate for this is the canonical

universal solution chaseΣ′(I) which has been identified in the database literature as a so-

lution with several desirable properties (Fagin, Kolaitis, Miller, & Popa, 2005). Thus, the

criterion mentioned above is formalized as follows: A mapping M⋆ from U to T is said to

be a solution for the schema evolution problem for M and M′ if for every instance I of S,

it holds that:

SolM(I) ⊆ SolM⋆(chaseΣ′(I)).

The previous criterion also suggests a way to compare alternative solutions for the schema

evolution problem; the closer the space of solutions SolM⋆(chaseΣ′(I)) is to SolM(I) the

better is M⋆ as a solution for the schema evolution problem. In the following proposition,

we show that under this criterion, the notion of maximum recovery can be used to obtain

the best solution for the schema evolution problem.

PROPOSITION 3.2.1. Let S be a source schema, T, U target schemas, M = (S,T, Σ)

and M′ = (S,U, Σ′), where Σ and Σ′ are sets of st-tgds. Then there exists a maximum

recovery N of M′ such that:

(1) N ◦M is a solution for the schema evolution problem for M and M′, and

40

(2) for every solution M⋆ for the schema evolution problem for M and M′, and for

every instance I of S, it holds that:

SolN◦M(chaseΣ′(I)) ⊆ SolM⋆(chaseΣ′(I)).

PROOF. Let N = {(chaseΣ′(I), I) | I ∈ Inst(S)}. It is straightforward to see that N

is a recovery of M′. Moreover, given that dom(M′) = S, we have that N is a reduced

recovery of M′. Assume that (I1, I2) ∈ M′ ◦ N . Thus, we have that chaseΣ′(I2) ∈

SolM′(I1). Now, we know that chaseΣ′(I2) is a universal solution for I2 under M′ (Fagin,

Kolaitis, Miller, & Popa, 2005; Arenas et al., 2004). Moreover, since M′ is specified by st-

tgds we know that M′ is closed under target homomorphisms. From these two properties

and the fact that chaseΣ′(I2) ∈ SolM′(I1), we obtain that for every J ∈ SolM′(I2) it

holds that J ∈ SolM′(I1). We have shown that for every (I1, I2) ∈ M′ ◦ N we have that

SolM′(I2) ⊆ SolM′(I1) which by Proposition 3.1.6 implies that N is a maximum recovery

of M′. Next we show that N satisfies the two conditions of the proposition.

(1) For every instance I of S, we have that (chaseΣ′(I), I) ∈ N and, thus, we conclude

that SolM(I) ⊆ SolN◦M(chaseΣ′(I)). Thus, we have that N ◦ M is a solution for the

schema evolution problem for M and M′.

(2) Let M⋆ be a solution for the schema evolution problem for M and M′, and I an

instance of S. We need to show that SolN◦M(chaseΣ′(I)) ⊆ SolM⋆(chaseΣ′(I)).

Assume that J ∈ SolN◦M(chaseΣ′(I)). Then there exists an instance I ′ of S such

that (chaseΣ′(I), I ′) ∈ N and (I ′, J) ∈ M. Given that M⋆ is a solution for the schema

evolution problem for M and M′, we have that SolM(I ′) ⊆ SolM⋆(chaseΣ′(I ′)) and,

hence, J ∈ SolM⋆(chaseΣ′(I ′)). But, by definition of N , we have that chaseΣ′(I ′) =

chaseΣ′(I) since (chaseΣ′(I), I ′) ∈ N . Thus, we have that J ∈ SolM⋆(chaseΣ′(I)). This

concludes the proof of the proposition. ¤

Notice that an ideal solution for the schema evolution problem for mappings M and

M′ is a mapping M⋆ such that SolM(I) = SolM⋆(chaseΣ′(I)), for every source instance

I . The following corollary of Proposition 3.2.1 shows that if such a solution exists, then

41

one can focus on the solutions constructed by using maximum recoveries in order to find

an ideal solution.

COROLLARY 3.2.2. Let S be a source schema, T, U target schemas, M = (S,T, Σ)

and M′ = (S,U, Σ′), with Σ, Σ′ sets of st-tgds. If there exists an ideal solution for the

schema evolution problem for M and M′, then there exists a maximum recovery N of M′

such that N ◦M is an ideal solution for the schema evolution problem for M and M′.

From Proposition 3.2.1 and the previous corollary, we conclude that the combination

of the maximum recovery and the composition operator is appropriate to provide a solution

for the schema evolution problem shown in Figure 3.1 (b). We also note that maximum

recovery can be replaced neither by Fagin-inverse nor by quasi-inverse in Proposition 3.2.1,

as it is known that even for full st-tgds, Fagin-inverses and quasi-inverses are not guaranteed

to exist (Fagin, 2007; Fagin, Kolaitis, Popa, & Tan, 2008).

3.3. Computing Maximum Recoveries

Up to this point we know that every st-mapping specified by a set of FO-TO-CQ dependen-

cies has a maximum recovery, but we have not said anything about the language needed to

express it. In this section, we show that every st-mapping specified by a set of FO-TO-CQ

dependencies has a maximum recovery specified by a set of CQC-TO-FO dependencies.

In fact, we provide an algorithm that computes maximum recoveries for st-mappings spec-

ified by FO-TO-CQ dependencies. Our algorithm runs in exponential time when mappings

are given by sets of FO-TO-CQ dependencies, and can be adapted to run in quadratic time

when the input is a mapping specified by a set of full FO-TO-CQ dependencies.

Before presenting our algorithm we introduce some basic terminology, and we also

present some results that are important in the formulation of the algorithm

Our algorithm is based on query rewriting. Let M = (S,T, Σ) be an st-mapping such

that Σ is a set of FO-TO-CQ dependencies, and let Q be a query over schema T. Recall

that a Q′ is said to be a rewriting of Q over the source if Q′ is a query over S such that

42

for every I ∈ Inst(S), it holds that Q′(I) = certainM(Q, I). That is, to obtain the set

of certain answers of Q over I under M, we just have to evaluate its rewriting Q′ over

instance I (see Section 2.4).

The computation of a rewriting of a conjunctive query is a basic step in the algorithm

presented in this section. This problem has been extensively studied in the database area

(Levy, Mendelzon, Sagiv, & Srivastava, 1995; Abiteboul & Duschka, 1998) and, in partic-

ular, in the data integration context (Halevy, 2000, 2001; Lenzerini, 2002). In particular,

the class of CQ-TO-CQ dependencies corresponds to the class of GLAV mappings in the

data integration context (Lenzerini, 2002), and, as such, the techniques developed to solved

the query rewriting problem for GLAV mappings can be reused in our context.

For the sake of completeness, in this dissertation we present an exponential-time al-

gorithm that given a mapping M specified by a set of FO-TO-CQ st-dependencies and a

conjunctive query Q over the target schema, produces a rewriting of Q over the source of

M. This algorithm is presented in Appendix A. For computing maximum recoveries we

only need the following lemma (the proof of the lemma can be found in Appendix A.1.1).

LEMMA 3.3.1. There exists an algorithm QUERYREWRITING that given an st-mapping

M = (S,T, Σ), with Σ a set of FO-TO-CQ dependencies, and a conjunctive query Q over

schema T, computes a domain-independent FO query Q′ that is a rewriting of Q over the

source. The algorithm runs in exponential time and its output is of exponential size in the

size of Σ and Q.

Another notion that would be used in the proof of correctness of our algorithm for

computing maximum recoveries is the notion of chase that we introduced in Section 2.4.

3.3.1. Computing maximum recoveries in the general case

In this section, we propose an algorithm that given a mapping M specified by a set of

FO-TO-CQ dependencies, returns a maximum recovery of M.

It is known that the simple process of “reversing the arrows” of source-to-target de-

pendencies does not necessarily produce inverses as conclusions of different dependencies

43

may be related (Fagin, 2007); a conclusion of a dependency may be implied by the conclu-

sions of other dependencies. The algorithm presented in this section first searches for these

relations among conclusions of dependencies, and then suitably composes the premises

of related dependencies and “reverses the arrows” to obtain a maximum recovery. Let us

give some intuition with an example. Consider a mapping M specified by the FO-TO-CQ

dependencies:

ϕ1(x1, x2) → ∃v(P (x1, v) ∧ R(v, x2)), (3.3)

ϕ2(y1, y2) → P (y1, y2), (3.4)

ϕ3(z1, z2) → R(z1, z2), (3.5)

where ϕ1, ϕ2, and ϕ3 are arbitrary FO formulas with two free variables. In this case,

the conjunction of the conclusions of (3.4) and (3.5) implies the conclusion of (3.3) when

y2 is equal to z1 and both are existentially quantified. The idea behind the algorithm is

to make explicit these types of relationships. For instance, we could replace (3.3) by the

dependency:

ϕ1(u1, u2) ∨ ∃y2∃z1

(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

)
→

∃v(P (u1, v) ∧ R(v, u2)). (3.6)

It can be proved that the set of dependencies obtained by replacing formula (3.3)

by (3.6) is logically equivalent to the initial set of dependencies. After making explicit

these types of relationships between dependencies, the algorithm “reverses the arrows” to

obtain a maximum recovery. When “reversing the arrows”, we also need to impose an ad-

ditional constraint. In the above example, given that (3.3) is a non-full dependency, when

reversing (3.4) the algorithm needs to force variable y2 in P (y1, y2) to take values only from

the set C, that is, we have to use dependency P (y1, y2) ∧ C(y2) → ϕ2(y1, y2) instead of

P (y1, y2) → ϕ2(y1, y2). This is because, given a source instance I such that I |= ϕ1(a, b),

dependency (3.3) could be satisfied by including a tuple of the form P (a, n) in a target

44

instance, where n ∈ N, and value n should not be passed to a source instance by a re-

covery (see Theorem 3.3.4 for a formal justification for the use of predicate C(·)). In fact,

as a safety condition, the algorithm presented in this section uses predicate C(·) over each

variable that passes values from the target to the source. Summing up, the following set of

dependencies defines a maximum recovery of the mapping M above:

P (y1, y2) ∧ C(y1) ∧ C(y2) → ϕ2(y1, y2),

R(z1, z2) ∧ C(z1) ∧ C(z2) → ϕ3(z1, z2),

∃v(P (u1, v) ∧ R(v, u2)) ∧ C(u1) ∧ C(u2) → ϕ1(u1, u2) ∨

∃y2∃z1

(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

)
.

The following algorithm uses a query rewriting procedure to find the types of relation-

ships between dependencies described above. In fact, in the above example, the formula:

ϕ1(u1, u2) ∨ ∃y2∃z1

(
ϕ2(u1, y2) ∧ ϕ3(z1, u2) ∧ y2 = z1

)
, (3.7)

that appears as the premise of (3.6), makes explicit the relationship between the conclusion

∃v(P (u1, v)∧R(v, u2)) of FO-TO-CQ dependency (3.3) and dependencies (3.3), (3.4) and

(3.5). But not only that, it can be shown that (3.7) is a rewriting of ∃v(P (u1, v)∧R(v, u2))

over the source schema (according to dependencies (3.3), (3.4) and (3.5)).

In the algorithm, if x̄ = (x1, . . . , xk), then C(x̄) is a shorthand for C(x1)∧· · ·∧C(xk).

Algorithm MAXIMUMRECOVERY(M)

Input: An st-mapping M = (S,T, Σ), where Σ is a set of FO-TO-CQ dependencies.

Output: A ts-mapping M′ = (T,S, Σ′), where Σ′ is a set of CQC-TO-FO dependencies

and M′ is a maximum recovery of M.

(1) Start with Σ′ as the empty set.

(2) For every dependency σ ∈ Σ of the form ϕ(x̄) → ∃ȳψ(x̄, ȳ), do the following:

45

(a) Let Q be the conjunctive query defined by ∃ȳψ(x̄, ȳ).

(b) Use QUERYREWRITING(M, Q) to compute an FO formula α(x̄) that is a

rewriting of ∃ȳψ(x̄, ȳ) over the source.

(c) Add dependency ∃ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄) to Σ′.

(3) Return M′ = (T,S, Σ′). ¤

THEOREM 3.3.2. Let M = (S,T, Σ) be an st-mapping, where Σ is a set of FO-TO-CQ

dependencies. Then MAXIMUMRECOVERY(M) computes a maximum recovery of M in

exponential time in the size of Σ, which is specified by a set of CQC-TO-FO dependencies.

PROOF. From Lemma 3.3.1, it is straightforward to conclude that the algorithm runs in

exponential time. Assume that M′ = (T,S, Σ′) is the output of MAXIMUMRECOVERY(M).

We first show that M′ is a recovery of M, that is, we show that for every instance I of S,

it holds that (I, I) ∈ M ◦M′.

We show now that (chaseΣ(I), I) ∈ M′ and, thus, since (I, chaseΣ(I)) ∈ M, we

obtain that (I, I) ∈ M ◦ M′. Let σ′ ∈ Σ′, we need to show that (chaseΣ(I), I) |= σ′.

Assume that σ′ is of the form ∃ȳψ(x̄, ȳ)∧C(x̄) → α(x̄), and that ā is a tuple of values such

that chaseΣ(I) |= ∃ȳψ(ā, ȳ) ∧ C(ā). We have to show that I |= α(ā). Now, consider the

conjunctive query Qψ defined by formula ∃ȳψ(x̄, ȳ). Since C(ā) holds and chaseΣ(I) |=

∃ȳψ(ā, ȳ), we obtain that ā ∈ Qψ(chaseΣ(I))↓. Thus, by the properties of the chase, we

know that ā ∈ certainM(Qψ, I). Consider now the query Qα defined by formula α(x̄).

By the definition of MAXIMUMRECOVERY, we know that Qα is a rewriting of Qψ over

schema S, and then certainM(Qψ, I) = Qα(I). Thus, we have that ā ∈ Qα(I), and then

I |= α(ā) which was to be shown.

To complete the proof, we show that if (I1, I2) ∈ M ◦ M′, then ∅ Ã SolM(I2) ⊆

SolM(I1). Thus, by Proposition 3.1.6 and since M′ is a recovery of M, we obtain that

M′ is a maximum recovery of M. Let (I1, I2) ∈ M ◦ M′, and J⋆ an instance of T

such that (I1, J
⋆) ∈ M and (J⋆, I2) ∈ M′. Notice first that dom(M) = Inst(S), and

then ∅ Ã SolM(I2). Therefore, we only have to prove that SolM(I2) ⊆ SolM(I1). Let

46

J ∈ SolM(I2), we need to show that J ∈ SolM(I1). Let σ ∈ Σ be a dependency of the

form ϕ(x̄) → ∃ȳψ(x̄, ȳ), and assume that I1 |= ϕ(ā) for some tuple ā of constant values.

We show next that J |= ∃ȳψ(ā, ȳ). Since I1 |= ϕ(ā) we know that for every J ′ ∈ SolM(I1),

it holds that J ′ |= ∃ȳψ(ā, ȳ). In particular, it holds that J⋆ |= ∃ȳψ(ā, ȳ). By the definition

of the algorithm, we know that there exists a dependency ∃ȳψ(x̄, ȳ) ∧C(x̄) → α(x̄) in Σ′,

such that α(x̄) is a rewriting of ∃ȳψ(x̄, ȳ) over S. Then since J⋆ |= ∃ȳψ(ā, ȳ), ā is a tuple

of constant values, and (J⋆, I2) |= Σ′, we know that I2 |= α(ā). Now consider the queries

Qψ and Qα defined by formulas ∃ȳψ(x̄, ȳ) and α(x̄), respectively. Since I2 |= α(ā), we

know that ā ∈ Qα(I2). Furthermore, we know that Qα(I2) = certainM(Qψ, I2), and then

ā ∈ certainM(Qψ, I2). In particular, since J ∈ SolM(I2), we know that ā ∈ Qψ(J), from

which we conclude that J |= ∃ȳψ(ā, ȳ). We have shown that for every σ ∈ Σ of the form

ϕ(x̄) → ∃ȳψ(x̄, ȳ), if I1 |= ϕ(ā) for some tuple ā, then J |= ∃ȳψ(ā, ȳ). Thus, we have that

(I1, J) |= Σ and therefore J ∈ SolM(I1). This concludes the proof of the theorem. ¤

From Theorem 3.1.10, we have that if Σ is a Fagin-invertible (quasi-invertible) set of

st-tgds, then MAXIMUMRECOVERY computes a Fagin-inverse (quasi-inverse) of Σ. Fa-

gin, Kolaitis, Popa, and Tan (2008), proposed algorithms for computing Fagin-inverses and

quasi-inverses for the case of mappings given by st-tgds. It is important to notice that our

algorithm works not only for st-tgds but also for the larger class of FO-TO-CQ dependen-

cies. For the latter class, it is not clear how to extend the algorithms from (Fagin, Kolaitis,

Popa, & Tan, 2008) to produce Fagin-inverses and quasi-inverses, as the notion of genera-

tor used in these algorithms (Fagin, Kolaitis, Popa, & Tan, 2008, Definition 4.2) becomes

undecidable for FO-TO-CQ dependencies.

The next lemma shows that when the input of algorithm MAXIMUMRECOVERY is

a mapping M specified by a set of st-tgds, then its output is a maximum recovery of

M specified by a set of CQC-TO-UCQ= dependencies. The proof of the lemma follows

directly from the proof of Lemma 3.3.1.

47

LEMMA 3.3.3. Let M = (S,T, Σ) be an st-mapping such that Σ is a set of st-tgds,

and Q a conjunctive query over schema T. Then algorithm QUERYREWRITING(M, Q) in

Lemma 3.3.1 has as output a query Q′ in UCQ= that is a rewriting of Q over the source.

Thus, if the input of our algorithm is a mapping given by a set Σ of st-tgds, it computes

a maximum recovery given by a set Σ′ of CQC-TO-UCQ= dependencies.

3.3.2. Justification for the output of the algorithm

In this section we prove provide justification for both the size of the output of algo-

rithm MAXIMUMRECOVERY and the mapping language used when the input is a set of

st-tgds. More precisely, we have shown that when the input mapping M is specified by

a set of st-tgds, algorithm MAXIMUMRECOVERY produces as output a mapping specified

by CQC-TO-UCQ= dependencies that is of size exponential with respect to the size of the

input mapping. We show in this section that the output of the algorithm is optimal in the

sense that the language used in the output of MAXIMUMRECOVERY is, in a precise sense,

minimal for expressing maximum recoveries of st-tgds, and that the exponential blow-up

in the size of the output cannot be avoided.

We show first that the three distinctive features of the language of CQC-TO-UCQ=

dependencies, namely, predicate C(·) in the premises, disjunctions in the conclusions, and

equalities in the conclusions, are needed to specify maximum recoveries of mappings given

by st-tgds.

Necessity of predicate C(·)

A first question about the output of MAXIMUMRECOVERY is whether predicate C(·) is

really needed. Fagin, Kolaitis, Popa, and Tan (2008) proved that C(·) is needed when com-

puting quasi-inverses of st-mappings specified by st-tgds, if quasi-inverses are expressed

using st-tgds with inequalities in the premises and disjunction in the conclusions. Here we

show that C(·) is needed when computing maximum recoveries for st-mappings specified

by st-tgds, even if we allow the full power of FO to express maximum recoveries.

48

THEOREM 3.3.4. There exists an st-mapping M = (S,T, Σ) specified by a set Σ of

st-tgds that has no maximum recovery specified by a set of FO-sentences over S ∪ T not

using predicate C(·).

PROOF. Let S = {P (·), R(·)}, T = {T (·)} and Σ be the following set of st-tgds:

P (x) → ∃yT (y),

R(x) → T (x).

Assume that M′ is a recovery of M that is specified by a set of FO-sentences over S ∪T.

Next we show that M′ is not a maximum recovery of M.

On the contrary, assume that M′ is a maximum recovery of M. Let I be an instance

of S such that P I = {a} and RI = ∅, where a is an arbitrary element of C. Since M′ is a

recovery of M, there exists an instance J of T such that (I, J) ∈ M and (J, I) ∈ M′. We

consider two cases.

• First, assume that J mentions an element b ∈ C, that is not necessarily distinct

from a. Then we have that (I ′, J) ∈ M, where I ′ is an instance of S such

that P I′ = ∅ and RI′ = {b}. Thus, given that (J, I) ∈ M′, we have that

(I ′, I) ∈ M ◦M′, which implies that ∅ Ã SolM(I) ⊆ SolM(I ′) by Proposition

3.1.6. Let J ′ be an instance of T defined as T J ′
= {n}, where n is an arbitrary

element of N. We have that (I, J ′) ∈ M and (I ′, J ′) 6∈ M, which contradicts

the fact that SolM(I) ⊆ SolM(I ′).

• Second, assume that J does not mention any element from C. Assume that

dom(J) = {n1, . . . , nk}, and let f be a function defined as f(ni) = bi, where

each bi is an element of C that is distinct from a and bi 6= bj for i 6= j. Let J⋆ be

the target instance that results from replacing every value ni by bi. It is easy to

see that (I, J⋆) ∈ M. Let g be a function with domain {a, n1, . . . , nk} defined

as g(a) = a and g(ni) = f(ni). We have that g is an isomorphism from (J, I)

49

to (J⋆, I) when we consider these instances as structures over S ∪ T
1. Thus,

given that M′ is specified by a set of FO-sentences over S∪T, we conclude that

(J⋆, I) ∈ M′. Therefore, there exists an instance J⋆ of T such that (I, J⋆) ∈ M,

(J⋆, I) ∈ M′ and J⋆ mentions elements of C. This leads to a contradiction, as

we show in the previous case. This concludes the proof of the theorem.

¤

As a corollary we obtain our desired result.

COROLLARY 3.3.5. There exists an st-mapping M = (S,T, Σ) specified by a set Σ of

st-tgds that has no maximum recovery specified by a set of CQ-TO-UCQ= dependencies.

Necessity of disjunctions

The following result shows that disjunctions in the conclusion of dependencies are

strictly needed to specify maximum recoveries of mappings given by st-tgds.

THEOREM 3.3.6. There exists an st-mapping M = (S,T, Σ) specified by a set of

st-tgds that has no maximum recovery specified by a set of CQC-TO-CQ= dependencies.

PROOF. Let S = {A(·), B(·)}, T = {P (·)} and Σ be the following set of st-tgds:

A(x) → P (x),

B(x) → P (x).

To obtain a contradiction assume that M′ is a maximum recovery of M that is specified

by a set Σ′ of CQC-TO-CQ= dependencies. We first make a simple observation about the

equalities in Σ′. Every dependency in Σ′ is of the form ϕ(x̄) → ∃ȳ(ψ(x̄, ȳ) ∧ θ(x̄, ȳ)),

where ϕ(x̄) is a query in CQC over T, ψ(x̄, ȳ) is a conjunction of relational atoms over S,

and θ(x̄, ȳ) is a conjunction of equalities over variables in (x̄, ȳ). It is not difficult to see

that we can assume that the equalities in θ(x̄, ȳ) are all of the form x = x′ with x and x′

1Notice that if we consider (J, I) and (J⋆, I) as structures over S∪T∪{C(·)}, then g is not an isomorphism

from (J, I) to (J⋆, I).

50

variables in x̄. To see this, notice that an equality of the form y = y′ with y and y′ variables

in ȳ can be eliminated by replacing every occurrence of y in ψ(x̄, ȳ) by y′. Similarly, an

equality of the form x = y with x a variable in x̄ and y a variable in ȳ can be eliminated

by replacing every occurrence of y in ψ(x̄, ȳ) by x. Thus, from now on we assume that

dependencies in Σ′ are of the form ϕ(x̄) → ∃ȳψ(x̄, ȳ) ∧ θ(x̄), with θ(x̄) a conjuntion of

equalities over the variables in x̄.

To continue with the proof, let a be an element in C and consider the instance I1 of

S such that AI1 = {a} and BI1 = ∅, and the instance I2 of S such that AI2 = ∅ and

BI2 = {a}. Let J be the instance of T such that P J = {a}.

We show now that SolM◦M′(I1) = SolM′(J). Since J ∈ SolM(I1) then it is straight-

forward that SolM′(J) ⊆ SolM◦M′(I1). To show the opposite containment, let K ∈

SolM◦M′(I1). Then there exists an instance J ′ ∈ SolM(I1) such that K ∈ SolM′(J ′).

We prove now that K ∈ SolM′(J). First notice that by the construction of M and Σ it

holds that J ⊆ J ′. Now, let σ be a dependency of the form ϕ(x̄) → ∃ȳψ(x̄, ȳ) ∧ θ(x̄)

in Σ′. We need to prove that (J,K) |= σ. Thus, assume that J |= ϕ(ā) for some tuple

ā. Since dom(J) = {a} we have that all the values in ā are equal to a, and thus, θ(ā)

holds. Now, since J ⊆ J ′, the formula ϕ(x̄) is in CQC and ā is a tuple of elements in C,

we have that J ′ |= ϕ(ā). From the fact that (J ′, K) |= σ we have that K |= ∃ȳψ(ā, ȳ).

Thus we obtain that if J |= ϕ(ā) then θ(ā) holds and K |= ∃ȳψ(ā, ȳ), which implies

that (J,K) |= σ. We have shown that (J,K) |= σ for every σ ∈ Σ′ which implies that

K ∈ SolM′(J). This concludes the proof that SolM◦M′(I1) ⊆ SolM′(J). Similarly as we

proved that SolM′(J) = SolM◦M′(I1), it can be proved that SolM′(J) = SolM◦M′(I2).

Now, since M′ is a recovery of M we know that I1 ∈ SolM◦M′(I1) and I2 ∈ SolM◦M′(I2),

which implies that I1, I2 ∈ SolM′(J). Let σ be a dependency in Σ′ of the form ϕ(x̄) →

∃ȳψ(x̄, ȳ)∧θ(x̄). It is not difficult to see that since ϕ(x̄) is a query in CQC over the schema

{P (·)} and J only contains the fact P (a) with a ∈ C, then J |= ϕ(ā) where ā is a tuple

of values a. Moreover, since I1 belongs to SolM′(J), we have that I1 |= ∃ȳψ(ā, ȳ) which,

since BI1 = ∅, implies that ψ(ā, ȳ) does not mention the relational symbol B(·). On the

51

other hand, since I2 ∈ SolM′(J) we have that I2 |= ∃ȳψ(ā, ȳ) which cannot be the case

since ψ(ā, ȳ) does not mention the relational symbol B(·) and BI2 = {a} 6= ∅. This is our

desired contradiction. ¤

Necessity of equalities

The necessity of equalities follows directly from a result by Fagin, Kolaitis, Popa, and

Tan (2008). Fagin, Kolaitis, Popa, and Tan (2008, Theorem 4.15) proved that there exists a

mapping specified by st-tgds that is Fagin-invertible but that does not have a Fagin-inverse

specified by a set of CQC-TO-UCQ dependencies. Thus from Theorem 3.1.10 we directly

obtain the following.

COROLLARY 3.3.7. There exists an st-mapping M = (S,T, Σ) specified by a set of

st-tgds that has no maximum recovery specified by a set of CQC-TO-UCQ dependencies.

The size of the output

Notice that in general, the set Σ′ computed by our algorithm could be of exponential

size in the size of Σ even if Σ is a set of st-tgds. The following result shows that this

exponential blow-up could not be avoided.

THEOREM 3.3.8. There exists a family of st-mappings {Mn = (Sn,Tn, Σn)}n≥1,

such that Σn is a set of st-tgds of size linear in n, and every set Σ′ of CQC-TO-UCQ=

ts-dependencies that specifies a maximum recovery of Mn is of size Ω(2n).

52

PROOF. Let Sn = {R(·), A1(·), B1(·), . . . , An(·), Bn(·)}, Tn = {P1(·), . . . , Pn(·)},

and Σn the set of st-tgds:

R(x) → ∃y(P1(y) ∧ · · · ∧ Pn(y)),

A1(x) → P1(x),

B1(x) → P1(x),

...

An(x) → Pn(x),

Bn(x) → Pn(x).

Let Mn = (Sn,Tn, Σn) and assume that M′ = (Tn,Sn, Σ′) is a maximum recovery of

Mn, where Σ′ is a set of CQC-TO-UCQ= ts-dependencies. We first prove some facts

about Σ′. Through the proof, we let a be a fixed element in C, and IR a source instance

such that RIR = {a} and AIR

i = BIR

i = ∅ for every i ∈ {1, . . . , n}. Since M′ is a recovery

of Mn, we have that (IR, IR) ∈ Mn ◦ M′. Thus, there exists an instance J⋆ such that

(IR, J⋆) |= Σn and (J⋆, IR) |= Σ′. We show first that the domain of J⋆ is composed only

by null values. On the contrary, assume that there exists a constant element b ∈ C such

that b ∈ dom(J⋆). Then it holds that b ∈ P J⋆

k for some k ∈ {1, . . . , n}. Consider a

source instance I ′ such that AI′

k = BI′

k = {b}, RI′ = ∅, and AI′

i = BI′

i = ∅ for every

i ∈ {1, . . . , n} with i 6= k. The target instance J ′ where P J ′

k = {b} and P J ′

i = ∅ for every

i ∈ {1, . . . , n} with i 6= k, is such that (I ′, J ′) ∈ Mn. Notice that J ′ ⊆ J⋆. Now since Σn

is a set of st-tgds, we know that Mn is closed-up on the right, obtaining that (I ′, J⋆) ∈ Mn.

Thus, given that (J⋆, IR) ∈ M′ we have that (I ′, IR) ∈ Mn◦M
′. This last fact contradicts

Proposition 3.1.6 since M′ is a maximum recovery of Mn and SolMn
(IR) 6⊆ SolMn

(I ′).

We claim now that it must exist a dependency σ ∈ Σ′ such that J⋆ satisfies the premise

of σ. Assume that this is not the case. Then since Σ′ is a set of CQC-TO-UCQ= formulas,

it would be the case that (J⋆, I∅) |= Σ′, where I∅ is the empty source instance. Thus, we

have that (IR, I∅) ∈ Mn ◦ M′ which, by Proposition 3.1.6, contradicts the fact that M′

53

is a maximum recovery of Mn since SolMn
(I∅) 6⊆ SolMn

(IR). Assume now that σ is a

dependency in Σ′ whose premise is satisfied by J⋆. We show next that the premise and the

conclusion of σ must be Boolean formulas. On the contrary, assume that σ is of the form

ϕ(x̄) → ψ(x̄), where x̄ is a tuple of m variables with m > 0. Since we are assuming that

J⋆ satisfies the premise of σ, there exists an m-tuple b̄ such that J⋆ |= ϕ(b̄). We know

that ϕ(x̄) is a domain independent formula, then it holds that every component of b̄ is in

dom(J⋆). We have shown before that dom(J⋆) is composed only by nulls and, thus, every

component of b̄ is a null value. Now, since (J⋆, IR) |= σ and J⋆ |= ϕ(b̄), it must be the case

that IR |= ψ(b̄). We also know that ψ(x̄) is domain independent, then every component of

b̄ must be in dom(IR), which leads to a contradiction since dom(IR) = {a} and a ∈ C.

In the rest of the proof, we let Σ′′ ⊆ Σ′ to be the set of all the dependencies σ of the form

ϕ → ψ such that J⋆ |= ϕ, where ϕ and ψ are Boolean formulas. Notice that Σ′′ 6= ∅.

We have the necessary ingredients to show that Σ′ is of size Ω(2n). Consider for every

n-tuple d̄ = (d1, . . . , dn) ∈ {0, 1}n, the set of source relation symbols Sd̄ = {U1(·), . . . , Un(·)}

such that Ui = Ai if di = 0 and Ui = Bi if di = 1. We now show that for each of the

2n tuples d̄, there must exist a dependency σ ∈ Σ′′ of the form ϕ → ψ such that ψ has a

disjunct that mentions exactly the relation symbols in Sd̄. This is enough to show that Σ′ is

of size Ω(2n). Fix a tuple d̄ and consider a source instance Id̄ such that for every U ∈ Sn,

if U ∈ Sd̄ then U Id̄ = {a}, otherwise U Id̄ = ∅. Since M′ is a maximum recovery of Mn,

there exists a target instance Jd̄ such that (Id̄, Jd̄) |= Σn and (Jd̄, Id̄) |= Σ′. Let JP be a tar-

get instance such that P JP

i = {a} for every i ∈ {1, . . . , n}. It is straightforward to see that

JP ⊆ Jd̄. It is also easy to see that, if θ is a boolean query in CQC over Tn, then JP |= θ.

To see this just take a homomorphism h from the conjunctions of θ to the facts in JP such

that h(x) = a for every existential variable in θ, and note that C(h(x)) holds for every vari-

able since a ∈ C. Thus, given that queries in CQC are monotone and JP ⊆ Jd̄, we have

that Jd̄ |= θ for every CQC boolean query θ over Tn. In particular, we have that for every

ϕ → ψ ∈ Σ′′, it holds that Jd̄ |= ϕ. Then it must hold that Id̄ |= ψ for every ϕ → ψ ∈ Σ′′.

This last fact implies that for every ϕ → ψ ∈ Σ′′, there exists a formula α such that α is

one of the disjunctions of ψ and Id̄ |= α (recall that ψ is a query in UCQ=). Let Γ be a set

54

containing all such formulas α, that is, α is a formula in Γ if and only if there exists a de-

pendency ϕ → ψ ∈ Σ′′ such that α is a disjunction in ψ and Id̄ |= α. Note that every α ∈ Γ

is a CQ= Boolean query, and since Id̄ |= α, it could not be the case that α mentions relation

symbols of Sn outside Sd̄. We now show that one of the queries in Γ mentions exactly the

relation symbols in Sd̄. On the contrary, assume that for every α ∈ Γ, it is the case that α

mentions a proper subset of the relation symbols of Sd̄. Consider for every α ∈ Γ a fresh

constant value cα, and a source instance Iα such that for every U ∈ Sn, we have U Iα = {cα}

if the relation symbol U is mentioned in α, and U Iα = ∅ otherwise. It is clear that Iα |= α

for every α ∈ Γ. Let IΓ =
⋃

α∈Γ Iα. Notice that for every α ∈ Γ, it holds that IΓ |= α.

Recall that for every ϕ → ψ ∈ Σ′′, there exists a formula α ∈ Γ such that α is one of the

disjunctions of ψ. Hence, we obtain that IΓ |= ψ for every ϕ → ψ ∈ Σ′′. We also know that

J⋆ |= ϕ for every ϕ → ψ ∈ Σ′′, obtaining that (J⋆, IΓ) |= Σ′′. Notice that Σ′′ contains all

the dependencies of Σ′ such that J⋆ satisfies their premises and, thus, (J⋆, IΓ) |= Σ′. Then

since (IR, J⋆) |= Σn and (J⋆, IΓ) |= Σ′, we have that (IR, IΓ) ∈ Mn ◦M′. We show now

that SolMn
(IΓ) 6⊆ SolMn

(IR), which contradicts Proposition 3.1.6. Notice first that for

every target instance J ∈ SolMn
(IR), there exists an element c ∈ dom(J) such that c ∈ P J

i

for every i ∈ {1, . . . , n}. We prove that there exists an instance in SolMn
(IΓ) that does not

satisfy this last property. Consider for every α ∈ Γ the target instance Jα = chaseΣn
(Iα),

and let JΓ =
⋃

α∈Γ Jα. It is easy to see that JΓ ∈ SolMn
(IΓ). Notice that since every α ∈ Γ

mentions a proper subset of the relation symbols of Sd̄, there exists an index i ∈ {1, . . . , n}

such that AIα

i = BIα

i = ∅, and then there exists an index i ∈ {1, . . . , n} such that P Jα

i = ∅.

Moreover, since dom(Jα)∩dom(Jα′) = ∅ for every pair of distinct elements α, α′ of Γ, we

obtain that there is no element c ∈ dom(JΓ) such that c ∈ P JΓ
i for every i ∈ {1, . . . , n}.

Thus, JΓ /∈ SolMn
(IR) implying that SolMn

(IΓ) 6⊆ SolMn
(IR) which leads to the contra-

diction mentioned above. We have shown that there exists a formula α ∈ Γ such that α

mentions exactly the relation symbols in Sd̄. Thus, there exists a dependency σ ∈ Σ′′ ⊆ Σ′

such that the conclusion of σ has a disjunct that mentions exactly the relation symbols in

Sd̄. This last property holds for every one of the 2n distinct tuples d̄, which implies that Σ′

is of size exponential in the size of Σn. ¤

55

3.3.3. Computing maximum recoveries in the full case

Recall that a full FO-TO-CQ dependency does not include any existential quantifiers

in its conclusion. In this section, we show that for mappings given by full FO-TO-CQ

dependencies, maximum recoveries can be computed in polynomial time. This result is

based in the fact that given a query composed by a single atom and with no existentially

quantified variables, one can compute a rewriting of that query in quadratic time. This is

formalized in the following lemma, where ‖Σ‖ denotes the size of Σ. The proof of the

lemma is given in Appendix A.1.2.

LEMMA 3.3.9. There exists an algorithm QUERYREWRITINGATOM that given an st-

mapping M = (S,T, Σ), with Σ a set of FO-TO-CQ dependencies, and a conjunctive

query Q over schema T composed by a single atom and with no existential quantifiers,

computes in time O(‖Σ‖2) a domain-independent FO query Q′ that is a rewriting of Q

over the source. Moreover, if Σ is a set of full FO-TO-CQ st-dependencies where each

dependency has a single atom in its conclusion, then the algorithm runs in time O(‖Σ‖).

By using algorithm QUERYREWRITINGATOM, we can compute in quadratic time a

maximum recovery for mappings given by full dependencies.

Algorithm MAXIMUMRECOVERYFULL(M)

Input: An st-mapping M = (S,T, Σ), where Σ is a set of full FO-TO-CQ dependencies,

each dependency with a single atom in its conclusion.

Output: A ts-mapping M′ = (T,S, Σ′), where Σ′ is a set of CQ-TO-FO dependencies

and M′ is a maximum recovery of M.

(1) Start with Σ′ as the empty set.

(2) For every atom R(x̄) that is the conclusion of a dependency in Σ, do the follow-

ing:

(a) Let Q be the conjunctive query defined by R(x̄).

(b) Use QUERYREWRITINGATOM(M, Q) to compute an FO formula α(x̄) that

is a rewriting of R(x̄) over the source.

56

(c) Add dependency R(x̄) → α(x̄) to Σ′.

(3) Return M′ = (T,S, Σ′). ¤

THEOREM 3.3.10. Let M be an st-mapping specified by a set Σ of full FO-TO-CQ

st-dependencies in which each dependency has a single atom in its conclusion. Then al-

gorithm MAXIMUMRECOVERYFULL(M) computes a maximum recovery of M in time

O(‖Σ‖2), which is specified by a set of CQ-TO-FO dependencies.

PROOF. Since Σ is a set of full FO-TO-CQ st-dependencies, each dependency with a

single atom in its conclusion, algorithm QUERYREWRITINGATOM(M, Q) runs in linear

time. Thus, it is straightforward to see that algorithm MAXIMUMRECOVERYFULL runs in

quadratic time. The correctness of the algorithm follows from the proof of Theorem 3.3.2.

We only notice here that the output of algorithm MAXIMUMRECOVERYFULL does not

include predicate C(·). Since Σ is a set of full dependencies, chaseΣ(I) is composed only

by constant values and, thus, C(·) is not needed in the proof of Theorem 3.3.2. ¤

Notice that in Theorem 3.3.10, we assume that every dependency has a single atom

in its conclusion. Nevertheless, this theorem can be extended to the general case; from a

set Σ of arbitrary full FO-TO-CQ st-dependencies, one can obtain as follows an equivalent

set Σ′ of full FO-TO-CQ st-dependencies having a single atom in the conclusion of each

constraint. For every dependency ϕ(x̄) → ψ(x̄) in Σ and atom R(ȳ) in ψ(x̄), where ȳ ⊆ x̄,

the dependency ϕ(x̄) → R(ȳ) is included in Σ′. Thus, to apply Theorem 3.3.10 to Σ,

we first construct Σ′ from Σ and then apply procedure MAXIMUMRECOVERYFULL. It is

important to notice that Σ′ could be of quadratic size in the size of Σ and, hence, by the fact

that algorithm QUERYREWRITINGATOM runs in linear time and the definition of procedure

MAXIMUMRECOVERYFULL, it follows that a maximum recovery for a mapping specified

by an arbitrary set of full FO-TO-CQ st-dependencies can be computed in cubic-time.

As for the general case, from Theorem 3.1.10, we know that this algorithm computes

a Fagin-inverse (quasi-inverse) if Σ is a Fagin-invertible (quasi-invertible) set of full st-

tgds. The algorithm presented by Fagin, Kolaitis, Popa, and Tan (2008) for computing

57

a Fagin-inverse of a set Σ of full st-tgds returns a set Σ′ of CQ 6=-TO-CQ dependencies

of exponential size in ‖Σ‖. The algorithm in (Fagin, Kolaitis, Popa, & Tan, 2008) for

computing a quasi-inverse of a set Σ of full st-tgds returns a set Σ′ of CQ 6=-TO-UCQ

dependencies which is also of exponential size in ‖Σ‖. In both cases, our algorithm works

in quadratic time and returns a set Σ′ of CQ-TO-UCQ= dependencies which is of quadratic

size in ‖Σ‖.

Notice that in Theorem 3.3.6 we use a mapping given by a set of full st-tgds to show

that disjunctions in the conclusion of dependencies are needed to specify maximum recov-

eries of st-tgds. Similarly, Fagin, Kolaitis, Popa, and Tan (2008, Theorem 4.15) also use

a mapping specified by a set of full st-tgds, and thus, from Corollary 3.3.7 we know that

equalities in the conclusion are needed to specify maximum recoveries of mappings given

by full st-tgds. Thus we obtain the following corollary that justify the language used in the

output of MAXIMUMRECOVERYFULL.

COROLLARY 3.3.11.

(1) There exists an st-mapping M = (S,T, Σ) specified by a set of full st-tgds that

has no maximum recovery specified by a set of CQ-TO-CQ= dependencies.

(2) There exists an st-mapping M = (S,T, Σ) specified by a set of full st-tgds that

has no maximum recovery specified by a set of CQC-TO-UCQ dependencies.

3.4. Complexity Results

Fagin (2007) identified two problems as important decision problems for the notion

of Fagin-inverse: (1) to check whether a mapping M is Fagin-invertible, and (2) to check

whether a mapping M2 is a Fagin-inverse of a mapping M1. These questions are consid-

ered in the context of st-tgds in (Fagin, 2007), where they are also relevant for the notion

of quasi-inverse (Fagin, Kolaitis, Popa, & Tan, 2008). In this context, the problem of veri-

fying whether a mapping M has a maximum recovery becomes trivial, as every mapping

specified by this type of dependencies admits a maximum recovery. In fact, this question is

also trivial for the larger class of mappings specified by FO-TO-CQ dependencies. In this

58

section we study the complexity of verifying, given mappings M and M′, whether M′

is a recovery of M. Notice that we only study the problem of verifying whether M′ is a

recovery but not a maximum recovery of M. We leave the study of the complexity of this

last problem for future work.

We note that the problem of checking wether M′ is a recovery of M becomes undecid-

able if M is specified by a set Σ of full FO-TO-CQ dependencies (this is a straightforward

consequence of the undecidability of the problem of verifying whether an FO sentence is

finitely satisfiable (Libkin, 2004)). Thus, in this section we focus on the case in which the

mapping M is specified by st-tgds.

We begin with a simple technical lemma that will allow us to use some of the complex-

ity results proved by Fagin (2007) for Fagin-inverses (see Definition 2.5.1 for the definition

of Fagin-inverses).

LEMMA 3.4.1. Let M be an st-mapping specified by a set of st-tgds. Assume that M′

is a ts-mapping such that whenever (I1, I2) ∈ M ◦M′, it holds that I1 ⊆ I2. Then M′ is

a Fagin-inverse of M iff M′ is a recovery of M

PROOF. The direction (⇒) is trivial by the definition of Fagin-inverse and recovery.

To prove the other direction, assume that M′ is a recovery of M. We must show that

(I1, I2) ∈ M◦M′ if and only if I1 ⊆ I2. By hypothesis, it holds that if (I1, I2) ∈ M◦M′

then I1 ⊆ I2. Now, assume that I1 ⊆ I2. Since M′ is a recovery of M, we know that

(I2, I2) ∈ M ◦ M′ and then, there exists a target instance J such that (I2, J) ∈ M and

(J, I2) ∈ M′. Now, given that M is specified by a set of st-tgds, M is closed-down on the

left and then (I1, J) ∈ M. We have that (I1, J) ∈ M and (J, I2) ∈ M′, which implies

that (I1, I2) ∈ M ◦M′. This was to be shown. ¤

Before stating our complexity results we also need to introduce some terminology and

prove a technical lemma. Let Σ be a set of CQ-TO-CQ dependencies from a schema R1 to

a schema R2 and I an instance of R1. We denote by kΣ the maximum, over all members

ϕ ∈ Σ, of the number of conjuncts that appear in the premise of ϕ, and by |I| the total

59

number of tuples in I , that is, |I| =
∑

R∈R1
|RI |, where |RI | is the number of tuples in

RI . Moreover, we define the notion of I being N-connected as follows. Let GI = (VI , EI)

be a graph such that: (1) VI is the set of all tuples t ∈ RI , for some R ∈ R1, and (2) a

tuple (t1, t2) ∈ EI if and only if there exists a null value n ∈ N that is mentioned both

in t1 and t2. Then I is N-connected if the graph GI is connected. An instance I1 is an

N-connected sub-instance of I , if I1 is a sub-instance of I and I1 is N-connected. Finally,

I1 is an N-connected component of I , if I1 is an N-connected sub-instance of I and there

is no N-connected sub-instance I2 of I such that I1 is a proper sub-instance of I2.

LEMMA 3.4.2. Let M = (S,T, Σ) and M′ = (T,S, Σ′) be schema mappings, where

Σ is a set of full st-tgds and Σ′ is a set of ts-tgds. Then M′ is a recovery of M if and only

if for every source instance I such that |I| ≤ kΣ · kΣ′ and N-connected component K of

chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the identity on C.

PROOF. We first prove direction (⇒). From (Fagin, Kolaitis, Popa, & Tan, 2005), we

know that M◦M′ can be specified by a set of st-tgds. Now, from (Fagin, 2007) (Proposi-

tion 7.2) we know that chaseΣ′(chaseΣ(I)) is a universal solution for I under M◦M′, and

then (I, I) ∈ M◦M′ if and only if there exists a homomorphism from chaseΣ′(chaseΣ(I))

to I that is the identity on C. The (⇒) direction of the proposition follows from the latter

condition.

We now prove (⇐). Without loss of generality, assume that each st-tgd in Σ has a

single atom in its right-hand side. For the sake of contradiction, suppose that M′ is not a

recovery of M and for every source instance I such that |I| ≤ kΣ · kΣ′ and N-connected

component K of chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the

identity on C.

Given that M′ is not a recovery of M, there exists an instance I1 of S such that

(I1, I1) 6∈ M ◦M′. Let I be an instance of S. Given that chaseΣ(I) is a universal solution

for I under M and chaseΣ′(chaseΣ(I)) is a universal solution for chaseΣ(I) under M′, it

is straightforward to prove that if (I, I ′) ∈ M ◦ M′, then there exists a homomorphism

from chaseΣ′(chaseΣ(I)) to I ′ that is the identity on C. Furthermore, if there exists a

60

homomorphism from chaseΣ′(chaseΣ(I)) to an instance I ′, then one can conclude that

(chaseΣ(I), I ′) ∈ M′ since (chaseΣ(I), chaseΣ′(chaseΣ(I))) ∈ M′ and chaseΣ(I) does

not mention any null values as Σ is a set of full st-tgds. Thus, we have that if there exists

a homomorphism from chaseΣ′(chaseΣ(I)) to an instance I ′, then (I, I ′) ∈ M ◦ M′. In

particular, from the previous properties, we conclude that (I, I) ∈ M ◦ M′ if and only

if there exists a homomorphism from chaseΣ′(chaseΣ(I)) to I that is the identity on C.

Thus, given that (I1, I1) 6∈ M ◦M′, there is no homomorphism from chaseΣ′(chaseΣ(I1))

to I1 that is the identity on C, which implies that there exists an N-connected component

K1 of chaseΣ′(chaseΣ(I1)) such that there is no homomorphism from K1 to I1 that is the

identity on C. Given that K1 is an N-connected component and Σ is a set of full st-

tgds, there exists a dependency α(x̄) → ∃ȳ β(x̄, ȳ) in Σ′ and a tuple ā of elements from

C such that chaseΣ(I1) |= α(ā) and K1 is generated from ∃ȳ β(ā, ȳ) when computing

chaseΣ′(chaseΣ(I1)). Assume that α(ā) is equal to T1(ā1) ∧ · · · ∧ Tn(ān). Then for every

i ∈ {1, . . . , n}, there exists a full st-tgd γi(x̄i) → Ti(x̄i) such that I1 |= γi(āi). Let I2

be a sub-instance of I1 given by the union of all the tuples in the formulas γi(āi) (i ∈

{1, . . . , n}). Then we have that K1 is an N-connected component of chaseΣ′(chaseΣ(I2))

and there is no homomorphism from K1 to I2 that is the identity on C. But by definition of

I2, we know that |I2| ≤ kΣ · kΣ′ , which contradicts our initial assumption. ¤

We are now ready to state our first complexity result.

THEOREM 3.4.3. The problem of verifying, given mappings M = (S,T, Σ) and M′ =

(T,S, Σ′), where Σ is a set of full st-tgds and Σ′ is a set of full ts-tgds, whether M′ is a

recovery of M is coNP-complete.

PROOF. First, we assume that Σ′ is a set of full ts-tgds, and we show that the problem

of verifying whether M′ is not a recovery of M is NP-complete. From Lemma 3.4.2 and

the fact that Σ′ is a set of full ts-tgds, we have that M′ is not a recovery of M if and

only if there exists a source instance I such that |I| ≤ kΣ · kΣ′ and there exists a tuple in

chaseΣ′(chaseΣ(I)) which is not in I . The latter is an NP property; to check whether it

holds, it is enough to guess an instance I such that |I| ≤ kΣ · kΣ′ , and then guess the chase

61

steps that produce a tuple which is not in I . Thus, we have that the problem of verifying

whether M′ is not a recovery of M is in NP.

To show that the problem is coNP-hard we use a result by Fagin (2007). Fagin (2007,

proof of Theorem 14.9) showed that given a propositional formula ϕ, one can construct

two mappings M = (S,T, Σ) and M′ = (T,S, Σ′) with Σ and Σ′ sets of full st-tgds and

full ts-tgds, respectively, such that M′ is an inverse of M if and only if ϕ is not satisfiable.

Moreover, the mappings constructed in that proof were such that if (I1, I2) ∈ M◦M′ then

I1 ⊆ I2. Then from Lemma 3.4.1, we know that M′ is an inverse of M if and only if M′

is a recovery of M. We have that, M′ is a recovery of M if and only if ϕ is not satisfiable.

Thus, the hardness results follows then from the well known fact that, testing whether a

propositional formula is satisfiable is an NP-complete problem. ¤

Theorem 3.4.3 is in sharp contrast with the results presented by Fagin (2007), where

it is shown that the problem of verifying, given schema mappings M = (S,T, Σ) and

M′ = (T,S, Σ′), with Σ a set of full st-tgds and Σ′ a set of full ts-tgds, whether M′ is a

Fagin-inverse of M is DP-complete2. The lower complexity for the case of the recovery is

not surprising as the notion of recovery is much weaker than the notion of inverse.

Our next result settles the complexity for the case in which M is specified by a set of

full st-tgds while the dependencies specifying M′ are not necessarily full.

THEOREM 3.4.4. The problem of verifying, given mappings M = (S,T, Σ) and M′ =

(T,S, Σ′), where Σ is a set of full st-tgds and Σ′ is a set of ts-tgds, whether M′ is a recovery

of M is ΠP
2 -complete.

PROOF. From Lemma 3.4.2, we have that M′ is a recovery of M if and only if

for every source instance I such that |I| ≤ kΣ · kΣ′ and N-connected component K of

chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the identity on C.

Given that the size of I , as well as the size of K, is polynomial in the size of M and M′, and

that the homomorphism problem is in NP, we have that the problem of verifying whether

2A problem is in DP if it is the intersection of an NP problem and a coNP problem (Papadimitriou, 1994).

62

M′ is a recovery of M is in ΠP
2 . To prove that this problem is indeed ΠP

2 -complete, we

give a reduction from the problem of verifying whether a quantified propositional formula:

ϕ = ∀u1 · · · ∀uℓ∃v1 · · · ∃vm ψ, (3.8)

is valid, where ψ is a 3-CNF propositional formula. This problem is known to be ΠP
2 -

complete (Du & Ko, 2000).

Let S = {TV (·, ·), R0(·, ·, ·), R1(·, ·, ·), R2(·, ·, ·), R3(·, ·, ·)} and T = {U1(·, ·, ·), . . .,

Uℓ(·, ·, ·)}. Next we define schema mappings M = (S,T, Σ) and M′ = (T,S, Σ′) such

that, ϕ is valid if and only if M′ is a recovery of M. The first argument of predicate TV is

used to store the truth value true, while its second argument is used to store the truth value

false. Predicate R0 is used to store the truth assignments that satisfy the clauses of the form

u∨ v ∨w (clauses without negative literals). Assuming that variables x, y store values true

and false, respectively, the following formula is used to define R0:

ϕ0(x, y) = R0(x, x, x) ∧ R0(x, x, y) ∧ R0(x, y, x) ∧ R0(y, x, x) ∧

R0(x, y, y) ∧ R0(y, x, y) ∧ R0(y, y, x).

Similarly, predicate R1 is used to store the truth assignments that satisfy the clauses of the

form u∨ v∨¬w, predicate R2 is used to store the truth assignments that satisfy the clauses

of the form u∨¬v∨¬w, and predicate R3 is used to store the truth assignments that satisfy

the clauses of the form ¬u∨¬v∨¬w. Again assuming that variables x, y store values true

63

and false, respectively, the following formulas are used to define R1, R2 and R3:

ϕ1(x, y) = R1(x, x, x) ∧ R1(x, x, y) ∧ R1(x, y, x)∧

R1(y, x, x) ∧ R1(x, y, y) ∧ R1(y, x, y) ∧ R1(y, y, y),

ϕ2(x, y) = R2(x, x, x) ∧ R2(x, x, y) ∧ R2(x, y, x)∧

R2(x, y, y) ∧ R2(y, x, y) ∧ R2(y, y, x) ∧ R2(y, y, y),

ϕ3(x, y) = R3(x, x, y) ∧ R3(x, y, x) ∧ R3(y, x, x)∧

R3(x, y, y) ∧ R3(y, x, y) ∧ R3(y, y, x) ∧ R3(y, y, y).

Finally, the first argument of predicate Ui is used to store the truth value of propositional

variable ui, for every i ∈ {1, . . . , ℓ}. We include two extra arguments in Ui for a technical

reason that will become clear when we prove that the reduction is correct.

Set Σ of full st-tgds is given by the following dependency:

T (x, y) ∧ ϕ0(x, y) ∧ ϕ1(x, y) ∧ ϕ2(x, y) ∧ ϕ3(x, y) →

U1(x, x, y) ∧ U1(y, x, y) ∧ · · · ∧ Uℓ(x, x, y) ∧ Uℓ(y, x, y). (3.9)

Set Σ′ of ts-tgds is given by the following dependency:

U1(u1, x, y) ∧ · · · ∧ Uℓ(uℓ, x, y) → ∃v1 · · · ∃vm θ(u1, . . . , uℓ, v1, . . . , vm), (3.10)

where θ(u1, . . . , uℓ, v1, . . . , vm) is defined as follows. If 3-CNF formula ψ in (3.8) is equal

to C1∧· · ·∧Ck, where each Ci is a clause, then θ = θ1∧· · ·∧θk, where θi is obtained from

Ci as follows. Without loss of generality, we assume that in Ci, the positive literals appear

before the negative literals (if Ci has at least one positive literal). Then if Ci = u ∨ v ∨ w,

we have that θi = R0(u, v, w), if Ci = u ∨ v ∨ ¬w, we have that θi = R1(u, v, w), if

Ci = u ∨ ¬v ∨ ¬w, we have that θi = R2(u, v, w), and if Ci = ¬u ∨ ¬v ∨ ¬w, we have

that θi = R3(u, v, w). For example, if ϕ = ∀u1∀u2∃v1 ((u1 ∨ v1 ∨ ¬u2) ∧ (u1 ∨ u2 ∨ v1)),

64

then

Σ = {TV (x, y) ∧ ϕ0(x, y) ∧ ϕ1(x, y) ∧ ϕ2(x, y) ∧ ϕ3(x, y) →

U1(x, x, y) ∧ U1(y, x, y) ∧ U2(x, x, y) ∧ U2(y, x, y)},

Σ′ = {U1(u1, x, y) ∧ U2(u2, x, y) → ∃v1 (R1(u1, v1, u2) ∧ R0(u1, u2, v1))}.

Next we show that ϕ is valid if and only if M′ is a recovery of M.

(⇒) Assume that ϕ is valid. From Lemma 3.4.2, to show that M′ is a recovery of

M, it is enough to prove that for every instance I of S and N-connected component K of

chaseΣ′(chaseΣ(I)), there exists a homomorphism from K to I that is the identity on C.

Next we show that this is the case.

Let I1 be an instance of S. By definition of Σ and Σ′, and in particular because of

the inclusion of the two extra arguments in each Ui, we have that if K is an N-connected

component of chaseΣ′(chaseΣ(I1)), then there exists a pair of values a, b in dom(I1) such

that: (1) I1 |= T (a, b) ∧ ϕ0(a, b) ∧ ϕ1(a, b) ∧ ϕ2(a, b) ∧ ϕ3(a, b), (2) chaseΣ(I1) |=

U1(c1, a, b) ∧ · · · ∧ Uℓ(cℓ, a, b), where each ci is either a or b, and (3) K is generated from

∃v1 · · · ∃vm θ(c1, . . . , cℓ, v1, . . . , vm) when computing chaseΣ′(chaseΣ(I1)). Assume that

in the construction of K, variable vi is replaced by value ni ∈ N, for every i ∈ {1, . . . ,m}.

Given that ϕ is valid, we know that for the truth assignment σ1 such that σ1(ui) = ci, for

every i ∈ {1, . . . , ℓ}, there exists a truth assignment σ2 such that σ1 ∪ σ2 satisfies proposi-

tional formula ψ in (3.8). From this we conclude that function h defined as h(ni) = σ2(vi)

(i ∈ {1, . . . ,m}) and h(c) = c (c ∈ C) is a homomorphism from K to I that is the identity

on C.

65

(⇐) Assume that M′ is a recovery of M, and let I be an instance of S such that

T I = {(a, b)}, where a and b are two distinct elements from C, and

RI
0 = {(a, a, a), (a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, a)},

RI
1 = {(a, a, a), (a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, b)},

RI
2 = {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, b), (b, b, a), (b, b, b)},

RI
3 = {(a, a, b), (a, b, a), (b, a, a), (a, b, b), (b, a, b), (b, b, a), (b, b, b)}.

Given that M′ is a recovery of M, we have that (I, I) ∈ M ◦ M′. Thus, for every

tuple (c1, . . . , cℓ) ∈ {a, b}ℓ, there exists a tuple (d1, . . . , dm) ∈ {a, b}m such that I |=

θ(c1, . . . , cℓ, d1, . . . , dm). Hence, by the definitions of θ, RI
0, RI

1, RI
2 and RI

3, we conclude

that ϕ is a valid formula. This concludes the proof of the theorem. ¤

In an unpublished manuscript, Arenas (2006) showed that the problem of verifying,

given mappings M and M′ specified by st-tgds and ts-tgds, respectively, whether M′ is a

Fagin-inverse of M, is undecidable. Arenas et al. (2008) adapted this result to show that for

the notion of recovery this problem is also undecidable. The following theorem formalizes

this result. The proof can be found in (Arenas, Pérez, & Riveros, 2009).

THEOREM 3.4.5 (Arenas, 2006; Arenas et al., 2008). The problem of verifying, given

mappings M = (S,T, Σ) and M′ = (T,S, Σ′), where Σ is a set of st-tgds and Σ′ is a set

of ts-tgds, whether M′ is a recovery of M is undecidable.

Interestingly, Arenas et al. (2008) obtain as a corollary of the proof of the previous

result that the problem is also undecidable for the notion of maximum recovery. The proof

of this result can be found in (Arenas, Pérez, & Riveros, 2009).

COROLLARY 3.4.6 (Arenas et al., 2008). The problems of verifying, given mappings

M = (S,T, Σ) and M′ = (T,S, Σ′), where Σ is a set of st-tgds and Σ′ is a set of ts-tgds,

whether M′ is a maximum recovery of M is undecidable.

66

It is an interesting open problem whether one can obtain decidability results for the

case of maximum recovery when M is given by a set of full st-tgds.

3.5. Maximal Recovery

Although maximum recoveries exist for a large class of mappings, as the following

result shows there are classes of practical interest for which the existence of maximum

recoveries is not guaranteed. This result was previously reported by Riveros (2008) and the

proof can be found in (Riveros, 2008; Arenas, Pérez, & Riveros, 2009)

PROPOSITION 3.5.1 (Arenas et al., 2008; Riveros, 2008). There exist st-mappings

specified by (1) CQ-TO-CQ 6= and (2) CQ-TO-UCQ st-dependencies, that have no maxi-

mum recoveries.

To overcome this limitation, one has to look for a weaker notion. A straightforward

relaxation is to consider not maximum but maximal recoveries. In this section, we report

our initial results about maximal recoveries, providing a necessary and sufficient condition

for the existence of maximal recoveries, and showing that the notion of maximal recovery

strictly generalizes the notion of maximum recovery. In fact, we show that maximal recov-

eries exist for the larger class of st-mappings specified by FO-TO-UCQ 6= dependencies.

This result shows that the notion of maximal recovery is a promising direction for further

research.

Recall that for two recoveries M′ and M′′ of a mapping M, we say that M′ is at

least as informative as M′′ for M, and write M′′ ¹M M′, if M ◦ M′ ⊆ M ◦ M′′. If

M′′ ¹M M′ and M′ ±M M′′, then we say that M′ is more informative than M′′ for M,

and we write M′′ ≺M M′.

DEFINITION 3.5.2. Let M′ be a recovery of a mapping M. We say that M′ is a

maximal recovery of M, if there is no recovery M′′ of M such that M′ ≺M M′′.

That is, M′ is a maximal recovery of M if there is no other recovery that is more

informative for M than M′. In Section 3.1, we show that the notion of witness can be

67

used to characterize the existence of maximum recoveries. In the following lemma, we

provide an alternative description of the notion of witness for an instance. We later relax

this description to characterize the existence of maximal recoveries (see Definition 3.5.4).

Recall that M−1 denotes the mapping {(J, I) | (I, J) ∈ M}.

LEMMA 3.5.3. Let M be a mapping from R1 to R2 and I ∈ Inst(R1). Then J ∈

Inst(R2) is a witness for I under M iff for every J ′ ∈ SolM(I), it is the case that

SolM−1(J) ⊆ SolM−1(J ′).

PROOF. (⇒) Assume that J is a witness for instance I under M. We need to prove that

for every J ′ ∈ SolM(I), it is the case that SolM−1(J) ⊆ SolM−1(J ′). Let I ′ ∈ SolM−1(J).

Then we have that J ∈ SolM(I ′) and, thus, SolM(I) ⊆ SolM(I ′) since J is a witness

for I under M. Given that J ′ ∈ SolM(I), we conclude that J ′ ∈ SolM(I ′) and, hence,

I ′ ∈ SolM−1(J ′).

(⇐) Assume that for every instance J ′ ∈ SolM(I), it is the case that SolM−1(J) ⊆

SolM−1(J ′). We need to prove that J is a witness for I under M, that is, given an instance

I ′ of R1 such that J ∈ SolM(I ′), we need to prove that SolM(I) ⊆ SolM(I ′). Let J ′ ∈

SolM(I). Then we have that SolM−1(J) ⊆ SolM−1(J ′). Thus, given that I ′ ∈ SolM−1(J),

we conclude that I ′ ∈ SolM−1(J ′), that is, J ′ ∈ SolM(I ′). ¤

3.5.1. Characterizing Maximal Recoveries

In the following definition, we introduce a relaxation of the notion of witness based on

the alternative description in Lemma 3.5.3. We called this relaxed notion partial-witness.

DEFINITION 3.5.4. Let M be a mapping. Instance J is a partial-witness for I under

M iff for every J ′ ∈ SolM(I), it is not the case that SolM−1(J ′) Ã SolM−1(J).

Notice that a partial-witness for an instance I is not necessarily a solution for I . If

J is both a partial-witness and a solution for I under M, then we say that J is a partial-

witness solution for I under M. The notion of partial-witness solution can be used to

provide a necessary and sufficient condition for the existence of maximal recoveries (see

68

Theorem 3.5.7). It can also be used to provide a characterization of when a mapping M′ is

a maximal recovery of a mapping M (see Theorem 3.5.6). But before stating these results,

we nee to introduce some notation and prove a lemma.

Recall that a recovery M′ of a mapping M is reduced if for every (I1, I2) ∈ M◦M′,

it is the case that I2 ∈ dom(M).

LEMMA 3.5.5. If M′ is a maximal recovery of M, then M′ is a reduced recovery of

M.

PROOF. By contradiction, assume that M′ is a maximal recovery of M and M′ is not

a reduced recovery of M. Then there exists (I1, I2) ∈ M ◦M′ such that I2 6∈ dom(M).

Define mapping M′′ ⊆ M′ as M′′ = {(J, I) ∈ M′ | I ∈ dom(M)}. Given that M′

is a recovery of M, we have that M′′ is a recovery of M. Moreover, M◦M′′ Ã M◦M′

since M′′ ⊆ M′ and (I1, I2) 6∈ M ◦ M′′. Thus, we have that M′ ≺M M′′, which

contradicts the fact that M′ is a maximal recovery of M. ¤

Let M be a mapping from a schema R1 to a schema R2 and M′ a recovery of M.

Recall that range(M′) denotes the set {I ∈ Inst(R1) | there exists J ∈ Inst(R2) such

that (J, I) ∈ M′}. We say that a mapping M⋆ is a contraction of M′ if M⋆ ⊆ M′

and for every instance I ∈ range(M′), there exists a unique instance J of R2 such that

(J, I) ∈ M⋆. We note that M⋆ is a recovery of M, since M′ is a recovery of M, and

M′ ¹M M⋆. The notion of contraction together with the notion of partial-witness is used

in the following theorem to characterize when a mapping M′ is a maximal recovery of a

mapping M.

THEOREM 3.5.6. Let M be a mapping from a schema R1 to a schema R2, and M′ a

recovery of M. Then the following conditions are equivalent:

(1) M′ is a maximal recovery of M,

(2) M′ is a reduced recovery of M, and there exists a contraction M⋆ of M′ such

that M′ ≡M M⋆ and for every (I1, J) ∈ M and (J, I2) ∈ M⋆, J is a partial-

witness for I2 under M.

69

PROOF. (1) ⇒ (2) Assume that M′ is a maximal recovery of M. Then by Lemma

3.5.5, we know that M′ is a reduced recovery of M and, thus, we only need to show that

the second part of (2) holds. Let M⋆ be an arbitrary contraction of M. Since M′ is a

maximal recovery of M and M′ ¹M M⋆, we have that M′ ≡M M⋆. Next we show that

for every (I1, J) ∈ M and (J, I2) ∈ M⋆, J is a partial-witness for I2 under M.

For the sake of contradiction, assume that there exist (I1, J) ∈ M and (J, I2) ∈ M⋆

such that J is not a partial-witness for I2 under M. Then there exists an instance J⋆ of R2

such that J⋆ ∈ SolM(I2) and SolM−1(J⋆) Ã SolM−1(J). Let M′′ be a mapping defined

as follows. Let (J⋆, I2) be the only tuple in M′′ where I2 appears as the second argument.

Moreover, for every instance I of R1 such that I 6= I2, choose an arbitrary J ∈ SolM(I)

such that (J, I) ∈ M⋆, and let (J, I) be the only tuple in M′′ where I appears as the second

argument. Given that I2 ∈ SolM−1(J⋆) and M⋆ is a recovery of M, we have that M′′ is a

recovery of M. Next we show that M◦M′′ Ã M◦M⋆.

First, we show that M ◦ M′′ ⊆ M ◦ M⋆. Assume that (I3, I4) ∈ M ◦ M′′. Then

there exists an instance J1 of R2 such that (I3, J1) ∈ M and (J1, I4) ∈ M′′. If I4 6= I2,

then by definition of M′′ we have that (J1, I4) ∈ M⋆ and, hence, (I3, I4) ∈ M ◦M⋆. If

I4 = I2, then by definition of M′′ we have that J1 = J⋆. Thus, we have that (I3, J
⋆) ∈ M

and, hence, I3 ∈ SolM−1(J⋆). Thus, given that SolM−1(J⋆) Ã SolM−1(J), we have that

I3 ∈ SolM−1(J). We conclude that (I3, I4) ∈ M ◦ M⋆ since I4 = I2, (I3, J) ∈ M and

(J, I2) ∈ M⋆. Second, we show that M ◦ M⋆ 6⊆ M ◦ M′′. Given that SolM−1(J⋆) Ã

SolM−1(J), there exists I5 ∈ SolM−1(J) such that I5 6∈ SolM−1(J⋆). Then we conclude

that (I5, I2) ∈ M ◦ M⋆ since (I5, J) ∈ M and (J, I2) ∈ M⋆. Furthermore, we also

conclude that (I5, I2) 6∈ M ◦M′′ since (I5, J
⋆) 6∈ M and (J⋆, I2) is the only tuple in M′′

where I2 appears as the second argument.

From the previous paragraph, we conclude that M ◦ M′′ Ã M ◦ M⋆ and, thus,

M′ ≺M M′′ since M⋆ ≺M M′′ and M′ ≡M M⋆. Given that this contradicts the

maximality of M′, we conclude that our initial assumption does not hold and, therefore,

70

for every (I1, J) ∈ M and (J, I2) ∈ M⋆, it should be the case that J is a partial-witness

for I2 under M.

(2) ⇒ (1) Assume that M′ is a reduced recovery of M and M⋆ is a contraction of

M′ such that, for every (I1, J) ∈ M and (J, I2) ∈ M⋆, J is a partial-witness for I2 under

M. Next we show that M⋆ is a maximal recovery of M. Given that M′ is a recovery of

M, we have that M⋆ is a recovery of M. Thus, to prove that M⋆ is a maximal recovery

of M, we only need to show that for every recovery M′′ of M, if M⋆ ¹M M′′, then

M⋆ ≡M M′′. This condition is equivalent to:

if M′′ ±M M⋆, then M⋆ ±M M′′.

Thus, we assume that M ◦ M⋆ 6⊆ M ◦ M′′, and we show that this implies M ◦ M′′ 6⊆

M ◦M⋆. Let (I1, I2) ∈ M ◦M⋆ such that (I1, I2) 6∈ M ◦M′′. Then we have that there

exists a partial-witness J⋆ for I2 under M such that (I1, J
⋆) ∈ M and (J⋆, I2) ∈ M⋆.

Given that M′ is a reduced recovery of M and M′ ≡M M⋆, we have that M⋆ is a

reduced recovery of M and, therefore, I2 ∈ dom(M). Thus, given that M′′ is a recovery

of M, there exists an instance J ∈ SolM(I2) such that (J, I2) ∈ M′′. Thus, given that J⋆

is a partial-witness for I2 under M, it is not the case that SolM−1(J) Ã SolM−1(J⋆).

Given that (I1, I2) 6∈ M ◦M′′ and (J, I2) ∈ M′′, we have that I1 6∈ SolM−1(J) and,

therefore, SolM−1(J⋆) 6⊆ SolM−1(J) since I1 ∈ SolM−1(J⋆). Thus, from the fact that

SolM−1(J) Ã SolM−1(J⋆) does not hold, we conclude that SolM−1(J) 6⊆ SolM−1(J⋆) and,

hence, there exists I3 ∈ SolM−1(J) such that I3 6∈ SolM−1(J⋆). We have that (I3, I2) ∈

M◦M′′, since (J, I2) ∈ M′′, and (I3, I2) 6∈ M ◦M⋆, since (I3, J
⋆) 6∈ M and (J⋆, I2) is

the only tuple in M⋆ where I2 appears as the second argument (since M⋆ is a contraction

of M′). We conclude that M◦M′′ 6⊆ M ◦M⋆ and, hence, M⋆ ±M M′′.

From the previous paragraph, we have that M⋆ is a maximal recovery of M. Thus,

given that M⋆ ≡M M′, we conclude that M′ is a maximal recovery of M. ¤

We can now state our characterization of the existence of maximal recoveries.

71

THEOREM 3.5.7. M has a maximal recovery iff for every I ∈ dom(M), there exists

a partial-witness solution for I under M.

PROOF. (⇒) Assume that M′ is a maximal recovery of M. Then by Theorem 3.5.6,

there exists a contraction M⋆ of M such that M′ ≡M M⋆ and for every (I1, J) ∈ M and

(J, I2) ∈ M⋆, J is a partial-witness for I under M.

Let I ∈ dom(M). Given that M⋆ is a contraction of M, we have that M⋆ is a

recovery of M and, hence, (I, I) ∈ M ◦ M⋆. Thus, there exists an instance J such that

(I, J) ∈ M, (J, I) ∈ M⋆ and J is a partial-witness for I under M. We conclude that there

exists J ∈ SolM(I) such that J is a partial-witness for I under M.

(⇐) Assume that for every instance I ∈ dom(M), there exists JI ∈ SolM(I) such

that JI is a partial-witness for I under M, and let M⋆ be a mapping defined as {(JI , I) |

I ∈ dom(M)}. It is easy to see that M⋆ is a reduced recovery of M. Furthermore, given

that the only contraction of M⋆ is M⋆ itself, and that for every (J, I) ∈ M⋆, J is a partial-

witness for I under M, we conclude from Theorem 3.5.6 that M⋆ is a maximal recovery

of M. ¤

3.5.2. Existence of maximal recoveries beyond FO-TO-CQ

The following theorem identifies an important class of st-mappings for which the ex-

istence of maximal recoveries is guaranteed, and also shows that the notion of maximal

recovery strictly generalizes the notion of maximum recovery (see Proposition 4.3.10).

THEOREM 3.5.8. If M is an st-mapping specified by a set of FO-TO-UCQ 6= st-

dependencies, then M has a maximal recovery.

To prove theorem, we need some technical results. We start with two simple lemmas.

LEMMA 3.5.9. Let M be an st-mapping specified by a set of FO-TO-FO dependencies.

Let J be a target instance and h a bijection that has as domain the set dom(J) and is

the identity over dom(J) ∩ C. If for a source instance I we have (I, J) ∈ M, then

(I, h(J)) ∈ M.

72

PROOF. Let M = (S,T, Σ) with Σ a set of FO-TO-FO dependencies, and assume

that (I, J) |= Σ. By the safety condition imposed on FO-TO-FO dependencies, to prove

the lemma we have to show that, for every dependency ϕ(x1, . . . , xk) → ψ(x1, . . . , xk)

in Σ and tuple ā ∈ dom(I)k, if I |= ϕ(ā) then ā ∈ dom(h(J))k and h(J) |= ψ(ā) .

Assume that I |= ϕ(ā). Since ā ∈ dom(I)k we know that ā is a tuple of elements from

C, and then, since ā ∈ dom(J)k and h is the identity over dom(J) ∩ C, we obtain that

ā ∈ dom(h(J))k. Note that h is an isomorphism from J to h(J) such that h(ā) = ā. Thus,

given that J |= ψ(ā), we obtain that h(J) |= ψ(ā). ¤

LEMMA 3.5.10. Let M be an st-mapping specified by a set of FO-TO-UCQ 6= depen-

dencies. Let J be a target instance and h a bijection that has as domain the set dom(J)

and is the identity over dom(J) ∩ C. If h(J) ⊆ J ′, then SolM−1(J) ⊆ SolM−1(J ′).

PROOF. Let (I, J) ∈ M, we have to show that (I, J ′) ∈ M. From Lemma 3.5.9 and

since (I, J) ∈ M, we obtain that (I, h(J)) ∈ M. Then since M is closed-up on the right

and h(J) ⊆ J ′, we have that (I, J ′) ∈ M. We have shown that, if I ∈ SolM−1(J) then

I ∈ SolM−1(J ′), which proves that SolM−1(J) ⊆ SolM−1(J ′). ¤

We now introduce some terminology. Let M be an st-mapping and I a source instance.

Then

MinSolM(I) = {J ∈ SolM(I) | there is no J ′ ∈ SolM(I) such that J ′ Ã J},

that is, MinSolM(I) is the set of minimal solutions of I under M. Note that for every J ′ ∈

SolM(I), there exists J ∈ MinSolM(I) such that J ⊆ J ′. Let ∼dom(I) be an equivalence

relation on MinSolM(I) such that, J1 ∼dom(I) J2 if and only if there exists a bijection

h : dom(J1) → dom(J2) such that h is the identity on dom(I) and h(J1) = J2. Let

MinSol⋆M(I) be the set that results from MinSolM(I) by selecting a single representative

of each equivalence class defined by ∼dom(I).

We now show that if a mapping M is specified by a set of FO-TO-FO dependencies,

then in every equivalence class defined by ∼dom(I) on MinSolM(I), there exists an instance

73

J such that dom(J) ∩ C ⊆ dom(I). Let J1 ∈ MinSolM(I) and h a function that assigns

to every element in (dom(J1) ∩ C) \ dom(I) a fresh element in N and is the identity

elsewhere. Note that function h : dom(J1) → dom(h(J1)) is a bijection that is the identity

on dom(I) and, hence, J1 ∼dom(I) h(J1) and dom(h(J1)) ∩ C ⊆ dom(I). Next we show

that h(J1) ∈ MinSolM(I), which proves that in every equivalence class defined by ∼dom(I)

on MinSolM(I), there exists an instance J such that dom(J) ∩ C ⊆ dom(I). Given that

h is a bijection that is the identity on dom(I), (I, J1) ∈ M and M is specified by a set of

FO-TO-FO dependencies, we have that (h(I), h(J1)) = (I, h(J1)) ∈ M and, therefore,

h(J1) ∈ SolM(I). Next we show that h(J1) ∈ MinSolM(I). On the contrary, assume that

h(J1) is not minimal, and let J2 ∈ SolM(I) be an instance such that J2 Ã h(J1). Consider

then bijection h−1 and instance h−1(J2). It is immediate that h−1(J2) Ã J1. Given that

h−1 is a bijection that is the identity on dom(I), (I, J2) ∈ M and M is specified by a

set of FO-TO-FO dependencies, we conclude that (h−1(I), h−1(J2)) = (I, h−1(J2)) ∈ M

and, thus, h−1(J2) ∈ SolM(I). This contradicts the fact that J1 is minimal in SolM(I).

We have shown that, in every equivalence class defined by ∼dom(I), there exists a J such

that dom(J) ∩ C ⊆ dom(I), and then, we can safely assume that for every instance J in

MinSol⋆M(I), it holds that dom(J) ∩ C ⊆ dom(I).

Recall that, by definition of MinSolM(I), we have that for every J ∈ SolM(I), there

exists J1 ∈ MinSolM(I) such that J1 ⊆ J . Thus, given that for every J1 ∈ MinSolM(I),

there exists J⋆ ∈ MinSol⋆M(I) such that J1 ∼dom(I) J⋆, and we have assumed that for

every instance J2 ∈ MinSol⋆M(I), it holds that dom(J2) ∩ C ⊆ dom(I) (by the previous

paragraph), we conclude that for every J ∈ SolM(I), there exists J⋆ ∈ MinSol⋆M(I) and a

bijection h that is the identity on dom(J⋆) ∩ C ⊆ dom(I), such that h(J⋆) ⊆ J . Through

the rest of this proof, we write J → J ′ to denote the fact that there exists a bijection

h that is the identity on dom(J) ∩ C such that h(J) ⊆ J ′. Notice that, we know by

Lemma 3.5.10 that if M is specified by a set of FO-TO-UCQ 6= dependencies and J → J ′,

then SolM−1(J) ⊆ SolM−1(J ′).

We need an additional lemma in order to prove Theorem 3.5.8.

74

LEMMA 3.5.11. Let M be an st-mapping specified by a set of FO-TO-UCQ 6= depen-

dencies. Then for every source instance I , the set MinSol⋆M(I) is finite.

PROOF. Let M = (S,T, Σ), where Σ a set of FO-TO-UCQ 6= dependencies. To prove

the lemma, we show by using a simple combinatorial argument that for every instance I ,

there exists an integer k such that every element in MinSolM(I) has at most k tuples. From

this fact, it is straightforward to conclude that MinSol⋆M(I) is a finite set.

In this proof, we use na(ψ(x̄)) to denote the number of atoms that appear in UCQ 6=-

formula ψ(x̄), |x̄| to denote the length of x̄ and |K| to denote the total number of tuples in an

instance K of a schema R, that is, |K| =
∑

R∈R
|RK |, where |RK | is the number of tuples

in RK . Furthermore, let m = max{|x̄| | ϕ(x̄) → ψ(x̄) ∈ Σ}, and ℓ = max{na(ψ(x̄)) |

ϕ(x̄) → ψ(x̄) ∈ Σ}.

Let I be a source instance and J ∈ SolM(I). We now show that, if |J | > (|Σ| ·

| dom(I)|m · ℓ), then J 6∈ MinSolM(I). In what follows, we describe a procedure to

construct a target instance J ′ such that (I, J) ∈ M and J ′ Ã J . Start with J ′ = ∅. For

every dependency ϕ(x̄) → ψ(x̄) ∈ Σ, and for every tuple ā such that I |= ϕ(ā), choose a

sub-instance J1 of J such that |J1| ≤ ℓ and J1 |= ψ(ā), and add the tuples of J1 to J ′. It

is clear that (I, J ′) |= Σ and J ′ ⊆ J . Note that, for every ϕ(x̄) → ψ(x̄) ∈ Σ, there are

at most | dom(I)|m tuples ā such that I |= ϕ(ā), and that ψ(ā) is composed by at most ℓ

atoms. Then |J ′| ≤ (|Σ| · | dom(I)|m · ℓ), which implies that J ′ Ã J . We conclude that J

is not a minimal solution for I . ¤

We are ready to prove Theorem 3.5.8.

PROOF OF THEOREM 3.5.8. Let M be an st-mapping specified by FO-TO-UCQ 6=

dependencies. By Theorem 3.5.7, to prove that M has a maximal recovery, we have to

show that every instance I ∈ dom(M) has a partial-witness solution under M. Recall

that instance J is a partial-witness solution for I if for every J ′ ∈ SolM(I), it is not the

case that SolM−1(J ′) Ã SolM−1(J). Let I be an instance in dom(M) and assume that

75

MinSol⋆M(I) = {J1, J2, . . . , Jn} (MinSol⋆M(I) is finite by Lemma 3.5.11). We claim that

an instance in MinSol⋆M(I) is a partial-witness solution for I .

For the sake of contradiction, assume that for every i ∈ [1, n], Ji ∈ MinSol⋆M(I) is not

a partial-witness solution for I . Given that J1 is not a partial-witness solution for I , there

exists J ′
1 ∈ SolM(I) such that SolM−1(J ′

1) Ã SolM−1(J1). Given that J ′
1 ∈ SolM(I),

there exists Ji ∈ MinSol⋆M(I) such that Ji → J ′
1. Note that, by Lemma 3.5.10 we

have SolM−1(Ji) ⊆ SolM−1(J ′
1) and, therefore, Ji 6= J1 (otherwise it could not be the

case that SolM−1(J ′
1) Ã SolM−1(J1)). Then there exists an instance Ji ∈ MinSol⋆M(I),

with i ∈ [2, n], such that Ji → J ′
1. Without loss of generality, we assume that i =

2, and then J2 → J ′
1. By Lemma 3.5.10, we have that SolM−1(J2) ⊆ SolM−1(J ′

1),

which implies that SolM−1(J2) Ã SolM−1(J1) since SolM−1(J ′
1) Ã SolM−1(J1). Now,

since we are assuming that J2 is not a partial-witness solution for I , there exists J ′
2 ∈

SolM(I) such that SolM−1(J ′
2) Ã SolM−1(J2). As above, it could not be the case that

J2 → J ′
2 since this implies that SolM−1(J2) ⊆ SolM−1(J ′

2). Furthermore, it cannot be

the case that J1 → J ′
2, otherwise we would conclude that SolM−1(J1) Ã SolM−1(J1)

since SolM−1(J ′
2) Ã SolM−1(J2) Ã SolM−1(J1). Then there exists an instance Ji ∈

MinSol⋆M(I), with i ∈ [3, n], such that Ji → J ′
2. Again, without loss of generality, we as-

sume that i = 3. By Lemma 3.5.10, we conclude that SolM−1(J3) ⊆ SolM−1(J ′
2) and, thus,

we have that SolM−1(J3) Ã SolM−1(J2) Ã SolM−1(J1) since SolM−1(J ′
2) Ã SolM−1(J2)

and SolM−1(J2) Ã SolM−1(J1). If we continue with this process, we conclude that:

SolM−1(Jn) Ã SolM−1(Jn−1) Ã · · · Ã SolM−1(J3) Ã SolM−1(J2) Ã SolM−1(J1).

But since we are assuming that Jn is not a partial-witness solution for I , there exists J ′
n ∈

SolM(I) such that SolM−1(J ′
n) Ã SolM−1(Jn). Given that J ′

n ∈ SolM(I), it must be the

case that Ji → J ′
n for an instance Ji ∈ MinSol⋆M(I). No matter what Ji we choose this

time, we obtain a contradiction. This concludes the proof of the theorem. ¤

The last result of this section shows that there exist mappings that do not have maximal

recoveries.

76

PROPOSITION 3.5.12. There exists an st-mapping M specified by an FO-formula that

has no maximal recovery.

PROOF. Let R1 = {P (·)}, R2 = {R(·)} and M be the mapping from R1 to R2

specified by FO-sentence:

∀x (P (x) → ¬R(x)).

Next we show that if I is an instance of R1 such that P I = {a}, there is no J ∈ SolM(I)

such that J is a partial-witness for I under M. Let J be an arbitrary solution for I under

M. Assume that b is an element of C such that b 6∈ dom(J) and b 6= a. Furthermore,

assume and that J ′ is an instance of R2 such that RJ ′
= RJ ∪ {b}. It is easy to see that

J ′ ∈ SolM(I) since J ∈ SolM(I) and b 6= a. Next we show that SolM−1(J ′) Ã SolM−1(J).

First, assume that I1 ∈ SolM−1(J ′). Then (I1, J
′) |= ∀x (P (x) → ¬R(x)), from

which we conclude that (I1, J) |= ∀x (P (x) → ¬R(x)) since RJ Ã RJ ′
. Thus, we have

that I1 ∈ SolM−1(J). Second, we show that SolM−1(J) 6⊆ SolM−1(J ′). Let I2 be an

instance of R1 such that P I = {b}. It is easy to see that (I2, J) |= ∀x (P (x) → ¬R(x)),

since b 6∈ dom(J), and (I2, J
′) 6|= ∀x (P (x) → ¬R(x)), since b ∈ (P I2 ∩ RJ ′

). We

conclude that I2 ∈ SolM−1(J) and I2 6∈ SolM−1(J ′).

From the previous paragraphs, we have that there is no J ∈ SolM(I) such that J is a

partial-witness for I under M. Thus, from Theorem 3.5.7 we conclude that M does not

have a maximal recovery. ¤

In the above proof we use an st-mapping M specified by FO-dependency P (x) →

¬R(x). We note that formula P (x) → ¬R(x) does not satisfy the safety condition imposed

on FO-TO-FO dependencies since ¬R(x) is not domain-independent. It is left as a topic

for further research, whether maximal recoveries exist for every st-mapping specified by a

set of FO-TO-FO dependencies satisfying the safety condition.

77

4. QUERY LANGUAGE-BASED INVERSES OF SCHEMA MAPPINGS

The main goal of this chapter is to develop mapping languages with good properties for

inverting schema mappings. To this end, in Section 4.1 we propose a query language-based

formalization of the notion of recovering sound information. We use this formalization in

the following section to study the previous notions of inverse (Fagin, 2007; Fagin, Kolaitis,

Popa, & Tan, 2008) as well as the notion of maximum recovery proposed in Chapter 3, in

terms of their capacity to retrieve sound information. This study gives a new perspective

to these notions and, in particular, it allows to define notions of inverse that depend on

the query language used to retrieve sound information. But more importantly, this idea of

having a query language as parameter is used in Section 4.3 to find a mapping language

that is closed under inversion.

4.1. Recovering Sound Information w.r.t. a Query Language:

The Notions of C-Recovery and C-Maximum Recovery

One of the motivations for the notion of recovery that we propose in Chapter 3 was

to identify mappings that recover sound information. However, strictly speaking, we did

not formalize the concept of retrieving correct information. A simple way to formulate this

notion is in terms of a query language. Let M be a mapping from a schema R1 to a schema

R2, M′ a mapping from R2 to R1 and Q a query over R1. Then we say that M′ recovers

sound information for M under Q if for every instance I ∈ dom(M), it holds that:

certainM◦M′(Q, I) ⊆ Q(I).

Thus, we have that M′ recovers sound information for M under Q if for every instance

I ∈ dom(M), by posing query Q against the space of solutions for I under M◦M′, one

can only recover tuples that are already in the evaluation of Q over I . In the following

definition, we extend the notion of recovering sound information to the case of a class of

queries.

78

DEFINITION 4.1.1. Let C be a class of queries, R1 and R2 schemas, M a mapping

from R1 to R2 and M′ a mapping from R2 to R1. Then M′ is a C-recovery of M if for

every query Q ∈ C over R1 and instance I ∈ dom(M), it holds that

certainM◦M′(Q, I) ⊆ Q(I).

A natural question at this point is whether one can compare mappings according to

their ability to recover sound information. It turns out that there is simple and natural way

to do this. Assume that M1 and M2 are mappings that recover sound information for M

under a query Q. Then we say that M2 recovers as much information as M1 does for M

under Q, denoted by M1 ¹
Q
M M2, if for every instance I ∈ dom(M), it holds that:

certainM◦M1(Q, I) ⊆ certainM◦M2(Q, I).

Thus, we have that M1 ¹Q
M M2 if for every instance I ∈ dom(M), every tuple that is

retrieved by posing query Q against the space of solutions for I under M ◦ M1 is also

retrieved by posing this query over the space of solutions for I under M ◦ M2. In the

following definition, we extend the pre-order ¹Q
M to the case of a class of queries.

DEFINITION 4.1.2. Let C be a class of queries, R1 and R2 schemas, M a mapping

from R1 to R2 and M′, M′′ C-recoveries of M. Then M′′ recovers as much information

as M′ does for M under C, denoted by M′ ¹C
M M′′, if M′ ¹Q

M M′′ for every query

Q ∈ C over R1.

Given a class of queries C, the notions introduced in this section can be used to define

a mapping that is as good as any other mapping for retrieving sound information according

to C.

DEFINITION 4.1.3. Let C be a class of queries and M′ a C-recovery of a mapping M.

Then M′ is a C-maximum recovery of M if for every C-recovery M′′ of M, it is the case

that M′′ ¹C
M M′.

79

4.1.1. On the existence of C-maximum recoveries

In this section, we provide a necessary and sufficient condition for the existence of C-

maximum recoveries, given any class of queries C. The tools provided in this section will

play a central role in the development of a good mapping language for inverting schema

mappings. Let M be a mapping, I ∈ dom(M), and Q a query. We start our study by

defining a set of tuples InfM(Q, I) that captures the information that can be recovered for

I under M by using query Q:

InfM(Q, I) =
⋂

{Q(K) | SolM(K) ⊆ SolM(I)}.

It can be easily proved that InfM(Q, I) defines an upper bound on the amount of sound

information that can be recovered for an instance I under a query Q. Before stating the

lemma we introduce a notation that simplifies the exposition of the proof of this and subse-

quent results. Given a mapping M be a mapping and I ∈ dom(M), we define SubM(I)

as the set of instances K ∈ dom(M) such that SolM(K) ⊆ SolM(I). Notice that, by using

SubM(I) the set InfM(Q, I) can be defined as

InfM(Q, I) =
⋂

K∈SubM(I)

Q(K).

LEMMA 4.1.4. Let M be a mapping and M′ a C-recovery of M. Then for every

I ∈ dom(M) and Q ∈ C, it holds that:

certainM◦M′(Q, I) ⊆ InfM(Q, I) ⊆ Q(I).

PROOF. Let I and I ′ be instances in dom(M), and assume that SolM(I ′) ⊆ SolM(I),

that is I ′ ∈ SubM(I). Then it holds that SolM◦M′(I ′) ⊆ SolM◦M′(I) and, thus, we have

that certainM◦M′(Q, I) ⊆ certainM◦M′(Q, I ′) for every query Q ∈ C. Given that M′

is a C-recovery of M, it is the case that certainM◦M′(Q, I ′) ⊆ Q(I ′). Thus, for every

I ′ ∈ SubM(I), we have that certainM◦M′(Q, I) ⊆ certainM◦M′(Q, I ′) ⊆ Q(I ′). Hence,

by the definition of InfM(Q, I) and given that I ∈ SubM(I), we conclude that:

certainM◦M′(Q, I) ⊆ InfM(Q, I) ⊆ Q(I).

80

¤

Lemma 4.1.4 shows that the amount of sound information that a C-recovery M′ can

retrieve for a source instance I by using a query Q, is bounded by the amount of information

contained in the set InfM(Q, I). Notice that this bound does not depend on the C-recovery

M′. Moreover, given that InfM(Q, I) ⊆ Q(I) and the set certainM◦M′(Q, I) is bounded

by InfM(Q, I), we directly obtain that if certainM◦M′(Q, I) = InfM(Q, I) for every query

Q ∈ C, then M′ is a C-maximum recovery of M. This provides us with a sufficient

condition for testing whether M′ is a C-maximum recovery of M. In the following theorem

we show that this property indeed characterizes when M′ is a C-maximum recovery of M,

that is, it is not only a sufficient but also a necessary condition. This is a strong justification

of our initial claim that InfM exactly captures the information that can be recovered for

a mapping. To prove the result, we use an alternative characterization of when M′ is a

C-maximum recovery of M (part (2) of the theorem) that is interesting in its own.

THEOREM 4.1.5. Let M be a mapping from a schema R1 to a schema R2. The fol-

lowing are equivalent.

(1) M′ is a C-maximum recovery of M

(2) M′ is a C-recovery of M and for every (I1, I2) ∈ M ◦ M′ and every query

Q ∈ C over R1, it holds that:

InfM(Q, I1) ⊆ Q(I2)

(3) For every instance I ∈ dom(M) and query Q ∈ C, it holds that:

certainM◦M′(Q, I) = InfM(Q, I).

PROOF. We first prove the implication (1) ⇒ (2). For the sake of contradiction, let M′

be a C-maximum recovery of M and suppose that there exists a pair (I1, I2) ∈ M ◦ M′

and a query Q ∈ C such that:

InfM(Q, I1) 6⊆ Q(I2).

81

Then there exist a tuple t̄ ∈ InfM(Q, I1) such that t̄ 6∈ Q(I2). This implies that t̄ 6∈

certainM◦M′(Q, I1) since (I1, I2) ∈ M ◦ M′. Now, let M′′ be the following mapping

from R2 to R1:

M′′ = {(J, I) | J ∈ SolM(I1) and I ∈ SubM(I1)} ∪

{(J, I) | J /∈ SolM(I1) and I ∈ Inst(R1)},

Next we show that M′′ is a C-recovery of M. Let I be an instance in dom(M). If

SolM(I) ⊆ SolM(I1), then we have that SolM◦M′′(I) = SubM(I1). Thus, we obtain

that (I, I) ∈ M ◦M′′ and, hence, certainM◦M′′(Q′, I) ⊆ Q′(I) for every query Q′ ∈ C.

On the other hand, if SolM(I) 6⊆ SolM(I1), then it holds that SolM◦M′′(I) = Inst(R1).

Thus, we obtain again that (I, I) ∈ M ◦M′′. We conclude that for every query Q′ ∈ C, it

holds that certainM◦M′′(Q′, I) ⊆ Q′(I), and thus M′′ is a C-recovery of M.

Now, for instance I1, it holds that SolM◦M′′(I1) = SubM(I1). Thus, by the def-

inition of InfM(Q, I1) we obtain that certainM◦M′′(Q, I1) = InfM(Q, I1). Recall that

t̄ ∈ InfM(Q, I1), thus we have that t̄ ∈ certainM◦M′′(Q, I1). Thus, given that t̄ 6∈

certainM◦M′(Q, I1), we have that:

certainM◦M′′(Q, I1) 6⊆ certainM◦M′(Q, I1),

which contradicts our assumption that M′ is a C-maximum recovery of M. This concludes

the proof of (1) ⇒ (2).

We prove now that (2) ⇒ (3). Let I be an instance in dom(M). From (2) we know

that for every (I, I ′) ∈ M◦M′ and every query Q ∈ C, it holds that InfM(Q, I) ⊆ Q(I ′).

Thus, we have that for every I ′ ∈ SolM◦M′(I), it holds that InfM(Q, I) ⊆ Q(I ′) and,

therefore, InfM(Q, I) ⊆ certainM◦M′(Q, I). Then since since M′ is a C-recovery of M,

by Lemma 4.1.4 we obtain that certainM◦M′(Q, I) ⊆ InfM(Q, I). Hence, we conclude

that InfM(Q, I) = certainM◦M′(Q, I) for every I ∈ dom(M) and query Q ∈ C.

Finally implication (3) ⇒ (1) is straightforward (see the discussion in the paragraph

before the theorem). ¤

82

In Definition 3.1.7 in Section 3.1.1, we introduced the notion of witness which plays

a crucial role for the notion of maximum recovery. We use InfM to define the notion of

C-witness, which plays this role for C-maximum recoveries. In particular, we show that

the notion of C-witness can be used to provide a necessary and sufficient condition for the

existence of a C-maximum recovery.

DEFINITION 4.1.6. Let M be a mapping and I1 ∈ dom(M). Then J is a C-witness

for I1 under M if for every instance I2 and query Q ∈ C, if J ∈ SolM(I2), then:

InfM(Q, I2) ⊆ Q(I1).

In the next lemma we show that the notion of C-witness is a relaxation of the notion of

witness of Definition 3.1.7.

LEMMA 4.1.7. Let M be a mapping from a schema R1 to a schema R2 and I ∈

Inst(R1). If J is a witness for I under M, then J is a C-witness for I under M.

PROOF. Let M be a mapping from a schema R1 to a schema R2, I1 ∈ Inst(R1) and

J ∈ Inst(R2) a witness for I1 under M. Next we show that J is a C-witness for I1 under

M. Assume that there exists an instance I2 ∈ Inst(R1) such that J ∈ SolM(I2). By the

definition of witness, we have that SolM(I1) ⊆ SolM(I2). This imply that SubM(I1) ⊆

SubM(I2). Thus, for every query Q in C, it holds that:

InfM(Q, I2) ⊆ InfM(Q, I1).

Since I1 ∈ SubM(I1), we have that InfM(Q, I1) ⊆ Q(I1) for every query Q in C. There-

fore, we have that for every query Q ∈ C, it holds that:

InfM(Q, I2) ⊆ Q(I1).

We conclude that J is a C-witness for I1 under M, which was to be shown. ¤

83

The notion of C-witness can be used to characterize when a mapping M′ is a C-

maximum recovery of a mapping M. In fact, the following theorem shows that C-witness

instances are the building blocks of C-maximum recoveries.

THEOREM 4.1.8. M′ is a C-maximum recovery of M iff, M′ is a C-recovery of M

and for every (I1, J) ∈ M and (J, I2) ∈ M′, it holds that J is a C-witness for I2 under

M.

PROOF. (⇒) Let M be a mapping from a schema R1 to a schema R2, and assume

that M′ is a C-maximum recovery of M. By hypothesis, M′ is a C-recovery of M. So,

it only remains to show that for every (I1, J) ∈ M and (J, I2) ∈ M′, it holds that J is

a C-witness for I2 under M. For the sake of contradiction, assume that there exist tuples

(I1, J) ∈ M and (J, I2) ∈ M′ such that J is not a C-witness for I2 under M. Then there

exists an instance I ∈ dom(M) and a query Q ∈ C such that J ∈ SolM(I) and

InfM(Q, I) 6⊆ Q(I2).

Given that (I, J) ∈ M and (J, I2) ∈ M′, it holds that (I, I2) ∈ M ◦ M′. Thus, we

have a tuple (I, I2) ∈ M ◦ M′ and a query Q ∈ C such that InfM(Q, I) 6⊆ Q(I2). By

Theorem 4.1.5, this implies that M′ is not a C-maximum recovery of M, which leads to a

contradiction.

(⇐) Now, assume that M′ is a C-recovery of M and that for every (I1, J) ∈ M and

(J, I2) ∈ M′, it holds that J is a C-witness for I2 under M. Next we use Theorem 4.1.5 to

show that M′ is a C-maximum recovery of M.

Let (I1, I2) ∈ M ◦ M′. Then there exists an instance J such that (I1, J) ∈ M and

(J, I2) ∈ M′. Thus, given that J is a C-witness for I2 under M and J ∈ SolM(I1), we

have that InfM(Q, I1) ⊆ Q(I2) for every query Q ∈ C. Therefore, we conclude from

Theorem 4.1.5 that M′ is a C-maximum recovery of M. This concludes the proof of the

theorem. ¤

84

Next we show that the notion of C-witness can be used to provide a necessary and

sufficient condition for the existence of C-maximum recoveries. Given a mapping M, the

C-witness mapping of M, denoted by MC , is defined as:

MC = {(J, I) | J is a C-witness for I under M}.

Thus, MC is composed by all the C-witness instances under a given mapping M.

THEOREM 4.1.9. A mapping M has a C-maximum recovery iff the mapping MC is a

C-maximum recovery of M.

PROOF. The “if” part of the theorem follows directly from the hypothesis. Thus, we

just have to show that if M has a C-maximum recovery then the mapping MC is a C-

maximum recovery of M.

Assume that there exists a mapping M′ that is a C-maximum recovery of M. By

Theorem 4.1.8, for every (I1, J) ∈ M and (J, I2) ∈ M′, it holds that J is a C-witness for I2

under M. Thus, by definition of MC , we conclude that for every tuple (I1, I2) ∈ M◦M′, it

holds that (I1, I2) ∈ M◦MC . Therefore, M◦M′ ⊆ M◦MC , which implies that for every

I ∈ dom(M) and query Q ∈ C, it holds that certainM◦MC(Q, I) ⊆ certainM◦M′(Q, I).

Hence, given that M′ is a C-recovery of M, we conclude that MC is a C-recovery of M.

To show that the mapping MC is a C-maximum recovery of M, we use theorem 4.1.8.

Let (I1, I2) ∈ M ◦ MC . Then there exists an instance J such that (I1, J) ∈ M and

(J, I2) ∈ MC . By the definition of the mapping MC , we have that J is a C-witness for

I2. Given that MC is C-recovery of M, we conclude by Theorem 4.1.8 that MC is a

C-maximum recovery of M. This was to be shown. ¤

4.1.2. On the choice of a query language

Up to this point, a natural question is what is the influence of the parameter C on the notion

of C-maximum recovery. In the following sections, we show that this parameter is essential

to obtain a good mapping language for inversion. Thus, the goal of this section is to shed

light on this issue. Let us start with an example.

85

Example 4.1.10. Let M be specified by these two st-tgds:

A(x, y) → R(x, y), B(x) → R(x, x).

It can be shown that mapping M1 specified by dependency:

R(x, y) → A(x, y) ∨
(
B(x) ∧ x = y

)

is a UCQ-maximum recovery of M. To specify M1, we have used a disjunction in the

conclusion of the dependency. This disjunction is unavoidable if we use UCQ to retrieve

information. On the other hand, if we focus on CQ to retrieve information, then, intuitively,

there is no need for disjunctions in the right-hand side of the rules as conjunctive queries

cannot extract disjunctive information. In fact, it can be shown that a CQ-maximum recov-

ery of M is specified by dependency:

R(x, y) ∧ x 6= y → A(x, y).

¤

The example suggests that the notion of CQ-maximum recovery is a strict general-

ization of the notion of UCQ-maximum recovery. The following proposition provides a

complete picture of the relationship of the notions of C-maximum recovery, when one fo-

cuses on mappings specified by st-tgds and the most common extensions of CQ.

PROPOSITION 4.1.11.

(1) There exist mappings M and M′ such that M′ is a UCQ-maximum recovery of

M but not a CQ 6=-maximum recovery of M.

(2) There exist mappings M and M′ such that M′ is a CQ 6=-maximum recovery of

M but not a UCQ-maximum recovery of M.

86

PROOF. To show part (1), let S = {P (·), R(·)}, T = {T (·, ·), S(·)} and Σ, Σ′ be the

following sets of dependencies:

Σ = {P (x) → ∃y T (x, y), R(x) → S(x)},

Σ′ = {T (x, y) → P (x) ∧ P (y), T (x, x) ∧ S(y) → P (y), S(x) → R(x)}.

First, we show that M′ = (T,S, Σ′) is not a CQ 6=-recovery of M = (S,T, Σ), from which

we conclude that M′ is not a CQ 6=-maximum recovery of M. Consider instance I of S

such that P I = {a} and RI = {b}, with a 6= b, and Boolean query Q in CQ 6= defined as:

∃x∃y(P (x) ∧ P (y) ∧ x 6= y).

Clearly Q(I) = false. Let J be an instance such that (I, J) ∈ M ◦M′. Then there exists

an instance K of T such that (I,K) ∈ M and (K, J) ∈ M′. Given that (I,K) |= Σ,

we have that b ∈ SK and (a, c) ∈ TK for some value c. Given that (K, J) |= Σ′, we

conclude by considering ts-tgd T (x, y) → P (x) ∧ P (y) that a, c ∈ P J . Thus, if a 6= c,

we have Q(J) = true. Now, if a = c, then by considering ts-tgd T (x, x) ∧ S(y) → P (y)

we conclude that b ∈ P J . Therefore, Q(J) holds since a ∈ P J and a 6= b. We have

shown that for every J ∈ SolM◦M′(I), it is the case that Q(J) = true. Hence, we have

that certainM◦M′(Q, I) = true, which shows that M′ is not a CQ 6=-recovery of M since

Q(I) = false.

Now we show that M′ is a UCQ-maximum recovery of M. In fact, we show a stronger

result, namely that for every instance I of S and query Q in UCQ over S, it holds that

certainM◦M′(Q, I) = Q(I). Let I be an instance of S and Q a query in UCQ over S.

Furthermore, let J = chaseΣ(I) and K = chaseΣ′(J). By the definitions of Σ and Σ′, it

is straightforward to prove that K is homomorphically equivalent to I . Thus, given that Q

is a query in UCQ and homomorphisms are assumed to be the identity on the constants,

we have that for every tuple ā of constants, ā ∈ Q(I) if and only if ā ∈ Q(K). Therefore,

we have that Q(I) = Q(K)↓, where Q(K)↓ is defined as the set of tuples of constants that

belong to Q(K) (Fagin, Kolaitis, Miller, & Popa, 2005). But from (Fagin, Kolaitis, Miller,

87

& Popa, 2005; Fagin, Kolaitis, Popa, & Tan, 2005), we know that certainM◦M′(Q, I) =

Q(K)↓ and, thus, certainM◦M′(Q, I) = Q(I).

To show part (2), let S = {D(·), E(·), F (·)}, T = {P (·), R(·)} and Σ, Σ′ be the

following sets of dependencies:

Σ = {D(x) → P (x), E(x) → P (x), F (x) → R(x)},

Σ′ = {R(x) → F (x)}.

First, we show that M′ = (T,S, Σ′) is not a UCQ-maximum recovery of M = (S,T, Σ).

For the sake of contradiction, assume that M′ is a UCQ-maximum recovery of M, and

consider instance I of S such that I = {D(a)}, and Boolean query Q in UCQ defined as:

∃xD(x) ∨ ∃yE(y).

It is straightforward to prove that (I, I∅) ∈ M◦M′, where I∅ is the empty instance. Thus,

we have that certainM◦M′(Q, I) = false since Q(I∅) = false. Therefore, we have from

Theorem 4.1.5 that InfM(Q, I) = false since M′ is a UCQ-maximum recovery of M.

Hence, there exists an instance I ′ of S such that SolM(I ′) ⊆ SolM(I) and Q(I ′) = false.

We conclude that DI′ = EI′ = ∅, which implies that the instance J of T such that P J = ∅

and RJ = F I′ is a solution for I ′ under M. But J is not a solution for I under M (since

a 6∈ P J), which contradicts the fact that SolM(I ′) ⊆ SolM(I).

Second, we show that M′ is a CQ 6=-maximum recovery of M. Notice that for every

instance I of S, it holds that I ′ = chaseΣ′(chaseΣ(I)) is a solution for I under M ◦ M′

such that I ′ ⊆ I . Thus, given that every query in CQ 6= is monotone, we conclude that

certainM◦M′(Q, I) ⊆ Q(I ′) ⊆ Q(I) for every query Q in CQ 6= over S. Therefore, we

have that M′ is a CQ 6=-recovery of M. To conclude the proof, we have to show that

M′′ ¹CQ 6=

M M′ for every CQ 6=-recovery M′′ of M. Let M′′ be a CQ 6=-recovery of M,

Q a query in CQ 6= over S and I an instance of S. We consider two cases to show that

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

88

(I) Assume that one of the conjuncts of Q is of the form either D(x) or E(x).

Next we show that certainM◦M′′(Q, I) = ∅, from which we conclude that

certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

For the sake of contradiction, assume that certainM◦M′′(Q, I) 6= ∅. Without

loss of generality, assume that D(x) is one of the conjunct of Q, and let I ′ be an

instance of S such that DI′ = ∅, EI′ = (DI ∪EI) and F I′ = F I . Then we have

that SolM(I) = SolM(I ′), which implies that SolM◦M′′(I) = SolM◦M′′(I ′).

Thus, we have that certainM◦M′′(Q, I) = certainM◦M′′(Q, I ′). Given that

D(x) is one of the conjuncts of Q, Q is a query in CQ 6= and DI′ = ∅, we

have that Q(I ′) = ∅. Thus, given that M′′ is a CQ 6=-recovery of M and

I ′ ∈ dom(M), we have that certainM◦M′′(Q, I ′) = ∅, which leads to a contra-

diction (since certainM◦M′′(Q, I) = certainM◦M′′(Q, I ′) and we assume that

certainM◦M′′(Q, I) 6= ∅).

(II) Assume that all of the conjuncts of Q are of the form R(x). Next we show that

Q(I) ⊆ certainM◦M′(Q, I), from which we conclude that certainM◦M′′(Q, I) ⊆

certainM◦M′(Q, I) since M′′ is a CQ 6=-recovery of M.

It is straightforward to prove that for every I ′ ∈ SolM◦M′(I), it holds that RI ⊆

RI′ . Thus, given that all of the conjuncts of Q are of the form R(x) and Q is

a query in CQ 6=, we conclude that Q(I) ⊆ Q(I ′) for every I ′ ∈ SolM◦M′(I).

Therefore, we have that Q(I) ⊆ certainM◦M′(Q, I).

¤

Proposition 4.1.11 tells that the notions of UCQ- and CQ 6=-maximum recovery are

incomparable, even in the case of st-tgds. From this proposition, we can also conclude

the following. Assume that C1 and C2 are any of the query languages CQ, UCQ, CQ 6= or

UCQ 6=. Then from Proposition 4.1.11, one can conclude that if C1 Ã C2, then there exist

mappings M and M′ specified by tgds such that, M′ is a C1-maximum recovery of M but

not a C2-maximum recovery of M.

89

4.2. C-Maximum Recovery and Previous Notions

In this section we compare the notion of C-maximum recovery with previous notions pro-

posed in the literature about inverses and the notion of C-equivalence for schema map-

pings (Madhavan & Halevy, 2003; Fagin, Kolaitis, Nash, & Popa, 2008).

4.2.1. C-Maximum Recovery and other notions of inverse

In this section, we study the notions of Fagin-inverse (Fagin, 2007) and quasi-inverse (Fa-

gin, Kolaitis, Popa, & Tan, 2008), as well as the notion of maximum recovery by using the

formal notion of retrieving sound information introduced in Section 4.1 (see Section 2.5 for

the definitions of Fagin-inverses and quasi-inverses). In particular, we show that these no-

tions appear as specific points in the range of C-maximum recoveries, for different choices

of the class C. In this study, we also use an additional concept to highlight some properties

of these notions of inverse. This concept measures the ability of an inverse operator to re-

cover all the sound data. Formally, let M be a mapping from a schema R1 to a schema R2

and Q a query over R1. Then we say that M′ fully recovers Q for M if for every instance

I ∈ dom(M), it holds that

certainM◦M′(Q, I) = Q(I).

Moreover, given a class C of queries, we say that M′ fully recovers C for M if for every

query Q ∈ C over R1, it holds that M′ fully recovers Q for M.

We start our study by considering the notion of Fagin-inverse (Fagin, 2007). Recall that

a mapping M from a schema R1 to a schema R2 is closed-down on the left if whenever

(I, J) ∈ M an I ′ ⊆ I , it holds that (I ′, J) ∈ M, and is total if dom(M) = Inst(R1). As

we explained in Section 3.1.1 the notion of Fagin-inverse is appropriate for closed-down

on the left and total mappings. The following theorem establishes the relationship between

Fagin-inverses and C-maximum recoveries.

THEOREM 4.2.1. Let M be a total and closed-down on the left mapping, that has a

Fagin-inverse. Then the following statements are equivalent:

90

(1) M′ is a Fagin-inverse of M,

(2) M′ is a UCQ 6=-maximum recovery of M,

(3) M′ fully recovers UCQ 6= for M.

PROOF. We first show (1) ⇔ (3). First, we show that if M′ is a Fagin-inverse of M,

then for every query Q in UCQ 6= over S, it holds that M′ fully recovers Q for M.

Let Q be a query in UCQ 6= over S and I an instance of S. We have to show that

certainM◦M′(Q, I) = Q(I). Given that M′ is a Fagin-inverse of M, we have that I ⊆ J

for every J ∈ SolM◦M′(I). Thus, given that Q is a monotone query, we have that Q(I) ⊆

Q(J) for every J ∈ SolM◦M′(I). It follows that Q(I) ⊆ certainM◦M′(Q, I) and, thus,

Q(I) = certainM◦M′(Q, I) since I ∈ SolM◦M′(I).

We show now that if for every query Q in UCQ 6= over S, it holds that M′ fully recovers

Q for M, then M′ is a Fagin-inverse of M. That is, we show that (I, J) ∈ M◦M′ if and

only if I ⊆ J .

(I) Assume that (I, J) ∈ M◦M′, and for every R ∈ S, let QR be the identity query

for table R, that is, QR(x̄) = R(x̄). Given that M′ fully recovers each of these

queries for M, we conclude that for every J ∈ SolM◦M′(I) and R ∈ S, it holds

that QR(I) ⊆ QR(J), that is, RI ⊆ RJ . Thus, we have that I ⊆ J .

(II) Assume that I ⊆ J . To prove that (I, J) ∈ M◦M′, we first show that (J, J) ∈

M ◦M′.

For the sake of contradiction, assume that (J, J) 6∈ M ◦ M′. Then for every

relation R ∈ S, define a Boolean query QR as follows. Assuming that the arity

of R is k and RJ contains n tuples, QR is the following query in UCQ 6=.

∃x̄1 · · · ∃x̄n∃x̄n+1

((∧

1≤i≤n+1

R(x̄i)

)
∧

(∧

1≤i<j≤n+1

x̄i 6= x̄j

))
,

where ū 6= v̄ stands for the formula
∨k

ℓ=1 ui 6= vi, for k-tuples ū = (u1, . . . , uk)

and v̄ = (v1, . . . , vk). Thus, QR says that relation R contains at least n+1 tuples.

91

Let Q be the following query in UCQ 6=.

Q =
∨

R∈S

QR.

Then we have that Q(J) = false.

By (I), we know that if (J, J ′) ∈ M ◦ M′, then J ⊆ J ′ (notice that the proof

in (I) was done for an arbitrary pair of instances in M◦M′). Thus, given that

(J, J) 6∈ M ◦M′, we have that for every J ′ ∈ SolM◦M′(J), there exists R ∈ S

such that RJ Ã RJ ′
. We conclude that Q(J ′) = true for every J ′ ∈ SolM◦M′(J).

But this contradicts the fact that M′ fully recovers Q for M since Q(J) = false

and J ∈ dom(M) (since M is a total mapping).

Given that (J, J) ∈ M ◦M′, we have that there exists an instance K of T such

that (J,K) ∈ M and (K, J) ∈ M′. Thus, given that M is closed-down on the

left and I ⊆ J , we conclude that (I,K) ∈ M. Hence, given that (K, J) ∈ M′,

we have that (I, J) ∈ M ◦M′.

This concludes the proof of (1) ⇔ (3).

We now show (1) ⇔ (2). First, notice that if M′ is a Fagin-inverse of M, then we

have that M′ fully recovers UCQ 6= for M, which implies that M′ is a UCQ 6=-maximum

recovery of M. Second, assume that M′ is a UCQ 6=-maximum recovery of M. Given that

M is Fagin-invertible, there exists a Fagin-inverse M⋆ of M. Thus, we have that M⋆ fully

recovers UCQ 6= for M. Therefore, given that M′ is a UCQ 6=-maximum recovery of M,

we have that M⋆ ¹UCQ 6=

M M′ and, hence, M′ fully recovers UCQ 6= for M. Again using

the result above, we deduce that M′ is a Fagin-inverse of M, which concludes the proof

of the theorem. ¤

Theorem 4.2.1 implies that a Fagin-inverse exists only if every query in UCQ 6= can

be fully recovered, which rarely occurs. It also states that, when a Fagin-inverse exists, it

coincides with the notion of UCQ 6=-maximum recovery.

92

We continue our study by considering the notion of quasi-inverse (Fagin, Kolaitis,

Popa, & Tan, 2008). (See Definition 2.5.2 for the formalization of the notion of quasi-

inverse). In the following theorem, we characterize the notion of quasi-inverse for the case

of st-tgds in terms of its ability to recover sound information.

THEOREM 4.2.2. Let M be a mapping specified by a set of st-tgds, that has a quasi-

inverse. Then there exists a subclass C of UCQ 6= such that the following statements are

equivalent.

(1) M′ is a quasi-inverse of M,

(2) M′ is a C-maximum recovery of M,

(3) M′ fully recovers C for M.

Before proving the Theorem we recall some concepts regarding query rewriting and

prove a technical lemma that we later use to construct the class of queries C in the statement

of the theorem. Let M = (S,T, Σ) be an st-mapping where Σ is a set of FO-TO-CQ

dependencies. Recall that, given a query Q over T, a rewriting of Q over the source, is

a query Q′ over S such that certainM(Q, I) = Q′(I) for every source instance I . As we

show in Lemma 3.3.1, when Q is a conjunctive query such a rewriting Q′ always exists

and can be specified in FO over S. (Moreover, from Lemma 3.3.3 we know that if Σ is

a set of st-tgds, then the rewriting Q′ is a query in UCQ=.) In the proof we also use the

following observation. Let I be a source instance and J the result of chasing I with Σ.

It is known that certainM(Q, I) = Q(J)↓ for every Q that is a conjunctive query (Fagin,

Kolaitis, Miller, & Popa, 2005; Arenas et al., 2004). These two concepts imply that, if Q′

is a rewriting of a conjunctive query Q over the source and J is the result of chasing I with

Σ, then Q′(I) = Q(J)↓.

In the following technical lemma we use query rewriting to introduce a set of queries

CM that defines the space of solutions associated to a mapping M. This set will be used to

construct the set of queries in the statement of Theorem 4.2.2.

93

LEMMA 4.2.3. Let M = (S,T, Σ) be an st-mapping where Σ is a set of FO-TO-CQ

dependencies, and consider the following set of queries over S:

CM = {χ(x̄) | ϕ(x̄) → ψ(x̄) ∈ Σ and χ(x̄) is a source rewriting of ψ(x̄) w.r.t. M}.

Then for every pair of instances I1, I2, it holds that SolM(I2) ⊆ SolM(I1) if and only if,

for every query Q ∈ CM we have that Q(I1) ⊆ Q(I2).

PROOF. Assume first that SolM(I2) ⊆ SolM(I1), and let Q ∈ CM. We show now

that Q(I1) ⊆ Q(I2). Let σ in Σ be a formula of the form ϕ(x̄) → ψ(x̄), such that

Q is the rewriting of ψ(x̄) over S. Now, since SolM(I2) ⊆ SolM(I1), we have that

certainM(Q′, I1) ⊆ certainM(Q′, I2) for every query Q′. In particular, this last prop-

erty holds for the query defined by formula ψ(x̄). Then since Q is a rewriting of ψ(x̄) over

S, we conclude that Q(I1) ⊆ Q(I2).

For the other direction, let I1, I2 be source instances and assume that for every Q ∈ CM,

it holds that Q(I1) ⊆ Q(I2). We show now that SolM(I2) ⊆ SolM(I1). Let (I2, J) |= Σ,

we must show that (I1, J) |= Σ. Let σ ∈ Σ be a dependency of the form ϕ(x̄) → ψ(x̄), and

assume that I1 |= ϕ(ā) for some tuple ā of constant values. We need to show that J |= ψ(ā).

Since I1 |= ϕ(ā) we know that for every J ′ ∈ SolM(I1) it holds that J ′ |= ψ(ā). Now, let

Qψ be the conjunctive query defined by ψ(x̄), and consider the query Q′ ∈ CM obtained

by rewriting ψ(x̄). Since Q′(I1) = certainM(Qψ, I1) and since for every J ′ ∈ SolM(I1)

we have that ā ∈ Qψ(J ′), we obtain that ā ∈ certainM(Qψ, I1) and then ā ∈ Q′(I1). Thus,

since we are assuming that Q′(I1) ⊆ Q′(I2), we conclude that ā ∈ Q′(I2). Recall that Q′

is a rewriting of ψ(x̄), and then since ā ∈ Q′(I2) we have that ā ∈ certainM(Qψ, I2). That

is, for every K ∈ SolM(I2) we have that ā ∈ Qψ(K). In particular, for J we have that

ā ∈ Qψ(J), and then J |= ψ(ā). This was to be shown. ¤

We now have all the ingredients to prove Theorem 4.2.2.

94

PROOF OF THEOREM 4.2.2. We describe first how to construct the set of queries in

the statement of the theorem. Given the mapping M, let CM be the set of queries con-

structed in Lemma 4.2.3. Notice that since M is specified by st-tgds, we know that CM is

a set of queries in UCQ= over S (see Lemma 3.3.3). Consider now the set of queries C⋆
M

obtained from CM by closing the set under conjunction, disjunction, existential quantifica-

tion, variable substitution, and addition of inequalities between free variables. Since CM is

a set of queries in UCQ=, we have that C⋆
M is a set of queries in UCQ=,6=.

We first show that the set C⋆
M satisfies the same property of Lemma 4.2.3. That is, for

every pair of instances I1, I2, it holds that SolM(I2) ⊆ SolM(I1) if and only if Q(I1) ⊆

Q(I2) for every Q ∈ C⋆
M. Since CM ⊆ C⋆

M, the “only if” part follows immediately. For

the other direction we use an inductive argument. Assume that SolM(I2) ⊆ SolM(I1) and

let Q be a query in C⋆
M. There are several cases. Suppose that Q is the conjunction of two

queries Q1 and Q2 in C⋆
M. Then Q(I1) = Q1(I1) ∩ Q2(I1). By induction hypothesis we

have that Q1(I1) ⊆ Q1(I2) and Q2(I1) ⊆ Q2(I2) and then Q(I1) = Q1(I1) ∩ Q2(I1) ⊆

Q1(I2) ∩ Q2(I2) = Q(I2). If Q is the disjunction of two queries the argument is similar.

Assume Q is obtained from Q′ ∈ C⋆
M by existentially quantifying some of the free variables

of Q′. From Q′(I1) ⊆ Q′(I2) it is straightforward to conclude that Q(I1) ⊆ Q(I2). It is

also straightforward to conclude that Q(I1) ⊆ Q(I2) if Q has been obtained by substituting

some variables in a query Q′ ∈ C⋆
M. Finally, let Q′ be a query in C⋆

M and (x1, . . . , xk) the

tuple of free variables of Q′ (with k ≥ 2), and assume that Q is obtained from Q′ by adding

the inequality xi 6= xj with i 6= j. Notice that if a tuple ā = (a1, . . . , ak) is in Q(I1), then

ai 6= aj and ā ∈ Q′(I1). Since Q′(I1) ⊆ Q′(I2) we obtain that, if ā ∈ Q(I1) then ai 6= aj

and ā ∈ Q′(I2), which implies that ā ∈ Q(I2).

We show now that for the set of queries C⋆
M, statements (1), (2), and (3) are equivalent.

Thus, assume first that M is quasi-invertible. We show now that M′ is a quasi-inverse of

M if and only if M′ fully recovers C⋆
M which proves the equivalence (1) ⇔ (3). To prove

the “only if” part, let M′ be a quasi-inverse of M. We need to show that M′ fully recovers

C⋆
M. That is, we need to show that certainM◦M′(Q, I) = Q(I) for all Q ∈ C⋆

M. Let Q

be a query in C⋆
M and let I be a source instance. Recall that, if SolM(I2) ⊆ SolM(I1),

95

then Q(I1) ⊆ Q(I2). This fact implies that if SolM(I2) = SolM(I1), then Q(I1) = Q(I2).

We use this last property several times in this part of the proof. Now, since M′ is a quasi-

inverse of M, there exists instances I ′ and I ′′ such that SolM(I) = SolM(I ′) = SolM(I ′′)

and (I ′, I ′′) ∈ M ◦ M′. Since SolM(I) = SolM(I ′) and (I ′, I ′′) ∈ M ◦ M′, we know

that (I, I ′′) ∈ M ◦M′. Now, since SolM(I) = SolM(I ′′), we know that Q(I) = Q(I ′′),

then we have that certainM◦M′(Q, I) ⊆ Q(I ′′) = Q(I). Let (I, I ′) ∈ M ◦ M′. There

exists instances I2, I
′
2 such that SolM(I) = SolM(I2), SolM(I ′) = SolM(I ′

2) and I2 ⊆ I ′
2.

Since Q is a monotone query, we obtain that Q(I2) ⊆ Q(I ′
2). Finally, since SolM(I) =

SolM(I2), SolM(I ′) = SolM(I ′
2), we obtain that Q(I2) = Q(I ′), Q(I ′

2) = Q(I ′) and

Q(I) ⊆ Q(I ′). We have shown that, if (I, I ′) ∈ M ◦ M′, then Q(I) ⊆ Q(I ′), and then

Q(I) ⊆ certainM◦M′(Q, I). Thus it holds that for every Q ∈ CM and for every instance I ,

it holds that Q(I) = certainM◦M′(Q, I). Then we conclude that M′ fully recovers CM for

M.

To prove the opposite direction, assume that M′ fully recovers C⋆
M. We need to show

that M′ is a quasi-inverse of M. We show two properties:

(a) If (I1, I2) ∈ M ◦ M′ then there exists instances I ′
1, I

′
2 such that SolM(I1) =

SolM(I ′
1) and SolM(I2) = SolM(I ′

2), and I ′
1 ⊆ I ′

2.

(b) For every I there exists an instance I ′, such that SolM(I) = SolM(I ′) and

(I, I ′) ∈ M ◦M′.

Properties (a) and (b) are enough to conclude that M′ is a quasi-inverse of M (see Defini-

tion 2.5.2). To prove (a), let (I1, I2) ∈ M◦M′. Since M′ fully recovers C⋆
M, we know that

for every Q ∈ C⋆
M it holds that Q(I1) = certainM◦M′(Q, I1). From (I1, I2) ∈ M◦M′ we

know that certainM◦M′(Q, I1) ⊆ Q(I2). We have shown that, for every Q ∈ C⋆
M, it holds

that Q(I1) ⊆ Q(I2) which by the properties of C⋆
M implies that SolM(I2) ⊆ SolM(I1).

Finally, since M is quasi-invertible, we know that M satisfies the (∼M,∼M)-subset prop-

erty (Fagin, Kolaitis, Popa, & Tan, 2008). Then from SolM(I2) ⊆ SolM(I1) we conclude

that there exists I ′
1 and I ′

2 such that SolM(I1) = SolM(I ′
1), SolM(I2) = SolM(I ′

2), and

I ′
1 ⊆ I ′

2. This completes the proof of (1).

96

Before proving (b), notice that, while proving (a) we have shown that if (I1, I2) ∈

M ◦ M′ then Q(I1) ⊆ Q(I2) for every Q ∈ C⋆
M. When proving (b) we use this last

property.

Now we show that (b) holds. Let I be an arbitrary instance. For every query Q ∈ CM

we construct a query QI as follows. If Q is a k-ary query and m = |Q(I)|, then we define

the Boolean query

QI = ∃x̄1 · · · ∃x̄m+1

(
Q(x̄1) ∧ · · · ∧ Q(x̄m+1) ∧

∧

1≤i<j≤m+1

x̄i 6= x̄j

)

where x̄i a k-ary tuple. It is straightforward to see that QI ∈ C⋆
M. Notice that, if for an

instance I ′ it holds that QI(I ′) = true then |Q(I)| < |Q(I ′)|. And conversely, if for an

instance I ′ it holds that QI(I ′) = false then |Q(I ′)| ≤ |Q(I)|. If Q is a Boolean query, we

consider two cases. If Q(I) = false then QI = Q. If Q(I) = true we let QI = false (that

is, a query such that for every instance I ′, Q(I ′) = false). Consider now the query

Q⋆ =
∨

Q∈CM

QI .

Notice that Q⋆ ∈ C⋆
M, and then M′ fully recovers Q⋆. Also notice that Q⋆(I) = false, and

then certainM◦M′(Q⋆, I) = false. This implies that there exists an instance I⋆ such that

(I, I⋆) ∈ M ◦M′ and Q⋆(I⋆) = false. That is, QI(I⋆) = false for every Q ∈ CM. Now,

let Q ∈ CM and assume that Q is k-ary. Since QI(I⋆) = false we obtain that |Q(I⋆)| ≤

|Q(I)|. Notice that from (I, I⋆) ∈ M ◦M′ and since M′ fully recovers Q, we know that

Q(I) ⊆ Q(I⋆). Then by using |Q(I⋆)| ≤ |Q(I)| we conclude that Q(I) = Q(I⋆). Now, let

Q ∈ CM and assume that Q is a Boolean query. If Q(I) = true, then from Q(I) ⊆ Q(I⋆)

we conclude that Q(I⋆) = true. If Q(I) = false then Q⋆(I⋆) = false and since QI = Q is a

disjunction in Q⋆, we obtain that Q(I⋆) = false. In any case we obtain that Q(I) = Q(I⋆).

Thus we have shown that, for every Q ∈ CM it holds that Q(I) = Q(I⋆) which implies

that SolM(I) = SolM(I⋆). Finally, we have that there exists an instance I⋆ such that

(I, I⋆) ∈ M ◦M′, which is exactly what was to be shown.

97

We have shown that M′ is a quasi-inverse of M if and only if M′ fully recovers C⋆
M

for M. To conclude the proof, we show that M′ is a quasi-inverse of M if and only if M′

is a C⋆
M-maximum recovery of M (that is, we show equivalence (1) ⇔ (2). First, notice

that if M′ is a quasi-inverse of M, then we have that M′ fully recovers C⋆
M for M, which

implies that M′ is a C⋆
M-maximum recovery of M. Second, assume that M′ is a C⋆

M-

maximum recovery of M. Given that M is quasi-invertible, there exists a quasi-inverse

M⋆ of M. Thus, we have that M⋆ fully recovers C⋆
M for M. Therefore, given that M′ is

a C⋆
M-maximum recovery of M, we have that M⋆ ¹

C⋆
M

M M′ and, hence, M′ fully recovers

C⋆
M for M. Again using the result above, we deduce that M′ is a quasi-inverse of M,

which concludes the proof of the theorem. ¤

We consider now the notion of maximum recovery introduced in Section 3.1. The fol-

lowing theorem presents our main result for this section regarding the notion of maximum

recovery. Part (1) of Theorem 4.2.4 shows that for every class of queries C, if a mapping

M′ is a maximum recovery of M, then M′ is also a C-maximum recovery of M. Thus, a

maximum recovery is the best possible alternative to retrieve sound information.

THEOREM 4.2.4. Let M be a mapping from a schema R1 to a schema R2, M′ a

maximum recovery of M and Q an arbitrary query over R1.

(1) If M′′ recovers sound information for M under Q, then M′′ ¹Q
M M′.

(2) If some mapping fully recovers Q for M, then M′ fully recovers Q for M.

PROOF. To prove part (1), assume that a mapping M′′ recovers sounds information

for M under Q. Next we show that M′′ ¹Q
M M′. Let I ∈ dom(M). We have to

show that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I). Given that M′ is a maximum re-

covery of M, we have that SolM◦M′(I) 6= ∅ since (I, I) ∈ M ◦ M′. Let I ′ be an

arbitrary element of SolM◦M′(I). Then given that M′ is a maximum recovery of M,

we have that I ′ ∈ dom(M) and SolM(I ′) ⊆ SolM(I) (see Proposition 3.1.6). Thus,

we have that SolM◦M′′(I ′) ⊆ SolM◦M′′(I), which implies that certainM◦M′′(Q, I) ⊆

98

certainM◦M′′(Q, I ′). Therefore, given that I ′ ∈ dom(M) and M′′ recovers sound infor-

mation for M under Q, we have that certainM◦M′′(Q, I) ⊆ certainM◦M′′(Q, I ′) ⊆ Q(I ′).

Given that I ′ is an arbitrary instance, we conclude that for every instance J ∈ SolM◦M′(I),

it is the case that certainM◦M′′(Q, I) ⊆ Q(J), which implies that certainM◦M′′(Q, I) ⊆

certainM◦M′(Q, I) since certainM◦M′(Q, I) =
⋂

J∈SolM◦M′ (I) Q(J).

We prove now part (2). Assume that there exists a mapping M′′ that fully recovers

Q for M. Notice that this implies that M′′ recovers sound information for M under

Q. Next we show that these two facts imply that M′ fully recovers Q for M. Let I ∈

dom(M). We need to show that Q(I) = certainM◦M′(Q, I). Given that M′ is a maximum

recovery, it holds that certainM◦M′(Q, I) ⊆ Q(I) and, hence, we only need to show that

Q(I) ⊆ certainM◦M′(Q, I). But given that M′′ recovers sound information for M under

Q, we have by (a) that M′′ ¹Q
M M′. Therefore, we have that certainM◦M′′(Q, I) ⊆

certainM◦M′(Q, I). Thus, we conclude that Q(I) ⊆ certainM◦M′(Q, I) since Q(I) =

certainM◦M′′(Q, I) (given that M′′ fully recovers Q for M). This concludes the proof of

the theorem. ¤

A natural question at this point is whether there exists a characterization of the notion

of maximum recovery similar to the ones given for the notions of Fagin-inverse and quasi-

inverse. In particular, since a maximum recovery is an ALL-maximum recovery, where

ALL is the class of all queries, one may wonder whether the notions of maximum recovery

and ALL-maximum recovery coincide. Somewhat surprisingly, the following result shows

that this does not hold, even for the case of st-tgds.

PROPOSITION 4.2.5. There exist mappings M and M′ such that M is specified by a

set of st-tgds (and thus M has a maximum recovery), M′ is an ALL-maximum recovery of

M and M′ is not a maximum recovery of M.

99

PROOF. Let S = {S(·)}, T = {T (·)} and M = (S,T, Σ), where Σ = {∃xS(x) →

∃yT (y)}. Furthermore, assume that a is an arbitrary element of C, and let M⋆ be a map-

ping from T to S defined as follows:

M⋆ = {(J∅, I∅)} ∪ {(J, I) | J ∈ Inst(T), I ∈ Inst(S), J 6= J∅, I 6= I∅ and a 6∈ dom(I)},

where I∅ and J∅ are the empty instances of schemas S and T, respectively.

Given that M is specified by a set of st-tgds, we know that M has a maximum re-

covery. In fact, by using the tools in Section 3.1.1 it is easy to show that the ts-mapping

M′ specified by dependency ∃yT (y) → ∃xS(x) is a maximum recovery of M. By the

definition of M⋆, we know that M⋆ is not a maximum recovery of M. In fact, M⋆ is not

even a recovery of M since for the instance I = {S(a)}, we have that (I, I) 6∈ M ◦M⋆.

Thus, to conclude the proof, we only need to show that M⋆ is an ALL-maximum recovery

of M.

Assume that (I1, I2) ∈ M ◦ M⋆. Then there exists an instance J of T such that

(I1, J) ∈ M and (J, I2) ∈ M⋆. If J = J∅, then we trivially have that (J, I2) |= ∃yT (y) →

∃xS(x), from which we conclude that (J, I2) ∈ M′ and (I1, I2) ∈ M◦M′. If J 6= J∅, then

we have that I2 6= I∅ by definition of M⋆. Thus, again we have that (J, I2) |= ∃yT (y) →

∃xS(x), from which we conclude that (J, I2) ∈ M′ and (I1, I2) ∈ M ◦ M′. Hence, we

have that for every (I1, I2) ∈ M ◦M⋆, it holds that (I1, I2) ∈ M ◦M′, and we conclude

that M◦M⋆ ⊆ M◦M′.

Given that M′ is a maximum recovery of M and M ◦ M⋆ ⊆ M ◦ M′, to prove

that M⋆ is an ALL-maximum recovery of M, we only need to show that M⋆ is an ALL-

recovery of M. Let Q be a query over S and I ∈ dom(M). If the arity of Q is k ≥ 1, then

it is easy to see that certainM◦M⋆(Q, I) = ∅ ⊆ Q(I). If Q is a Boolean query, then we

need to show that certainM◦M⋆(Q, I) = false whenever Q(I) = false. Thus, assume that

Q(I) = false. By definition of M⋆, there exists an instance I ′ isomorphic to I such that

(I, I ′) ∈ M◦M⋆. Therefore, given that Q is closed under isomorphisms, we conclude that

100

certainM◦M⋆(Q, I) = false since Q(I ′) = false and I ′ ∈ SolM◦M⋆(I). This concludes the

proof of the proposition. ¤

4.2.2. C-maximum recoveries and C-equivalence

The idea of parameterizing by a class of queries a problem related to the management

of mapping languages is not new. In fact, this idea was developed by Madhavan and Halevy

(2003) to study the composition operator, and was also used by Fagin, Kolaitis, Nash,

and Popa (2008) to develop a theory of schema-mapping optimization, where the authors

introduced the notion of certain-answers equivalence of mappings (Madhavan & Halevy,

2003; Fagin, Kolaitis, Nash, & Popa, 2008). Let C be a class of queries. Then two mappings

M and M′ from R1 to R2 are C-equivalent, denoted by M ≡C M′, if for every query

Q ∈ C over R2 and every instance I in R1, it holds that: (1) I ∈ dom(M) if and only if

I ∈ dom(M′), and (2) certainM(Q, I) = certainM′(Q, I), if I ∈ dom(M) ∩ dom(M′).

If M1 and M2 are C-equivalent, then we know that they behave in the same way with

respect to C. Thus, if one is going to retrieve information by using only queries from C,

a mapping M can be replaced by any other C-equivalent mapping. In particular, it could

be replaced by a mapping that can be handled more efficiently, thus optimizing the initial

schema mapping. In the notion of C-maximum recovery, this idea of only considering

a particular query language to retrieve information is also present. The following result

shows that the notions of maximum recovery and C-maximum recovery can be related

through the notion of C-equivalence (Fagin, Kolaitis, Nash, & Popa, 2008).

PROPOSITION 4.2.6. Let M′ be a maximum recovery of M, and C a class of queries.

(1) M′′ is a C-maximum recovery of M iff (M◦M′′) ≡C (M◦M′).

(2) If M′′ is such that M′′ ≡C M′, then M′′ is a C-maximum recovery of M.

PROOF. Notice first that, since M′ is a maximum recovery of M, from part (1) of

Theorem 4.2.4 we know that M′ is a C-maximum recovery of M.

We show now part (1). Assume that (M◦M′′) ≡C (M◦M′). It is easy to see that

dom(M) = dom(M◦M′) (since M′ is a recovery of M) and then from the definition of

101

C-equivalence we obtain that dom(M) = dom(M ◦ M′′). Thus, we have that for every

I ∈ dom(M) and Q ∈ C, it holds that certainM◦M′(Q, I) = certainM◦M′′(Q, I). This

last property together with the fact that M′ is a C-maximum recovery of M implies that

M′′ is a C-maximum recovery of M.

To prove the opposite direction, assume that M′′ is a C-maximum recovery of M.

Since M′ is also a C-maximum recovery of M, we obtain that for every I ∈ dom(M)

and Q ∈ C, it holds that certainM◦M′(Q, I) = certainM◦M′′(Q, I) ⊆ Q(I). From this last

property, we obtain that if I ∈ dom(M) then I ∈ dom(M◦M′′), otherwise it could not

be the case that certainM◦M′′(Q, I) ⊆ Q(I), and then we have that dom(M) ⊆ dom(M◦

M′′). It is obvious that dom(M◦M′′) ⊆ dom(M), and then we obtain that dom(M) =

dom(M◦M′′). Since M′ is a recovery of M, we have that dom(M) = dom(M◦M′)

and then we obtain that dom(M◦M′) = dom(M◦M′′). Summing up, we have shown

that dom(M ◦ M′) = dom(M ◦ M′′), and for every I ∈ dom(M ◦ M′) and Q ∈ C, it

holds that certainM◦M′(Q, I) = certainM◦M′′(Q, I). Hence, (M◦M′′) ≡C (M◦M′).

We prove now part (2). Assume that M′′ ≡C M′. Next we show that (M◦M′′) ≡C

(M◦M′), from which we conclude from (a) that M′′ is a C-maximum recovery of M. As

in the previous proof, using the fact that M′ is a recovery of M and M′′ ≡C M′, we can

conclude that dom(M) = dom(M◦M′) = dom(M◦M′′). Then it only remains to show

that certainM◦M′′(Q, I) = certainM◦M′(Q, I) for every I ∈ dom(M) and Q ∈ C. Let

I ∈ dom(M) and Q ∈ C. We first show that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I).

Let ā ∈ certainM◦M′′(Q, I) and consider an instance K such that (I,K) ∈ M ◦ M′.

Then there exists J such that (I, J) ∈ M and (J,K) ∈ M′. Since M′ ≡C M′′, it

holds that dom(M′) = dom(M′′) and then J ∈ dom(M′′). From the fact that ā ∈

certainM◦M′′(Q, I) and (I, J) ∈ M, we obtain that for all L such that (J, L) ∈ M′′, it

must be the case that ā ∈ Q(L). This last property implies that ā ∈ certainM′′(Q, J) and

then, given that certainM′(Q, J) = certainM′′(Q, J), we have that ā ∈ certainM′(Q, J).

Finally, given that (J,K) ∈ M′, we have that ā ∈ Q(K). We have proved that if ā ∈

certainM◦M′′(Q, I), then for every K such that (I,K) ∈ M◦M′, it holds that ā ∈ Q(K),

from which we conclude that certainM◦M′′(Q, I) ⊆ certainM◦M′(Q, I). To prove that for

102

every I ∈ dom(M) and Q ∈ C it holds that certainM◦M′(Q, I) ⊆ certainM◦M′′(Q, I), a

symmetric argument can be used. ¤

4.3. A Schema Mapping Language Closed Under Inversion

One of our main goals in this chapter is to find a mapping-specification language that is

closed under inversion. This goal amounts to (1) first choose a particular semantics for

the inverse operator, and then (2) prove that under this semantics, there exists a mapping

language L such that every schema mapping specified in L has an inverse also specified

in L. Thus, we have to deal with two parameters: the semantics for inverting mappings,

and the language used for specifying mappings. As a desiderata, we would like to have a

natural and useful semantics, and a mapping-specification language expressive enough to

contain the class of st-tgds. It is important to notice that the notions of Fagin-inverse and

quasi-inverse could not meet our requirements, as there exist mappings specified by st-tgds

that admit neither Fagin-inverses nor quasi-inverses. The notion of C-maximum recovery,

developed in the previous sections, provides a range of natural and useful semantics for the

inverse operator that will allow us to reach our goal.

The main result of this section is that, when we consider the notion of CQ-maximum

recovery as our semantics for inversion of st-mappings, there exists a language that is closed

under inversion and contains the class of st-tgds. More specifically, we we prove that every

st-mapping specified by a set of CQC,6=-TO-CQ dependencies has a CQ-maximum recov-

ery also specified by a set of CQC,6=-TO-CQ dependencies (Theorem 4.3.1). Although this

language has appeared before in the literature about inverses of schema mappings (Fagin,

Kolaitis, Popa, & Tan, 2008), it has not been used to study closure properties as the ones

considered in this paper. It should be noticed that, with CQC,6=-TO-CQ dependencies, the

standard chase procedure gives a single instance as output. Thus, every instance I has a

solution that can be considered as a representative of the space of solutions for I , which

is a desirable property for data exchange (Fagin, Kolaitis, Miller, & Popa, 2005). These

results provide strong evidence that the language of CQC,6=-TO-CQ has good properties

for inverting mappings.

103

Our closure result depends on both the mapping language and the class C used in

the notion of C-maximum recovery. Thus, a natural question is whether this result could

be strengthened by considering other alternatives for these parameters. In Sections 4.3.2

and 4.3.3, we prove several negative results in this respect. These results show that, our

choice of CQ-maximum recovery as the semantics for inversion and CQC,6=-TO-CQ as the

mapping language is, in a technical sense, optimal for obtaining a mapping language closed

under inversion.

It should be noticed that our closure result (Theorem 4.3.1) is specific to the case of

st-mappings, that is, mappings that consider only constant values in source instances. As

we have seen, in this scenario inverses are ts-mappings which are mappings that transform

instances with constant and null values into source instances that only contain constant

values. This has been a common assumption on the literature on inverting mappings (Fagin,

2007; Fagin, Kolaitis, Popa, & Tan, 2008; Arenas, Pérez, & Riveros, 2009). Nevertheless,

Fagin et al. (2009) have raised the issue of the asymmetry in the study of the inverse

operator, and have proposed to study the inverse operator in a symmetric scenario in which

both source and target schemas have constant and null values. We leave the study of closure

properties in this symmetric scenario for future work.

4.3.1. CQC,6=-TO-CQ is closed under inversion

The following is the main result of this section.

THEOREM 4.3.1. Every st-mapping specified by a set of CQC,6=-TO-CQ dependencies,

has a CQ-maximum recovery specified by a set of CQC,6=-TO-CQ dependencies.

To prove the theorem we describe in this section an algorithm to compute a CQ-

maximum recovery of an st-mapping given by CQC,6=-TO-CQ dependencies, that gives

as output a set of CQC,6=-TO-CQ dependencies (see Theorem 4.3.7). For the rest of this

section fix Σ as a finite set of CQC,6=-TO-CQ dependencies, and M as the st-mapping

specified by Σ.

104

We start with a simple observation. Consider the set Σ̄ obtained from Σ by dropping

all the atoms of the form C(x) that appear in the premises of the dependencies in Σ. Notice

that, since M is a source-to-target mapping, every instance in the domain of M is com-

posed only by elements in C. This implies that the st-mapping specified by Σ̄ is exactly M.

Thus, trough the rest of this section we work with Σ̄ instead of Σ. We split the presentation

of our main procedure in several sub-procedures.

Compute a maximum recovery for Σ̄

We start by computing a set Σ′ that specifies a maximum recovery of M. We make

use of the following lemma that is similar to Lemma 3.3.3 which refers to the output of

procedure QUERYREWRITING of Lemma 3.3.1. The proof of the lemma follows from

inspecting the proof of Lemma 3.3.1.

LEMMA 4.3.2. Let M̄ = (S,T, Σ̄) be an st-mapping such that Σ̄ is a set of CQ 6=-TO-CQ

dependencies, and let Q be an n-ary conjunctive query over schema T. Then algorithm

QUERYREWRITING(M̄, Q) in Lemma 3.3.1 has as output a query Q′ in UCQ 6=,= that is

a rewriting of Q over the source. Moreover, the output query Q′ is a formula of the form

β1(x̄) ∨ · · · ∨ βk(x̄) where x̄ is an n-tuple of distinct variables, and for 1 ≤ i ≤ k, the

formula βi(x̄) is a CQ 6=,= query such that,

• x̄ is exactly the tuple of free variables in βi(x̄),

• if the inequality z 6= z′ occurs in βi(x̄) then z and z′ occur in some relational

atom of βi(x̄), and

• if the equality z = z′ occurs in βi(x̄) then z or z′ (but not necessarily both) occur

in some relational atom of βi(x̄).

Thus, let M̄ be the st-mapping specified by the set Σ̄. Let M′ be the mapping obtained

as the output of MAXIMUMRECOVERY(M̄), and assume that Σ′ is the set of dependencies

that specify M′. From Lemma 4.3.2 we have that Σ′ is a set of CQC-TO-UCQ 6=,= de-

pendencies. Furthermore, by following algorithm MAXIMUMRECOVERY we can see that

105

every dependency in Σ′ is of the form ∃ȳψ(x̄, ȳ)∧C(x̄) → β1(x̄)∨· · ·∨βk(x̄), with k ≥ 1

and where

• ∃ȳψ(x̄, ȳ) is the conclusion of some of the dependencies in Σ̄,

• x̄ is exactly the tuple of free variables of ∃ȳψ(x̄, ȳ) and of βi(x̄) for 1 ≤ i ≤ k,

• C(x̄) is a conjunction of formulas C(x) for every x in x̄, and

• for 1 ≤ i ≤ k, the formula βi(x̄) is a CQ 6=,= query such that,

– if the inequality z 6= z′ occurs in βi(x̄) then z and z′ occur in some relational

atom of βi(x̄),

– if the equality z = z′ occurs in βi(x̄) then z or z′ (but not necessarily both)

occur in some relational atom of βi(x̄).

Moreover, we can assume, without loss of generality, that for every 1 ≤ i ≤ k, the equal-

ities occurring in the formula βi(x̄) are only among free variables (equalities among exis-

tentially quantified variables, or among free variables and existentially quantified variables,

can be eliminated by replacing the corresponding variables).

In the rest of the section we show how we can apply some operations to transform Σ′

into a set Σ⋆ of CQC,6=-TO-CQ dependencies such that, the ts-mapping M⋆ specified by Σ⋆

is CQ-equivalent to M′. Then since M′ is a maximum recovery of M, and M⋆ ≡CQ M′,

we conclude from Proposition 4.2.6 that M⋆ is a CQ-maximum recovery of M. The first

step in our quest is to eliminate equalities and inequalities form the conclusions of Σ′.

Eliminate equalities and inequalities among free variables from the conclusions of Σ′

In this step we construct a set Σ′′ that defines a maximum recovery of M, such that

the dependencies in Σ′′ do not have equalities nor inequalities among free variables in their

conclusions. We use a notion similar to what is called complete description in (Fagin, Ko-

laitis, Popa, & Tan, 2008). Let x̄ = (x1, . . . , xn) be a tuple of distinct variables. Consider

a partition π of the set {x1, . . . , xn}, and let [xi]π be the equivalence class induced by π to

which xi belongs (1 ≤ i ≤ n). Let fπ : {x1, . . . , xn} → {x1, . . . , xn} be a function such

that fπ(xi) = xj if j is the minimum over all the index of the variables in [xi]π. That is, fπ

is a function that selects a unique representative from every equivalence class induced by

106

π. For example, if x̄ = (x1, x2, x3, x4, x5) and π is the partition {{x1, x4}, {x2, x5}, {x3}},

then fπ(x1) = x1, fπ(x2) = x2, fπ(x3) = x3, fπ(x4) = x1, fπ(x5) = x2. We also

consider the formula δπ that is constructed by taking the conjunction of the inequalities

fπ(xi) 6= fπ(xj) whenever fπ(xi) and fπ(xj) are different variables. In the above example

we have that δπ is the formula x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3. Finally, given a conjunction

of equalities and inequalities α and a conjunction of inequalities β, we say α is consis-

tent with β if there is an assignment of values to the variables in α and β that satisfies all

the equalities and inequalities in these formulas. For example, x1 = x2 is consistent with

x1 6= x3, while x1 = x2 ∧ x2 = x3 is not consistent with x1 6= x3.

Recall that Σ′ is a set of dependencies that specify mapping M′ which is a maximum

recovery of M. We have the necessary ingredients to describe the procedure to construct a

set Σ′′ from Σ′, such that dependencies in Σ′′ has only inequalities among free variables in

their conclusions. We call this procedure ELIMINATEEQINEQ.

Procedure ELIMINATEEQINEQ(Σ′)

(1) Let Σ′′ be empty.

(2) For every dependency σ in Σ′ of the form ∃ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄) with

x̄ = (x1, . . . , xn) a tuple of distinct variables, and for every partition π of

{x1, . . . , xn} do the following:

• Let α(x̄) = β1(x̄) ∨ · · · ∨ βk(x̄).

• Construct a formula γ from α(fπ(x̄)) as follows. For every i ∈ {1, . . . , k}:

– If the equalities and inequalities among free variables in βi(fπ(x̄)) are

consistent with δπ, then drop the equalities and inequalities among

free variables in βi(fπ(x̄)) and add the resulting formula as a disjunct

in γ.

• If γ has at least one disjunct then add to Σ′′ the dependency σπ given by

∃ȳψ(fπ(x̄), ȳ) ∧ C(fπ(x̄)) ∧ δπ → γ.

(3) Return Σ′′
¤

107

For example, assume that σ ∈ Σ′ is the following dependency:

∃y1A(x1, x2, y1) ∧ B(x3) ∧ C(x1) ∧ C(x2) ∧ C(x3) →

[∃u1(P (x1, x2, x3, u1) ∧ u1 6= x1) ∧ x1 6= x2] ∨ [R(x1, x3) ∧ x1 = x2 ∧ x1 6= x3].

Consider the partition π1 = {{x1, x2}, {x3}}. Since fπ1(x1) = fπ1(x2) = x1, the in-

equality x1 6= x2 become x1 6= x1 after applying fπ1 , and then the first disjunction in

the conclusion of σ become unsatisfiable. Considering the second disjunction, the formula

x1 = x2 ∧ x1 6= x3 become x1 = x1 ∧ x1 6= x3 after applying fπ1 , and since δπ1 is formula

x1 6= x3, we obtain a satisfiable formula. Then we have that σπ1 is the dependency

∃y1A(x1, x1, y1) ∧ B(x3) ∧ C(x1) ∧ C(x3) ∧ x1 6= x3 → R(x1, x3),

and then σπ1 is added to Σ′′ in procedure ELIMINATEEQINEQ. If we consider the partition

π2 = {{x1}, {x2, x3}}, the second disjunction in the conclusion of σ become unsatisfi-

able (since the inequality x1 6= x2 is forced in δπ2). In this case we have that σπ2 is the

dependency

∃y1A(x1, x2, y1)∧B(x2)∧C(x1)∧C(x2)∧x1 6= x2 → ∃u1(P (x1, x2, x3, u1)∧u1 6= x1),

and σπ2 is added to Σ′′. On the other hand, if we consider partition π3 = {{x1, x2, x3}},

that is, considering a single equivalence class for the whole set of variables, then σπ3 is not

added to Σ′′ since both disjunctions in the conclusion of σ become unsatisfiable.

Notice that the set Σ′′ obtained after the described process, is a set of CQC,6=-TO-UCQ 6=

dependencies. Moreover, Σ′′ is such that for every disjunction β(x̄) in the conclusion of a

dependency, and for every inequality x 6= x′ occurring in β(x̄), we have that x or x′ are

existentially quantified variables (that is, it is not the case that both x and x′ belong to x̄).

The following lemma shows the key property that the set Σ′′ satisfies.

LEMMA 4.3.3. Let M′′ be the ts-mapping specified by the set Σ′′ constructed in pro-

cedure ELIMINATEEQINEQ(Σ′). Then M′′ is a maximum recovery of M.

108

PROOF. In what follows, we make use of the following technical result proved in (Fa-

gin, Kolaitis, Popa, & Tan, 2008) (Proposition 6.7). (We have also included some of the

details in Section 2.4.) Assume that Γ1 is a set of FO-TO-CQ dependencies and Γ2 a set

of CQC,6=-TO-UCQ dependencies. Let M1 be the st-mapping specified by Γ1 and M2 the

ts-mapping specified by Γ2. In (Fagin, Kolaitis, Popa, & Tan, 2008) the authors proved

that, if I is a source instance, J the result of chasing I with Γ1, and V = {K1, K2, . . . , Kℓ}

the result of chasing J with Γ2, then for every I ′ such that (I, I ′) ∈ M1 ◦M2 there exists

a homomorphism from some K ∈ V to I ′. By following the proof in (Fagin, Kolaitis,

Popa, & Tan, 2008), one can see that the mentioned result also holds when Γ2 is a set of

CQC,6=-TO-UCQ 6= dependencies, provided that the inequalities in the conclusions of the

dependencies of Γ2 always mention an existentially quantified variable (inequalities that

mention existentially quantified variables do not affect the normal chase procedure). Thus,

we can apply this result to Σ̄ and Σ′′.

We continue now with the proof of the lemma. Recall that M′ the mapping specified

by Σ′, is a maximum recovery of M. We show now that M′′ is also a maximum recovery

of M. First, it is straightforward to see that, if (J, I) |= Σ′ then (J, I) |= Σ′′, from which

we obtain that M◦M′ ⊆ M◦M′′. Then it only remains to prove that M◦M′′ ⊆ M◦M′.

Before proving that M ◦ M′′ ⊆ M ◦ M′, we make the following observation about

Σ′′. Notice that for every dependency σ in Σ′′, and for every variable x that simultaneously

occurs in the premise and the conclusion of σ, we have that C(x) occurs in the premise

of σ. This property is enough to conclude that, if (J,K) |= Σ′′ with J and K arbitrary

instances composed by constants and null values, and there exists a homomorphism from

K to K ′, then (J,K ′) |= Σ′′. That is, Σ′′ is closed under target homomorphism (see (Fagin,

Kolaitis, Nash, & Popa, 2008)).

In order to prove that M ◦ M′′ ⊆ M ◦ M′, let (I1, I2) ∈ M ◦ M′′. Assume that

J is the result of chasing I1 with Σ̄, and V the result of chasing J with Σ′′. From the

discussion above, we know that there exists an instance K ∈ V and a homomorphism from

K to I2. We also know that (J,K) |= Σ′′. Then given that Σ′′ is closed under target

109

homomorphism, we have that (J, I2) |= Σ′′, and then (J, I2) ∈ M′′ since I2 is a valid

source instance. We show now that (J, I2) |= Σ′ and then (J, I2) ∈ M′. Let σ be a

dependency of Σ′ of the form ∃ȳψ(x̄, ȳ) ∧ C(x̄) → α(x̄) with x̄ = (x1, . . . , xn) a tuple of

distinct variables. Assume that there exists an n-tuple ā = (a1, . . . , an) of elements from

dom(J) such that J |= ∃ȳψ(ā, ȳ) ∧ C(ā). We have to show that I2 |= α(ā). Recall that

Σ′ is the output of the algorithm MAXIMUMRECOVERY of (Arenas et al., 2008) applied

to Σ̄. It was shown in (Arenas et al., 2008) that, if J is the result of chasing I1 with

Σ̄, then (J, I1) |= Σ′. Then since J |= ∃ȳψ(ā, ȳ) ∧ C(ā), we have that I1 |= α(ā).

Now, consider a partition πā of {x1, . . . , xn} constructed by considering the equivalence

classes [xi]πā
= {xj | aj = ai} for 1 ≤ i ≤ n. Notice that, by the construction of the

partition πā, if in the tuple fπā
(x̄) = (fπā

(x1), . . . , fπā
(xn)) we assign to every variable xj

its corresponding value aj for 1 ≤ j ≤ n, we obtain exactly the tuple ā. Also notice that

this same assignment satisfies the formula δπā
. Then since I1 |= α(ā) = β1(ā)∨· · ·∨βk(ā),

we have that there exists an index i with 1 ≤ i ≤ k such that βi(fπā
(x̄)) ∧ δπā

is satisfiable

by using the assignment xj → aj for 1 ≤ j ≤ n. Then we know that dependency σπā
of

the form ∃ȳψ(fπā
(x̄), ȳ) ∧ C(fπā

(x̄)) ∧ δπā
→ α′(fπā

(x̄)) is added to the set Σ′′. Finally,

since (J, I2) |= Σ′′ we know that (J, I2) |= σπā
. Then given that J satisfies the formula

∃ȳψ(ā, ȳ) ∧ C(ā) ∧ δπā
we know that I2 |= α′(ā), and from this is straightforward to see

that I2 |= α(ā). This was to be shown. Then since (I1, J) ∈ M and (J, I2) ∈ M′ we

obtain that (I1, I2) ∈ M ◦M′.

We have shown that M◦M′ ⊆ M◦M′′ and that M◦M′′ ⊆ M◦M′, which implies

that M ◦ M′ = M ◦ M′′. Then since M′ is a maximum recovery of M we obtain that

M′′ is also a maximum recovery of M. That is, we have that Σ′′ specifies a maximum

recovery of M. In the next step of our procedure, we eliminate the remaining inequalities

in the conclusions. ¤

We continue now with the procedure to compute a CQ-maximum recovery of M. In

the rest of this section we consider Σ′′ as the set constructed from Σ′ as described above,

and M′′ as the ts-mapping specified by Σ′′.

110

Eliminate the remaining inequalities in the conclusions of Σ′′

In this step we just drop all the remaining inequalities in the disjunctions of the conclu-

sions of the dependencies of Σ′′. It turns out that, although the obtained set of dependencies

may no longer define a maximum recovery of M, it does define a CQ-maximum recovery

of M. In fact a stronger result holds, namely, that the obtained set of dependencies defines

a UCQ-maximum recovery of M. We formalize this fact in the following lemma.

LEMMA 4.3.4. Let Σ′′′ be the set constructed from Σ′′ by dropping all the inequalities

in the conclusions of dependencies in Σ′′, and let M′′′ be the ts-mapping specified by Σ′′′.

Then (1) M′′′ ≡UCQ M′′ and (2) M′′′ is a UCQ-maximum recovery of M.

PROOF. Recall that all the inequalities in the disjunctions of the conclusions of the

dependencies in Σ′′ are of the form x 6= x′ where x or x′ is an existentially quantified

variable. Also notice that, when chasing an instance with Σ′′ we select a fresh null value

for every existentially quantified variable. These facts are enough to conclude that the result

of chasing with Σ′′, is the same as the result of chasing with Σ′′′ (up to isomorphic images

of null values). By using this last property we can show that M′′′ is a UCQ-maximum

recovery of M.

We show first property (1), that is, we show that M′′′ ≡UCQ M′′. Notice that from this

last fact and since M′′ is a maximum recovery of M, we obtain from Proposition 4.2.6

that M′′′ is a UCQ-maximum recovery of M, thus showing property (2). First notice

that the domain of M′′ as well as the domain of M′′′, is the set of all target instances

(all the instances composed by constants and null values). Then in order to prove that

M′′′ ≡UCQ M′′, we need to show that for every target instance J and every query Q that is

a union of conjunctive queries, it holds that certainM′′(Q, J) = certainM′′′(Q, J).

Let J be a target instance, and V = {K1, . . . , Kℓ} the result of chasing J with Σ′′.

Notice that every dependency σ in Σ′′ is such that, for every variable x that occurs simulta-

neously in the premise and the conclusion of σ, the atom C(x) also occurs in the premise of

σ. From this last fact and the properties of V , it follows directly from the results in (Fagin,

111

Kolaitis, Miller, & Popa, 2005) that certainM′′(Q, J) = Q(K1)↓ ∩ · · · ∩Q(Kℓ)↓, for every

query Q that is a union of conjunctive queries. Finally, since the result of chasing with Σ′′ is

the same as the result of chasing with Σ′′′, we have that certainM′′′(Q, J) = Q(K1)↓∩· · ·∩

Q(Kℓ)↓ = certainM′′(Q, J). Then we have that certainM′′′(Q, J) = certainM′′(Q, J) for

every target instance J and union of conjunctive queries Q, and then M′′′ ≡UCQ M′′. ¤

In the rest of this section we consider Σ′′′ as the set constructed from Σ′′ as described

above, and M′′′ as the ts-mapping specified by Σ′′′. Before going to the last step of our

procedure, it is worth recalling what is the form of the dependencies in Σ′′′. Every σ ∈ Σ′′′

is a dependency of the form

ϕ(x̄) ∧ C(x̄) ∧ δ(x̄) → β1(x̄) ∨ · · · ∨ βk(x̄),

where (1) x̄ is a tuple of distinct variables, (2) ϕ(x̄) and βi(x̄) for 1 ≤ i ≤ k, are conjunctive

queries with exactly x̄ as tuple of free variables, (3) C(x̄) is a conjunction of formulas C(x)

for every x in x̄, and (4) δ(x̄) is a conjunction of inequalities x 6= x′ for every pair of distinct

variables x, x′ in x̄. In the last step in our procedure we eliminate the disjunctions from the

conclusions in the dependencies of Σ′′′ to obtain a set of CQC,6=-TO-CQ dependencies that

specifies a CQ-maximum recovery of M.

Eliminate the disjunctions in the conclusions of Σ′′′

We explain first the machinery needed in this step of the procedure. We borrow some

notions and tools from graph theory, in particular, properties about graph homomorphisms.

Given two instances J1 and J2 composed by constants and null values, we define the

product of J1 and J2, denoted by J1 × J2, as the instance constructed by the following

procedure. Consider an injective function f : (C ∪ N) × (C ∪ N) → (C ∪ N) such

that (1) f(a, a) = a for every constant value a ∈ C, and (2) f(a, b) = n(a,b) is a null

value, whenever a or b is a null value, or a and b are distinct constant values. Then for

every n-ary relation symbol R and every pairs of n-tuples ā = (a1, . . . , an) ∈ RJ1 and

b̄ = (b1, . . . , bn) ∈ RJ2 , the tuple f(ā, b̄) = (f(a1, b1), . . . , f(an, bn)) is included in RJ1×J2 .

112

For example, consider the instances

J1 = {P (a, b), R(n1, a), R(n1, c)}

J2 = {P (a, c), R(n2, a), R(n2, c)},

where a, b, c are distinct constant values, and n1, n2 are distinct null values. Then J1 × J2

is the instance

J1 × J2 = {P (a,m1), R(m2, a), R(m2, c), R(m2,m3), R(m2,m4)},

where m1,m2,m3,m4 are distinct null values. In this case we have used a function f such

that f(b, c) = m1, f(n1, n2) = m2, f(a, c) = m3 and f(c, a) = m4. Notice that the product

of two instances could be the empty instance. For example, if we consider J1 = {P (a, b)}

and J2 = {R(a, b)}, then J1 × J2 is the empty instance.

If we consider a schema with a single binary relation and two instances J1 and J2

composed only by null values, the product J1 × J2 resembles exactly the graph-theoretical

Cartesian product (Hell & Nes̆etr̆il, 2004). As for graph products, the operation × between

instances satisfies several algebraic properties. To state them, let us introduce another use-

ful operation among instances. The null-disjoint union of instances J1 and J2, denoted by

J1⊎J2, is the instance constructed by first renaming the nulls in J1 and J2 such that they do

not share null values, and then taking the set-theoretical union of the instances. The next

lemma summarizes some of the algebraic properties of × and ⊎.

LEMMA 4.3.5 (c.f. Hell & Nes̆etr̆il, 2004). Let J1, J2, and J3 be instances composed

by constant and null values.

(1) There exists a homomorphism from J1 × J2 to J1, and a homomorphism from

J1 × J2 to J2.

(2) If there exists a homomorphism from J to J1 and a homomorphism from J to J2,

then there exists a homomorphism from J to J1 × J2.

(3) J1 × J1 is homomorphically equivalent to J1.

(4) J1 × J2 is homomorphically equivalent to J2 × J1.

113

(5) (J1 × J2) × J3 is homomorphically equivalent to J1 × (J2 × J3).

(6) J1 × (J2 ⊎ J3) is homomorphically equivalent to (J1 × J2) ⊎ (J1 × J3).

(7) (J1 × J2) ⊎ J3 is homomorphically equivalent to (J1 ⊎ J3) × (J2 ⊎ J3).

These properties follows almost directly form the definitions. Just as an example we

show property 7. By using property 6, we know that (J1⊎J3)×(J2⊎J3) is homomorphically

equivalent to ((J1 ⊎ J3) × J2) ⊎ ((J1 ⊎ J3) × J3) which is homomorphically equivalent to

(J1 × J2)⊎ (J1 × J3)⊎ (J2 × J3)⊎ J3. Then we have that the identity is a homomorphism

from (J1 × J2) ⊎ J3 to (J1 × J2) ⊎ (J1 × J3) ⊎ (J2 × J3) ⊎ J3. Now since there exists a

homomorphism from (J1 × J3) to J3 and from (J2 × J3) to J3, we obtain that there exists

a homomorphism from (J1 × J2) ⊎ (J1 × J3) ⊎ (J2 × J3) ⊎ J3 to (J1 × J2) ⊎ J3.

Let us highlight an important characteristic of the product of instances. Property 2

above says that, if we have any instance that has homomorphism to both J1 and J2, then it

must also has a homomorphism to J1 × J2. Intuitively, this property states that from all the

space of possible instances, J1 × J2 is the closest instance to both J1 and J2, taking homo-

morphisms as our proximity criterion. Since the answering process of conjunctive queries

can be characterized in terms of homomorphism, this property gives us the following intu-

ition. If some answer to a conjunctive query holds both in the evaluation of the query over

J1 and over J2, then it holds in the evaluation of the query over J1 × J2. And the opposite

also holds. That is, if some answer holds in the evaluation over J1 × J2, then we know that

it also holds in both the evaluation over J1 and over J2. We will make extensively use of

these properties.

The notion of product of instances can be also applied to conjunctive queries. Let Q1

and Q2 be two n-ary conjunctive queries, and assume that x̄ is the tuple of free variables

of Q1 and Q2. The product of Q1 and Q2, denoted by Q1 × Q2, is defined as a k-ary

conjunctive query (with k ≤ n) constructed as follows. Let f(·, ·) be a one-to-one mapping

from pairs of variables to variables such that: (1) f(x, x) = x for every variable x in

x̄, and (2) f(y, z) is a fresh variable (mentioned neither in Q1 nor in Q2) in any other

case. Then for every pair of atoms R(y1, . . . , ym) in Q1 and R(z1, . . . , zm) in Q2, the atom

114

R(f(y1, z1), . . . , f(ym, zm)) is included as a conjunct in the query Q1 × Q2. Furthermore,

the set of free variables of Q1 × Q2 is the set of variables from x̄ that are mentioned in

Q1 × Q2. For example, consider conjunctive queries: Q1(x1, x2) = P (x1, x2) ∧ R(x2, x1)

and Q2(x1, x2) = ∃y (P (x1, y) ∧ R(y, x2)). Then we have that:

(Q1 × Q2)(x1) = ∃z1∃z2 (P (x1, z1) ∧ R(z1, z2)).

In this case, we used a mapping f such that f(x1, x1) = x1, f(x2, y) = z1 and f(x1, x2) =

z2. As shown in the example, the free variables of Q1 × Q2 do not necessarily coincide

with the free variables of Q1 and Q2. Notice that the product of two queries may be empty.

For example, if Q1 = ∃y1∃y2P (y1, y2) and Q2 = ∃z1R(z1, z1), then Q1 × Q2 is empty.

We have all the necessary ingredients to construct a set of dependencies Σ⋆ from Σ′′′,

such that the dependencies in Σ⋆ do not have disjunctions in their conclusions, and such

that Σ⋆ defines a CQ-maximum recovery of M.

Procedure ELIMINATEDISJUNCTIONS(Σ′′′)

(1) Let Σ⋆ be empty.

(2) For every dependency in Σ′′′ of the form

ϕ(x̄) ∧ C(x̄) ∧ δ(x̄) → β1(x̄) ∨ · · · ∨ βk(x̄),

do the following. If β1(x̄) × · · · × βk(x̄) is not empty, then add the dependency

ϕ(x̄) ∧ C(x̄) ∧ δ(x̄) → β1(x̄) × · · · × βk(x̄)

to Σ⋆.

(3) Return Σ⋆. ¤

115

For example, assume that the following dependency is in Σ′′′:

A(x1, x2) ∧ C(x1) ∧ C(x2) ∧ x1 6= x2 →

[R(x1, x2) ∧ R(x1, x1)] ∨ [∃y1(P (x1, y1) ∧ R(x2, x2))]. (4.1)

Then we add to Σ⋆ the dependency

A(x1, x2) ∧ C(x1) ∧ C(x2) ∧ x1 6= x2 → ∃z1∃z2(R(z1, x2) ∧ R(z2, z2)) (4.2)

since ∃z1∃z2(R(z1, x2) ∧ R(z2, z2)) is the result of

[R(x1, x2) ∧ R(x1, x1)] × [∃y1(P (x1, y1) ∧ R(x2, x2))].

Notice that the obtained set of dependencies Σ⋆, is a set of CQC,6=-TO-CQ dependen-

cies. The following is the key property of Σ⋆.

LEMMA 4.3.6. Let M⋆ be the ts-mapping specified by the set Σ⋆ constructed in pro-

cedure ELIMINATEDISJUNCTIONS(Σ′′′). Then M⋆ is CQ-equivalent with M′′′.

PROOF. Before proving that M⋆ ≡CQ M′′′, let us give some intuition of why this

result holds. Let Γ1 be the set containing the dependency of equation (4.1) above, and

let Γ2 be the set containing the dependency of equation (4.2). Consider the instance

J = {A(a, b)}, with a, b distinct constant values. When we chase J with Γ1, we obtain the

set of instances V = {K1, K2} with K1 = {R(a, b), R(a, a)} and K2 = {P (a, n), R(b, b)},

where n is a null value. Recall that every solution K of J under Γ1 is such that, there exists

a homomorphism from K1 to K, or there exists a homomorphism from K2 to K. Intu-

itively, when considering the conjunctive information contained in the space of solutions

of J under Γ1, the things that we know for sure are, that the value b appears in the second

component of relation R, and that some element appears in a single tuple in both compo-

nents of R. If we now chase J with Γ2, we obtain the instance K = {R(n1, b), R(n2, n2)}

with n1, n2 null values, that carries exactly the conjunctive information contained in V . In

fact, it can be formally proved that the certain answers under Γ1 coincides with the certain

116

answers under Γ2 for every conjunctive query. In this example, it is clear that this last prop-

erty does not hold if we consider unions of conjunctive queries (consider for example the

query ∃uP (x1, u) ∨ ∃uR(x1, u)).

We show now that M⋆ ≡CQ M′′′. We prove first the following Let J be an instance

composed by null and constant values. Assume that V = {K1, . . . , Kℓ} is the result of

chasing J with Σ′′′, and K the result of chasing J with Σ⋆. Then we claim that K is

homomorphically equivalent to K1 × · · · × Kℓ.

To prove the above mentioned property we first reformulate the process of chasing with

Σ′′′ by using the operation ⊎ between instances. Recall that every dependency σ in Σ′′′ is

of the form

ϕ(x̄) ∧ C(x̄) ∧ δ(x̄) → β1(x̄) ∨ · · · ∨ βk(x̄).

Let J be an instance and consider the set AJ of all the pairs (ā, σ) such that: (1) ā is a

tuple of elements in dom(J), (2) σ ∈ Σ′′′ is a dependency of the above form, and (3)

J |= ϕ(ā) ∧ C(ā) ∧ δ(ā). The idea is that the set AJ contains all the possible assignments

to the premises of the dependencies in Σ′′′, such that the premises hold in J . Notice that, if

a pair (ā, σ) belongs to AJ , then since C(ā)∧δ(ā) holds, we have that ā is a tuple of distinct

constant values. We define now the notion of choice function. Consider a function f from

AJ to the natural numbers, such that for every (ā, σ) it holds that f(ā, σ) ∈ {1, . . . , k},

whenever σ has k disjuncts in its conclusion. Choice functions are used to select a particular

disjunct when we apply a dependency to instance J while computing a disjunctive chase.

Let FJ be the set of all choice functions with domain AJ . Notice that, since J is a finite

instance and Σ′′′ is a finite set of dependencies, AJ and FJ are finite sets. We need an

additional notion. Given a conjunctive query β(x̄) and an assignment ā for the variables x̄,

we denote by Iβ(ā) the instance constructed by considering the atoms of β(ā), where every

existentially quantified variable has been replaced by a fresh null value. We can formally

define now the process of chasing with Σ′′′ in terms of AJ and FJ .

117

For every f ∈ FJ we denote by Kf the instance:

⊎
{Iβi(ā) | (ā, σ) ∈ AJ , βi(x̄) is a disjunct in the conclusion of σ, and i = f(ā, σ)}.

It is clear that Kf as defined above, is a chase of J with Σ′′′. Then the (disjunctive) chase

of J with Σ′′′ is the set V = {Kf | f ∈ FJ}.

We now reformulate the chase of J with Σ⋆ by using the operations ⊎ and × between

instances. Let σ be a dependency in Σ⋆ of the form

ϕ(x̄) ∧ C(x̄) ∧ δ(x̄) → β1(x̄) × · · · × βk(x̄).

Notice that, if ā is a tuple in dom(J) such that J |= ϕ(ā) ∧ C(ā) ∧ δ(ā), then the atoms

of β1(ā) × · · · × βk(ā), where every existentially quantified variable has been replaced by

a fresh null value, are added to the chase of J with Σ⋆. That is, the instance Iβ1(ā)×···×βk(ā)

is added to the chase of J with Σ⋆. The crucial observation here is that, since ā is a tuple

of distinct constant values, then the instance Iβ1(ā)×···×βk(ā), equals the product of instances

Iβ1(ā) × · · · × Iβk(ā) (up-to isomorphic image of null values). It should be noticed that this

last property does not hold if ā is a tuple where some values are repeated. For example,

if β1(x1, x2) = R(x1, x1, x2) and β2(x1, x2) = R(x1, x2, x2) then β1(x1, x2) × β2(x1, x2)

is the query ∃u1R(x1, u1, x2). Now if we consider tuple ā = (a, a), then we have that

Iβ1(a,a)×β2(a,a) is the instance {R(a, n, a)} with n a null value, while Iβ1(a,a) × Iβ2(a,a) =

{R(a, a, a)}.

Consider A⋆
J the set of pairs defined as for Σ′′′ but considering the dependencies in Σ⋆.

We can now reformulate the chase of J with Σ⋆ in terms of A⋆
J , ⊎ and × as:

K =
⊎

{Iβ1(ā)×· · ·×Iβk(ā) | (ā, σ) ∈ A⋆
J and β1(x̄)×· · ·×βk(x̄) is the conclusion of σ}.

To conclude the proof of the claim, we must show that the product of the instances

in V = {Kf | f ∈ FJ}, is homomorphically equivalent to instance K above. Fix a pair

(ā′, σ′) in AJ and assume that β′
1(x̄

′) ∨ · · · ∨ β′
k′(x̄′) is the conclusion of σ′. Notice that, if

118

for a particular function f ∈ FJ it is the case that f(ā′, σ′) = i′, then we can write Kf as

Iβ′
i′

(ā′) ⊎
⊎

{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄) is a disjunct in σ, and i = f(ā, σ)}

Using this observation, it is straightforward to see that we can write the product of the

instances in V as

k′

×
i′=1

(
×
f∈FJ

(
Iβ′

i′
(ā′) ⊎

⊎
{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄) is a disjunct in σ, and i = f(ā, σ)}

))
.

By applying property 7 of Lemma 4.3.5, we know that the above instance is homomorphi-

cally equivalent to

k′

×
i′=1

(
Iβ′

i′
(ā′) ⊎ ×

f∈FJ(⊎
{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄) is a disjunct in σ, and i = f(ā, σ)}

))
,

and by applying property 7 again, we obtain that this last instance is homomorphically

equivalent to

(
Iβ′

1(ā′) × · · · × Iβ′
k′

(ā′)

)
⊎ ×

f∈FJ(⊎
{Iβi(ā) | (ā, σ) ∈ AJ r {(ā′, σ′)}, βi(x̄) is a disjunct in σ, and i = f(ā, σ)}

))
.

If we continue separating one by one the elements in AJ , we finally obtain that the above

instance is homomorphically equivalent to the instance

⊎
{Iβ1(ā) × · · · × Iβk(ā) | (ā, σ) ∈ AJ and β1(x̄) ∨ · · · ∨ βk(x̄) is the conclusion of σ}.

It is straightforward to see that this last instance is homomorphically equivalent to K. Just

notice that, if for a dependency σ ∈ Σ′′′ of the form ϕ(x̄) ∧ C(x̄) ∧ δ(x̄) → β1(x̄) ∨ · · · ∨

βk(x̄), we do not include a corresponding dependency in Σ⋆, then β1(x̄) × · · · × βk(x̄)

119

is empty, which implies that Iβ1(ā) × · · · × Iβk(ā) is the empty instance for every tuple ā

of distinct constant values. Thus we have shown that K homomorphically equivalent to

K1 × · · · × Kℓ with V = {K1, . . . , Kℓ} the result of chasing J with Σ′′′. This completes

the proof of the claim.

We are ready now to prove that M⋆ ≡CQ M′′′. Let J be a target instance (composed by

constant and null values), and V = {K1, . . . , Kℓ} the result of chasing J with Σ′′′, and K

the result of chasing J with Σ⋆. Notice that every dependency σ in Σ′′′ is such that, for every

variable x that occurs simultaneously in the premise and the conclusion of σ, the atom C(x)

also occurs in the premise of σ. From this last fact and the properties of V , it follows directly

that certainM′′′(Q, J) = Q(K1)↓∩· · ·∩Q(Kℓ)↓, for every conjunctive query Q. Similarly,

for M⋆ we have that, for every conjunctive query it holds that certainM⋆(Q, J) = Q(K)↓.

Then we only have to prove that Q(K)↓ = Q(K1)↓ ∩ · · · ∩ Q(Kℓ)↓, for every conjunctive

query Q. Let Q be an n-ary conjunctive query with free variables x̄. We first show that

Q(K)↓ ⊆ Q(K1)↓ ∩ · · · ∩ Q(Kℓ)↓. Let ā be an n-ary tuple such that ā ∈ Q(K)↓. Since

K is homomorphically equivalent to the product K1 × . . . × Kℓ we know that there exists

a homomorphism from K to every Ki with 1 ≤ i ≤ ℓ, and then ā ∈ Q(Ki)↓ for every

1 ≤ i ≤ ℓ. Now, to show that Q(K1)↓∩· · ·∩Q(Kℓ)↓ ⊆ Q(K)↓, assume that ā ∈ Q(K1)↓∩

· · ·∩Q(Kℓ)↓. Then we know that, for every Ki with 1 ≤ i ≤ ℓ there exists a homomorphism

h from the atoms in Q to Ki, such that h(x̄) = ā. Then by the properties of the product

of instances (property 2 of Lemma 4.3.5), we know that there exists a homomorphism h′

from the atoms in Q to K, such that h(x̄) = ā, and then ā ∈ Q(K). We have shown

that Q(K)↓ = Q(K1)↓ ∩ · · · ∩ Q(Kℓ)↓ for every conjunctive query Q, which implies that

M⋆ ≡CQ M′′′. This concludes the proof of the lemma. ¤

Putting it all togehter

The following is the complete algorithm that uses all the previous procedures to com-

pute CQ-maximum recoveries of st-mappings specified by CQC,6=-TO-CQ.

120

Algorithm CQ-MAXIMUMRECOVERY(M)

Input: An st-mapping M = (S,T, Σ), where Σ is a set of CQC,6=-TO-CQ dependencies.

Output: A ts-mapping M⋆ = (T,S, Σ⋆), where Σ⋆ is a set of CQC,6=-TO-CQ dependen-

cies such that M⋆ is a CQ-maximum recovery of M.

(1) Let Σ̄ the set of dependencies obtained from Σ by dropping all the atoms of the

form C(x) that appear in the premises of Σ, and let M̄ = (S,T, Σ̄).

(2) Let M′ = (T,S, Σ′) be the output of algorithm MAXIMUMRECOVERY(M̄).

(3) Let Σ′′ be the output of procedure ELIMINATEEQINEQ(Σ′).

(4) Let Σ′′′ be the set obtained from Σ′′ by dropping all the inequalities that appear

in the conclusion of the dependencies in Σ′′

(5) Let Σ⋆ be the output of procedure ELIMINATEDISJUNCTIONS(Σ′′′).

(6) Return M⋆ = (T,S, Σ⋆).

¤

THEOREM 4.3.7. Let M be an st-mapping specified by a set of CQC,6=-TO-CQ de-

pendencies. Then algorithm CQ-MAXIMUMRECOVERY(M) computes a CQ-maximum

recovery of M specified by set of CQC,6=-TO-CQ dependencies.

PROOF. The proof follows from Lemmas 4.3.3, 4.3.4, and 4.3.6. From Lemma 4.3.3

we know that the mapping M′′ specified by the set Σ′′ computed in Step 3, is a maximum

recovery of M. Moreover, we know that Σ′′ is a set of CQC,6=-TO-UCQ 6= dependencies.

Now, from Lemma 4.3.4 we know that the mapping M′′′ specified by the set Σ′′′ com-

puted in Step 4, is UCQ-equivalent with M′′. In this case we have that Σ′′′ is a set of

CQC,6=-TO-UCQ dependencies. By Lemma 4.3.6 we have that the mapping M⋆ specified

by the set Σ⋆ computed in Step 5, is CQ-equivalent with M′′′, and moreover, Σ⋆ is a set of

CQC,6=-TO-CQ dependencies. Thus, since M⋆ is CQ-equivalent with M′′′ which is UCQ-

equivalent with M′′, we obtain that M⋆ is CQ-equivalent with M′′. Finally, since M′′ is a

maximum recovery of M, from Proposition 4.2.6 we conclude that M⋆ is a CQ-maximum

121

recovery of M. Thus we have shown that the output of CQ-MAXIMUMRECOVERY(M)

is a CQ-maximum recovery of M specified by a set of CQC,6=-TO-CQ dependencies. ¤

Theorem 4.3.1 follows directly from Theorem 4.3.7.

4.3.2. CQC,6=-TO-CQ is the right language

Most of the dependencies considered in the data exchange literature (Fagin, Kolaitis,

Miller, & Popa, 2005; Fagin, 2007; Fagin, Kolaitis, Popa, & Tan, 2008; Arenas et al., 2008)

are L1-TO-L2 dependencies, where L1 and L2 are fragments of UCQC,6=. In this section,

we show that among all of them, CQC,6=-TO-CQ is the right language for the notion of

CQ-maximum recovery; if one adds or removes features from this class of dependencies,

then closure under CQ-maximum recovery does not longer hold. More precisely, we start

by showing that both inequalities and predicate C(·) are necessary for the closure property

of Theorem 4.3.1.

THEOREM 4.3.8.

(a) There exists an st-mapping specified by a set of st-tgds that has no CQ-maximum

recovery specified by a set of CQC-TO-CQ dependencies.

(b) There exists an st-mapping specified by a set of st-tgds that has no CQ-maximum

recovery specified by a set of CQ 6=-TO-CQ dependencies.

PROOF. (a) Let S = {A(·, ·), B(·, ·)}, T = {P (·, ·)} and M = (S,T, Σ), where Σ is

the following set of st-tgds:

Σ = {A(x, y) → P (x, y), B(x, x) → P (x, x)}.

Next we show that M does not have a CQ-maximum recovery specified by a set of

CQC-TO-CQ dependencies.

For the sake of contradiction, assume that there exists a mapping M′ specified by a set

Σ′ of CQC-TO-CQ dependencies such that M′ is a CQ-maximum recovery of M. Next

we show that this leads to a contradiction by considering two cases.

122

(I) Assume that Σ′ is empty. Then, for every instance J of T and K of S, we have

that (J,K) |= Σ′. Thus, by the definition of Σ, we conclude that for every

pair of source instances I and I ′, it holds that (I, I ′) ∈ M ◦ M′. Let M′′

be a ts-mapping specified by dependency P (x, y) ∧ x 6= y → A(x, y). It is

straightforward to prove that M′′ is a recovery of M, which implies that M′′ is

a CQ-recovery of M. Thus, given that we assume that M′ is a CQ-maximum

recovery of M, we have that M′′ ¹CQ
M M′. But for a source instance I such that

AI = BI = {(a, b)}, where a 6= b, and Boolean query Q = ∃x∃y A(x, y), we

have that Q(I) = true = certainM◦M′′(Q, I) but certainM◦M′(Q, I) = false, a

contradiction.

(II) Assume that Σ′ is nonempty, and let I1 and I2 be instances of S such that:

AI1 = {(a, a)} AI2 = ∅

BI1 = ∅ BI2 = {(a, a)}

Let J be the instance such that P J = {(a, a)}. Notice that J is the canonical uni-

versal solution for both I1 and I2 under Σ. Assume that K is the result of chasing

J with Σ′. Notice that K could not be a valid source instance (it may contain

null values). Nevertheless, since J is composed only by constant values, and by

using the properties of the chase (Fagin, Kolaitis, Miller, & Popa, 2005; Fagin,

Kolaitis, Popa, & Tan, 2005, 2008), we know that for every Q that is a union of

conjunctive queries, it holds that certainM◦M′(Q, I1) = certainM◦M′(Q, I2) =

Q(K)↓. We use this last fact and the fact that Σ′ is nonempty, to derive a contra-

diction.

Given that Σ′ is nonempty, there exists a CQC-TO-CQ dependency:

ϕ(x1, . . . xm) → ∃y1 · · · ∃yn ψ(x1, . . . , xm, y1, . . . , yn)

that belongs to Σ′. Thus, we have that (J,K) satisfies this constraint. But this

implies that K is nonempty since P J = {(a, a)} and J |= ϕ(a, . . . , a) (since a

is a constant and ϕ is a query in CQC over T).

123

Given that K is nonempty, we have that AK 6= ∅ or BK 6= ∅. If AK 6= ∅, then

let QA be Boolean query ∃x∃yA(x, y). We know that certainM◦M′(QA, I2) =

QA(K). Thus, given that AK 6= ∅, we conclude that certainM◦M′(QA, I2) =

true. But this leads to a contradiction since we assume that M′ is a CQ-recovery

of M and QA(I2) = false. If BK 6= ∅, then we obtain a similar contradiction

by considering Boolean query QB = ∃x∃yB(x, y) and source instance I1. This

concludes the proof of the first part of the theorem.

(b) Let S = {A(·), B(·)}, T = {P (·)} and M = (S,T, Σ), where Σ is the following set

of st-tgds:

Σ = {A(x) → ∃yP (y), B(x) → P (x)}.

Next we show that M does not have a CQ-maximum recovery specified by a set of

CQ 6=-TO-CQ dependencies. For the sake of contradiction, assume that M′ is a mapping

specified by a set Σ′ of CQ 6=-TO-CQ dependencies such that M′ is a CQ-maximum re-

covery of M.

Let M⋆ be a mapping (T,S, Σ⋆), where Σ⋆ is the set of ts-tgds {P (x) ∧ C(x) →

B(x)}. Next we show that M⋆ is a CQ-recovery of M. Let I be an instance of S and Q a

conjunctive query over S, and assume that J = chaseΣ⋆(chaseΣ(I)). It is straightforward

to prove that AJ = ∅ and BJ = BI . Thus, we have that J ⊆ I , which implies that Q(J) ⊆

Q(I). Given that J ∈ SolM◦M⋆(I) in this case, we conclude that certainM◦M⋆(Q, I) ⊆

Q(I), which implies that M⋆ is a CQ-recovery of M.

Let I1 and I2 be instances of S such that I1 = {A(a)} and I2 = {B(a)}, where a

is an arbitrary element of C, and QB be Boolean query ∃xB(x). It is straightforward to

prove that certainM◦M⋆(QB, I2) = true. Thus, we have that certainM◦M′(QB, I2) = true

since M⋆ is a CQ-recovery of M and M′ is a CQ-maximum recovery of M. Next we

use this fact to prove that certainM◦M′(QB, I1) = true. Let J ∈ SolM◦M′(I1). Then there

exists an instance K of T such that (I1, K) |= Σ and (K, J) |= Σ′. Let f : dom(K) ∪

dom(J) → C be a one-to-one mapping such that f(u) = a for some u ∈ dom(K). We

124

note that such a function exists since K is not empty. By the definition of Σ, we have

that (I2, f(K)) |= Σ. Furthermore, given that Σ′ is a set of CQ 6=-TO-CQ dependencies,

we have that (f(K), f(J)) |= Σ′. Thus, we have that (I2, f(J)) ∈ M ◦M′, from which

we conclude that f(J) |= ∃xB(x) (since certainM◦M′(QB, I2) = true). Therefore, given

that J and f(J) are isomorphic instances (not considering predicate C), we have that J |=

∃xB(x). We conclude that for every J ∈ SolM◦M′(I1), it holds that J |= ∃xB(x). Thus,

we have that certainM◦M′(QB, I1) = true. But this leads to a contradiction since QB(I1) =

false and M′ is assumed to be a CQ-maximum recovery of M. This concludes the proof

of the theorem. ¤

We have shown that both inequalities and predicate C(·) are necessary for the closure

property of Theorem 4.3.1. A natural question is whether a similar closure property can be

obtained if one adds extra features to CQC,6=-TO-CQ. For example, it could be the case that

CQC,6=-TO-CQ 6= is closed under CQ-maximum recovery. The next proposition shows that

if one includes disjunctions, inequalities or predicate C in the conclusions of the depen-

dencies, then mappings do not necessarily admit CQ-maximum recoveries, even if these

features are added to st-tgds. Before stating the result we provide a necessary condition

that can be used to show that some mappings do not admit C-maximum recoveries. Recall

that in Section 4.1.1 we defined given a mapping M and an instance I , the set SubM(I)

as the set of instances K such that SolM(K) ⊆ SolM(I). Now given a set of instances S,

define SubM(S) as

SubM(S) =
⋃

I∈S

SubM(I).

That is, SubM(S) is the set of instances K such that there exists I ∈ S for which SolM(K) ⊆

SolM(I). Moreover, similarly as we defined the set InfM(Q, I), we define the set of tuples

InfM(Q,S) with Q a query and S a set of instances as:

InfM(Q,S) =
⋂

{Q(K) | K ∈ SubM(S)}.

125

PROPOSITION 4.3.9. If M has a C-maximum recovery, then for every I ∈ dom(M),

Q ∈ C and S ⊆ dom(M) such that SolM(I) ⊆
⋃

I′∈S SolM(I ′), it holds that:

InfM(Q,S) ⊆ InfM(Q, I).

PROOF. Let M be a mapping from a schema R1 to a schema R2. For the sake of

contradiction, assume that M has a C-maximum recovery and there exists an instance

I ∈ dom(M), a query Q ∈ C and a subset S ⊆ dom(M) such that, SolM(I) ⊆
⋃

I′∈S SolM(I ′) but

InfM(Q,S) 6⊆ InfM(Q, I).

Thus, there exists a tuple t̄ ∈ InfM(Q,S) such that t̄ /∈ InfM(Q, I). Since M has a

C-maximum recovery, we know by Theorem 4.1.9 that MC is a C-recovery of M, which

implies that SolM◦MC(I) 6= ∅. Let I1 ∈ SolM◦MC(I). Then there exists J ∈ Inst(R2)

such that (I, J) ∈ M and (J, I1) ∈ MC . By the definition of MC , we have that J is a

C-witness of I1 under M. Given that SolM(I) ⊆
⋃

I′∈S SolM(I ′) and J ∈ SolM(I), we

know that there exists an instance I2 ∈ S such that J ∈ SolM(I2). Therefore, given that J

is a C-witness of I1 under M and J ∈ SolM(I2), it holds that:

InfM(Q, I2) ⊆ Q(I1).

But given that I2 ∈ S, we have that:

InfM(Q,S) ⊆ InfM(Q, I2) ⊆ Q(I1).

Thus, given that t̄ ∈ InfM(Q,S), we conclude that t̄ ∈ Q(I1). We have shown that

for every I1 ∈ SolM◦MC(I), it holds that t̄ ∈ Q(I1). Therefore, we have that t̄ ∈

certainM◦MC(Q, I). But we know that t̄ /∈ InfM(Q, I), from which one concludes that:

certainM◦MC(Q, I) 6⊆ InfM(Q, I).

Hence, we conclude by Lemma 4.1.4 that MC is not a C-recovery of M, which contradicts

out initial assumption. This concludes the proof of the proposition. ¤

126

We are now ready to prove that if one includes disjunctions, inequalities or predicate

C in the conclusions of the dependencies, then mappings do not necessarily admit CQ-

maximum recoveries

PROPOSITION 4.3.10. There exist st-mappings specified by sets of (1) CQ-TO-UCQ

dependencies, (2) CQ-TO-CQ 6= dependencies, (3) CQ-TO-CQC dependencies, that have

no CQ-maximum recoveries.

PROOF. In order to prove (1), let S = {A(·), B(·), C1(·), C2(·)}, T = {R1(·), R2(·)},

and M = (S,T, Σ) an st-mapping specified by the following set Σ of CQ-TO-UCQ st-

dependencies:

B(x) ∧ C1(x) → R1(x),

B(x) ∧ C2(x) → R2(x),

A(x) → R1(x) ∨ R2(x).

Let I1 = {B(a), C1(a)}, I2 = {B(a), C2(a)}, and I3 = {A(a)} be instances of S, where a

is an arbitrary element of C. By the definition of Σ, it is clear that SolM(I3) ⊆ SolM(I1)∪

SolM(I2). Furthermore, we claim that for each instance I ∈ {I1, I2}, if I ′ ∈ SubM(I),

then it holds that I ⊆ I ′. Without loss of generality, we prove this claim for the instance

I1. By contradiction, assume that there exists an instance I ′ ∈ SubM(I1) such that I1 6⊆ I ′.

It is easy to see that for every J ∈ SolM(I1), it holds that a ∈ RJ
1 . Thus, given that

I ′ ∈ SubM(I1), we have that a ∈ RJ
1 for every J ∈ SolM(I ′). Notice that the space

of solutions for a source instance under M is always nonempty, and assume that J ∈

SolM(I ′). Then define an instance J ′ of T as RJ ′

1 = RJ
1 r {a} and RJ ′

2 = RJ
2 ∪ {a}.

By the definition of J ′ and given that I1 6⊆ I ′, we have that (I ′, J ′) |= Σ. Thus, we have

shown that J ′ ∈ SolM(I ′). But this leads to a contradiction since for every J ∈ SolM(I ′),

it holds that a ∈ RJ
1 . We conclude that I1 ⊆ I ′ for every instance I ′ ∈ SubM(I1), and

we have proved our claim. Now, let Q be conjunctive query B(x). Then we have that

InfM(Q, I1) = InfM(Q, I2) = {a}, but InfM(Q, I3) = ∅ since BI3 = ∅, which implies

127

that:

InfM(Q, {I1, I2}) 6⊆ InfM(Q, I3).

Thus, we conclude from Proposition 4.3.9 that M does not have a CQ-maximum recovery

since SolM(I3) ⊆ SolM(I1) ∪ SolM(I2).

Now to prove (2), let S = {A(·), B(·), C1(·), C2(·)}, T = {R(·, ·)}, and M =

(S,T, Σ) an st-mapping specified by the following set Σ of CQ-TO-CQ 6= st-dependencies:

B(x) ∧ C1(x) → R(x, x),

B(x) ∧ C2(x) → ∃y(R(x, y) ∧ x 6= y),

A(x) → ∃yR(x, y).

Let I1 = {B(a), C1(a)}, I2 = {B(a), C2(a)}, and I3 = {A(a)} be instances of S, where a

is an arbitrary element of C. By the definition of Σ, it is clear that SolM(I3) ⊆ SolM(I1)∪

SolM(I2). Furthermore, we claim that for each instance I ∈ {I1, I2}, if I ′ ∈ SubM(I),

then it holds that I ⊆ I ′. First, we prove this claim for the instance I1. By contradiction,

assume that there exists an instance I ′ ∈ SubM(I1) such that I1 6⊆ I ′. It is easy to see

that for every J ∈ SolM(I1), it holds that (a, a) ∈ RJ . Thus, given that I ′ ∈ SubM(I1),

we have that (a, a) ∈ RJ for every J ∈ SolM(I ′). Notice that the space of solutions for a

source instance under M is always nonempty, and assume that J ∈ SolM(I ′). Then define

an instance J ′ as RJ ′
= RJ ∪ {(a, b)} r {(a, a)}, where b is an arbitrary element of D

such that a 6= b. By the definition of J ′ and given that I1 6⊆ I ′, we have that (I ′, J ′) |= Σ.

Thus, we have shown that J ′ ∈ SolM(I ′). But this leads to a contradiction since for every

J ∈ SolM(I ′), it holds that (a, a) ∈ RJ . We conclude that I1 ⊆ I ′ for every instance

I ′ ∈ SubM(I1).

Second, we prove the claim for the instance I2, that is, we prove that I2 ⊆ I ′ for every

I ′ ∈ SubM(I2). By contradiction, assume that there exists an instance I ′ ∈ SubM(I2)

such that I2 6⊆ I ′. It is easy to see that for every J ∈ SolM(I2), it holds that (a, b) ∈ RJ

for some b 6= a. Thus, given that I ′ ∈ SubM(I2), we have that for every J ∈ SolM(I ′),

128

(a, b) ∈ RJ for some b 6= a. Notice that the space of solutions for a source instance under

M is always nonempty, and assume that J ∈ SolM(I ′). Then define an instance J ′ as

RJ ′
= (RJ ∪ {(a, a)}) r {(a, b) | b ∈ D and b 6= a}. By the definition of J ′ and given that

I2 6⊆ I ′, we have that (I ′, J ′) |= Σ. Thus, we have shown that J ′ ∈ SolM(I ′). But this leads

to a contradiction since for every J ∈ SolM(I ′), it holds that (a, b) ∈ RJ for some b 6= a.

We conclude that I2 ⊆ I ′ for every instance I ′ ∈ SubM(I2), and we have proved our claim.

Now, let Q be conjunctive query B(x). Then we have that InfM(Q, I1) = InfM(Q, I2) =

{a}, but InfM(Q, I3) = ∅ since BI3 = ∅, which implies that:

InfM(Q, {I1, I2}) 6⊆ InfM(Q, I3).

Therefore, we conclude from Proposition 4.3.9 that M does not have a CQ-maximum

recovery since SolM(I3) ⊆ SolM(I1) ∪ SolM(I2).

Finally, for case (3), let S = {A(·), B(·)}, T = {R(·)}, and M = (S,T, Σ) an

st-mapping specified by the following set Σ of CQ-TO-CQC st-dependencies:

A(x) → R(x),

B(x) → ∃y (R(y) ∧ C(y)).

Let I = {B(a)} be an instance of S, where a is an arbitrary element of C, and

S = {I ′ ∈ Inst(S) | there exists b ∈ C such that AI′ = {b} and BI′ = ∅}.

By the definition of Σ, it is clear that SolM(I) ⊆
⋃

I′∈S SolM(I ′). Furthermore, we claim

that if I⋆ ∈ SubM(S), then it holds that AI⋆

6= ∅. Assume, for the sake of contradiction,

that there exist instances I ′, I⋆ of S such that I ′ ∈ S, I⋆ ∈ SubM(I ′) and AI⋆

= ∅. By the

definition of S, we have that there exists a constant b such that AI′ = {b}. Assume that J

is an instance of T such that RJ = {c}, where c is a constant such that c 6= b. Then we

have that J ∈ SolM(I⋆) since AI⋆

= ∅, and that J 6∈ SolM(I ′) since b 6∈ RJ . Thus, we

obtain a contradiction with the fact that I⋆ ∈ SubM(I ′).

129

Now, let Q be conjunctive query ∃xA(x). Then given that for every I ′ ∈ SubM(S), it

holds that AI′ 6= ∅, we conclude that InfM(Q,S) = true. Thus, given that InfM(Q, I) = ∅

since AI = ∅ and I ∈ SubM(I), we have that:

InfM(Q,S) 6⊆ InfM(Q, I).

Thus, we conclude from Proposition 4.3.9 that M does not have a CQ-maximum recovery

since SolM(I) ⊆
⋃

I′∈S SolM(I ′). This concludes the proof of the proposition. ¤

4.3.3. CQ-maximum recovery is the right notion

In this section, we consider several alternatives to CQ for the semantics of inverse oper-

ators, and show that none of them is appropriate to obtain a closure property as in The-

orem 4.3.1. We start with the notion of UCQ-maximum recovery. The following result

shows that to express the UCQ-maximum recovery of a mapping given by a set of st-tgds,

one needs dependencies with disjunctions in their conclusions (even if the full power of

FO is allowed in the premises of the dependencies).

PROPOSITION 4.3.11. There exists an st-mapping M specified by a set of st-tgds such

that:

(a) M has a UCQ-maximum recovery specified by a set of CQ-TO-UCQ depen-

dencies.

(b) M does not have a UCQ-maximum recovery specified by a set of FOC-TO-CQ

dependencies.

PROOF. Let S = {A(·), B(·)}, T = {T (·)} and M = (S,T, Σ), where Σ is the

following set of st-tgds:

Σ = {A(x) → T (x), B(x) → T (x)}.

130

We first prove (a). Let M⋆ = (T,S, Σ⋆) be a ts-mapping specified by the following

set of CQ-TO-UCQ dependencies:

Σ⋆ = {T (x) → A(x) ∨ B(x)}.

By using the tools in Section 3.1.1, it is easy to show that M⋆ is a maximum recovery of

M, which implies that M⋆ is a UCQ-maximum recovery of M.

We now prove (b). For the sake of contradiction, assume that there exists a mapping

M′ specified by a set Σ′ of FOC-TO-CQ dependencies such that M′ is a UCQ-maximum

recovery of M. Moreover, let I1 and I2 be instances of S such that:

AI1 = {a} AI2 = ∅

BI1 = ∅ BI2 = {a}

Let J be the instance such that T J = {a}. Notice that J is the canonical universal solution

for both I1 and I2 under Σ. Assume that K is the result of chasing J with Σ′. Notice that

K could not be a valid source instance (it may contain null values). Nevertheless, since

J is composed only by constant values, and by using the properties of the chase (Fagin,

Kolaitis, Miller, & Popa, 2005; Fagin, Kolaitis, Popa, & Tan, 2005, 2008), we know that

for every Q that is a union of conjunctive queries, it holds that certainM◦M′(Q, I1) =

certainM◦M′(Q, I2) = Q(K)↓. We use this last fact to derive a contradiction.

We first show that, if we assume that K is not the empty instance we obtain a con-

tradiction. Then assume that K is not empty. If AK 6= ∅, then let QA be Boolean

query ∃xA(x). Thus, given that AK 6= ∅, we conclude that certainM◦M′(QA, I2) = true.

But this leads to a contradiction since we assume that M′ is a UCQ-recovery of M and

QA(I2) = false. If BK 6= ∅, then we obtain a similar contradiction by considering Boolean

query QB = ∃yB(y) and source instance I1.

Assume now that K is the empty instance. Let Q be the Boolean query ∃xA(x) ∨

∃yB(y). Then we have that Q(K) = false, which implies that certainM◦M′(Q, I1) = false.

But the mapping M⋆ defined in (a) is a UCQ-recovery of M and certainM◦M⋆(Q, I1) =

true = Q(I1), which implies that M⋆ 6¹UCQ
M M′. This contradicts our assumption that

131

M′ is a UCQ-maximum recovery of M. In either case we obtain a contradiction. This

concludes the proof of the proposition. ¤

Proposition 4.3.10 shows that there exist mappings specified by CQ-TO-UCQ depen-

dencies that have no CQ-maximum recoveries and, thus, have no UCQ-maximum recov-

eries. Thus, this proposition together with Proposition 4.3.11 show that if we use UCQ-

maximum recovery as our notion of inverse, then we are doomed to failure.

Now we consider the notion of CQ 6=-maximum recovery. By Theorem 4.3.8, we have

that inequalities in the premises of dependencies are needed to express CQ-maximum re-

coveries of mappings given by st-tgds. Thus, if a mapping language contains the class of

st-tgds and is closed under CQ 6=-maximum recovery, then it has to include inequalities in

the premises of dependencies. Our next result shows that in order to express the CQ 6=-

maximum recovery of a mapping given by a set of CQ 6=-TO-CQ dependencies, one needs

dependencies with inequalities in their conclusions (even if the full power of FO is allowed

in the premises of the dependencies).

PROPOSITION 4.3.12. There exists an st-mapping M specified by a set of CQ 6=-TO-CQ

dependencies such that:

(a) M has a CQ 6=-maximum recovery specified by a set of CQ-TO-CQ 6= dependen-

cies.

(b) M does not have a CQ 6=-maximum recovery specified by a set of FOC-TO-CQ

dependencies.

PROOF. Let S = {P (·, ·)}, T = {T (·)} and M = (S,T, Σ), where Σ is the following

set of CQ 6=-TO-CQ dependencies:

Σ = {P (x, y) ∧ x 6= y → T (x)}.

132

In order to prove part (a), let M⋆ = (T,S, Σ⋆) be a ts-mapping specified by the

following set of CQ-TO-CQ 6= dependencies:

Σ⋆ = {T (x) → ∃y (P (x, y) ∧ x 6= y)}.

By using the tools in Section 3.1.1 it is easy to prove that M⋆ is a maximum recovery of

M, which implies that M⋆ is a CQ 6=-maximum recovery of M.

We now prove (b). For the sake of contradiction, assume that there exists a mapping

M′ specified by a set of FOC-TO-CQ dependencies such that M′ is a CQ 6=-maximum

recovery of M. Moreover, let I be an instance of S such that P I = {(a, b)}, where a 6= b,

and J a target instance such that T J = {a}. Then we have that (I, J) |= Σ, and then

(I, J) ∈ M. Let K be the chase of J with Σ′. Thus, given that dom(J) = {a}, we have

that

dom(K) ∩ C ⊆ {a}. (4.3)

Then since J is composed only by constant values and Σ′ is a set of FOC-TO-CQ, we

have that every instance K ′ that is a homomorphic image of K, is such that (J,K ′) |= Σ′.

Consider the homomorphism h that maps every null in K into a. Notice that h(K) is

composed only by constant values and that (J, h(K)) |= Σ′, then (J, h(K)) ∈ M′. Thus,

we have that (I, h(K)) ∈ M◦M′. From (4.3), we have that P h(K) ⊆ {(a, a)} and, hence,

h(K) 6|= ∃x∃y (P (x, y) ∧ x 6= y). We conclude that:

certainM◦M′(∃x∃y (P (x, y) ∧ x 6= y), I) = false.

It is straightforward to prove that certainM◦M⋆(∃x∃y (P (x, y) ∧ x 6= y), I) = true, where

M⋆ is the ts-mapping defined in (a). Therefore, we have that M⋆ 6¹CQ 6=

M M′, which

contradicts the fact that M′ is a CQ 6=-maximum recovery of M since M⋆ is a CQ 6=-

recovery of M. This concludes the proof of the proposition. ¤

133

Proposition 4.3.10 shows that there exist mappings specified by CQ-TO-CQ 6= depen-

dencies that have no CQ-maximum recoveries and, thus, have no CQ 6=-maximum recov-

eries. Thus, this proposition together with Proposition 4.3.12 shows that, if we use CQ 6=-

maximum recovery as our notion of inverse, then we cannot hope for a closure result as in

Theorem 4.3.1.

We conclude this section by pointing out that the negative results for UCQ- and CQ 6=-

maximum recoveries imply a negative result for the notion of C-maximum recovery, for

every class C of queries containing UCQ or CQ 6=.

134

5. ON INVERTING AND COMPOSING SCHEMA MAPPINGS

In this chapter, we explore the relationship between good mapping languages for inver-

sion and composition together. Fagin, Kolaitis, Popa, and Tan (2005) show that an exten-

sion of st-tgds with second-order existential quantification, the language of SO-tgds (Fagin,

Kolaitis, Popa, & Tan, 2005), is closed under composition, and prove several results that

show that the language of SO-tgds is the right language to compose mappings. However,

none of the notions of inverse proposed for schema mappings (Fagin, 2007; Fagin, Ko-

laitis, Popa, & Tan, 2008) have been considered for the case of SO-tgds. In this chapter we

show that, unfortunately, SO-tgds are not appropriate for our study; we show that there ex-

ist mappings specified by SO-tgds that have no CQ-maximum recoveries (and, thus, have

no Fagin-inverse, quasi-inverse and maximum recovery). Thus, although the language of

SO-tgds is the right language for composition, it has a bad behavior regarding inverting

mappings.

To overcome this limitation, we borrow the notion of composition w.r.t. conjunctive

queries (CQ-composition), introduced by Madhavan and Halevy (2003). Then we propose

a language called plain SO-tgds such that: the language of plain SO-tgds is closed under

CQ-composition, and every mapping given by plain SO-tgds has a maximum recovery.

To prove this last property we provide a polynomial-time algorithm that given a mapping

M specified by a set of plain SO-tgds, returns a maximum recovery of M specified in

a language that extends the class of plain SO-tgds. This result is interesting in its own

since our algorithm is the first polynomial-time algorithm to compute inverses of schema

mappings.

Before giving the technical results of this chapter, we need to make an observation

about the composition of st-tgds. Assume that R1, R2 and R3 are relational schemas

with no symbols in common, and let M12 = (R1,R2, Σ12) and M23 = (R2,R3, Σ23),

where Σ12 and Σ23 are set of st-tgds. As we mentioned in Section 2.1, the composition

of M12 and M23 is simply defined as the mapping that contains all the pairs (I1, I3) ∈

Inst(R1) × Inst(R3), for which there exists an instance I2 of R2 such that (I1, I2) ∈ M12

135

and (I2, I3) ∈ M23. But notice that there is a mismatch in the way that schema R2 is

used in this composition; R2 is a target schema in M12 and a source schema in M23. In

particular, instance I2 above may include null values if R2 is used as a target schema, but

it can only contain constants if R2 is considered to be a source schema. To overcome this

issue, in the composition of M12 and M23, we allow instances of R2 to contain null values

and, thus, we always use R2 as a target schema.

5.1. The Language of Plain SO-tgds

Our language is based on the notion of second-order tgds proposed by Fagin, Kolaitis,

Popa, and Tan (2005), so we start by introducing this language. Given schemas R1 and R2

with no relation symbols in common, a second-order tuple-generating dependency from

R1 to R2 (SO-tgd) is a formula of the form

∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn)), (5.1)

where

(1) each member of f̄ is a function symbol,

(2) each formula ϕi (1 ≤ i ≤ n) is a conjunction of relational atoms of the form

S(y1, . . . , yk) and equality atoms of the form t = t′, where S is a k-ary relation

symbol of R1 and y1, . . ., yk are (not necessarily distinct) variables in x̄i, and t,

t′ are terms built from x̄i and f̄ ,

(3) each formula ψi (1 ≤ i ≤ n) is a conjunction of relational atomic formulas over

R2 mentioning terms built from x̄i and f̄ , and

(4) each variable in x̄i (1 ≤ i ≤ n) appears in some relational atom of ϕi.

The semantics of SO-tgds is defined as follows. Let λ be an SO-tgd of the form (5.1)

from R1 to R2, and assume that I is an instance of R1 and J and instance of R2. An

interpretation of a k-ary function f in (I, J) is a function that maps every tuple (a1, . . . , ak)

of elements in I to an element in J . Then a pair (I, J) of instances satisfies λ if there exists

an interpretation in (I, J) of each function in f̄ such that (I, J) satisfies each dependency

136

∀x̄i(ϕi → ψi) with this interpretation. That is, the semantics of SO-tgds is inherited from

the usual semantics of second order logic (Libkin, 2004).

Notice that SO-tgds are closed under conjunction. That is, if σ1 and σ2 are SO-tgds,

then σ1∧σ2 is logically equivalent to an SO-tgd. Thus, when specifying mappings, we talk

about a mapping specified by an SO-tgd (instead of a set of SO-tgds).

Fagin, Kolaitis, Popa, and Tan (2005) show that the language of SO-tgds is the right

language for expressing the composition of mappings given by st-tgds. First, it is not

difficult to see that every set of st-tgds can be transformed into an SO-tgd by Skolemizing

the existentially quantified variables in the conclusions of the st-tgds. For example, the set

given by the st-tgds:

A(x, y) → ∃z(R(x, z) ∧ T (z, y))

B(x, y) → R(x, y)

is logically equivalent to the following SO-tgd:

∃f

(
∀x∀y

(
A(x, y) → R(x, f(x, y)

)
∧

∀x∀y
(
A(x, y) → T (f(x, y), y)

)
∧ ∀x∀y

(
B(x, y) → R(x, y)

))
. (5.2)

Second, Fagin, Kolaitis, Popa, and Tan (2005) show that SO-tgds are closed under compo-

sition.

THEOREM 5.1.1 (Fagin, Kolaitis, Popa, & Tan, 2005). Let M12 and M23 be mappings

specified by SO-tgds. Then the composition M12◦M23 can also be specified by an SO-tgd.

It is important to notice that Theorem 5.1.1 implies that the composition of a finite

number of mappings specified by st-tgds can be defined by an SO-tgd, as every set of

st-tgds can be expressed as an SO-tgd.

THEOREM 5.1.2 (Fagin, Kolaitis, Popa, & Tan, 2005). The composition of a finite

number of mappings, each defined by a set of st-tgds, is defined by an SO-tgd.

137

Unfortunately, as we show in the next result, SO-tgds are not appropriate for inversion,

as there exist mappings specified by SO-tgds that do not admit CQ-maximum recoveries

(and, thus, do not admit Fagin-inverses, quasi-inverses and maximum recoveries).

PROPOSITION 5.1.3. There exists an st-mapping M specified by an SO-tgd that has

no CQ-maximum recovery.

PROOF. Let S = {A(·), B(·), C1(·), C2(·)}, T = {R(·, ·), S(·)}, and M = (S,T, Σ)

an st-mapping specified by the following SO-tgd:

∃f∃g
[
∀x (B(x) ∧ C1(x) → R(x, f(x))) ∧ ∀x (B(x) ∧ C1(x) ∧ x = f(x) → S(x)) ∧

∀x (B(x) ∧ C2(x) → R(x, x)) ∧ ∀x (A(x) → R(x, g(x)))
]
.

Let I1 = {B(a), C1(a)}, I2 = {B(a), C2(a)}, and I3 = {A(a)} be instances of S, where

a is an arbitrary element of C. By definition of Σ, it holds that SolM(I3) ⊆ SolM(I1) ∪

SolM(I2). Furthermore, we claim that for each instance I ∈ {I1, I2}, if I ′ ∈ SubM(I),

then it holds that I ⊆ I ′. First, we prove this claim for the instance I1. By contradiction,

assume that there exists an instance I ′ ∈ SubM(I1) such that I1 6⊆ I ′. It is easy to see

that for every J ∈ SolM(I1), it holds that a ∈ SJ whenever (a, a) is the only tuple in

RJ with a as its first component. Thus, given that I ′ ∈ SubM(I1), we have that for every

J ∈ SolM(I ′), a ∈ SJ whenever (a, a) is the only tuple in RJ with a as its first component.

Notice that the space of solutions for a source instance under M is always nonempty, and

assume that J ∈ SolM(I ′). Then define an instance J ′ of T as follows:

RJ ′

= (RJ ∪ {(a, a)}) r {(a, b) | b ∈ D, and a 6= b},

SJ ′

= SJ r {a}.

By definition of J ′ and given that I1 6⊆ I ′, we have that (I ′, J ′) |= Σ. Thus, we have shown

that J ′ ∈ SolM(I ′). But this leads to a contradiction since for every J ∈ SolM(I ′), it holds

that if (a, a) is the only tuple in RJ with a as its first component, then a ∈ SJ . We conclude

that I1 ⊆ I ′ for every instance I ′ ∈ SubM(I1). Second, we prove the claim for the instance

138

I2, that is, we prove that for every I ′ ∈ SolM(I2), it holds that I2 ⊆ I ′. By contradiction,

assume that there exists an instance I ′ ∈ SubM(I2) such that I2 6⊆ I ′. It is easy to see

that for every J ∈ SolM(I2), it holds that (a, a) ∈ RJ . Thus, given that I ′ ∈ SubM(I2),

we have that (a, a) ∈ RJ for every J ∈ SolM(I ′). Notice that the space of solutions for a

source instance under M is always nonempty, and assume that J ∈ SolM(I ′). Then let b

be an arbitrary element of C such that a 6= b, and define an instance J ′ of T as follows:

RJ ′

= (RJ r {(a, a)}) ∪ {(a, b)},

SJ ′

= SJ .

By definition of J ′ and given that I2 6⊆ I ′, we have that (I ′, J ′) |= Σ. Thus, we have

shown that J ′ ∈ SolM(I ′). But this leads to a contradiction since for every J ∈ SolM(I ′),

it holds that (a, a) ∈ RJ . We conclude that I2 ⊆ I ′ for every instance I ′ ∈ SubM(I2),

and we have proved our claim. Now, let Q be conjunctive query B(x). Then we have that

InfM(Q, I1) = InfM(Q, I2) = {a}, but InfM(Q, I3) = ∅ since BI3 = ∅, which implies

that:

InfM(Q, {I1, I2}) 6⊆ InfM(Q, I3).

Hence, we conclude by Proposition 4.3.9 that M does not have a CQ-maximum recovery

since SolM(I3) ⊆ SolM(I1) ∪ SolM(I2). This concludes the proof of the proposition. ¤

Thus, by the previous proposition and the results of Section 4.2, we obtain that map-

pings specified by SO-tgds are not guaranteed to have maximum recoveries. Also notice

that mappings specified by SO-tgds are total and closed-down on the left, thus, by The-

orem 3.1.10 we have that SO-tgds are not guaranteed to have Fagin-inverses nor quasi-

inverse.

By Proposition 5.1.3 (and the aforementioned results about the composition), in order

to obtain a language that is closed under composition and has good properties regarding

inversion, we have no choice but to relax the semantics of composition. More precisely, we

borrow the notion of composition w.r.t. conjunctive queries (CQ-composition) introduced

139

by Madhavan and Halevy (2003), and we say that M13 is the CQ-composition of mappings

M12 and M23 if M13 ≡CQ (M12 ◦ M23). (Recall that M13 ≡CQ (M12 ◦ M23) if and

only if for every instance I and every query Q in CQ, it holds that certainM12(Q, I) =

certainM12◦M23(Q, I).)

Using this notion, we show that there is a mapping language that is not only closed

under CQ-composition, but also admits a maximum recovery for every st-mapping spec-

ified in it. We next introduce this mapping language. In the definition, we use the notion

of plain term. Given a tuple of function symbols f̄ and a tuple of variables x̄, a plain term

constructed over f̄ and x̄, is either a variable x in x̄, or a term of the form f(u1, u2, . . . , uk)

where f is a function symbol in f̄ and ui is variables in x̄ (for 1 ≤ i ≤ k).

DEFINITION 5.1.4. Given schemas R1 and R2 with no relation symbols in common, a

plain second-order tuple-generating dependency (plain SO-tgd) from R1 to R2 is a formula

of the form

∃f̄ (∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄n(ϕn → ψn))

such that

(1) each member of f̄ is a function symbol,

(2) each formula ϕi (1 ≤ i ≤ n) is a conjunction of relational atoms of the form

S(y1, . . . , yk) where S is a k-ary relation symbol of R1 and y1, . . ., yk are (not

necessarily distinct) variables in x̄i,

(3) each formula ψi (1 ≤ i ≤ n) is a conjunction of relational atomic formulas over

R2 mentioning plain terms built from x̄i and f̄ , and

(4) each variable in x̄i (1 ≤ i ≤ n) appears in some relational atom of ϕi.

That is, the language of plain SO-tgds is obtained from the language of SO-tgds by

forbidding equality of terms and nesting of functions. For example, formula (5.2) is a plain

SO-tgd, but the formula used in the proof of Proposition 5.1.3 is not a plain SO-tgd (since it

has an equality of terms). The semantics of plain SO-tgds is inherited from the semantics of

SO-tgds. As for the case of SO-tgds, plain SO-tgds are closed under conjunction and, thus,

140

we talk about a mapping specified by a plain SO-tgds (instead of a set of plain SO-tgds).

Moreover, it is easy to see that every set of st-tgds is equivalent to a plain SO-tgd.

5.2. Plain SO-tgds are Closed under CQ-Composition

Fagin, Kolaitis, Popa, and Tan (2005) show that to obtain a closure result for composi-

tion SO-tgds need equality of terms. More precisely, Fagin, Kolaitis, Popa, and Tan (2005)

show that equality of terms is necessary even to specify the composition of mappings given

by st-tgds. Thus, we know that we cannot obtain a closure result for composition with the

language of plain SO-tgds (as this language does not consider equality of terms). Neverthe-

less, we show in this section that, if we relax the notion of composition to CQ-composition,

then we obtain a closure result for the language of plain SO-tgds.

This result is a consequence of the following lemma that shows that even though the

language of plain SO-tgds is less expressive than the language of SO-tgds, in terms of CQ-

equivalence they are equally expressive. (To recall the notion of CQ-equivalence, and more

generally, the notion of C-equivalence for a query language C, see Section 4.2.2.)

LEMMA 5.2.1. For every SO-tgd λ, there exists a plain SO-tgd λ′ such that λ ≡CQ λ′.

PROOF. We first recall a result that will considerably simplify the proof. Arenas, Fa-

gin, and Nash (2010) proved that every SO-tgd λ is logically equivalent to an SO-tgd λ⋆

that does not have nesting of functions. That is, the language of SO-tgds is equivalent to the

language obtained from plain SO-tgds by adding equality of plain terms (Arenas, Fagin, &

Nash, 2010). Thus we can assume that SO-tgds contain only plain terms.

We also make use of the chase procedure for SO-tgds that we next introduce. Given an

SO-tgd λ from S to T of the form

∃f̄(∀x̄1(ϕ1 → ψ1) ∧ · · · ∧ ∀x̄k(ϕn → ψn)), (5.3)

(where λ only considers plain terms) the chase of the source instance I with λ, denoted

by chaseλ(I), is the instance J of T constructed as follows (Fagin, Kolaitis, Popa, & Tan,

141

2005). Fix an interpretation for the function symbols of f̄ such that for every n-ary function

symbol f in f̄ and n-ary tuple ā of elements in I , f(ā) is interpreted as a fresh null value.

Notice that with this interpretation, the equality f(ā) = g(b̄) holds if and only if f and g

are the same function symbol and ā = b̄. Thus we can denote a null of the form f(ā) with

its own syntactic form (that is, simply as f(ā)). We need an additional notation. Given a

formula α that considers variables in a tuple x̄ and plain terms constructed from f̄ and x̄,

we denote by α[x̄ → ā] the formula obtained by replacing every occurrence of a variable in

x̄ by the corresponding value in ā. We are now ready to introduce the process to construct

instance J . For every 1 ≤ i ≤ n and every tuple of ā of elements in I such that the arity of

ā is the same as the arity of x̄i, if I satisfies the formula ϕi[x̄i → ā], then add all the atoms

in ψi[x̄i → ā] to instance J . Fagin, Kolaitis, Popa, and Tan (2005) show that chaseλ(I) is

a universal solution for I under the mapping specified by λ.

We next show how to transform an SO-tgd λ into a plain SO-tgd λ′ such that chaseλ(I) =

chaseλ′(I). Let λ be an SO-tgd of the form (5.3). We first construct a set of formulas Σ′ by

repeating the following for every i such that 1 ≤ i ≤ n. Start with ϕ′
i as ϕi and ψ′

i as ψi.

(1) Replace every equality of the form f(x1, . . . , xk) = f(y1, . . . , yk) in ϕ′
i by the

conjunction of equalities x1 = y1 ∧ · · · ∧ xk = yk.

(2) If there is an equality of the form x = x′ in ϕ′
i with x and x′ variables, then

eliminate the equality and replace in ϕ′
i and in ψ′

i every occurrence of x′ by x.

(3) Repeat the previous step until ϕ′
i has no equality of the form x = x′ with x and

x′ variables.

If after the process ϕ′
i does not contain any equality between plain terms then add formula

∀x̄′
i(ϕ

′
i → ψ′

i) to Σ′, where x̄′
i is the tuple of remaining variables in ϕ′

i. Finally we define

λ′ as the formula ∃f̄
∧

Σ′ where
∧

Σ′ denotes the conjunction of all the formulas in Σ′.

Notice that the formula λ′ is a plain SO-tgd.

It is not difficult to see that for every instance I it holds that chaseλ(I) = chaseλ′(I).

Just notice that if I satisfies the formula ϕi[x̄i → ā], then (i) ϕi does not contain equalities

of the form f(ū) = g(v̄) with f and g distinct function symbols, (ii) if f(x1, . . . , xk) =

142

f(y1, . . . , yk) is an equality in ϕi then the equalities x1 = y1, . . ., xk = yk should hold for

the assignment x̄i → ā and (iii) if x = x′ is an equality in ϕi, then the values a and a′

that correspond to x and x′ in the assignment x̄i → ā, should be equal. This implies that if

∀x̄′
i(ϕ

′
i → ψ′

i) is in Σ′, and x̄′
i → ā′ is the assignment obtained from the assignment x̄i → ā

by considering only the variables in x̄′
i, then I satisfies ϕ′

i[x̄
′
i → ā′]. Similarly, it can be

shown that if ∀x̄′
i(ϕ

′
i → ψ′

i) is in Σ′ and I satisfies ϕ′
i[x̄

′
i → ā′], then I satisfies ϕi[x̄i → ā].

The property follows from the observation that if I satisfies ϕi[x̄i → ā], then ψi[x̄i → ā] is

equal to ψ′
i[x̄

′
i → ā′].

To conclude the proof we use a result proved by Fagin, Kolaitis, Nash, and Popa (2008).

Fagin, Kolaitis, Nash, and Popa (2008) showed that if two mappings share universal solu-

tions for every source instance, then the mappings are CQ equivalent. Since for every

source instance I it holds that chaseλ(I) is a universal solution for I under the mapping

specified by λ, and chaseλ′(I) is a universal solution for I under the mapping specified by

λ′, and given that chaseλ(I) = chaseλ′(I), we obtain that λ and λ′ are CQ-equivalent. This

concludes the proof of the lemma. ¤

The following result is a direct consequence of Lemma 5.2.1 and the fact that SO-tgds

are closed under composition.

THEOREM 5.2.2. Let M1 and M2 be mappings specified by plain SO-tgds. Then the

CQ-composition of M1 and M2 can be specified with a plain SO-tgd.

As a corollary of the above theorem we obtain that the CQ-composition of a finite

number of mappings each specified by a set of st-tgds, is definable by a plain SO-tgd.

COROLLARY 5.2.3. The CQ-composition of a finite number of mappings, each defined

by a set of st-tgds, is defined by a plain SO-tgd.

143

5.2.1. More properties of plain SO-tgds

In this section we include some results on the structure of plain SO-tgds that are inter-

esting on their own. More importantly, we show that plain SO-tgds can be used to provide

a negative answer to an open question posed by ten Cate and Kolaitis (2009, 2010).

Recall that an st-mapping M is closed under target homomorphisms (ten Cate & Ko-

laitis, 2009) if whenever (I, J) ∈ M and there is a homomorphism from J to J ′, then

(I, J ′) ∈ M. The next proposition shows that mappings specified by plain SO-tgds are

closed under target homomorphisms.

PROPOSITION 5.2.4. Every mapping specified by a plain SO-tgd is closed under target

homomorphisms.

PROOF. Let λ be a plain SO-tgd from S to T, and assume that (I, J) |= λ. Further

assume that there is a homomorphism h from J to J ′. We next prove that (I, J ′) |= λ.

Thus, assume that λ is of the form ∃f̄(∀x1(ϕ1 → ψ1) ∧ · · · ∧ ∀xn(ϕn → ψn)). As for

the case of the proof of Lemma 5.2.1, given a formula α mentioning variables from x̄

and plain terms constructed from x̄ and f̄ , and a tuple of elements ā, α[x̄ → ā] denotes

the formula obtained from α by replacing every variable in x̄ according to the assignment

x̄ → ā. Now, since (I, J) |= λ we know that there exists an interpretation f̄ (I,J) over

(I, J) for the function symbols in f̄ such that for every i with 1 ≤ i ≤ n, if I satisfies

the formula ϕi[x̄i → ā] for a tuple of elements ā from I with interpretation f̄ (I,J), then

J satisfies formula ψi[x̄i → ā] with interpretation f̄ (I,J). Consider now the interpretation

f̄ (I,J ′) of f̄ over (I, J ′) constructed as follows. For every function symbol f in f̄ and tuple b̄

of elements from (I, J), we let f (I,J ′)(b̄) = h(f (I,J)(b̄)). We show now that (I, J ′) satisfies

λ with interpretation f̄ (I,J ′).

Assume that I satisfies ϕi[x̄i → ā] with interpretation f̄ (I,J ′) for some i such that

1 ≤ i ≤ n. Since λ is a plain SO-tgd, then ϕi does not mention any function symbol which

implies that I satisfies ϕi[x̄i → ā] with interpretation f̄ (I,J). Then we know that J |=

ψi[x̄i → ā] with interpretation f̄ (I,J). Let R(ā′) be an arbitrary conjunct in ψi[x̄i → ā] with

144

function symbols interpreted following f̄ (I,J). Then we know that J |= R(ā′). Moreover,

since h is a homomorphism from J to J ′, we know that J ′ |= R(h(ā′)). This implies

that J satisfies every conjunct of ψi[x̄i → ā] with interpretation f̄ (I,J ′) which implies that

J |= ψi[x̄i → ā] with interpretation f̄ (I,J ′). This was to be shown. ¤

It is known that mappings specified by general SO-tgds are not closed under target ho-

momorphisms (Fagin, Kolaitis, Popa, & Tan, 2005; Fagin, Kolaitis, Nash, & Popa, 2008).

Nevertheless, in the next result we show that if a mapping specified by an SO-tgd is closed

under target homomorphism, then this mapping is definable by a plain SO-tgd.

PROPOSITION 5.2.5. Let M = (S,T, λ) be such that λ is an SO-tgd and assume

that M is closed under target homomorphisms. Then λ is logically equivalent to a plain

SO-tgd.

PROOF. As discussed in the proof of Lemma 5.2.1, for every SO-tgd λ one can con-

struct a plain SO-tgd λ′ such that chaseλ(I) = chaseλ′(I). Thus, given that chaseλ(I) is

a universal solution for I and we are assuming that M = (S,T, λ) is closed under tar-

get homomorphisms, we know that (I, J) |= λ if and only if there is a homomorphism

from chaseλ(I) to J . On the other hand, we know that chaseλ′(I) is universal for I , and

since λ′ is a plain SO-tgds, we also know that λ′ is closed under target homomorphisms.

Thus (I, J) |= λ′ if and only if there is a homomorphism from chaseλ′(I) to J . Finally,

since chaseλ(I) = chaseλ′(I), we obtain that (I, J) |= λ if and only if (I, J) |= λ′. This

completes the proof of the proposition. ¤

ten Cate and Kolaitis (2009) define several structural properties of schema mappings,

being one of them the closure under target homomorphisms. There are two more properties

that are of special interest in this section: the properties of admitting universal solutions

and allowing for conjunctive query rewriting (ten Cate & Kolaitis, 2009), that we next

introduce.

We say that a mapping M admits universal solutions if for every source instance I

there exists a universal solution for I under M. In particular, every mapping specified by

145

an SO-tgd admits universal solutions. In fact, if M is specified by SO-tgd λ, we know that

chaseλ(I) is a universal solution for I under M.

We say that a mapping M from S to T allows for conjunctive query rewriting if for

every conjunctive query Q over T, there exists a conjunctive query Q′ over S such that

Q′(I) = certainM(Q, I). It was proved by ten Cate and Kolaitis (2009) that every mapping

specified by an SO-tgd allows for conjunctive query rewriting.

ten Cate and Kolaitis (2009) were interested in characterizing schema-mapping lan-

guages in terms of the structural properties that the mappings satisfy. In particular, they

were interested in a language that is capable of specifying all the mappings that are closed

under target homomorphisms, admit universal solutions, and allow for conjunctive query

rewriting. One candidate that the authors considered is the language of nested st-tgds pro-

posed by Fuxman et al. (2006). For our purposes, it is not important to formally introduce

the language of nested st-tgds (we refer the reader to (Fuxman et al., 2006) and (ten Cate &

Kolaitis, 2009) for details). We only mention that the language of nested st-tgds is a frag-

ment of First-Order logic. Regarding the language of nested st-tgds, ten Cate and Kolaitis

(2009) show that mappings specified in this language satisfy the three structural properties

mentioned above. Furthermore, the authors posed the following question.

QUESTION 5.2.6 (ten Cate & Kolaitis, 2009, 2010). Is it the case that a schema map-

ping is definable by a set of nested st-tgds if and only if it is closed under target homomor-

phisms, admits universal solutions, and allows for conjunctive query rewriting?

The following proposition gives a negative answer to the above question as mappings

specified by plain SO-tgds are closed under target homomorphisms, admit universal solu-

tions, and allow for conjunctive query rewriting, but there are plain SO-tgds that are not

expressible in First-Order logic.

PROPOSITION 5.2.7. 1 The language of plain SO-tgds satisfy the following properties:

1This unpublished proposition was established by Marcelo Arenas, Juan L. Reutter and myself

146

(1) Every mapping specified by a plain SO-tgd is closed under target homomor-

phisms, admits universal solutions, and allows for conjunctive query rewriting.

(2) There exists a plain SO-tgd that is not expressible in First-Order logic.

PROOF. Part (1) follows from Proposition 5.2.4, and the results by Fagin, Kolaitis,

Popa, and Tan (2005) stating that mappings specified by SO-tgds admit universal solutions,

and by ten Cate and Kolaitis (2009) stating that mappings specified by SO-tgds allow for

conjunctive query rewriting.

To show part (2), consider the plain SO-tgd λ from R1 = {E(·, ·)} to R2 = {T (·, ·)}

given by

∃f

(
∀x∀y

(
E(x, y) → T (f(x), f(y))

))
.

We show now that λ is not expressible by a First-Order logic sentence over the vocabulary

R1 ∪R2. To obtain a contradiction, assume that λ is expressible in FO, and let Φ be an FO

sentence over R1 ∪ R2 that is logically equivalent to λ. Let u and v be two variables not

mentioned in Φ and consider the sentence Φ′ obtained from Φ by replacing every relational

atom T (x, y) by formula (x = u ∧ y = v) ∨ (x = v ∧ y = u). Now let Ψ be the FO

sentence over R1 defined by

∃u∃v(u 6= v ∧ Φ′).

It is not difficult to see that I |= Ψ if and only if for the instance J such that T J =

{(1, 2), (2, 1)}, it holds that (I, J) |= Φ. Given that we are assuming that Φ is logically

equivalent to λ, we obtain that I |= Ψ if and only if there exists an interpretation f ⋆ for the

function symbol f such that for every element c in I it holds that f ⋆(c) is either 1 or 2, and

for every tuple (a, b) in EI it holds that f ⋆(a) 6= f ⋆(b). That is, we have that I |= Ψ if and

only if the graph represented by I is 2-colorable. This is our desired contradiction since

2-colorability is not expressible in FO (Libkin, 2004). ¤

Notice that by using a similar argument as the one used in the above proof, we can

obtain a contradiction by using 3-colorability instead of 2-colorability. Thus, by a result

by Dawar (1998), we obtain that λ cannot even be defined in the finite-variable infinitary

147

logic Lω
∞ω, which is strictly more expressive than FO (see (Libkin, 2004) for a definition

of Lω
∞ω).

It is an open problem whether the language of plain SO-tgds exactly characterizes the

class of mappings that are closed under target homomorphisms, admit universal solutions,

and allow for conjunctive query rewriting. In fact, in view of Proposition 5.2.7 one can

propose two questions that remain open. The first one is a refinement of Question 5.2.6 for

the case of mappings specified in FO.

QUESTION 5.2.8. Is it the case that a schema mapping is definable by a set of nested

st-tgds if and only if it is definable in FO, is closed under target homomorphisms, admits

universal solutions, and allows for conjunctive query rewriting?

QUESTION 5.2.9. Is it the case that a schema mapping is definable by a plain SO-tgd

if and only if it is closed under target homomorphisms, admits universal solutions, and

allows for conjunctive query rewriting?

5.3. Inverting Plain SO-tgds (in Polynomial Time)

We show in this section that every st-mapping specified by a plain SO-tgd has a max-

imum recovery. To prove this we present in this section a polynomial time algorithm that,

given a set of plain SO-tgds, returns a maximum recovery that is expressed in a language

that extends plain SO-tgds with some extra features.

We start by giving some of the intuition behind the algorithm. Consider the following

plain SO-tgd:

∃f∃g

(
∀x∀y∀z

(
R(x, y, z) → T (x, f(y), f(y), g(x, z))

))
. (5.4)

When exchanging data with an SO-tgd like (5.4), the standard assumption is that every

application of a function symbol generates a fresh value (Fagin, Kolaitis, Popa, & Tan,

2005). For example, consider a source instance {R(1, 2, 3)}. When we exchange data

with (5.4), we obtain a canonical target instance {T (1, a, a, b)}, where a = f(2), b =

g(1, 3), and a 6= b. The intuition behind our algorithm is to produce a reverse mapping that

148

focuses on this canonical target instance to recover as much source data as possible. Thus,

in order to invert a dependency like (5.4), we consider three unary functions f1, g1 and g2.

The idea is that f1 represents the inverse of function f , while (g1, g2) represents the inverse

of g. Notice that since g has two arguments, we need to use two functions to represent its

inverse. Thus, considering the above example, the intended meaning of the functions is

f1(a) = 2, g1(b) = 1, and g2(b) = 3. With this in mind, we can represent an inverse of the

plain SO-tgd (5.4) with a dependency of the form:

∃f1∃g1∃g2

(
∀u∀v∀w

(
T (u, v, v, w) → R(u, f1(v), g2(w)) ∧ u = g1(w)

))
. (5.5)

Notice that, if we use dependency (5.5) to exchange data back from instance {T (1, a, a, b)},

we obtain an instance {R(1, f1(a), g2(b))}. The equality u = g1(w) has been added in order

to ensure the correct interpretation of g1 as the inverse function of g. In the example, the

equality ensures that g1(b) is 1.

In order to obtain a correct algorithm we need another technicality, that we describe

next. We have mentioned that when exchanging data with SO-tgds, we assume that every

application of a function produces a fresh value. In the above example, we have that value

a is the result of applying f to 2, thus, we know that value a cannot be obtained with

any other function. In particular, a cannot be obtained as an application of function g.

Thus, when exchanging data back we should ensure that at most one inverse function is

applied to every possible target value. We do that by using an additional unary function

f⋆. In the above example, whenever we apply function f1 to some value v, we require

that f1(v) = f⋆(v) and that g1(v) 6= f⋆(v). Similarly, whenever we apply function g1

to some value w, we require that g1(w) = f⋆(w) and that f1(w) 6= f⋆(w). Thus, for

example, if we apply f1 to value a, we require that f1(a) = f⋆(a) and that g1(a) 6= f⋆(a).

Notice that this forbids the application of g1 to a, since, if that were the case, we would

require that g1(a) = f⋆(a), which contradicts the previous requirement g1(a) 6= f⋆(a).

Our algorithm adds these equalities and inequalities as conjuncts in the conclusions of

149

dependencies. Considering the example, our algorithm adds

f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v) ∧

g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w)

to the right-hand side of the implication of dependency (5.5), and also adding the existen-

tial quantification over function f⋆. The final SO dependency that specifies a maximum

recovery of the plain SO-tgd (5.4) is2

∃f⋆∃f1∃g1∃g2

[

∀u∀v∀w

(
T (u, v, v, w) → R(u, f1(v), g2(w)) ∧ u = g1(w) ∧

f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v) ∧

g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w)

)]
. (5.6)

Before presenting our algorithm, we make some observations Although we have as-

sumed in the above explanation that every application of a function generates a fresh value,

we remark that this assumption has only been used as a guide in the design of our algo-

rithm. In fact, it is shown in Theorem 5.3.1 that the algorithm presented in this section

produces inverses for the general case, where no assumption about the function symbols is

made. We now formalize our algorithm to compute maximum recoveries of plain SO-tgds

Preliminary procedures

We start by fixing some notation. Given a plain SO-tgd λ, we denote by Fλ the set of

function symbols that occur in λ. We also consider a set of function symbols F ′
λ constructed

as follows. For every n-ary function symbol f in Fλ, the set F ′
λ contains n unary function

symbols f1, . . . , fn. Additionally, F ′
λ contains a unary function symbol f⋆. For example,

for plain SO-tgd (5.4), Fλ = {f, g} and F ′
λ = {f1, g1, g2, f⋆}.

2Our algorithm also uses predicate C(·) over variables that are in the left and right-hand side of the implica-

tion formulas.

150

We describe the procedures CREATETUPLE, ENSUREINV, and SAFE. These proce-

dures are the building blocks of the algorithm that computes an inverse of a plain SO-tgd.

Procedure CREATETUPLE(t̄) receives as input a tuple t̄ = (t1, . . . , tn) of plain terms.

Then it builds an n-tuple of variables ū = (u1, . . . , un) such that, if ti = tj then ui and uj

are the same variable, and they are distinct variables otherwise. For example, consider the

right-hand side of the implication of dependency (5.4). In the argument of relation T we

have the tuple of terms t̄ = (x, f(y), f(y), g(x, z)). In this case, we have that procedure

CREATETUPLE(t̄) returns a tuple of the form (u, v, v, w). Notice that we have used this

tuple as the argument of T in the left-hand side of the implication of dependency (5.5).

Tuple ū created with CREATETUPLE is used as an input in the following two proce-

dures. We now formalize the procedure to obtain a formula that guarantees the correct use

of the inverse function symbols.

Procedure: ENSUREINV(λ, ū, s̄)

Input: A plain SO-tgd λ, an n-tuple ū = (u1, . . . , un) of (not necessarily distinct) vari-

ables, and an n-tuple of plain terms s̄ built from Fλ and a tuple of variables ȳ.

Output: A formula Qe consisting of conjunctions of equalities between terms built from

F ′
λ and ū, ȳ.

(1) Let s̄ = (s1, . . . , sn).

(2) Construct formula Qe as follows. For every i ∈ {1, . . . , n} do the following:

– If si is a variable y, then add equality ui = y as a conjunct in Qe.

– If si is a term of the form f(y1, . . . , yk), then add the conjunction of equali-

ties

f1(ui) = y1 ∧ · · · ∧ fk(ui) = yk

to Qe, where f1, . . . , fk are the k unary functions in F ′
λ associated with f .

(3) Return Qe. ¤

As an example, let λ be the dependency (5.4), s̄ = (x, f(y), f(y), g(x, z)) the tuple of

terms in the right-hand side of the implication of λ, and ū = (u, v, v, w). When running

151

the procedure ENSUREINV(λ, ū, s̄), we have that u4 = w and s4 = g(x, z). Thus, in the

loop of Step 2, the conjunction g1(w) = x ∧ g2(w) = z is added to formula Qe. The final

output of the procedure in this case is:

u = x ∧ f1(v) = y ∧ g1(w) = x ∧ g2(w) = z. (5.7)

We need to describe one more procedure, which guarantees that it could not be the

case that a value in the target was generated by two distinct functions.

Procedure: SAFE(λ, ū, s̄)

Input: A plain SO-tgd λ, an n-tuple ū = (u1, . . . , un) of not necessarily distinct variables,

and an n-tuple of plain terms s̄ built from Fλ and a tuple of variables ȳ.

Output: A formula Qs consisting of equalities and inequalities between terms built from

F ′
λ and ū.

(1) Let s̄ = (s1, . . . , sn).

(2) Construct formula Qs as follows. For every i ∈ {1, . . . , n} do the following:

– If si is a term of the form f(y1, . . . , yk), then add the following conjuncts to

Qs:

– The equality f⋆(ui) = f1(ui).

– The inequality f⋆(ui) 6= g1(ui), for every function symbol g in Fλ

different from f .

(3) Return Qs. ¤

Considering λ as the dependency (5.4), s̄ the tuple of terms (x, f(y), f(y), g(x, z)) and

ū = (u, v, v, w), the algorithm SAFE(λ, ū, s̄) returns:

f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v) ∧ g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w). (5.8)

Notice that all the procedures presented so far work in polynomial time with respect to

the size of their inputs.

152

Building the inverse

We need some additional notation before we present the algorithm for computing in-

verses of plain SO-tgds. Let t̄ and s̄ be n-tuples of plain terms. Then we say that t̄ is

subsumed by s̄ (or s̄ subsumes t̄) if, whenever the i-th component of t̄ contains a variable,

the i-th component of s̄ also contains a variable. Notice that if s̄ subsumes t̄, then whenever

the i-th component of s̄ contains a non-atomic term, the i-th component of t̄ also contains

a non-atomic term. For example, the tuple of terms (x, f(y), f(y), g(x, z)) is subsumed by

(u, v, h(u), h(v)).

The following algorithm computes a maximum recovery of a plain SO-tgd λ in poly-

nomial time. As a consequence of the results in Section 3.1.1 and the discussion in Sec-

tion 4.2, the algorithm can also be used to compute Fagin-inverses, quasi-inverses, as well

as CQ-maximum recoveries.

Algorithm: POLYSOINVERSE(M)

Input: An st-mapping M = (S,T, λ) with λ a plain SO-tgd of the form ∃f̄(σ1∧· · ·∧σn).

Output: A ts-mapping M′ = (T,S, λ′) that specifies a maximum recovery of λ such that

λ′ is an SO dependency.

(1) Let Σ = {σ1, . . . , σn}, and Σ′ be empty.

(2) Normalize Σ as follows. For every i ∈ {1, . . . , n} do:

– If σi is of the form ∀x̄(ϕ(x̄) → R1(t̄1) ∧ . . . ∧ Rℓ(t̄ℓ)), then replace σi by ℓ

dependencies ∀x̄1(ϕ1(x̄1) → R1(t̄1)), . . . , ∀x̄ℓ(ϕℓ(x̄ℓ) → Rℓ(t̄ℓ)) such that

for every 1 ≤ i ≤ ℓ:

– x̄i is exactly the tuple of variables shared by x̄ and t̄i

– ϕi(x̄i) is the formula obtained from ϕ(x̄) by existentially quantifying

the variables of x̄ not mentioned in x̄i.

(3) For every σ of the form ∀x̄(ϕ(x̄) → R(t̄)) in the normalized set Σ, where t̄ =

(t1, . . . , tm) is a tuple of plain terms, do the following:

(a) Let ū = CREATETUPLE(t̄).

153

(b) Let premσ(ū) be a formula defined as the conjunction of the atom R(ū) and

the formulas C(ui) for every i such that ti is a variable.

(c) Create a set of formulas Γσ as follows. For every dependency ∀ȳ(ψ(ȳ) →

R(s̄)) in Σ such that s̄ subsumes t̄, do the following:

– Let Qe = ENSUREINV(λ, ū, s̄).

– Let Qs = SAFE(λ, ū, s̄).

– Add to Γσ the formula ∃ȳ
(

ψ(ȳ) ∧ Qe ∧ Qs

)

(d) Add to Σ′ the dependency:

∀ū
(
premσ(ū) → γσ(ū)

)

where γσ(ū) is the disjunction of the formulas in Γσ.

(4) Let λ′ = ∃f̄ ′ (
∧

Σ′), where f̄ ′ is a tuple containing the function symbols in F ′
λ.

Return M′ = (T,S, λ′). ¤

As an example of the execution of the algorithm let λ be the plain SO-tgd (5.4), and

assume that M = (S,T, λ) is the input of algorithm POLYSOINVERSE. In Step 3 of algo-

rithm POLYSOINVERSE(M) we have to consider a single dependency σ = R(x, y, z) →

T (x, f(y), f(y), g(x, z)). Let t̄ be the tuple of terms (x, f(y), f(y), g(x, z)). Recall that

CREATETUPLE(t̄) is a tuple of the form (u, v, v, w) and, thus,

premσ(ū) = T (u, v, v, w) ∧ C(u)

is built in Step 3.b. Notice that C(u) has been added since the first component of t̄ is the

variable x. Then in Step 3.c, we need to consider just dependency σ. Notice that t̄ subsumes

itself and, hence, formula

∃x∃y∃z (R(x, y, z) ∧ Qe ∧ Qs)

is added to the set Γσ, where Qe is the formula (5.7) and Qs is the formula (5.8). Notice

that F ′
λ = {f⋆, f1, g1, g2}, and thus, the following formula λ′ is created in the last step of

154

the algorithm:

∃f⋆∃f1∃g1∃g2

[

∀u∀v∀w

(
T (u, v, v, w) ∧ C(u) → ∃x∃y∃z

(
R(x, y, z) ∧ u = x ∧ f1(v) = y ∧

g1(w) = x ∧ g2(w) = z ∧ Qs

))]
. (5.9)

Notice that the existentially quantified variables can be eliminated from dependency (5.9).

Thus, replacing formula Qs and eleminating the existential quantification in the right-hand

side of the implication, we obtain that dependency (5.9) is equivalent to:

∃f⋆∃f1∃g1∃g2

[

∀u∀v∀w

(
T (u, v, v, w) ∧ C(u) → R(u, f1(v), g2(w)) ∧ u = g1(w) ∧

f1(v) = f⋆(v) ∧ g1(v) 6= f⋆(v) ∧

g1(w) = f⋆(w) ∧ f1(w) 6= f⋆(w)

)]
.

which specifies a maximum recovery of M.

THEOREM 5.3.1. Let M be a mapping specified by a plain SO-tgd λ. Algorithm

POLYSOINVERSE(M) computes in polynomial time a mapping M′ specified by an SO

dependency such that M′ is a maximum recovery of M.

PROOF. Let λ be a plain SO-tgd of the form ∃f̄(σ1 ∧ · · · ∧ σk), and M = (S,T, λ).

Let Σ be the set {σ1, . . . , σk}. Notice that after Step 2 of the algorithm, we have that every

σ in the (normalized) set Σ, is a formula of the form ∀x̄(ϕ(x̄) → R(t̄(x̄))) where:

• ϕ(x̄) is a CQ formula over S with x̄ as tuple of free variables,

• R is an n-ary relation symbol in T,

• t̄(x̄) is an n-tuple of plain terms constructed by using functions from f̄ and vari-

ables from x̄, and

• x̄ is exactly the tuple of (distinct) variables that ϕ(x̄) and t̄(x̄) share.

155

Notice that in the above notation we have made explicit the variables mentioned in the tuple

of terms t̄(x̄). Additionally, we assume that all the formulas in Σ have pair-wise disjoint

sets of variables. It is straightforward to see that the formula ∃f̄
∧

Σ obtained after the

normalization step is logically equivalent to the original plain SO-tgd provided as input for

the algorithm.

Before continuing with the proof, recall that Fλ is the set of function symbols in f̄ . Also

recall that F ′
λ is the set of function symbols constructed as follows. For every n-ary function

symbol f in f̄ , the set F ′
λ contains n unary function symbols f1, . . . , fn. Additionally, F ′

λ

contains a new unary function symbol f⋆.

We introduce some notation regarding the procedures CREATETUPLE, ENSUREINV

and SAFE. First, given a tuple of terms t̄(x̄) = (t1(x̄), . . . , tn(x̄)) we use ūt̄(x̄) to denote

the output of CREATETUPLE(t̄(x)). That is, ūt̄(x̄) is an n-tuple of variables (u1, . . . , un)

such that, for i 6= j, if the i-th component of t̄(x̄) is equal to the j-th component of

t̄(x̄), then ui and uj are the same variable, and they are different variables otherwise.

Consider for example the tuple of terms t̄(x1, x2) = (x1, f(x1), f(x1), x1, x2). In this

case we have that t1(x1, x2) = t4(x1, x2) = x1, t2(x1, x2) = t3(x1, x2) = f(x1), and

t5(x1, x2) = x2, and then ūt̄(x1,x2) is a tuple of the form (u1, u2, u2, u1, u3). Second,

given an n-tuple ū = (u1, . . . , un) of not necessarily distinct variables, and an n-tuple

s̄(ȳ) = (s1(ȳ), . . . , sn(ȳ)) of plain terms, we denote by ν(ū, s̄(ȳ)) the formula obtained as

output of procedure ENSUREINV(λ, ū, s̄(ȳ)). Thus, we have that for every i with 1 ≤ i ≤ n

it holds that:

• If si(ȳ) is a variable ym of ȳ, then ν(ū, s̄(ȳ)) contains the equality ui = ym as a

conjunction.

• If si(ȳ) is a non-atomic term f(ym1 , . . . , ymk
), with f a k-ary function symbol

of f̄ and every ymj
a variable in ȳ, then ν(ū, s̄(ȳ)) contains the conjunction of

equalities f1(ui) = ym1 ∧ · · · ∧ fk(ui) = ymk
, where f1, . . . , fk are the k unary

functions in f̄ ′ associated with f .

156

For example, let ū = (u1, u2, u1) and s̄(y1, y2, y3) = (y1, f(y3, y1, y2), g(y2)). Notice that

s1(y1, y2, y3) = y1, s2(y1, y2, y3) = f(y3, y1, y2) and s3(y1, y2, y3) = g(y2). In this case we

have that ν(ū, s̄(y1, y2, y3)) is the formula

u1 = y1 ∧ f1(u2) = y3 ∧ f2(u2) = y1 ∧ f3(u2) = y2 ∧ g1(u1) = y2.

Third, we denote by ω(ū, s̄(ȳ)) the formula obtained as the output of SAFE(λ, ū, s̄(ȳ)).

That is, we have that for every i with 1 ≤ i ≤ n, if si(x̄) is a non-atomic term of the form

f(ym1 , . . . , ymk
) with f a k-ary function symbol of f̄ and every ymj

a variable in ȳ, then

ω(ū, s̄(ȳ)) contains as conjunctions:

• the equality f⋆(ui) = f1(ui) and,

• the inequality f⋆(ui) 6= g1(ui), for every function symbol g in f̄ different from

f .

Notice that ω(ū, s̄(ȳ)) may be the empty formula if the tuple s̄(ȳ) is composed only by

variables. In that case, we assume that ω(ū, s̄(ȳ)) is true (an arbitrary valid formula). We

have introduced this notation only to make explicit the variables used in the tuple of terms

t̄(x̄) and s̄(ȳ) in the inputs of CREATETUPLE, ENSUREINV, and SAFE.

Finally, given a dependency σ in Σ of the form ϕ(x̄) → R(t̄(x̄)), in this proof we

denote by CR(t̄(x̄)) the set Γσ constructed in Step 3.c. That is, for every dependency of the

form ψ(ȳ) → R(s̄(ȳ)) in Σ such that s̄(ȳ) subsumes t̄(x̄), then CR(t̄(x)) includes the formula

∃ȳ
(

ψ(ȳ) ∧ ν(ūt̄(x̄), s̄(ȳ)) ∧ ω(ūt̄(x̄), s̄(ȳ))
)
.

Notice that in the above formula we are using our new notation for the outputs of procedures

CREATETUPLE(t̄(x)), ENSUREINV(λ, ū, s̄(ȳ)), and SAFE(λ, ū, s̄(ȳ)).

With our new notation we have that the set Σ′ constructed in POLYSOINVERSE con-

tains, for every σ ∈ Σ of the form ∀x̄(ϕ(x̄) → R(t̄(x̄))), a dependency σ′ such that

• the premise of σ′ is composed of the atom R(ūt̄(x̄)) and formulas C(ui) for every

i such that ti(x̄) is a variable x of x̄, and

• the conclusion of σ′ is the disjunction of all the formulas in CR(t̄(x̄)).

157

We are now ready to continue with the proof. For simplicity, in what follows we omit

the universal quantification in the formulas in Σ and Σ′. That is, if σ is a formula in Σ of

the form ∀x̄(ϕ(x̄) → R(t̄(x̄))), we just write ϕ(x̄) → R(t̄(x̄)) to denote σ. Let M be

the st-mapping specified by the formula λ = ∃f̄
∧

Σ, and M′ the ts-mapping specified by

the formula λ′ = ∃f̄ ′
∧

Σ′ constructed in the last step of algorithm POLYSOINVERSE. We

need to show that M′ is a maximum recovery of M. We first show that M′ is a recovery

of M. Let I be a source instance, and J the result of chasing I with λ. Recall that J is

constructed as follows. For every σ in Σ of the form ϕ(x̄) → R(t̄(x̄)) and for every tuple

ā of constant values such that I |= ϕ(ā), we include in J the tuple R(t̄(ā)). Notice that in

this procedure, every ground term is viewed as a distinct value (for example, f(a) and g(a)

are considered to be distinct values), and every ground non-atomic term is considered to be

a null value. We claim that (J, I) ∈ M′ which proves that (I, I) ∈ M ◦M′. In order to

show that (J, I) |= λ′, we need to prove that there exists an interpretation for the functions

of f̄ ′ such that (J, I) |=
∧

Σ′. For every k-ary function f in f̄ consider the interpretation

of fi with 1 ≤ i ≤ k as follows:

• for every k-tuple (a1, . . . , ak), we have that fi(f(a1, . . . , ak)) = ai,

• fi is an arbitrary value in every other case.

That is fi is interpreted as the projection of f over component i. Additionally, we interpret

function f⋆ as follows. For every k-ary function f in f̄ we let f⋆(f(a1, . . . , ak)) = a1, and

f⋆ is an arbitrary value in every other case. Notice that this interpretation is well defined

since every ground term produced when chasing I , is viewed as a distinct value. We show

now that with this interpretation, it holds that (J, I) |=
∧

Σ′.

Let σ′ be a formula in Σ′. We need to show that (J, I) satisfies σ′. Assume that σ′

was created from a formula in Σ of the form ϕ(x̄) → R(t̄(x̄)). Assume that R is an n-

ary relation symbol. Then σ′ is of the form R(ūt̄(x̄)) ∧ C(ū′) → α(ūt̄(x̄)) with ūt̄(x̄) an

n-tuple of (not necessarily distinct) variables, ū′ ⊆ ūt̄(x̄), and α(ūt̄(x̄)) the disjunction of

the formulas in CR(t̄(x̄)). Now, suppose that there exists an n-tuple b̄ of ground terms such

that J |= R(b̄) ∧ C(b̄′) (with b̄′ the corresponding assignment to ū′ that derives from the

158

assignment of b̄ to ūt̄(x̄)). We must show that I |= α(b̄). Since J is the result of chasing I

with λ, we know that there exists a formula ψ(ȳ) → R(s̄(ȳ)) that is used to generate R(b̄)

in J . Then there exists a tuple ā of constants such that I |= ψ(ā) and s̄(ā) = b̄. Now, given

that C(b̄′) holds and s̄(ā) = b̄, we conclude that s̄(ȳ) subsumes t̄(x̄). Consequently, the

formula

β(ūt̄(x̄)) = ∃ȳ
(

ψ(ȳ) ∧ ν(ūt̄(x̄), s̄(ȳ)) ∧ ω(ūt̄(x̄), s̄(ȳ))
)

belongs to CR(t̄(x̄)), and then, it is a disjunct in α(ūt̄(x̄)). We claim that I |= β(b̄) = β(s̄(ā))

and then I |= α(b̄). Notice that I |= ψ(ā) and by the interpretation of the functions of

f̄ ′ it is straightforward to see that ν(s̄(ā), s̄(ā)) and ω(s̄(ā), s̄(ā)) holds. Then we have

that I |= β(b̄) with the chosen interpretation for the functions in f̄ ′ by using tuple ā as

the witness for the tuple ȳ of existentially quantified variables, and then I |= α(b̄). We

have shown that, with the chosen interpretation for the functions in f̄ ′, it holds that (J, I)

satisfies every formula in Σ′, and then (J, I) satisfies
∧

Σ′, which was to be shown.

To complete the proof it is enough to show that, if (I1, I2) ∈ M◦M′ then SolM(I2) ⊆

SolM(I1) (see Proposition 3.1.6). To simplify the exposition we introduce some notation.

A ground plain term is a term of the form f(a1, . . . , ak) where a1, . . . , ak are values from

some domain. Let p̄ be a tuple of groun plain terms constructed by using function symbols

from a tuple ḡ, and let ḡ0 be an interpretation for the function symbols in ḡ. We write p̄[ḡ 7→

ḡ0] to denote the tuple obtained by replacing every ground plain term using a function

symbol in ḡ by its corresponding interpretation in ḡ0. Similarly, if γ is a conjunction of

ground atoms we write γ[ḡ 7→ ḡ0] to denote the conjunction obtained by replacing every

ground plain term by its corresponding interpretation in ḡ0. Abusing of the notation, for

a first order formula α that mentions plain terms constructed from function symbols in

ḡ we write I |= α[ḡ 7→ ḡ0] to denote that I satisfies α with the interpretation ḡ0 for

the function symbols in ḡ. To continue with the proof, let I1 and I2 be source instances

such that (I1, I2) ∈ M ◦ M′, and assume that (I2, J
⋆) ∈ M. We need to show that

(I1, J
⋆) ∈ M. Since (I1, I2) ∈ M◦M′, there exists a target instance J such that (I1, J) ∈

M and (J, I2) ∈ M′. Thus, we have that (I1, J) |= ∃f̄
∧

Σ, and (J, I2) |= ∃f̄ ′
∧

Σ′.

Then we know that there exists an interpretation f̄ (I1,J) for the functions in f̄ , and an

159

interpretation f̄ ′(J,I2) for the functions in f̄ ′, such that (I1, J) |= (
∧

Σ)[f̄ 7→ f̄ (I1,J)] and

(J, I2) |= (
∧

Σ′)[f̄ ′ 7→ f̄ ′(J,I2)]. Moreover, since (I2, J
⋆) ∈ M we know that there exists

an interpretation f̄ (I2,J⋆) for the functions in f̄ ′, such that (I2, J
⋆) |= (

∧
Σ)[f̄ 7→ f̄ (I2,J⋆)].

We need to show that there exists an interpretation f̄ (I1,J⋆) for f̄ , such that (I1, J
⋆) |=

(
∧

Σ)[f̄ 7→ f̄ (I1,J⋆)]. We describe now how to construct f̄ (I1,J⋆) from f̄ (I1,J), f̄ ′(J,I2) and

f̄ (I2,J⋆). Let f be a k-ary function symbol in f̄ , and let ā be a k-tuple of constant values.

Define f (I1,J⋆)(ā) as follows:

• Assume that there exists a unique function symbol g1 in f̄ ′, such that

f (J,I2)
⋆ (f (I1,J)(ā)) = g

(J,I2)
1 (f (I1,J)(ā)). (5.10)

Then, if g1 is associated with the k-ary function symbol g from f̄ , we let

f (I1,J⋆)(ā) = g(I2,J⋆)

(
g

(J,I2)
1

(
f (I1,J)(ā)

)
, . . . , g

(J,I2)
k

(
f (I1,J)(ā)

))
.

• Otherwise, if there is no function symbol in f̄ ′ satisfying equality (5.10), or there

is more than one function symbol in f̄ ′ satisfying (5.10), then f (I1,J⋆)(ā) is an

arbitrary value.

We show next that, with f̄ (I1,J⋆) as defined above, it holds that (I1, J
⋆) |= (

∧
Σ)[f̄ 7→

f̄ (I1,J⋆)].

Let σ be a formula in Σ of the form ϕ(x̄) → R(t̄(x̄)), with R an n-ary relation symbol,

and assume that I1 |= ϕ(ā) for some tuple ā of constant values. We need to show that

J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)]. Now, since I1 |= ϕ(ā) and (I1, J) |= (
∧

Σ)[f̄ 7→ f̄ (I1,J)], we

know that J |= R(t̄(ā))[f̄ 7→ f̄ (I1,J)]. By construction of Σ′, there exists a formula σ′ in Σ′

of the form

R(ūt̄(x̄)) ∧ C(ū′) → α(ūt̄(x̄)),

that has been constructed from σ, with α(ūt̄(x̄)) the disjunction of the formulas in CR(t̄(x̄)).

Notice that, by the construction of ūt̄(x̄), we obtain that J satisfies R(ūt̄(x̄)) with the assign-

ment t̄(ā)[f̄ 7→ f̄ (I1,J)] to ūt̄(x̄). Let ā′ be the corresponding assignment to ū′ that derives

from the assignment of t̄(ā)[f̄ 7→ f̄ (I1,J)] to ūt̄(x̄). By the construction of σ′ and since ā

160

is a tuple of constant values, it is straightforward to see that C(ā′) holds. Then we have

that J |= R(t̄(ā))[f̄ 7→ f̄ (I1,J)] ∧ C(ā′). Moreover, since (J, I2) |= (
∧

Σ′)[f̄ ′ 7→ f̄ ′(J,I2)],

we obtain that I2 |= α(t̄(ā)[f̄ 7→ f̄ (I1,J)])[f̄ ′ 7→ f̄ ′(J,I2)]. From this last fact we conclude

that there exists a disjunction β(ūt̄(x̄)) of α(ūt̄(x̄)) of the form ∃ȳ
(

ψ(ȳ) ∧ ν(ūt̄(x̄), s̄(ȳ)) ∧

ω(ūt̄(x̄), s̄(ȳ))
)
, and a tuple b̄ of constant values such that

I2 |= ψ(b̄) ∧

(
ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄)) ∧ ω(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))

)
[f̄ ′ 7→ f̄ ′(J,I2)].

By the construction of the formula α(ūt̄(x̄)), we know that β(ūt̄(x̄)) belongs to the set

CR(t̄(x̄)). Thus, there exists a formula ψ(ȳ) → R(s̄(ȳ)) in Σ such that s̄(ȳ) subsumes

t̄(x̄). Notice that I2 |= ψ(b̄), and then since (I2, J
⋆) |= (

∧
Σ)[f̄ 7→ f̄ (I2,J⋆)], we know

that J⋆ |= R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)]. We show next that R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)] is equal to

R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)], and then we obtain that J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)], which is

exactly what we want to prove.

Let ūt̄(x̄) = (u1, . . . , un), t̄(x̄) = (t1(x̄), . . . , tn(x̄)), and s̄(ȳ) = (s1(ȳ), . . . , sn(ȳ)).

We show now that, for every i such that 1 ≤ i ≤ n, it holds that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] =

si(b̄)[f̄ 7→ f̄ (I2,J⋆)]. First, assume that si(ȳ) is a variable ym from ȳ, and bm the (constant)

value that corresponds to ym in the assignment of b̄ to ȳ. Notice that formula ν(ūt̄(x̄), s̄(ȳ))

contains then equality ui = ym. Then since ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds,

we obtain that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = bm. Thus, we have that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] =

si(b̄)[f̄ 7→ f̄ (I2,J⋆)]. Now suppose that s̄i(ȳ) is a non-atomic term g(ym1 , . . . , ymk
), with

g a k-ary function symbol in f̄ and (ym1 , . . . , ymk
) a k-tuple of variables from ȳ. Then

since s̄(ȳ) subsumes t̄(x̄), it holds that ti(x̄) is a non-atomic term f(xr1 , . . . , xrℓ
), with

f an ℓ-ary function symbol in f̄ and (xr1 , . . . , xrℓ
) an ℓ-tuple of variables from x̄. No-

tice that formula ν(ūt̄(x̄), s̄(ȳ)) contains, for every j such that 1 ≤ j ≤ k, the equality

ymj
= gj(ui) as a conjunction, with gj a unary function symbol in f̄ ′. We also know

that formula ν(t̄(ā)[f̄ 7→ f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds. Then for every j such that

1 ≤ j ≤ k, we have that bmj
=

(
gj(ti(ā)[f̄ 7→ f̄ (I1,J)])

)
[f̄ ′ 7→ f̄ ′(J,I2)]. Thus, since we are

161

assuming that ti(x̄) = f(xr1 , . . . , xrℓ
), we know that the following equalities hold:

bm1 = g
(J,I2)
1

(
f (I1,J)(ar1 , . . . , arℓ

)
)
,

...

bmk
= g

(J,I2)
k

(
f (I1,J)(ar1 , . . . , arℓ

)
)
. (5.11)

Now, focus on the formula ω(ūt̄(x̄), s̄(ȳ)). Since s̄i(ȳ) = g(ym1 , . . . , ymk
), we know

that ω(ūt̄(x̄), s̄(ȳ)) contains the equality f⋆(ui) = g1(ui), and the inequalities f⋆(ui) 6=

h1(ui), for every h in f̄ different from g. Then since we know that formula ω(t̄(ā)[f̄ 7→

f̄ (I1,J)], s̄(b̄))[f̄ ′ 7→ f̄ ′(J,I2)] holds, we obtain that

f (J,I2)
⋆

(
f (I1,J)(ar1 , . . . , arℓ

)
)

= g
(J,I2)
1

(
f (I1,J)(ar1 , . . . , arℓ

)
)
, (5.12)

and for every h in f̄ different from g,

f (J,I2)
⋆

(
f (I1,J)(ar1 , . . . , arℓ

)
)

6= h
(J,I2)
1

(
f (I1,J)(ar1 , . . . , arℓ

)
)
.

Notice then that g1 is the unique function in f̄ that satisfies (5.12). Then by the construction

of f̄ (I1,J⋆) we know that

f (I1,J⋆)(ar1 , . . . , arℓ
) =

g(I2,J⋆)

(
g

(J,I2)
1

(
f (I1,J)(ar1 , . . . , arℓ

)
)
, . . . , g

(J,I2)
k

(
f (I1,J)(ar1 , . . . , arℓ

)
))

.

By replacing the equalities in (5.11) in this last expression we obtain that

f (I1,J⋆)(ar1 , . . . , arℓ
) = g(I2,J⋆)(bm1 , . . . , bmk

).

Notice si(b̄) = g(bm1 , . . . , bmk
), and ti(ā) = f(ar1 , . . . , arℓ

), thus we have that ti(ā)[f̄ 7→

f̄ (I1,J⋆)] = si(b̄)[f̄ 7→ f̄ (I2,J⋆)]. We have shown that, for every i such that 1 ≤ i ≤ n, it holds

that ti(ā)[f̄ 7→ f̄ (I1,J⋆)] = si(b̄)[f̄ 7→ f̄ (I2,J⋆)]. Thus we have that R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)]

is equal to R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)]. Then since J⋆ |= R(s̄(b̄))[f̄ 7→ f̄ (I2,J⋆)] we know that

J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)].

162

What we have proved is that, for every formula ϕ(x̄) → R(t̄(x̄)) in Σ, if I1 |= ϕ(ā),

then J⋆ |= R(t̄(ā))[f̄ 7→ f̄ (I1,J⋆)]. Thus we have that (I1, J
⋆) |= (

∧
Σ)[f̄ 7→ f̄ (I1,J⋆)], and

then (I1, J
⋆) |= ∃f̄

∧
Σ. This concludes the proof of the theorem. ¤

Since mappings specified by plain SO-tgds are total and closed-down on the left, from

the results in Section 3.1.1, we obtain the following corollary.

COROLLARY 5.3.2. Let M be a mapping specified by a plain SO-tgd λ. If M has

a Fagin-inverse (quasi-inverse), then algorithm POLYSOINV(M) computes in polynomial

time a Fagin-inverse (quasi-inverse) of M.

It is important to notice that since every set of st-tgds can be transformed into a plain

SO-tgd in linear time, our algorithm can be used to compute Fagin-inverses, quasi-inverses,

and maximum recoveries for st-mappings specified by sets of st-tgds. This is the first

polynomial time algorithm capable of doing this. However, the gain in time complexity

comes with the price of a stronger and less manageable mapping language for expressing

inverses.

163

6. INFORMATION AND REDUNDANCY IN SCHEMA MAPPINGS

Schema mapping management is an area of active research, where there had been many

achievements in the recent years. In fact different proposals for several schema mapping

management operators are being studied and implemented. Nevertheless, little research

has being pursued towards understanding the fundamental notions that all these proposals

seem to share. In particular, abstract notions of information, redundancy and minimality are

part of almost every proposal for the semantics of schema mapping operators (Bernstein,

2003; Pottinger & Bernstein, 2003; Melnik, 2004; Fagin, 2007; Arenas, Pérez, & Riveros,

2009; Pottinger & Bernstein, 2008). The main goal of this chapter is to formalize and study

abstract notions of information and redundancy for schema mappings.

6.1. Transferring Source Information: The Order ¹S

In a data exchange scenario, a schema mapping is used to transfer information from a

source schema to a target schema. Thus, it is natural to ask how much source information a

mapping transfers and, in particular, if two mappings are used to transfer information from

the same source schema, it is natural to ask whether one of them transfers more source

information than the other. The latter question is the main motivation of this section.

The problem of measuring the amount of source information transferred by a mapping

has been studied in the data exchange scenario (Fagin et al., 2009) and we have also im-

plicitly discussed this issue in Chapters 3 and 4. In fact, the issue of developing an order

for comparing the amount of source information transferred by two mappings has been ex-

plicitly considered by Fagin et al. (2009). However, we follow here a different approach to

develop such an order, as we first identity five natural conditions that such an order should

satisfy, and then we consider the strictest order according to these conditions.

From now on, we use symbol ¹ to denote an order between mappings that transfer

information from the same schema. That is, if M1 ¹ M2, then we assume that there

exists a schema R such that both dom(M1) and dom(M2) are contained in Inst(R). The

following is the first condition that we impose on ¹.

164

(C1) M1 ¹ M2 implies dom(M1) ⊆ dom(M2).

If I is an instance in the domain of M1, then M1 provides some information about I as it

gives a collection of target instances that are considered to be valid translations of I . Thus,

if M2 gives as much source information as M1, then I should also be in the domain of

M2, as stated by condition (C1).

As usual for any notion of preference, ¹ is also asked to be reflexive and transitive:

(C2) M ¹ M,

(C3) M1 ¹ M2 and M2 ¹ M3 implies M1 ¹ M3.

Notice that we do not ask relation ¹ to be antisymmetric, as it is usually the case that the

same information can be transferred in different ways. Thus, strictly speaking, ¹ is not an

order but a preorder.

Furthermore, let IdR be the identity schema mapping for a schema R, that is, IdR =

{(I, I) | I ∈ Inst(R)}. This mapping transfers exactly the information that is contained

in the instances of R and, thus, any other mapping that transfers information from R could

not be more informative than IdR. This gives rise to the fourth condition for the desired

order:

(C4) if M is a mapping from a schema R to a schema R1, then M ¹ IdR.

Finally, our last condition accounts for the information that is transferred through a com-

position of schema mappings. Assume that a mapping M transfers information from a

schema R to a schema R1 and that M1, M2 are mappings that transfer information from

R1. If M2 maps as much source information as M1, then given that M transfers informa-

tion to schema R1, one would expect that M◦M2 transfers as much source information

as M◦M1. This is stated in our last condition:

(C5) let M be a mapping from a schema R to a schema R1, and M1, M2 mappings

from R1 to schemas R2 and R3, respectively. If M1 ¹ M2, then M◦M1 ¹

M◦M2.

165

Now that we have identified five conditions that the desired order should satisfy, the first

question to answer is whether there exists any order that meet them. In the following para-

graphs, we give a positive answer to this question by introducing a relation ¹S. Moreover,

we also show that ¹S is the strictest order that satisfy the above conditions.

DEFINITION 6.1.1. (Order ¹S) Let R, R1, R2 be schemas, and M1, M2 mappings

from R to R1 and R to R2, respectively. Then M1 ¹S M2 if there exists a mapping N

from R2 to R1 such that M1 = M2 ◦ N .

Intuitively, the preceding definition says that M1 ¹S M2 if M2 transfers enough

information from R to be able to reconstruct the information transferred by M1.

Example 6.1.2. Let M1 and M2 be mappings specified by dependencies S(x, y) → T (x)

and S(x, y) → U(y, x), respectively. Intuitively, M2 maps more information than M1 as

all the source information is stored in the target according to mapping M2. In fact, in this

case we have that M1 ¹S M2 since M1 = M2 ◦ N , where N is a mapping specified by

dependency U(x, y) → T (y). In this case, it is also possible to prove that M2 6¹S M1.

On the other hand, if M3 is a mapping specified by dependency S(x, y) → V (y), then

one would expect M1 and M3 to be incomparable, as these mappings extract information

from different columns of table S. In fact, in this case it is possible to prove that M1 6¹S

M3 and M3 6¹S M1. ¤

As a corollary of the fact that the composition is associative, we obtain that ¹S satisfies the

above conditions:

PROPOSITION 6.1.3. The order ¹S satisfies (C1), (C2), (C3), (C4) and (C5).

The following proposition shows the somewhat surprising result that such a simple

relation is the strictest order that satisfies the above conditions.

PROPOSITION 6.1.4. Assume that an order ¹ satisfies (C1), (C2), (C3), (C4) and (C5).

Then for every pair of mappings M1 and M2, M1 ¹S M2 implies that M1 ¹ M2.

166

PROOF. Let ¹ be an order that satisfies (C1), (C2), (C3), (C4) and (C5). Furthermore,

assume that M1 and M2 are mappings from a schema R to schemas R1 and R2. respec-

tively. By definition of ¹S, we know that there exists a mapping N from R2 to R1 such

that M1 = M2 ◦ N . Then by (C2) we have that:

M1 ¹ M2 ◦ N . (6.1)

But not only that, by (C4) we have that N ¹ IdR2 and, therefore, we conclude by (C5)

that:

M2 ◦ N ¹ M2 ◦ IdR2 . (6.2)

Thus, given that M2 ◦ IdR2 = M2, we have by (C2) that M2 ◦ IdR2 ¹ M2 and, hence,

from (6.2) and (C3), it holds that:

M2 ◦ N ¹ M2. (6.3)

Finally, from (6.1), (6.3) and (C3), we conclude that M1 ¹ M2, which was to be shown.

¤

In our investigation, we use ¹S to compare the amount of information transferred by

two mappings from the same source schema. In particular, if M1 ¹S M2 and M2 ¹S M1,

we say that M1 and M2 transfer the same amount of source information, which is denoted

by M1 ≡S M2.

6.1.1. Comparison with other notions of order

Fagin et al. (2009) propose to use some notions of inversion of schema mappings (Fagin,

2007; Arenas, Pérez, & Riveros, 2009; Fagin et al., 2009) to measure the information loss

of a mapping. Loosely speaking, the more invertible a mapping is, the less information the

mapping loses (Fagin et al., 2009). In this section, we contrast and compare Fagin et al’s

approach with the order ¹S.

167

In order to give some intuition behind the definitions presented by Fagin et al. (2009),

we first introduce an order ¹R that is based on the notion of maximum recovery introduced

in Chapter 3. By the definition of maximum recovery, it is easy to see that if M⋆
1 and M⋆

2

are both maximum recoveries of M, then M ◦ M⋆
1 = M ◦ M⋆

2. Thus, the composition

of a mapping M with any of its maximum recoveries depends only on M. In fact, from

Proposition 3.1.6 (part (3)) we can conclude that if M⋆ is a maximum recovery of M,

then the composition M ◦ M⋆ is equal to the set {(I,K) | SolM(K) ⊆ SolM(I)}. The

definition of order ¹R is based on this property. More precisely, a mapping M2 is said to be

less lossy than a mapping M1 if for every pair of instances I,K, it holds that SolM1(I) ⊆

SolM1(K) whenever SolM2(I) ⊆ SolM2(K) holds (Fagin et al., 2009). Let ¹R denote the

order induced by this notion, that is, M1 ¹R M2 if and only if M2 is less lossy than M1.

It is important to notice that if mappings M1 and M2 have maximum recoveries, say

M⋆
1 and M⋆

2, respectively, then M1 ¹R M2 if and only if IdR ⊆ M2 ◦M
⋆
2 ⊆ M1 ◦M

⋆
1.

Thus, M1 ¹R M2 if the composition of M2 with its maximum recovery is more similar

to the identity mapping than the composition of M1 with its maximum recovery.

As a first result, we prove that ¹R does not satisfy all the conditions identified in this

section for a natural order, thus showing that ¹S can be considered as a better alternative

than ¹R to compare the information transferred by schema mappings. In particular, ¹R

does not satisfy (C5).

PROPOSITION 6.1.5. There exist mappings M, M1 and M2 such that M1 ¹R M2

and M◦M1 6¹R M◦M2.

PROOF. Let R = {A(·), B(·)}, S = {F (·), G(·), H(·)}, T1 = {F ′(·), G′(·), H ′(·)}

and T2 = {R(·), S(·), T (·)}. Consider the mapping M from R to S given by:

A(x) → F (x) ∨ G(x)

B(x) → F (x) ∨ H(x)

168

Let M1 be the mapping from S to T1 given by:

F (x) → F ′(x)

G(x) → G′(x)

H(x) → H ′(x)

Let M2 be the mapping from S to T2 given by:

F (x) → R(x) ∨ S(x)

G(x) → S(x) ∨ T (x)

H(x) → T (x) ∨ R(x)

It was shown by Arenas, Pérez, and Riveros (2009, Proposition 6.6 (2)) that M2 satisfies

the following property. For every I,K if SolM2(I) ⊆ SolM2(K) then K ⊆ I . From this,

it is straightforward to prove that SolM1(I) ⊆ SolM1(K), and thus M1 ¹R M2. We prove

now that M◦M1 6¹R M◦M2.

Consider the instances I such that AI = {1} and BI = ∅ and K such that AK = ∅ and

BK = {1}. We show next that SolM◦M2(I) = SolM◦M2(K) = {J ∈ Inst(T2) | 1 ∈ RJ

or 1 ∈ SJ or 1 ∈ T J}. First, it is clear that if (I, J) ∈ M ◦M2 then 1 ∈ RJ or 1 ∈ SJ or

1 ∈ T J , and similarly if (K, J) ∈ M◦M2 then 1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J . Now assume

that J ∈ Inst(T2) and 1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J . Assume first that 1 ∈ RJ then consider

the instance L such that FL = {1}, GL = HL = ∅. Then we have that (I, L) ∈ M

and (L, J) ∈ M2 which implies that (I, J) ∈ M ◦ M2. Similarly, if 1 ∈ SJ then we

consider the instance L such that FL = {1}, GL = HL = ∅ to obtain that (I, L) ∈ M

and (L, J) ∈ M2. If 1 ∈ T J then we consider the instance L such that GL = {1} and

FL = HL = ∅. Then, again we obtain that (I, L) ∈ M and (L, J) ∈ M2, and thus,

(I, J) ∈ M ◦M2. By symmetry we can show that if J ∈ Inst(T2) and 1 ∈ RJ or 1 ∈ SJ

or 1 ∈ T J then (K, J) ∈ M◦M2. We have shown that SolM◦M2(I) = SolM◦M2(K). Now

we consider M1. Notice that the instance J such that G′J = {1} and F ′J = H ′J = ∅ is

such that (I, J) ∈ M◦M1 but (K, J) /∈ M◦M1, and then SolM◦M1(I) 6⊆ SolM◦M1(K).

169

Thus we have that SolM◦M2(I) ⊆ SolM◦M2(K) but SolM◦M1(I) 6⊆ SolM◦M1(K) which

implies that M◦M1 6¹R M◦M2. ¤

Fagin et al. (2009) were interested in studying mappings with null values in source

and target instances. In particular, for a mapping M of this type, Fagin et al. define a

mapping e(M) that extends M by giving a semantics to the nulls that distinguish them

from the constants (see Definition 3.1.13 for the formalization of e(M)). The authors

then introduce a notion of information loss of a schema mapping M by considering the

extension e(M) of M. More precisely, if M1 and M2 are two mappings containing null

values in source and target instances, then M2 is said to be less lossy than M1 if for every

pair of instances I,K, it holds that Sole(M1)(I) ⊆ Sole(M1)(K) whenever Sole(M2)(I) ⊆

Sole(M2)(K) holds (Fagin et al., 2009). Let ¹E be the order induced by this notion. Notice

that ¹E is tightly connected with ¹R; in fact, it holds that M1 ¹E M2 if and only if

e(M1) ¹R e(M2). The following proposition shows that as for the case of ¹R, the order

¹E does not satisfy (C5).

PROPOSITION 6.1.6. There exist mappings M, M1 and M2 such that M, M1 and

M2 contain null values in source and target instances, M1 ¹E M2 and M ◦ M1 6¹E

M◦M2.

PROOF. In this proof we suppose that every mapping M contains null values in the

source. In this scenario, recall that the extended semantics of a mapping M, denoted

by e(M), is the mapping e(M) =→ ◦M◦ →, where →= {(I1, I2) | I1 → I2} (see

Definition 3.1.13 for more details on the extended semantics for mappings).

Let R = {A(·), B(·)}, S = {F (·), G(·), H(·)}, T1 = {F ′(·), G′(·), H ′(·)} and T2 =

{R(·), S(·), T (·)}. Consider the mapping M from R to S given by:

A(x) → F (x) ∨ G(x)

B(x) → F (x) ∨ H(x)

170

Let M1 be the mapping from S to T1 given by:

F (x) → F ′(x)

G(x) → G′(x)

H(x) → H ′(x)

Let M2 be the mapping from S to T2 given by:

F (x) → R(x) ∨ S(x)

G(x) → S(x) ∨ T (x)

H(x) → T (x) ∨ R(x)

First of all, we will show that for every I,K if Sole(M2)(I) ⊆ Sole(M2)(K) then K →

I . From this, it is straightforward to prove that Sole(M1)(I) ⊆ Sole(M1)(K), and thus

M1 ¹E M2. So, let I and K be source instances. For the sake of contradiction, assume

Sole(M2)(I) ⊆ Sole(M2)(K) and K 6→ I . Then either FK 6→ F I , or GK 6→ GI , or

HK 6→ HI . Assume first that FK 6→ F I . Then there exists an element a ∈ C such that

a ∈ FK but a /∈ F I . If not, then F I = ∅ and we have that Sole(M2)(I) 6⊆ Sole(M2)(K)

which is a contradiction. So, let a ∈ C be an element such that a ∈ FK but a /∈ F I and J

a solution for I such that RJ = F I , SJ = ∅ and T J = GI ∪ HI . Now, for every solution

J ′ ∈ Sole(M2)(K), we have that a ∈ RJ ′
or a ∈ SJ ′

. Thus, given that a /∈ RJ and SJ = ∅,

we obtain that J /∈ Sole(M2)(K), and then Sole(M2)(I) 6⊆ Sole(M2)(K), which contradicts

our initial assumption. By using a similar argument, we can show that if GK 6→ GI then

Sole(M2)(I) 6⊆ Sole(M2)(K), and if HK 6→ HI then Sole(M2)(K) 6⊆ Sole(M2)(I), which

also lead to a contradiction.

We prove now that M◦M1 6¹E M◦M2. Consider the instances I such that AI = {1}

and BI = ∅ and K such that AK = ∅ and BK = {1}. We show next that Sole(M◦M2)(I) =

Sole(M◦M2)(K) = {J ∈ Inst(T2) | 1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J}. First, it is clear that

if (I, J) ∈ e(M◦M2) then 1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J , and similarly if (K, J) ∈

e(M ◦ M2) then 1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J . Now assume that J ∈ Inst(T2) and

171

1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J . Assume first that 1 ∈ RJ then consider the instance L such

that FL = {1}, GL = HL = ∅. Then we have that (I, L) ∈ M and (L, J) ∈ M2 which

implies that (I, J) ∈ e(M◦M2). Similarly, if 1 ∈ SJ then we consider the instance L such

that FL = {1}, GL = HL = ∅ to obtain that (I, L) ∈ M and (L, J) ∈ M2. If 1 ∈ T J then

we consider the instance L such that GL = {1} and FL = HL = ∅. Then, again we obtain

that (I, L) ∈ M and (L, J) ∈ M2, and thus, (I, J) ∈ e(M◦M2). By symmetry we can

show that if J ∈ Inst(T2) and 1 ∈ RJ or 1 ∈ SJ or 1 ∈ T J then (K, J) ∈ e(M◦M2).

We have shown that Sole(M◦M2)(I) = Sole(M◦M2)(K). Now we consider M1. Notice that

the instance J such that G′J = {1} and F ′J = H ′J = ∅ is such that (I, J) ∈ e(M◦M1)

but (K, J) /∈ e(M◦M1), and then Sole(M◦M1)(I) 6⊆ Sole(M◦M1)(K). Thus we have that

Sole(M◦M2)(I) ⊆ Sole(M◦M2)(K) but Sole(M◦M1)(I) 6⊆ Sole(M◦M1)(K) which implies that

M◦M1 6¹E M◦M2. ¤

No restrictions on mappings were imposed when defining the order ¹S. In particular,

¹S can be used to compare mappings containing null values in source and target instances.

Thus, Proposition 6.1.6 gives evidence that ¹S is a better alternative than ¹E to compare

the information transferred by schema mappings.

It should be pointed out that Fagin et al. (2009) introduce the order ¹E but do not

study its fundamental properties. Interestingly, the following result shows that ¹S, ¹R and

¹E coincide for the class of st-mappings (mappings not containing null values in source

instances) that are specified by st-tgds. Thus, the machinery developed in this paper for ¹S

can also be used for ¹E and ¹R in this case.

PROPOSITION 6.1.7. Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2) be st-mappings,

where Σ1, Σ2 are sets of st-tgds. Then the following statements are equivalent:

(1) M1 ¹S M2.

(2) M1 ¹R M2.

(3) M1 ¹E M2.

172

Notice that by the results in Section 3.1.1 we know that every st-mappings specified by

st-tgds has a maximum recovery. Moreover, it is easy to prove that if M is an st-mapping

specified by a set of st-tgds, then Sole(M)(I) = SolM(I) for every I (Fagin et al., 2009).

Thus, the proof of the above proposition follows from the next result.

PROPOSITION 6.1.8. Let M1 and M2 be mappings that have maximum recovery such

that dom(M1) ⊆ dom(M2). The following statements are equivalent.

(1) M1 ¹S M2.

(2) For every pair of instances I,K, if SolM2(I) ⊆ SolM2(K) then SolM1(I) ⊆

SolM1(K).

PROOF. We prove first that (1) ⇒ (2). Assume that there exists a mapping N such

that M1 = M2 ◦ N . Then suppose that SolM2(I) ⊆ SolM2(K) for some instance I,K.

If we compose M2 and N , then we have that SolM2◦N (I) ⊆ SolM2◦N (K). Furthermore,

given that M1 = M2 ◦ N , this implies that SolM1(I) ⊆ SolM1(K).

We show now that (2) ⇒ (1). Assume that for every pair of instances I,K, if

SolM2(I) ⊆ SolM2(K) then SolM1(I) ⊆ SolM1(K). We need to show that there ex-

ists a mapping N such that M1 = M2 ◦ N . Given that M2 has maximum recovery, let

M⋆
2 be a maximum recovery of M2. We claim that M1 = M2 ◦ (M⋆

2 ◦M1).

Since M⋆
2 is a recovery of M2, then it holds that (I, I) ∈ M2 ◦M

⋆
2 for every instance

I ∈ dom(M2). By hypothesis, we know that dom(M1) ⊆ dom(M2) and then, for every

pair (I, J) ∈ M1 we have that (I, J) ∈ M2 ◦ M⋆
2 ◦ M1. This implies that M1 ⊆

M2 ◦ (M⋆
2 ◦M1).

So, it only left to show that M2◦(M⋆
2◦M1) ⊆ M1. Given that M⋆

2 is a maximum re-

covery of M2, we know by Proposition 3.1.6 that for every pair of instances I and K, if I ∈

SolM2◦M⋆
2
(K) then SolM2(I) ⊆ SolM2(K). By hypothesis, we know that if SolM2(I) ⊆

SolM2(K) then SolM1(I) ⊆ SolM1(K). Thus, for every instance I ∈ SolM2◦M⋆
2
(K) we

have that SolM1(I) ⊆ SolM1(K). We conclude that SolM2◦M⋆
2◦M1(K) ⊆ SolM1(K) for

every instance K, that is, M2 ◦ (M⋆
2 ◦M1) ⊆ M1. This was to be shown. ¤

173

6.2. Fundamental Properties of the Order ¹S

In this section, we provide a characterization of the order ¹S that gives evidence of why

it is appropriate to compare the amount of source information being transferred by two

mappings. Furthermore, we use this characterization to provide an algorithm that given st-

mappings M1 and M2 specified by CQ 6=-TO-CQ dependencies and such that M1 ¹S M2,

computes a mapping N such that M1 = M2 ◦ N .

6.2.1. Characterizing the order ¹S

We present a characterization of the order ¹S for mappings given by FO-TO-CQ dependen-

cies, that is based on query rewriting. Given a mapping M from a schema S to a schema

T and a query Q over S, we say that Q is target rewritable under M if there exists a query

Q′ over T which is a target rewriting of Q under M, that is, for every instance I of S, it

holds that Q(I) = certainM(Q′, I).

Example 6.2.1. Let S = {A(·, ·), B(·)} and T = {P (·, ·), T (·)}, and let M be the st-

mapping from S to T specified by dependencies

A(x, y) → P (x, y),

B(x) → P (x, x),

A(x, x) → R(x).

Consider the query Q1(x, y) over S given by formula A(x, y), and consider the following

query Q′
1(x, y) in UCQ=,6= over T:

(P (x, y) ∧ x 6= y) ∨ (R(x) ∧ x = y).

It can be shown that for every instance I of S it holds that Q1(I) = certainM(Q′
1, I),

and thus Q′
1 is a target rewriting of Q1 under M. (It can also be shown that equalities,

inequalities and disjunctions are strictly necessary to specify a target rewriting of Q1 under

M.) Thus, we have then that Q1(x, y) is target rewritable under M. On the other hand,

the Boolean query Q2 given by ∃x B(x), is not target rewritable under M. One might be

174

tempted to consider the query Q′
2 given by ∃x P (x, x) as candidate rewriting. Nevertheless,

Q′
2 is not a target rewriting of Q2 since, for example, for the instance I = {A(1, 1)} we

have that Q2(I) = false while Q′
2(I) = true. ¤

Notice that, intuitively, a query Q is target rewritable under a mapping M if M trans-

fers enough source information to be able to answer Q by using only the target data. Thus,

the amount of source information transferred by two mappings can be compared in terms

of the queries that are target rewritable under them. In fact, as the following result shows,

this idea can be used to characterize the order ¹S.

THEOREM 6.2.2. Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2) be st-mappings,

where Σ1, Σ2 are sets of FO-TO-CQ dependencies. Then the following statements are

equivalent:

(1) M1 ¹S M2.

(2) For every query Q over S, if Q is target rewritable under M1, then Q is target

rewritable under M2.

It is important to notice that the preceding theorem considers the class of all queries, as

defined in Section 2.2. Thus, Theorem 6.2.2 gives strong evidence in favor of the order ¹S.

To show the theorem we need to introduce some terminology and state two intermediate

results.

Given instances I1 and I2 over a schema S and a set C = {Q1, . . . , Qn} of queries over

S, we use C(I1) ⊆ C(I2) to denote that Qi(I1) ⊆ Qi(I2) for every i ∈ {1, . . . , n}. Let Q be

an arbitrary query over S. We say that C strongly determines Q, and write C Z⇒ Q, when

for every pair of instances I1 and I2 of S if C(I1) ⊆ C(I2) then Q(I1) ⊆ Q(I2). The notion

of strong determination is closely related with the notion of determination of a query given

a set of views introduced by Segoufin and Vianu (2005) (see the proof of Lemma 6.2.3

where our notion of strong determinacy is formulated in terms of views and quey rewriting

using views).

175

We now use strong determination to characterize the notion of target rewritability. Let

M = (S,T, Σ) be an st-mapping where Σ is a set of FO-TO-CQ st-dependencies. Con-

sider the set of queries CM constructed in Lemma 4.2.3. That is, CM is a set of queries

such that for every dependency of the form ϕ(x̄) → ψ(x̄) in Σ the set CM contains a query

χ(x̄) that is a rewriting of ψ(x̄) over the source schema S. Notice that such a rewriting

always exists and can be expressed as an FO query (see Lemma 3.3.1). Furthermore, if Σ

is a set of st-tgds, then the rewriting of ψ(x̄) over the source can be expressed as a query in

UCQ= (see Lemma 3.3.3). The next result shows that strong determination can be used to

characterize target rewritablity of queries.

LEMMA 6.2.3. Let M = (S,T, Σ) be an st-mapping where Σ is a set of FO-TO-CQ

st-dependencies, and Q an arbitrary query over S. Then Q is target rewritable under M

iff CM Z⇒ Q.

The proof this lemma is very involved and uses some additional notions and techniques

from query rewriting using views. This proof can be found in Appendix A.2. Before stating

the next lemma we need to introduce some additional notation. For sets of queries C1 and

C2 we say that C1 strongly determines C2, and write C1 Z⇒ C2, when for every query Q ∈ C2

it holds that C1 Z⇒ Q.

LEMMA 6.2.4. Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2) be st-mappings where

Σ1 and Σ2 are sets of FO-TO-CQ st-dependencies. Then M1 ¹S M2 iff CM2 Z⇒ CM1 .

Lemma 6.2.4 follows from Lemma 4.2.3 and the characterization of the order ¹S

proved in Proposition 6.1.8. The proof can be found in Appendix A.2. By using Lem-

mas 6.2.3 and 6.2.4, we can provide a very simple proof for Theorem 6.2.2.

PROOF OF THEOREM 6.2.2. Assume first that M1 ¹S M2 and let Q be a target-

rewritable query under M1. We need to prove that Q is target rewritable under M2. Since

M1 ¹S M2 from Lemma 6.2.4 we know that CM2 Z⇒ CM1 . Now, if Q is target-rewritable

query under M1 from Lemma 6.2.3 we know that CM1 Z⇒ Q. Finally, since CM2 Z⇒ CM1

176

and CM1 Z⇒ Q we have that CM2 Z⇒ Q and then applying Lemma 6.2.3 again we obtain

that Q is target rewritable under M2.

Assume now that every target-rewritable query under M1 is also target rewritable un-

der M2. Applying Lemma 6.2.3 we obtain that for every source query Q, if CM1 Z⇒ Q then

CM2 Z⇒ Q. Finally, since CM1 Z⇒ Q for every query Q ∈ CM1 , we have that CM2 Z⇒ Q

for every Q ∈ CM1 which implies that CM2 Z⇒ CM1 and then from Lemma 6.2.4 we obtain

that M1 ¹S M2. ¤

6.2.2. Fundamental algorithmic issues for the order ¹S

Some algorithmic issues related to the order ¹S play a key role in the development of

algorithms for some metadata management operators. The main algorithmic issue that

we consider in this section is the problem of constructing a mapping N such that M1 =

M2 ◦ N , whenever M1 ¹S M2. Next, we present an algorithm that solves this problem

for CQ 6=-TO-CQ dependencies, which uses the following terminology.

Let M be a mapping from S to T and Q a query that is target rewritable under M.

Recall that if Q′ is a query such that Q(I) = certainM(Q′, I) holds for every instance I ,

then we say that Q′ is a target rewriting for Q under M. Correspondingly, we also say that

Q is a source rewriting of Q′.

Let M be an st-mapping from S to T specified by FO-TO-CQ dependencies. We know

from Lemma 3.3.1 that it is always possible to compute the source rewriting of a conjunc-

tive query Q′ over T, that is, there exists a procedure QUERYREWRITING that, given such

a mapping M and a query Q′ in CQ over T, computes a query Q in FO over S that is

a source rewriting of Q′. In particular, if the input mapping is specified by CQ 6=-TO-CQ

dependencies, then the output of the procedure is a query Q in UCQ=,6=. We state this

result in the following lemma (the proof follows directly from the proof of Lemma 3.3.1).

LEMMA 6.2.5. Let M = (S,T, Σ) be an st-mapping with Σ a set of CQ 6=-TO-CQ

dependencies, and Q a conjunctive query over T. Algorithm QUERYREWRITING(M, Q)

in Lemma 3.3.1 has as output a query Q′ in UCQ=,6= that is a source rewriting of Q.

177

For the class of mappings specified by CQ 6=-TO-CQ dependencies, target rewritings

can also be computed. More precisely, it follows from the proof of Theorem 6.2.2 that

there exists a procedure TARGETREWRITING that, given a mapping M specified by a set of

CQ 6=-TO-CQ dependencies and a target rewritable query Q in UCQ=,6= over S, computes a

query in UCQ=,6=,C that is a target rewriting of Q. We formalize this result in the following

Lemma (the proof can be found in Appendix A.2).

LEMMA 6.2.6. There exists an algorithm TARGETREWRITING that given an st-mapping

M = (S,T, Σ), with Σ a set of CQ 6=-TO-CQ dependencies, and a query Q in UCQ=,6=

over S that is target rewritable under M, computes a query Q′ in UCQ=,6=,C over T that

is a target rewriting of Q. The query Q′ is such that every inequality occurring in Q′ is

between variables that are under predicate C(·).

The following algorithm uses the procedures mentioned in Lemmas 6.2.5 and 6.2.6 as

black boxes.

Algorithm COMPUTEORDER(M1,M2)

Input: st-mappings M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2), where Σ1, Σ2 are sets of

CQ 6=-TO-CQ dependencies and M1 ¹S M2.

Output: A mapping N = (T2,T1, Σ) such that M1 = M2 ◦ N , where Σ is a set of

CQ 6=,C-TO-CQ dependencies.

(1) Construct a set Σ′ of dependencies as follows. Start with Σ′ = ∅. Then, for every

dependency ϕ(x̄) → ψ(x̄) ∈ Σ1 repeat the following:

(a) Use algorithm QUERYREWRITING(M1, ψ(x̄)) to compute a formula α(x̄)

in UCQ=,6= over S that is a source rewriting of ψ(x̄) under M1.

(b) Use algorithm TARGETREWRITING(M2, α(x̄)) to compute a formula β(x̄)

in UCQ=,6=,C over T2 that is a target rewriting of α(x̄) under M2.

(c) For every disjunct γ(x̄) of β(x̄), add to Σ′ the formula

γ(x̄) ∧ C(x̄) → ψ(x̄).

178

(2) Let Σ be the set obtained from Σ′ by eliminating the equalities by using variable

replacements.

(3) Return the mapping N = (T2,T1, Σ)

¤

It is important to notice that we need M1 ¹S M2 as precondition for the algorithm,

otherwise we are not guaranteed to find a target rewriting of α(x̄) in Step 1 (b). Notice that

α(x̄) is a source rewriting of ψ(x̄) under M1, thus we know that α(x̄) is target rewritable

under M1 (since ψ(x̄) is a target rewriting of α(x̄)). Then since M1 ¹S M2, from Theo-

rem 6.2.2 we know that α(x̄) is also target rewritable under M2.

The following proposition shows that the algorithm is correct.

THEOREM 6.2.7. COMPUTEORDER(M1,M2) returns a mapping N specified by a

set of CQ 6=,C-TO-CQ dependencies such that M1 = M2 ◦ N .

PROOF. Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2) st-mappings with Σ1 and Σ2

sets of CQ 6=-TO-CQ dependencies. Assume that M1 ¹S M2 and let N = (T2,T1, Σ) be

the output of COMPUTEORDER(M1,M2). We need to prove that for every I ∈ Inst(S)

and J ∈ Inst(T1) we have that (I, J) |= Σ1 if and only if there exists K ∈ Inst(T2) such

that (I,K) |= Σ2 and (K, J) |= Σ.

(⇐) Assume that there exists K ∈ Inst(T2) such that (I,K) |= Σ2 and (K, J) |= Σ. Let

ϕ(x̄) → ψ(x̄) be a dependency in Σ and assume that I |= ϕ(ā) for some tuple ā of constant

values. We need to prove that J |= ψ(ā). Let α(x̄) be the source rewriting of ψ(x̄) under

M1 computed in Step 1 (a). Since I |= ϕ(ā) we know that for every L ∈ SolM1(I) it holds

that L |= ψ(ā), and thus I |= α(ā). Now, let β(x̄) be the target rewriting of α(x̄) under M2

computed in Step 1 (b). Notice that we are assuming that (I,K) |= Σ2. Therefore, since

I |= α(ā) and β(x̄) is a rewriting of α(x̄), we obtain that K |= β(ā). Finally, we know that

Σ contains a dependency of the form γ(x̄)∧C(x̄) → ψ(x̄) where γ(x̄) is a disjunct in β(x̄).

Thus, since K |= β(ā), ā is a tuple of constants, and we are assuming that (K, J) |= Σ, we

obtain that J |= ψ(ā), which was to be shown.

179

(⇒) Assume that (I, J) |= Σ1. We need to show that there exists an instance K ∈ Inst(T2)

such that (I,K) |= Σ2 and (K, J) |= Σ. We show next that (I, chaseΣ2(I)) |= Σ2

and (chaseΣ2(I), J) |= Σ. The first property is trivial so we just need to prove that

(chaseΣ2(I), J) |= Σ. Then let γ(x̄)∧C(x̄) → ψ(x̄) be a dependency in Σ where γ(x̄) is a

disjunct in the query β(x̄) computed in Step 1 (b). Assume that chaseΣ2(I) |= γ(ā)∧C(ā)

for some tuple ā. We need to show that J |= ψ(ā). Now, since γ(x̄) is a conjunctive query

with equalities and inequalities, every inequality is between variables under predicate C(·),

and ā is a tuple of constants, by the properties of the chase (see (Arenas, Barceló, & Reutter,

2009)) we know that for every L ∈ SolM2(I) we have that L |= γ(ā) and thus L |= β(ā).

Let α(x̄) be the query computed in Step 1 (a). Since β(x̄) is a target rewriting of α(x̄)

under M2 and L |= β(ā) for every L ∈ SolM2(I), we have that I |= α(ā). Finally, since

α(x̄) is a source rewriting of ψ(x̄) under M1 and (I, J) |= Σ1 we obtain that J |= ψ(ā),

which was to be shown. ¤

6.3. Two Applications of ¹S in Data Exchange

The issue of providing foundations for metadata management has appeared in different

contexts. In particular, in the data exchange context, the schema evolution problem has

been a driving force for the development of the composition and inverse operators (Bern-

stein, 2003; Bernstein & Melnik, 2007; Kolaitis, 2005; Fagin et al., 2011). In this section,

we show the potential of the order ¹S for providing foundations for metadata management,

as the machinery developed in the previous sections can be used as a uniform framework

to study the inverse operator and the schema evolution problem.

6.3.1. Inverting schema mappings

In this section, we focus on the definition of the inverse operator given by Fagin (2007),

and we show that this operator can be defined in terms of the order ¹S. Interestingly,

this characterization can be used to extend, and provide simpler proofs of, some of the

fundamental results about this operator.

180

We start by recalling the definition of inverse given by Fagin (2007). For a ground

schema R, let R̂ be the schema {R̂ | R ∈ R}, and ÎdR = (R, R̂, Σ) be an identity

mapping, where Σ contains a dependency of the form R(x1, . . . , xk) → R̂(x1, . . . , xk),

for every k-ary predicate R ∈ R. Then given M from R to R1 and M′ from R1 to R̂,

mapping M′ is said to be a Fagin-inverse of mapping M if M◦M′ = ÎdR (Fagin, 2007)1.

The following theorem shows that the notion of Fagin-inverse can be defined in terms

of the order ¹S for the class of mappings that are total and closed-down on the left.

THEOREM 6.3.1. Let M be a mapping from a ground schema R to a schema R1 that

is total and closed-down on the left. Then the following statements are equivalent.

(1) M is Fagin-invertible.

(2) M is ¹S-maximal in the class of total and closed-down on the left mappings.

(3) ÎdR ¹S M.

PROOF. (1) ⇒ (3): Given that M is Fagin-invertible, there exists a mapping N from

R1 to R̂ such that M◦N = ÎdR. Thus, we have that ÎdR ¹S M.

(3) ⇒ (2): Assume that ÎdR ¹S M. To prove that M is ¹S-maximal in the class of

total and closed-down on the left mappings, we show that for every M′ in this class such

that M ¹S M′, it holds that M′ ¹S M. Given that M ¹S M′, we know that M′ is a

mapping from R to some schema R2. Then define a mapping N from R̂ to R as follows.

For every instance I of R, let Î be an instance of R̂ defined as R̂
bI = RI , for every R ∈ R,

and then let N be defined as {(Î , I) | I ∈ Inst(R)}. It is straightforward to prove that

ÎdR ◦ N ◦ M′ = M′. Thus, we have that M′ ¹S ÎdR, from which we conclude that

M′ ¹S M since ÎdR ¹S M.

(2) ⇒ (1): Let N be a mapping defined as in the previous paragraph. Then given

that M is closed-down on the left, we have that M = ÎdR ◦ N ◦ M and, therefore,

1The definition of Fagin-inverse given in this section is a reformulation of the one given in Section 2.5 by

using st-tgds to define the identity mapping Id (used in Definition 2.5.1). Just notice that ÎdR = {(I1, Î2) |

(I1, I2) ∈ Inst(R) × Inst(R) and I1 ⊆ I2}, where Î2 is the instance of R̂ obtained from I2 by replacing

every relation name R by its copy R̂.

181

M ¹S ÎdR. Thus, given that M is ¹S-maximal in the class of total and closed-down on

the left mappings, we conclude that ÎdR ¹S M. Hence, there exists a mapping N ′ such

that M◦N ′ = ÎdR, which implies that M is Fagin-invertible by definition of the notion

of Fagin-inverse. This concludes the proof of theorem. ¤

The preceding theorem can be used to extend some of the fundamental results that have

been obtained for the Fagin-inverse operator. In particular, a fundamental question about

any notion of inverse is how to compute it. Fagin, Kolaitis, Popa, and Tan (2008), gave an

algorithm for computing Fagin-inverses of mappings specified by st-tgds. From Theorem

6.3.1, we know that algorithm COMPUTEORDER can also be used for this task, and not

only for the case of st-tgds but also for the larger class of CQ 6=-TO-CQ dependencies.

PROPOSITION 6.3.2. Let M = (R,R1, Σ) be a Fagin-invertible st-mapping specified

by a set Σ of CQ 6=-TO-CQ dependencies. Then the output of COMPUTEORDER(ÎdR,M)

is a Fagin-inverse of M.

The use of query rewriting in COMPUTEORDER makes the above approach for com-

puting Fagin-inverses more suitable for optimization compared to the approach proposed by

Fagin, Kolaitis, Popa, and Tan (2008). In fact, one can reuse the large number of techniques

developed for query rewriting (Levy et al., 1995; Duschka & Genesereth, 1997; Halevy,

2001; Pottinger & Halevy, 2001) when implementing procedure COMPUTEORDER.

As a direct corollary of Proposition 6.3.2, we obtain another fundamental result for the

notion of inverse proposed by Fagin (2007).

COROLLARY 6.3.3. For every Fagin-invertible st-mapping M specified by a set of

CQ 6=-TO-CQ dependencies, there exists an inverse of M that is specified by a set of

CQ 6=,C-TO-CQ dependencies.

It is important to notice that Fagin, Kolaitis, Popa, and Tan (2008) showed that if a

mapping M specified by a set of st-tgds is Fagin-invertible, then it has a Fagin-inverse that

182

is given by a set of CQ 6=,C-TO-CQ dependencies. The above corollary extends this results

for the class of Fagin-invertible mappings specified by CQ 6=-TO-CQ dependencies.

As we mentioned in Section 6.1.1, the notion of information loss presented by Fagin

et al. (2009) is tightly connected with invertibility of mappings. In fact, Fagin et al. (2009)

claim that if M1 and M2 are mappings specified by st-tgds, then M2 is less lossy than

M1 when, intuitively, “M2 is more invertible than M1” (Fagin et al., 2009). We conclude

this subsection by showing that if one goes beyond st-tgds (which is the class of mappings

considered by Fagin et al. (2009)), the orders ¹R and ¹E fail to capture the idea of being

more invertible. Notice that Theorem 6.3.1 shows that our order ¹S captures exactly the

intuition mentioned by Fagin et al. (2009) for a large class of mappings, which gives

evidence of the usefulness of ¹S to compare schema mappings. We begin by showing that

¹R does not capture Fagin-invertibility beyond st-tgds.

PROPOSITION 6.3.4. There exists an st-mapping M specified by a set of CQ-TO-UCQ

dependencies such that M is ¹R-maximal on the class of total and closed-down on the left

mappings and M is not invertible.

PROOF. Consider the st-mapping M2 in the proof of Proposition 6.1.5. Notice that

M2 is closed-down on the left and total. Moreover, we have said that M2 satisfies the

following property. For every I,K if SolM2(I) ⊆ SolM2(K) then K ⊆ I . Let M be an

arbitrary mapping from schema S that is total and closed-down on the left. By definition

we have that if K ⊆ I then SolM(I) ⊆ SolM(K). Thus, for every I,K in S, if SolM2(I) ⊆

SolM2(K) then SolM(I) ⊆ SolM(K) which implies that M ¹R M2. Then we have that

M2 is ¹R-maximal on the class of total and closed-down on the left mappings. Finally, it

was shown Arenas et al. (2009, Proposition 6.6 (2)) that M2 is not Fagin-invertible, which

completes the proof of the proposition. ¤

Fagin et al. (2009) introduce an alternative notion of inversion for mappings with null

values in source and target instances. They call this notion extended invertibility, and show

that the order ¹E is tightly connected with this extended notion of inversion. Recall that

183

→ is defined as the mapping {(I, J) | there exists a homomorphism from I to J} (Fagin et

al., 2009). Then, given a mapping M with nulls in source and target instances, M′ is an

extended inverse of M if e(M)◦e(M′) =→ (Fagin et al., 2009). (See Definition 3.1.13 for

the formalization of e(M).) The following result shows that beyond st-tgds, ¹E captures

neither the notion of Fagin-invertibility nor the notion of extended invertibility.

PROPOSITION 6.3.5. There exists a mapping M such that (1) M is specified by a set

of CQ-TO-UCQ dependencies, (2) M has nulls in source and target instances, (3) M

is ¹E-maximal in the class of all mappings, and (4) M is neither invertible nor extended

invertible.

PROOF. Recall that for a mapping M it holds that e(M) =→ ◦M◦ →. Notice that if

I,K are two instance such that K → I , then it holds that Sole(M)(I) ⊆ Sole(M)(K). Now,

consider the mapping M given by the CQ-TO-UCQ dependencies:

F (x) → R(x) ∨ S(x)

G(x) → S(x) ∨ T (x)

H(x) → T (x) ∨ R(x)

and assume that source and target instances may contain null values.

We show first that M is ¹E-maximal in the class of all mappings. Let M′ be an

arbitrary mapping. In the proof of Proposition 6.1.6 it was shown that for every I,K if

Sole(M)(I) ⊆ Sole(M)(K) then K → I . Notice that K → I implies that Sole(M′)(I) ⊆

Sole(M′)(K). Thus, we have that if Sole(M)(I) ⊆ Sole(M)(K) then Sole(M′)(I) ⊆ Sole(M′)(K).

This shows that M′ ¹E M.

We prove now that M is not Fagin-invertible. Arenas et al. (2009) introduced the no-

tion of strong witness solutions that characterizes Fagin-invertibility for general mappings.

Given a mapping N and an instance I , instance J is a strong witness solution for I under

N if J ∈ SolN (I) and for every instance I ′ if J ∈ SolN (I ′) then I ′ ⊆ I . It was shown

by Arenas et al. (2009) that a mapping N is Fagin-invertible if and only if every instance

184

has a strong witness solution under N . We use this result to show next that M as defined

above does not have a Fagin-inverse. Let I = {F (a)} with a ∈ C, and assume that I has

a strong witness solution, say J , under M. Thus, J is such that R(a) ∈ J or S(a) ∈ J .

Assume first that R(a) ∈ J and consider the instance K = {G(a)}. Then we have that

J ∈ SolM(K) but K 6⊆ I which contradicts the fact that J is a strong witness solution for

I .

We show next that M is not extended invertible. For this we use the notion of capturing

instance introduced by Fagin et al. (2009). Given a mapping N and an instance I , instance

J is a capturing instance for I under N if J ∈ Sole(N)(I) and for every instance I ′ if

J ∈ Sole(N)(I
′) then I ′ → I . It was shown by Fagin et al. (2009) that a mapping N

is extended invertible if and only if every instance has a capturing instance under N . We

use this to prove that M is not extended invertible. Let I = {F (a)} with a ∈ C, and

assume that J is a capturing instance for I under M. Thus, since J ∈ Sole(M)(I) we

have that R(a) ∈ J or S(a) ∈ J . Assume first that R(a) ∈ J and consider the instance

K = {G(a)}. Then we have that J ∈ Sole(M)(K) but K 6→ I which contradicts the fact

that J is a capturing instance for I . ¤

We conclude this subsection by pointing out that we have mainly focused here on the

notion of inverse proposed by Fagin (2007). However it would be interesting to study

whether the notions of quasi-inverse, maximum recovery, and C-maximum recovery can

also be characterized in term of the order ¹S, and whether the machinery proposed in this

paper can be used to improve our understanding of these notions. Although we have made

a bit of progress in this direction, these questions remain unanswered.

6.3.2. Schema evolution

The schema evolution problem has been one of the driving forces behind the study of the

composition and inverse operators (Bernstein, 2003; Bernstein & Melnik, 2007; Kolaitis,

2005; Fagin et al., 2011). As we explained in Section 3.2, two main scenarios have been

identified for this problem. In the first scenario, one is given a mapping M from a schema

185

S to a schema T, and a mapping M′ that specifies how T evolves into a new schema T
′.

The schema evolution problem is then to provide a mapping from S to T
′, that captures the

metadata provided by M and M′. In this scenario, it is always possible to find a solution

for this problem by using the composition operator (Fagin, Kolaitis, Popa, & Tan, 2005;

Kolaitis, 2005), as mapping M ◦ M′ correctly represents the relationship between S and

T
′. In the second scenario, one is also given a mapping M from a schema S to a schema

T, but in this case S evolves into a new schema S
′, and the relationship between S and S

′ is

given by a mapping M′. Then again the question is how to construct a mapping from S
′ to

T that captures the metadata provided by M and M′. In this section, we use the machinery

developed in the previous sections to formally study this problem. It is important to notice

that we focus on the second scenario, as the first one has been completely solved by using

the composition operator (Fagin, Kolaitis, Popa, & Tan, 2005).

Let M1 be a mapping from a schema R to a schema R1, and M2 a mapping from R

to a schema R2. Then a mapping N is an exact solution for the schema evolution problem

for (M1,M2) if M1 = M2 ◦ N . (Notice that if N is an exact solution for the schema

evolution problem for (M1,M2), then it is also an ideal solution for the schema evolution

problem as defined in Section 3.2.) The following result shows that the schema evolution

problem can be characterized in terms of the order ¹S, as it is just a reformulation of the

definition of ¹S.

PROPOSITION 6.3.6. There exists an exact solution for the schema evolution problem

for (M1,M2) iff M1 ¹S M2.

Thus, as a corollary of Theorem 6.2.7, we obtain a solution for the schema evolution

problem for the class of mappings specified by CQ 6=-TO-CQ dependencies

COROLLARY 6.3.7. For every st-mappings M1, M2 specified by CQ 6=-TO-CQ depen-

dencies, if there exists an exact solution for the schema evolution problem for (M1, M2),

then COMPUTEORDER(M1,M2) returns an exact solution for this problem specified by a

set of CQ 6=,C-TO-CQ dependencies.

186

6.4. Target Information and Redundancy

In this section, we use the order ¹S to define three additional concepts which, together

with ¹S, provide a theoretical framework to study complex metadata management opera-

tors such as extract and merge (Melnik, 2004). More precisely, we introduce in Section

6.4.1 an order to compare mappings that possess the same target schema. This order, de-

noted by ¹T, intuitively measures the amount of target information covered by a mapping.

As there may exist multiple ways to transfer the same information from a source schema,

or to cover the same information of a target schema, one also needs a way of distinguishing

between different alternatives. To deal with this requirement, in Sections 6.4.2 and 6.4.3,

we use the orders ¹S and ¹T to introduce the notions of target redundancy and source re-

dundancy, and show that they capture the intuition of using the exact amount of resources

needed to transfer information between schemas.

6.4.1. Target information covered by a mapping

In some metadata management scenarios, it is important to measure the amount of target

information covered by a mapping. When ¹S was introduced, we said that M1 ¹S M2

if M2 transfers enough source information to be able to reconstruct the information trans-

ferred by M1. Similarly, we say that M2 covers as much target information as M1,

denoted by M1 ¹T M2, if M2 covers enough target information to be able to reconstruct

the information that is covered by M1. More precisely,

DEFINITION 6.4.1 (Order ¹T). Let M1 and M2 be mappings that share the target

schema. Then M1 ¹T M2 if there exists a mapping N such that M1 = N ◦M2.

Moreover, we say that M1 and M2 cover the same target information, and write

M1 ≡T M2, if M1 ¹T M2 and M2 ¹T M1.

Example 6.4.2. Let M1 be the st-mapping specified by dependency A(x) → T (x, x),

and M2 the st-mapping specified by R(x, y, z) → T (x, y). Then M2 covers more target

information than M1. In fact, we have that M1 ¹T M2 since for the mapping N specified

187

by A(x) → ∃zR(x, x, z) we have that M1 = N ◦ M2. Moreover, it can be shown that

M2 6¹T M1. ¤

The following result shows that, as pointed out above, ¹T can be defined in terms of

the order ¹S.

PROPOSITION 6.4.3. M1 ¹T M2 iff (M1)
−1 ¹S (M2)

−1.

PROOF. Assume that M1 ¹T M2. Then there exists a mapping N such that M1 =

N ◦M2. This implies that (M1)
−1 = (M2)

−1 ◦ N−1 and thus (M1)
−1 ¹S (M2)

−1. The

other direction is similar. ¤

This relationship between the orders does not imply that we can directly apply to ¹T

the results for ¹S that we have obtained in Section 6.2. For instance, notice that if M

is specified by CQ-TO-CQ dependencies, then M−1 cannot be specified by CQ-TO-CQ

dependencies (M−1 cannot even be specified by FO-TO-CQ dependencies). Thus we need

to develop specific tools (algorithms, characterizations, etc.) for the order ¹T. That is what

we do in the next section.

Characterizing the order ¹T.

We provide here a characterization of the order ¹T for mappings given by FO-TO-CQ

dependencies that is based on the concept of universal solution (Fagin, Kolaitis, Miller, &

Popa, 2005), and supports our claim that ¹T can be used to compare the amount of target

information covered by two schema mappings.

THEOREM 6.4.4. Let M1 = (S1,T, Σ1) and M2 = (S2,T, Σ2) be st-mappings,

where Σ1, Σ2 are sets of FO-TO-CQ dependencies. Then the following statements are

equivalent:

(1) M1 ¹T M2.

(2) For every instance J of T, if J is a universal solution for some instance under

M1, then J is a universal solution for some instance under M2.

188

The theorem is a particular case of the following general result. In the statement we

use some terminology. We say that a mapping M admits universal solutions if for every

instance of I ∈ dom(M) there exists an instance J ∈ range(M) that is a universal solution

for I under M. Moreover, M is closed under homomorphism on range(M) if every for

every pair (I, J) ∈ M and every J ′ ∈ range(M), if there exists a homomorphism from J

to J ′, then the pair (I, J ′) also belongs to M.

LEMMA 6.4.5. Let M1 from R1 to R and M2 from R2 to R be mappings that ad-

mit universal solutions, are closed under homomorphisms on range(M1) and range(M2),

respectively, and are such that range(M1) = range(M2). Then, the following are equiva-

lent:

(1) M1 ¹T M2

(2) For every instance I ∈ dom(M1) there exists an instance K ∈ dom(M2) such

that the universal solutions for I under M1 and the universal solutions for K

under M2 are homomorphically equivalent.

PROOF. For the sake of readability, although there may be infinitely many universal

solutions for a given instance I we use SolUM(I) to denote an arbitrary universal solution

of I under M. We do this without loss of generality, since we compare such solutions by

using homomorphisms.

We first prove that (1) implies (2). Assume that M1 ¹T M2. Then, there exists a

mapping N from R1 to R2 such that M1 = N ◦M2. Consider now an arbitrary instance

I ∈ dom(M1). Then, (I, SolUM1
(I)) clearly belongs to M1, and since M1 = N ◦ M2,

there is an instance K ∈ dom(M2) such that (I,K) ∈ N and (K, SolUM1
(I)) ∈ M2. We

claim that SolUM1
(I) is universal for K under M2, which suffices for the proof, since every

two universal solutions are homomorphically equivalent. For every pair (K, J) ∈ M2,

since (I,K) ∈ N , then (I, J) ∈ M1. Moreover, since SolUM1
(I) is universal for M1, there

is a homomorphism from SolUM1
(I) to J . This proves our claim. Notice that we did not use

the hypothesis range(M1) = range(M2) in the proof of this direction.

189

We now prove that (2) implies (1). Assume that (2) holds, and define a mapping N

from R1 to R2 as follows:

N = {(I,K) | I ∈ dom(M1), K ∈ dom(M2) and

SolUM1
(I) is homomorphically equivalent to SolUM2

(K)}.

We first prove that M1 = N ◦ M2. First, to prove that M1 ⊆ N ◦ M2, consider

a pair (I, J) ∈ M1, and notice that (I, SolUM1
(I)) also belongs to M1 (and that there is

a homomorphism from SolUM1
(I) to J). Further, by the hypothesis (2), there exists an

instance K ∈ dom(M2) such that SolUM1
(I) is homomorphically equivalent to SolUM2

(K).

By the definition of N , this in turn implies that (I,K) belongs to N . Further, we know that

(K, SolUM2
(K)) belongs to M2, and since SolUM1

(I) and SolUM2
(K) are homomorphically

equivalent, and we are assuming that (I, J) ∈ M1 we know there is a homomorphism from

SolUM2
(K) to J . Finally, since J ∈ range(M1) and range(M1) = range(M2), we have

that J ∈ range(M2) and there exists a homomorphism from SolUM2
(K) to J , thus, by the

closure property (on range(M2)), we obtain that (K, J) belongs to M2. This proves that

M1 ⊆ N ◦M2.

Next, we prove that N ◦M2 ⊆ M1. Assume that the pair (I, J) belongs to N ◦M2.

Then, there exists an instance K ∈ dom(M2) such that (I,K) ∈ N and (K, J) ∈ M2.

The last assertion ensures that there exists a homomorphism from SolUM2
(K) to J . By the

definition of N , we have that SolUM1
(I) and SolUM2

(K) are homomorphically equivalent.

Combining the last two facts, we obtain that there must be a homomorphism from SolUM1
(I)

to J . Again, since J ∈ range(M2) and range(M1) = range(M2), we have that J ∈

range(M1) and there exists a homomorphism from SolUM1
(I) to J , thus, by the closure

property (on range(M1)), we obtain that (I, J) belongs to M1. ¤

Theorem 6.4.4 follows directly from Lemma 6.4.5. Just notice that for mapping M1

and M2 in Theorem 6.4.4 we have that range(M1) = range(M2) = Inst(T), and both

mappings are closed under target homomorphisms (ten Cate & Kolaitis, 2009).

190

The characterization in Theorem 6.4.4 supports our claim that ¹T measures the amount

of information covered by a mapping. In fact, universal solutions have been identified as a

fundamental class of solutions in data exchange, as they represent (in a precise sense) the

entire space of solutions (Fagin, Kolaitis, Miller, & Popa, 2005; Fagin, Kolaitis, & Popa,

2005). Our characterization shows that if M1 ¹T M2, then the space of possible universal

solutions for M1 is contained in that of M2.

6.4.2. Target redundancy in schema mappings

There may exist many different ways to transfer the same information and, hence, metadata

management systems should handle some criteria that help them in identifying the best

alternatives, in terms of the resources they use. In this section, we introduce one such

criteria, the notion of target redundancy. We use the following example to motivate our

definition.

Example 6.4.6. Let M1 = (R,R1, Σ1) and M2 = (R,R2, Σ2) be mappings specified

by dependencies A(x) → R(x) and A(x) → P (x, x), respectively, and where R, R1

and R2 are ground schemas. It is easy to see that M1 ≡S M2. However, M1 can be

considered better than M2 in the sense that it does not waste resources when transferring

information from R. In fact, every instance in range(M1) is essential for M1, as it is

a universal solution for an instance of R under M1. On the other hand, every universal

solution of M2 can only contain tuples of the form P (a, a), which implies that several

instances in range(M2) are not universal for any source instance, and thus not essential for

this mapping. ¤

As shown in Example 6.4.6, it would be advisable to design mappings for which every

target instance is essential in transferring source information. In the following definition,

we use the order ¹S to formalize this notion.

DEFINITION 6.4.7 (Target redundancy). A mapping M is target redundant if there

exists an instance J⋆ ∈ range(M) such that M⋆ = {(I, J) ∈ M | J 6= J⋆} satisfies that

M⋆ ≡S M.

191

Thus, intuitively, we say that a mapping M is target redundant if we can remove

a target instance from M, and still be able to transfer the same amount of information.

Correspondingly, we say that a mapping M is target non-redundant if we cannot remove

any target instance from M, and still be able to transfer the same amount of information.

Example 6.4.8. Consider mappings M1 and M2 in Example 6.4.6. M1 is target non-

redundant, but M2 is target redundant as M2 ≡S M⋆, where M⋆ is generated from M2

by removing from range(M2) an arbitrary instance that contains a tuple P (a, b) with a 6= b.

Notice that if we add P (x, y) → x = y as a target constraint to M2, the resulting mapping

is target non-redundant. ¤

Characterizing target redundancy

We provide in this section a characterization of the notion of target redundancy for

mappings specified by FO-TO-CQ dependencies. But first, we shed light on the issue of

how the use of null values generate redundant information.

Null values are used in data exchange to deal with incomplete information. For exam-

ple, assume that one needs to transfer data from a schema Emp1(·) storing a list of employee

names, to a schema Emp2(·, ·) storing a list of employee names and the departments where

they work. Given that the source schema does not contain any information about depart-

ments, one has to use a dependency of the form Emp1(x) → ∃y Emp2(x, y). Thus, when

exchanging data, a null value n is included in a tuple Emp2(a, n) if one does not know the

department where employee a works. Null values introduce redundant information, as they

allow one to represent the same data in many different ways. For example, a target instance

Emp2(a, n) contains exactly the same information as a target instance Emp2(a, n′) if n and

n′ are null values. Thus, instance Emp2(a, n′) is really not needed when transferring source

data. In fact, the next result shows that every st-mapping specified by FO-TO-CQ depen-

dencies that allows null values in the target schema is target redundant (recall that we use

the term st-mapping for mappings that only have constants in their source instances, and

constants and nulls in their target instances).

192

PROPOSITION 6.4.9. Let M be an st-mapping from S to T specified by a set of

FO-TO-CQ dependencies. Then M is target redundant.

PROOF. Let J⋆ be an arbitrary instance of T containing at least one null value, and

assume that M′ is a mapping defined as {(I, J) ∈ M | J 6= J⋆}. Next, we show that

M ≡S M
′, which implies that M′ is target redundant. First, it is straightforward to prove

that M′ ¹S M, as M◦N = M′ with N = {(J, J) | J ∈ Inst(T) and J 6= J⋆}. Thus, we

only need to show that M ¹S M
′. Let N ′ be a mapping from T to T defined as follows:

{(J1, J2) ∈ Inst(T) × Inst(T) | there exists an isomorphism f from J1 to J2

that is the identity on the constants}.

Given that M is closed under isomorphism, no instance of S contains null values and J⋆

contains at least one null value, we have that M′ ◦ N ′ = M. Therefore, we conclude that

M ¹S M
′. ¤

It is important to notice that target redundancy does not mean that a mapping is poorly

designed, as in some cases the redundancy, and in particular the use of null values, is un-

avoidable (like in the above mapping Emp1(x) → ∃y Emp2(x, y)). Nevertheless, when

mappings are specified by using dependencies without existential quantifiers in their con-

clusions, that is, full dependencies, there is no need to use null values as one does not need

to deal with incomplete information. We provide in the following theorem a characteriza-

tion of the notion of target redundancy for mappings specified by full dependencies that

allow only constant values in source and target schemas.

THEOREM 6.4.10. Let M = (S,T, Σ), where S and T are ground schemas and Σ is

a set of full FO-TO-CQ dependencies. Then the following properties are equivalent:

(1) M is target non-redundant.

(2) Every instance in range(M) is a universal solution for some instance in dom(M).

193

Thus, our characterization shows that a mapping M defined by a set of full FO-TO-CQ

dependencies is target non-redundant if and only if every instance in range(M) is essential

for M, as it is a universal solution for some instance in dom(M). Theorem 6.4.10 is

a corollary of the following lemma, where we use the following terminology. Given a

mapping M and an instance I ∈ dom(M), we say that J ∈ SolM(I) is a minimum

solution for I if for every instance K ∈ SolM(I), it holds that J ⊆ K.

LEMMA 6.4.11. Let M be a mapping such that every instance in dom(M) has a

minimum solution. Then, the following properties are equivalent:

(1) Every instance in range(M) is a minimum solution for some instance in dom(M).

(2) M is target non-redundant.

PROOF. (1) ⇒ (2) Assume for the sake of contradiction that M is target redundant.

Then, there exists an instance J⋆ ∈ range(M) such that the mapping M⋆ = {(I, J) ∈

M | J 6= J⋆} satisfies M⋆ ≡S M. In particular, M ¹S M⋆, and thus there exists a

mapping N such that M = M⋆ ◦ N .

Let now I⋆ ∈ dom(M) be the instance such that J⋆ is a minimum solution for I⋆.

Then, clearly, the pair (I⋆, J⋆) belongs to M. Since M = M⋆ ◦ N , there must exist an

instance K ∈ range(M⋆) such that (I⋆, K) ∈ M⋆) and (K, J⋆) ∈ N .

Notice that every instance present in range(M⋆) belongs also to range(M), and thus

K must be a minimum solution for some instance in dom(M) (since K ∈ range(M)). Let

I be the instance for which K is a minimum solution in M. Then, (I,K) ∈ M, and thus

(I,K) ∈ M⋆, since K 6= J⋆. We combine this with the fact that the pair (K, J⋆) belongs

to N and the fact that M = M⋆ ◦ N to conclude that (I, J⋆) belongs to M. Then, since

K is minimum for I , it must be that K ⊆ J⋆.

On the other hand, since (I⋆, K) belong to M⋆, it must also be that (I⋆, K) belong to

M, since K 6= J⋆. But since J⋆ is minimum for I⋆, we obtain that J⋆ ⊆ K.

These two facts imply that K = J , which is a contradiction.

194

(2) ⇒ (1) Assume that M is target non-redundant, and that every instance in dom(M)

has a minimum solution. We now prove that every instance in range(M) is a minimum

solution for some instance in dom(M).

Assume for the sake of contradiction that there is an instance J⋆ in M that is no

minimum solution for any instance in dom(M). Construct a mapping M⋆ as follows:

M⋆ = {(I, J) ∈ M | J 6= J⋆}. We now prove that M⋆ ≡S M, which contradicts the fact

that M is non target redundant.

First we prove that M⋆ ¹S M by constructing a mapping N1 such that M⋆ = M◦N1.

Define then N1 as {(J, J) | J ∈ range(M⋆)}. The proof that M⋆ = M◦N1 follows easily.

Next, we prove that M ¹S M⋆ by use of a mapping N2 such that M = M⋆ ◦ N2.

Define N2 to contain all the pairs {(J, J) | J ∈ range(M⋆)} plus the pairs {(J, J⋆) |

(I, J⋆) ∈ M and J is minimum for I}.

To see that M ⊆ M⋆ ◦ N2, let (I, J) ∈ M. there are two cases to consider:

• If J 6= J⋆, then (I, J) ∈ M⋆, and (J, J) ∈ N2.

• If J = J⋆, then assume that K is minimum for I . It is clear that (I,K) ∈ M⋆,

and, then the pair (K, J) belongs to N2.

Next, let (I, J) ∈ M⋆ ◦ N2. Then, there must exist an instance K ∈ range(M⋆) such that

(I,K) ∈ M⋆, and (K, J) ∈ N2. We prove that (I, J) ∈ M. From the definition of N2,

there are two cases to consider:

• If K = J , then, from the construction of N2, K 6= J⋆, and thus if (I,K) ∈ M⋆

then (I,K) must belong to M.

• If K 6= J , then J = J⋆, and from the definition of N2 the pair (I, J⋆) must

belong to M.

This completes the proof of the lemma. ¤

195

Theorem 6.4.10 follows from the above lemma. Just notice that for a mapping M =

(S,T, Σ), where S and T are ground schemas and Σ is a set of full FO-TO-CQ dependen-

cies, and for every instance I of S, the universal solution chaseΣ(I) is a minimum solution

for I under M.

6.4.3. Source redundancy

Just as there exists a symmetric definition for the order ¹S, so is the case for the notion of

target redundancy. In fact, we use the order ¹T in the following definition to introduce the

notion of source redundancy, which also plays a fundamental role in providing foundations

for metadata management.

DEFINITION 6.4.12 (Source redundancy). A mapping M is source redundant if there

exists an instance I⋆ ∈ dom(M) such that M⋆ = {(I, J) ∈ M | I 6= I⋆} satisfies

M⋆ ≡T M.

That is, a mapping M is source redundant if one can eliminate an instance from

dom(M) and still cover the same amount of target information. Not surprisingly, there

is a tight relation between target and source redundancy.

PROPOSITION 6.4.13. M is source redundant if and only if M−1 is target redundant.

PROOF. Assume that M is source redundant. Then there exists an instance I⋆ ∈

dom(M) such that M⋆ = {(I, J) ∈ M | I 6= I⋆} satisfies M⋆ ≡S M. Notice that I⋆ ∈

range(M−1). Moreover, from Proposition 6.4.3 we know that (M⋆)−1 ≡T M−1. Thus

we have that there exists an instance I⋆ ∈ range(M−1) such that the mapping (M⋆)−1 =

{(J, I) ∈ M−1 | I 6= I⋆} satisfies (M⋆)−1 ≡T M−1. This implies that M−1 is target

redundant which was to be shown. The other direction is similar. ¤

Characterizing source redundancy

In this section we provide a characterization of source redundancy for the class of

mappings specified by FO-TO-CQ dependencies. From the point of view of covering target

196

information, a non-redundant mapping should not assign the same space of solutions to two

different source instances, as this means that one of them is not necessary. The following

theorem shows that the notion of source redundancy captures this intuition.

THEOREM 6.4.14. Let M be an st-mapping specified by a set of FO-TO-CQ depen-

dencies. Then the following statements are equivalent:

(1) M is source non-redundant.

(2) For every pair of source instances I1, I2, if I1 6= I2 then SolM(I1) 6= SolM(I2).

The Theorem is a corollary of the following result.

LEMMA 6.4.15. Let M be a mapping that admits universal solutions, and that is

closed under homomorphisms in range(M). Then, M is source redundant if an only if

there exist two instances I and I ′ in dom(M) such that I 6= I ′ and the universal solutions

of I and I ′ under M are homomorphically equivalent.

PROOF. In the proof we use SolUM(I) to denote an arbitrary universal solution for I

under M.

Only If. Assume that M is source redundant, and let I⋆ be an instance of dom(M)

such that the mapping M⋆ = {(I, J) ∈ M | I 6= I⋆} satisfies M⋆ ≡T M. Notice that

M⋆ is closed under homomorphisms in range(M⋆). Since M⋆ ≡T M, then in particular

M ¹T M⋆, and by Lemma 6.4.5, it must be the case that for every I ∈ dom(M) there

exists an instance K ∈ dom(M⋆) such that SolUM(I) is homomorphically equivalent to

SolUM⋆(K). Then, there exists an instance K⋆ ∈ dom(M⋆) such that SolUM(I⋆) is homo-

morphically equivalent to SolUM⋆(K⋆). Notice that I⋆ 6= K⋆ since K⋆ ∈ dom(M⋆) and

I⋆ /∈ dom(M⋆). Moreover, SolM⋆(K⋆) = SolM(K⋆). Thus we have that I⋆ 6= K⋆ and the

universal solutions of I⋆ are homomorphically equivalent to the universal solutions of K⋆

under M, which completes this part of the proof.

If. Assume that there exist two instances I1 6= I2 such that SolUM(I1) is homomor-

phically equivalent to SolUM(I2). Notice that since M is closed under homomorphism in

range(M) we have that SolM(I1) = SolM(I2). We prove next that M is source redundant.

197

Let us define the mapping M⋆ as M⋆ = {(I, J) ∈ M | I 6= I2}. We shall prove

that M ≡T M⋆, which proves that M is source redundant. First, it is easy to see that

M⋆ ¹T M, thus we only need to prove that M ¹T M⋆. Now, notice that M⋆ is closed

under homomorphisms in range(M⋆) and, since SolM(I1) = SolM(I2) we also have that

range(M⋆) = range(M). Thus, we can use Lemma 6.4.5 to prove M ¹S M⋆. Let

I ∈ dom(M). Then, clearly, there exists K ∈ dom(M⋆) such that SolUM(I) is homomor-

phically equivalent to SolUM⋆(K): it suffices to consider K = I if I 6= I2, and K = I1 if

I = I2. This completes the proof of the Lemma. ¤

Property (2) above is called unique-solutions property in (Fagin, 2007), where it is

shown to be a necessary condition for Fagin-invertibility.

6.5. Concluding Remarks

In this chapter, we have developed a theory to compare schema mappings in terms of

notions of information and redundancy. In particular we have introduced the order ¹S as a

measure of the amount of information transferred by a schema mapping, and studied some

of its fundamental properties. From the order ¹S we have derived several other criteria

to compare mappings and we provide tools to deal with these criteria. We introduced the

notion of target redundancy and showed that it captures the intuition of using the exact

amount of resources needed to transfer information using a schema mapping. Furthermore,

to complement our information framework, we devise two additional concepts that allow

us to compare mappings that share the same target schema. Symmetrically to the definition

of ¹S, we introduced the order ¹T, that intuitively measures the amount of information

covered by a mapping, as well as a notion of source redundancy. We provided characteri-

zations for all the proposed notions, and show that together they can be used as a powerful

framework to study metadata management operators. As a proof of concept, we showed

how the machinery developed can be used to study some metadata management problems

in the context of data exchange.

198

We use all the machinery developed in this chapter to study more complex metadata

management operators in Chapter 7.

199

7. THE EXTRACT AND MERGE OPERATORS

In this chapter we use all the machinery for the concepts of information and redun-

dancy developed in Chapter 6 to revisit the semantics of the extract operator (Melnik, 2004;

Melnik et al., 2005), that intuitively captures the idea of upgrading a legacy schema. We

formalize this operator in terms of the notions developed in Chapter 6, and we provide an

algorithm for computing it for a class of mappings that includes the mappings specified by

st-tgds. Moreover, we also study the merge operator, that as well as the extract operator, has

been identified as fundamental for the development of a metadata management framework.

7.1. The Extract Operator

Consider a mapping M between schemas S and T, and assume that S is the schema of a

database that is only being used to map data through M. In general, not all the information

of S participates in the mapping and, thus, it is natural to ask whether one can upgrade S

into a new schema that stores only the information being mapped by M, that is, whether

one can extract from S the portion of the schema that is actually participating in M. This is

the intended meaning of the extract operator (Melnik, 2004; Melnik et al., 2005), as shown

in the following example.

Example 7.1.1. Let S = {P (·, ·), R(·, ·), S(·, ·)} and T = {T (·, ·), U(·, ·), V (·, ·, ·)}, and

assume that S is a ground schema. Consider a mapping M from S to T given by the

following dependencies:

P (x, y) → ∃u T (x, u) ∧ U(x, x) (7.1)

P (x, y) ∧ R(y, z) → ∃v V (x, y, v) (7.2)

The first column of P is being transferred from the source by dependency (7.1), while all

the tuples in P that can be joined with some tuples in R are being transferred by dependency

(7.2). Moreover, notice that relation S is not participating at all in the mapping.

200

S
′

S

T

M1

M2

M

FIGURE 7.1. (M1,M2) is an EXTRACT of M.

A natural way to upgrade S, and store only the data that is transferred by M, is to

have a new ground schema S
′ = {P1(·), P2(·, ·)}, where relation P1(·) is used to store

the first component of P , and relation P2(·, ·) is used to store the tuples in P that can be

joined with some tuples in R. But we can do even better. Notice that by the intended

meaning of relations P1 and P2, one knows that they must satisfy the inclusion dependency

P2(x, y) → P1(x). Thus, schema S
′ plus this dependency still have enough capacity to

store all the source information being transferred by M. ¤

Given a mapping M from a schema S to a schema T, the idea of the extract operator

is to create a new source schema S
′ that captures exactly the information that is partici-

pating in M and no other information (Melnik, 2004; Melnik et al., 2005). As shown in

Figure 7.1, a solution for the extract operator has two components, a mapping M1 from

S to S
′ that drives the migration from the old to the new source schema, and a mapping

M2 from S
′ to T that states how data should be mapped from the new source schema to

the target schema. But what are the conditions that have to be imposed on mappings M1

and M2 (and schema S
′) to capture the intuition behind the extract operator? A set of such

conditions was proposed by Melnik et al. in (Melnik, 2004; Melnik et al., 2005). In what

follows, we show that the machinery developed in Chapter 6 can be used to provide a nat-

ural semantics for the extract operator. We compare our proposal with that of Melnik et al.

(2005) in Section 7.1.2.

Assume that M, M1 and M2 are the mappings shown in Figure 7.1. The first con-

dition that we impose on M1 and M2, to consider them a valid extract of M, is that the

composition of M1 and M2 is equal to M:

201

(E1) M1 ◦M2 = M.

In this way, one ensures that for every instance I of S, if one first migrates I from S to S
′,

and then maps the result to T, then one obtains exactly the same space of possible solutions

as if I is being mapped by using the initial mapping M. Notice that (E1) does not impose

any restrictions over M1 and M2 alone. We do that with the next conditions.

The intended meaning of the extract operator is to store in a new schema exactly the

information that is being transferred by the initial mapping. Thus, we require that M1

transfers from S to S
′ the same amount of source information as M. Similarly, since M2

is used as the new way of mapping the information from S
′, we require that M2 covers

exactly the same target information as M. Thus, we impose the following condition on

M1 and M2:

(E2) M1 ≡S M and M2 ≡T M.

To complete the description of the extract operator, we only need a condition that

captures the optimality of the new source schema. To do this, we do not impose an explicit

condition on this schema, but instead we impose conditions over the range of M1 and

the domain of M2. Notice that, although we require M1 to transfer exactly the same

source information as M, this mapping can be redundant and store the data in S
′ in a

suboptimal way. Thus, we require M1 to be target non-redundant, as well as M2 to be

source non-redundant. In that way, we force range(M1) and dom(M2) to be minimal,

since one cannot lose an instance from range(M1) or dom(M2), and still obtain mappings

that fulfill conditions (E1) and (E2). Thus, our last condition is:

(E3) M1 is target non-redundant and M2 is source non-redundant.

Notice that it is not difficult to show that under the above conditions, it holds that range(M1) =

dom(M2).

We finally have all the necessary ingredients to define the semantics of the extract

operator.

202

DEFINITION 7.1.2 (Extract operator). (M1,M2) is an extract of M if M1 and M2

satisfy conditions (E1), (E2), and (E3).

Example 7.1.3. Consider schemas S, S′, T, and mapping M from Example 7.1.1. Let Σ1

be the set that consists of dependencies:

P (x, y) → P1(x),

P (x, y) ∧ R(y, z) → P2(x, y),

Σ2 the set that consists of:

P1(x) → ∃u T (x, u) ∧ U(x, x),

P2(x, y) → ∃v V (x, y, v),

and ΓS′ the set containing the inclusion dependency over S
′:

P2(x, y) → P1(x).

Consider now the mappings M1 = (S,S′, Σ1 ∪ ΓS′), and M2 = (S′,T, Σ2 ∪ ΓS′). Then it

can be shown that (M1,M2) is an extract of M. ¤

7.1.1. Computing the extract operator

Two fundamental questions about any schema-mapping management operator are for which

classes of mappings is the operator defined, and how can it be computed. In this section,

we provide answers to both questions for the class of mappings specified by FO-TO-CQ

dependencies, as we provide an algorithm that, given a mapping M specified by a set of

FO-TO-CQ dependencies, computes an extract (M1,M2) of M.

To present our algorithm, we need to introduce some terminology. In what follows,

we use a procedure COMPOSE that given pairwise disjoint schemas S1, S2, S3, a set Σ1 of

dependencies from S1 to S2 and a set Σ2 of dependencies from S2 to S3, computes a set Σ

of dependencies from S1 to S3 such that (I, J) |= Σ if and only if there exists K such that

203

(I,K) |= Σ1 and (K, J) |= Σ2. That is, COMPOSE(Σ1, Σ2) returns a set of dependencies

Σ specifying a mapping that represents the composition of the mappings specified by Σ1

and Σ2. As pointed out by Nash et al. (2005) and by Melnik et al. (2005), there exists a

straightforward implementation of COMPOSE when Σ1 and Σ2 are sets of FO sentences; if

Σ1 = {σ1, . . . , σn}, Σ2 = {γ1, . . . , γm} are set of FO-sentences, and S2 = {S1, . . . , Sk},

then a set Σ consisting of second-order dependency ∃S1 · · · ∃Sk (σ1∧· · ·∧σn∧γ1∧· · ·∧γm)

satisfies the above condition.

It should be noticed that second-order quantification is unavoidable to express the com-

position of mappings specified by FO dependencies, even for the case of st-tgds (Fagin, Ko-

laitis, Popa, & Tan, 2005). In what follows, we use COMPOSE as a black box, which could

have been implemented by considering the idea shown above and the techniques presented

in (Fagin, Kolaitis, Popa, & Tan, 2005; Nash et al., 2005; Melnik et al., 2005; Arenas, Fa-

gin, & Nash, 2010). In particular, we use COMPOSE in Step 2 of the following algorithm to

create constraints that eliminate the redundancy of mappings In the algorithm we also use

procedure QUERYREWRITING that given a mapping M and a conjunctive query Q over

the target, computes a source rewriting of Q under M (see Lemma 3.3.1 for the details of

algorithm QUERYREWRITING).

Algorithm EXTRACT(M)

Input: An st-mapping M = (S,T, Σ), where Σ is a set of FO-TO-CQ dependencies.

Output: An extract (M1,M2) of M.

(1) Construct sets Σ1, Σ2 of dependencies, and a ground schema R as follows. For

every ϕ(x̄) → ψ(x̄) ∈ Σ, where x̄ is an n-ary tuple of variables, repeat the

following:

(a) Include a fresh n-ary relational symbol R into R.

(b) Let α(x̄) be a formula in FO that is the output of QUERYREWRITING(M, ψ(x̄)).

(c) Include dependency α(x̄) → R(x̄) into Σ1 and dependency R(x̄) → ψ(x̄)

into Σ2.

(2) Construct a set of formulas ΓR over R as follows.

204

(a) Let R̂ = {R̂ | R ∈ R} and Σ−
1 be the set of dependencies {R̂(x̄) → β(x̄) |

β(x̄) → R(x̄) ∈ Σ1}.

(b) Let Σ′ be an SO-formula over R∪R̂ that is the output of COMPOSE(Σ−
1 , Σ1).

(c) Let ΓR be the set of formulas over R obtained from Σ′ by replacing every

symbol R̂ ∈ R̂ by R.

(3) Let M1 = (S,R, Σ1 ∪ ΓR) and M2 = (R,T, Σ2 ∪ ΓR). Return (M1,M2).

¤

THEOREM 7.1.4. EXTRACT(M) returns an extract of M.

PROOF. Let M = (S,T, Σ) be an st-mapping with S a ground schema and Σ a set of

FO-TO-CQ dependencies. Assume that (M1,M2) is the output of EXTRACT(M) with

M1 = (S,R, Σ1 ∪ ΓR) and M2 = (R,T, Σ2 ∪ ΓR). We need to show that (M1,M2) is

an extract of M. Thus, we need to show that M1 is non target redundant and M1 ≡S M,

that M2 is non source redundant and M2 ≡T M, and that M1 ◦M2 = M.

We show next that M1 is non target redundant by using Lemma 6.4.11. We show first

that for every instance I in S it holds that chaseΣ1(I) is a minimum solution for I . To show

this we need to show the following two properties:

(a) chaseΣ1(I) ∈ SolM1(I), and that

(b) for every other solution J ∈ SolM1(I) we have that chaseΣ1(I) ⊆ J .

Notice that property (a) is non-trivial since M1 is defined using constraints over schema

R. Thus, although it is straightforward that (I, chaseΣ1(I)) |= Σ1, we still need to show

that chaseΣ1(I) |= ΓR. Recall that R is a ground schema. Moreover, since Σ1 is a set

of full dependencies we have that chaseΣ1(I) is a ground instance. We show now that

chaseΣ1(I) |= ΓR.

Let Σ−
1 and Σ′ be the sets constructed in the algorithm. That is, Σ−

1 is obtained from

Σ1 by reversing the arrows and replacing every R ∈ R by R̂, and Σ′ is the output of

COMPOSE(Σ−
1 , Σ1), that is, it is logically equivalent to Σ−

1 ◦Σ1. Thus, ΓR is the set obtained

from Σ′ replacing R̂ by R. Let J⋆ be the instance obtained from chaseΣ1(I) by replacing

205

every R ∈ R by R̂. Notice that chaseΣ1(I) |= ΓR if and only if (J⋆, chaseΣ1(I)) |=

Σ−
1 ◦ Σ1. We show next this last property. For this we show that (J⋆, I) |= Σ−

1 , and thus,

since (I, chaseΣ1(I)) |= Σ1 we have that (J⋆, chaseΣ1(I)) |= Σ−
1 ◦ Σ1, and consequently

chaseΣ1(I) |= ΓR. We need to show that (J⋆, I) |= σ for every σ ∈ Σ−
1 . Let σ be

a dependency of the form R̂(x̄) → α(x̄) and assume that J⋆ |= R̂(ā) for some tuple

ā. Then we have that chaseΣ1(I) |= R(ā). Notice that in Σ1 there exists a dependency

α(x̄) → R(x̄), and moreover the relation symbol R occurs only in this dependency. Thus,

since chaseΣ1(I) |= R(ā) we know that I |= α(ā). We have shown that (J⋆, I) |= σ for

every σ ∈ Σ−
1 which was to be shown. The property (b) follows directly from the properties

of the chase and the fact that Σ1 is a set of full dependencies. Finally, we have shown that

for every instance I the instance chaseΣ1(I) is a minimum solution for I .

We show now that every solution J ∈ range(M1) is a minimum solution. In particular,

we show that for every J ∈ range(M1) there exists an instance I ∈ dom(M1) such that

J = chaseΣ1(I). Thus, assume that J ∈ range(M1). Then we know that J |= ΓR. Let

J⋆ be the instance obtained from J by replacing replacing every R ∈ R by R̂. Since

J |= ΓR we know that there exists an instance L such that (J⋆, L) |= Σ−
1 and (L, J) |= Σ1.

We show now that J = chaseΣ1(L). Let R ∈ R and assume that ā ∈ RchaseΣ1
(L). We

know that there exists a single dependency of the form α(x̄) → R(x̄) in Σ1. Thus, since

chaseΣ1(L) |= R(ā), necessarily L |= α(ā). Moreover, since (L, J) |= Σ1 we obtain that

J |= R(ā) and thus, ā ∈ RJ . This shows that for every R ∈ R we have that RchaseΣ1
(L) ⊆

RJ . To show the opposite direction, let R ∈ R and assume that ā ∈ RJ . We know that

there exists a dependency of the form R̂(x̄) → α(x̄) in Σ−
1 . Moreover, since ā ∈ RJ

we know that ā ∈ R̂J⋆

. Thus, since (J⋆, L) |= Σ−
1 we obtain that L |= α(ā). We also

know that α(x̄) → R(x̄) is a dependency in Σ1 then chaseΣ1(L) |= R(ā), and therefore

ā ∈ RchaseΣ1
(L). This shows that for every R ∈ R it holds that RJ ⊆ RchaseΣ′ (L).

We have shown that M1 is non target redundant. We show now that M1 ≡S M. First,

recall that the set CM (see Lemmas 6.2.3 and 6.2.4) is constructed by including a source

206

rewriting for every conclusion of the dependencies defining M. Consider now the non-

ground schema R̂ = {R̂ | R ∈ R} and the set Σ̂1 obtained from Σ1 replacing every R ∈ R

by R̂. Let M′ = (S, R̂, Σ̂1). By the construction of Σ1 and Σ̂1 it is straightforward to prove

that CM = CM′ . Therefore, since R̂ is non-ground we can use Lemma 6.2.4 to conclude

that M′ ≡S M.

We show now that M′ ≡S M1. Consider the set of formulas Λ1 = {R̂(x̄) → R(x̄) |

R ∈ R} and the mapping N1 = (R̂,R, Λ1 ∪ ΓR). Notice that N1 is a mapping from

a non-ground to a ground schema. Recall that M′ = (S, R̂, Σ̂1) where Σ̂1 is a set of

FO-TO-CQ dependencies. It is straightforward to see that Σ1 is logically equivalent to

Σ̂1 ◦Λ1, therefore, we obtain that M′ ◦N1 is a mapping from S to R specified by Σ1 ∪ΓR,

and thus M′ ◦ N1 = M1 which implies that M1 ¹S M′. Consider now the set Λ2 =

{R(x̄) → R̂(x̄) | R ∈ R} and the mapping N2 = (R, R̂, Λ2). Let I be an arbitrary

instance in Inst(R) (thus I is ground). We have shown that chaseΣ1(I) is a minimum

solution for I under M1. Now let J⋆ be the instance of R̂ obtained from chaseΣ1(I) by

replacing R by R̂. It is straightforward to see that J⋆ is a minimum solution for I under

M1 ◦N2. Now notice that N2 is closed-up on the right, and thus M1 ◦N2 is also closed-up

on the right. This implies that SolM1◦N2(I) = {K ∈ Inst R̂ | J⋆ ⊆ K}. Notice that by the

construction of J⋆, we have that K ∈ SolM1◦N2(I) if and only if (I,K) |= Σ̂1 where K is

a non necessarily ground instance. We have shown that for every I ∈ Inst(R) it holds that

SolM1◦N2(I) = SolM′(I) and thus, M1 ◦ N2 = M′ which implies that M′ ¹S M1. Thus,

we have that M1 ¹S M
′ and M′ ¹S M1, therefore, M1 ≡S M

′, and since M′ ≡S M we

obtain that M1 ≡S M completing this part of the proof.

Up to this point we have shown that M1 ≡S M and that M1 is non target redun-

dant. We show now that M = M1 ◦ M2. Consider the set of dependencies Σ⋆ created

as follows. For every dependency ϕ(x̄) → ψ(x̄) in Σ use QUERYREWRITING(M, ψ(x̄))

to obtain a formula α(x̄) that is a source rewriting of ψ(x̄) under M, and add the de-

pendency α(x̄) → ψ(x̄) to Σ⋆. It is straightforward to show that Σ and Σ⋆ are logically

equivalent, and thus, (I, J) ∈ M if and only id (I, J) |= Σ⋆. Also, by the construction

of Σ1 and Σ2 it is easy to see that for every instance I of S we have that chaseΣ⋆(I) and

207

chaseΣ2(chaseΣ1(I)) are homomorphically equivalent. We have shown that chaseΣ1(I) ∈

SolM1(I) since chaseΣ1(I) |= ΓR. Thus we have that chaseΣ2(chaseΣ1(I)) ∈ SolM1◦M2(I),

and moreover, chaseΣ2(chaseΣ1(I)) is a universal solution for I under M1 ◦M2. Notice

that since Σ1 is a set of full dependencies we have that M1 ◦ M2 is closed under target

homomorphisms. Thus, we have that chaseΣ⋆(I) and chaseΣ2(chaseΣ1(I)) are homomor-

phically equivalent and are both universal solutions for I under M and under M1 ◦ M2

respectively, and since M and M1◦M2 are closed under target homomorphism, we obtain

that SolM(I) = SolM1◦M2(I) for every I . This implies that M = M1 ◦M2 which was to

be shown.

It only remains to prove that M2 ≡T M and that M2 is non source redundant. That

is what we do next. We have already shown that M1 ◦ M2 = M which implies that

M ¹T M2. Thus, to prove that M2 ≡T M we only have to show that there exists a

mapping N such that N ◦M = M2. Consider the set of dependencies Σ′
1 obtained from

Σ1 by reversing the arrows. Notice that the difference between Σ′
1 and Σ−

1 is that in in

Σ′
1 we do not rename the relations in R. Let M′

1 = (R,S, Σ′
1 ∪ ΓR). We prove first

that M2 ⊆ M′
1 ◦ M. Assume that (J,K) ∈ M2, thus J |= ΓR and (J,K) |= Σ2.

We need to prove that (J,K) ∈ M′
1 ◦ M. Notice that since Σ2 is a set of st-tgds, we

have that there exists a homomorphism from chaseΣ2(J) to K. Now, we have previously

proved that if J |= ΓR then there exists an instance I in S such that J = chaseΣ1(I).

Notice that by the construction of Σ1 and Σ′
1 we have that (chaseΣ1(I), I) |= Σ′

1, and

then since chaseΣ1(I) |= ΓR we have that (chaseΣ1(I), I) ∈ M′
1. We prove next that

(I, chaseΣ2(J)) |= Σ. Notice that Σ is logically equivalent to the set Σ⋆ of the previous

paragraph. Thus, it is enough to show that (I, chaseΣ2(J)) |= Σ⋆. Assume that I |= α(ā)

for a dependency α(x̄) → ψ(x̄) in Σ⋆. We need to show that chaseΣ2(J) |= ψ(ā). Thus,

since J = chaseΣ1(I) we know that J |= R(ā) where α(x̄) → R(x̄) is the dependency in

Σ1 created from ϕ(x̄) → ψ(x̄) in Σ. Moreover, we that that there is a dependency of the

form R(x̄) → ψ(x̄) in Σ2, thus, since J |= R(ā) we obtain that chaseΣ2(J) |= ψ(ā) which

was to be shown. Thus we have that (I, chaseΣ2(J)) |= Σ⋆ and then (I, chaseΣ2(J)) |= Σ.

Finally since Σ is closed under target homomorphism and there is a homomorphism from

208

chaseΣ2(J)) to K we have that (I,K) |= Σ and thus (I,K) ∈ M We have shown that if

(J,K) ∈ M2 then there exists an instance I such that (J, I) ∈ M′
1 and (I,K) ∈ M which

proves that (J,K) ∈ M′
1 ◦M.

We show now that M′
1 ◦M ⊆ M2. Assume that (J,K) ∈ M′

1 ◦M, we need to prove

that (J,K) ∈ M2. Notice that (J,K) ∈ M2 if and only if J |= ΓR and (J,K) |= Σ2.

Since (J,K) ∈ M′
1 ◦ M we know that J ∈ dom(M′

1) which implies that J |= ΓR.

Thus, it only remains to prove that (J,K) |= Σ2. Let R(x̄) → ψ(x̄) in Σ2 and assume

that J |= R(ā). We need to prove that K |= ψ(ā). Since R(x̄) → ψ(x̄) ∈ Σ2 we know

that there are dependencies R(x̄) → α(x̄) ∈ Σ′
1 and α(x̄) → ψ(x̄) ∈ Σ⋆. Now, since

(J,K) ∈ M′
1 ◦ M we know that there exists I such that (J, I) |= Σ′

1 and (I,K) |= Σ⋆.

Thus, since J |= R(ā) we have that I |= α(ā), and thus, K |= ψ(ā) which was to be shown.

We have shown that if (J,K) ∈ M′
1 ◦M then (J,K) ∈ M2 and thus, M′

1 ◦M ⊆ M2.

We have shown that M2 ≡T M. It only remains to prove that M2 is non source re-

dundant. To prove this last property we make use of the characterization in Lemma 6.4.15.

We show that for every pair of instances J and K in dom(M2), if SolM2(J) = SolM2(K)

then J = K. Notice that SolM2(J) = SolM2(K) if and only if chaseΣ2(J) is homomor-

phically equivalent to chaseΣ2(K). We have shown (in the previous paragraph) that for

every J ∈ dom(M2) there exists an instance IJ in S such that chaseΣ1(IJ) = J and more-

over chaseΣ(IJ) is homomorphically equivalent to chaseΣ2(J). Similarly there exists an

instance IK such that chaseΣ1(IK) = K and chaseΣ(IK) is homomorphically equivalent

to chaseΣ2(K). Thus, since chaseΣ2(J) and chaseΣ2(K) are homomorphically equiva-

lent, we have that chaseΣ(IJ) is homomorphically equivalent with chaseΣ(IK). Notice that

this implies that for every conjunctive query Q over T it holds that certainM(Q, IJ) =

certainM(Q, IK). Now let α(x̄) → R(x̄) be a dependency in Σ1. We know that α(x̄) is a

source rewriting of a formula ϕ(x̄) under M. Thus, IJ |= α(ā) if and only if IK |= α(ā).

This implies that chaseΣ1(IJ) = chaseΣ1(IK), obtaining that J = K which is our desired

property. This completes the proof of correctness of algorithm EXTRACT. ¤

209

7.1.2. On the semantics of the extract operator

The extract operator was considered by Melnik et al. (2004; 2005). Given a mapping M

from a schema S to a schema T, the output of this operator according to Melnik et al. is a

mapping M1 from S to a schema S
′ together with the schema constraints ΓS′ that S′ should

satisfy. Moreover, the following two conditions should be satisfied by M1 (Melnik, 2004;

Melnik et al., 2005): (1) M1 ◦ (M1)
−1 ◦M is equal to M, and (2) range(M1) is the set

of instances of S
′ that satisfy ΓS′ . Notice that mapping M2 from S

′ to T is not part of the

semantics by Melnik et al. (2004; 2005) since it can be obtained as M2 = (M1)
−1 ◦M.

Although our semantics for the extract operator was inspired by the work of Melnik

et al. (2004; 2005), there are two features of Melnik et al.’s definition that limit its appli-

cability, in particular if more expressive languages are used to specify mappings. First, if

mapping M1 above is specified by a set of st-tgds (or, in general, by a set of FO-TO-CQ

dependencies), then M1 ◦ (M1)
−1 is a trivial mapping that contains all the pairs of in-

stances from S. Thus, M1 ◦ (M1)
−1 ◦ M is also a trivial mapping in this case and,

therefore, M1 ◦ (M1)
−1 ◦M = M does not hold in general. This rules out the possibility

of having natural solutions for the extract operator specified by st-tgds, as the one shown in

Example 7.1.3. Second, in the semantics proposed by Melnik et al. (2005), no minimality

restriction is imposed on the generated schema S
′, thus allowing redundant information.

Moreover, in the semantics proposed by Melnik (2004), a minimality criterion based on

counting the number of instances of a schema is imposed, which is only meaningful when

instances are generated from a finite domain, and thus, not applicable in our context.

In view of the aforementioned limitations of the semantics of the extract operator pro-

posed by Melnik et al. (2004; 2005), we have imposed some new conditions on this oper-

ator that try to capture the intuition behind it. In particular, we have used the notions of

redundancy proposed in Section 6.4 to impose a minimality condition over the generated

schemas. Moreover, we have imposed some conditions on the information transferred by

the generated mappings, that ensure that condition (1) above holds when (·)−1 is replaced

210

by the notion of maximum recovery introduced in Chapter 3, which is a more natural notion

of inverse when mappings are given by FO-TO-CQ.

PROPOSITION 7.1.5. Let M be an st-mapping specified by a set of FO-TO-CQ de-

pendencies, (M1, M2) the output of EXTRACT(M) and M⋆
1 a maximum recovery of M1.

Then it holds that M1 ◦M
⋆
1 ◦M = M.

PROOF. Consider the mapping M′
1 constructed in the proof of Theorem 7.1.4 (we

constructed that mapping when showing that M2 ≡T M in the proof of Theorem 7.1.4).

Recall that M′
1 = (R,S, Σ′

1 ∪ ΓR) where Σ′
1 is the set obtained from Σ1 by reversing

the arrows. Notice that Σ′
1 is exactly the set of dependencies obtained as output of the

algorithm MAXIMUMRECOVERYFULL (presented in Section 3.3.3) if the input is the set

Σ1. Thus, by the properties of maximum recoveries proved in Proposition 3.1.6 we have

that if (I, J) |= Σ1 and (J,K) |= Σ′
1 then SolM1(K) ⊆ SolM1(I). Thus, we have that if

(I, J) |= Σ1 and (J,K) |= Σ′
1 and J |= ΓR, then SolM1(K) ⊆ SolM1(I). From the above

discussion, we obtain that if (I,K) ∈ M1 ◦M
′
1 then SolM1(K) ⊆ SolM1(I). Moreover,

from the proof of correctness of algorithm MAXIMUMRECOVERYFULL we know that for

every I in S it holds that (chaseΣ1(I), I) |= Σ′
1. Thus, since chaseΣ1(I) |= ΓR for every I

we obtain that (I, chaseΣ1(I)) ∈ M1 and (chaseΣ1(I), I) ∈ M′
1 for every I in S. We have

shown that (I, I) ∈ M1 ◦ M′
1 and that if (I,K) ∈ M1 ◦ M′

1 it holds that SolM1(K) ⊆

SolM1(I), which, by the properties of maximum recoveries proved in Proposition 3.1.6,

implies that M′
1 is a maximum recovery of M1.

In the proof of Theorem 7.1.4 we showed that M′
1 ◦ M = M2. We also showed

that M1 ◦ M2 = M. These properties implies that M1 ◦ M′
1 ◦ M = M. Now, let

N be an arbitrary maximum recovery of M1. Since M′
1 is also a maximum recovery of

M1 we have that M1 ◦ M′
1 = M1 ◦ N . Finally, we obtain that for every N that is a

maximum recovery of M1 it holds that M1 ◦ N ◦M = M. This completes the proof of

the proposition. ¤

211

7.2. The Merge Operator

Consider two independent database schemas S1 and S2 and a mapping M between

them, and assume that both schemas have materialized data that is being queried by several

applications. Mapping M describes how data in these schemas is related, and, thus, the

relationship stated by M leads to some redundancy of storage: there are corresponding

pieces of data stored twice in these schemas. Although this corresponding data can be

structured in different ways, and served different purposes in these schemas, it is natural to

ask whether one can have a single global schema S that simultaneously stores the data of

S1 and S2, (and no more than that), but that is not redundant in the storage of the shared

information. This is the intuition behind the merge operator (Bernstein, Halevy, & Pot-

tinger, 2000; Bernstein, 2003; Melnik, 2004), and, hence, we say that S is the result of

merging S1 and S2 with respect to the relationship established by M. A complete solution

for the merge operator should also include mappings M1 and M2 from S to S1 and S2, re-

spectively, that describe the relationship between the global schema and the initial schemas

(Melnik, 2004; Melnik et al., 2005). These mappings ensure that an application that has

used the initial schemas independently, would also be able to obtain the required data from

the global schema. A diagram of the complete process is shown in Figure 7.2.

Example 7.2.1. Let S1 = {A(·, ·)} and S2 = {B(·, ·)} be ground schemas, and consider a

mapping M given by dependency:

A(x, y) → B(x, y).

This simple mapping states that all the tuples of relation A in S1 should also be part of

relation B in S2. A natural way to store the information of both S1 and S2 in a non-

redundant way is to consider a schema S with one relation A′(·, ·) storing all the information

in A, and a new relation D(·, ·) storing the difference between B and A. By the intended

meaning of relations A′ and D, we know that they should satisfy the denial constraint:

∀x∀y ¬(A′(x, y) ∧ D(x, y)). (7.3)

212

S2

S1

M

S M2

M1

FIGURE 7.2. (M1,M2) is a merge of M.

In fact, schema S plus this constraint have enough capacity to store the information of both

S1 and S2. Moreover, let M1 = (S,S1, Σ1 ∪ ΓS) and M2 = (S,S2, Σ2 ∪ ΓS), where Σ1

consists of dependency:

A′(x, y) → A(x, y),

Σ2 consists of dependencies:

A′(x, y) → B(x, y),

D(x, y) → B(x, y),

and ΓS is the set that consists of denial constraint (7.3). Then M1 and M2 can be used to

relate the new schema S with schemas S1 and S2, respectively. ¤

In what follows, we propose a semantics for the merge operator using the machinery

developed in Chapter 6. As for the case of the extract operator, we formalize the merge

considering only the mappings M, M1 and M2, as the schemas and schema constraints

will be implicit in the mappings.

To define the semantics of the merge operator, we need to introduce the notion of M-

confluence, which is inspired by the notion of confluence proposed by Melnik et al. (2004;

2005). Let S, S1, S2 be schemas, where S1 and S2 have no relation symbols in common,

M1, M2 mappings from S to S1 and from S to S2, respectively, and M a mapping from

S1 to S2. Then the M-confluence of M1 and M2, denoted by M1 ⊕M M2, is defined as

213

the following mapping from S to S1 ∪ S2:

{(I, J ∪ K) | (J,K) ∈ M, (I, J) ∈ M1, (I,K) ∈ M2},

where J ∪ K is the union of instances J and K, that is, RJ∪K = RJ for every R ∈ S1,

and SJ∪K = SK for every S ∈ S2. Intuitively, M1 ⊕MM2 describes the unified instances

J ∪ K that are valid pairs according to M and also simultaneously mapped from M1 and

M2.

As pointed out before, S is a valid global schema for the merge of two schemas S1

and S2 related trough a mapping M, if every instance I of S represents in a non-redundant

way a valid unified instance of S1 and S2 according to M. Then, if the pair (M1,M2)

of mappings from S to S1 and S to S2, respectively, is given as a solution for the merge

operator, one can formalize this intuition by imposing conditions over M1 ⊕M M2, and

considering dom(M1 ⊕M M2) as the new global schema. More precisely, we impose the

following conditions for a solution of the merge of two schemas related by mapping M:

(M1) range(M1 ⊕M M2) = {J ∪ K | (J,K) ∈ M} and M1 ⊕M M2 is target

non-redundant.

(M2) M1 ⊕M M2 is source non-redundant.

(M3) dom(M1 ⊕M M2) = dom(M1) = dom(M2).

Condition (M1) indicates that every valid unified instance of M is covered in an essential

way by M1 ⊕M M2. Condition (M2) specifies that every instance in the global schema is

necessary to cover the unified instances of M. Finally, condition (M3) indicates that M1

and M2 do not consider instances that are outside the schema defined by dom(M1 ⊕M

M2). We use these conditions to define the merge operator.

DEFINITION 7.2.2 (Merge operator). (M1,M2) is a merge of M if M1 and M2

satisfy conditions (M1), (M2) and (M3).

Example 7.2.3. Consider schemas S1, S2, S and mapping M in Example 7.2.1, and let

ΓS = {∀x∀y ¬(A′(x, y)∧D(x, y))}. Moreover, consider mappings M1 = (S,S1, Σ1∪ΓS)

214

and M2 = (S,S2, Σ2 ∪ ΓS) with Σ1 = {A′(x, y) → A(x, y)} and Σ2 = {A′(x, y) →

B(x, y), D(x, y) → B(x, y)}. Then it can be shown that (M1,M2) is a merge of M. ¤

The merge operator has been studied in different contexts (Buneman, Davidson, &

Kosky, 1992; Pottinger & Bernstein, 2003; Melnik, 2004; Melnik et al., 2005; Pottinger

& Bernstein, 2008; Li, Quix, Kensche, & Geisler, 2010). Our definition is inspired by the

definition of Melnik et al. (2004; 2005). However, as for the case of the extract operator,

there are some features of their definition that limit its applicability, such as the use of (·)−1

that rules out the possibility of merging mappings specified by st-tgds (as shown in Section

7.1.2). This has leaded us to impose some new conditions to define this operator. Moreover,

Pottinger and Bernstein (2003, 2008) define a semantics for the merge operator that is based

on some preservation of information and minimality conditions. However, whereas this

approach is similar to the one taken in this section, the semantics proposed by Pottinger and

Bernstein (2008) is specific to a class of mappings that specify the overlap between schemas

by means of conjunctive queries. Finally, the problem of merging different schemas was

also considered by Buneman et al. (1992). In that paper, the authors rely on syntactic

matchings when merging schemas, instead of considering (semantic) schema mappings to

derive relationships between schemas. Thus, in a sense, our merge operator can be seen as a

generalization, as schema mappings can specify more complex relationships than syntactic

correspondences.

7.2.1. Computing the merge operator

Melnik (2004, Theorem 4.2.4) proposes a straightforward algorithm for the computa-

tion of the merge operator, which can also be used in our context to compute this operator

for mappings specified by FO-TO-CQ dependencies, thus showing that the merge oper-

ator is defined for this class. The algorithm proposed by Melnik (2004, Theorem 4.2.4)

for merging schemas S1 and S2 given a mapping M = (S1,S2, Σ), essentially considers

a unified schema that simply stores the union of all the instances of S1 and S2 that are

related by Σ. More precisely, assume that M = (S1,S2, Σ), where S1 and S2 are disjoint

ground schemas and Σ is an arbitrary set of dependencies over S1 and S2. Moreover, let

215

M1 = (Ŝ1 ∪ Ŝ2,S1, Σ1 ∪Σ) and M2 = (Ŝ1 ∪ Ŝ2,S2, Σ2 ∪Σ), where Ŝ1 = {R̂ | R ∈ S1},

Ŝ2 = {Ŝ | S ∈ S2} and Σ1, Σ2 are copying settings for S1 and S2, respectively, that is,

Σ1 = {R̂(x̄) → R(x̄) | R ∈ S1} and Σ2 = {Ŝ(x̄) → S(x̄) | S ∈ S2}. Then it can be

easily shown that (M1,M2) is a merge of M.

However, motivated by Example 7.2.1, we develop here an algorithm for the case of

mappings given by full FO-TO-CQ dependencies, that outputs a merge that makes use of

smaller instances in the global schema. In the algorithm we make use of the procedure

QUERYREWRITINGATOM described in Lemma 3.3.9 that given a mapping M specified

by FO-TO-CQ dependencies and an atomic conjunctive query Q of the form A(x̄) with A

a relational symbol in the target schema of M, computes a source rewriting of Q under M.

Algorithm MERGE(M)

Input: Mapping M = (S1,S2, Σ), where S1, S2 are disjoint ground schemas and Σ is a

set of full FO-TO-CQ dependencies.

Output: A merge (M1,M2) of M.

(1) Let S = {P̂ | P ∈ S1} ∪ {DR | R ∈ S2} be a ground schema.

(2) Construct a set Σ1 as follows. For every n-ary relation symbol P in S1, include

dependency P̂ (x̄) → P (x̄) into Σ1, with x̄ an n-ary tuple of distinct variables.

(3) Construct sets Σ2 and ΓS as follows. For every n-ary relation symbol R in S2 do

the following. Let x̄ be an n-ary tuple of distinct variables.

(a) Include DR(x̄) → R(x̄) into Σ2.

(b) Let α(x̄) be the output of QUERYREWRITINGATOM(M, R(x̄)), and α̂(x̄)

the formula obtained from α(x̄) by replacing every relation symbol P ∈ S1

by P̂ .

(c) Include α̂(x̄) → R(x̄) into Σ2 and ∀x̄¬(α̂(x̄) ∧ DR(x̄)) into ΓS.

(4) Let M1 = (S,S1, Σ1 ∪ ΓS) and M2 = (S,S2, Σ2 ∪ ΓS). Return (M1,M2).

¤

THEOREM 7.2.4. MERGE(M) returns a merge of M.

216

PROOF. Let M = (S1,S2, Σ) with S1 and S2 ground schemas and Σ a set of full

FO-TO-CQ dependencies. Assume that M1 = (S,S1, Σ1 ∪ ΓS) and M2 = (S,S2, Σ2 ∪

ΓS) are the output of MERGE(M). Since S1 and S2 are disjoint, it is easy to see that

M1 ⊕M M2 is the mapping

M1 ⊕M M2 = (S,S1 ∪ S2, Σ1 ∪ Σ2 ∪ Σ ∪ ΓS)

Let I be an arbitrary instance of S and assume that I |= ΓS. We show next that chaseΣ1(I)∪

chaseΣ2(I) is a minimum solution for I under M1 ⊕M M2. By the properties of the chase

and since Σ1 and Σ2 are sets of full dependencies and S1 and S2 are disjoint, we only need

to show that chaseΣ1(I) ∪ chaseΣ2(I) is a solution for I under M1 ⊕M M2. That is what

we do next.

Since (I, chaseΣ1(I)) |= Σ1, (I, chaseΣ2(I)) |= Σ2, and I |= ΓS in order to prove that

chaseΣ1(I) ∪ chaseΣ2(I) is a solution for I under M1 ⊕M M2 we just need to show that

(chaseΣ1(I), chaseΣ2(I)) |= Σ. Let ϕ(ȳ) → R(ȳ) be a dependency in Σ with ȳ a tuple of

non necessarily distinct variables, and assume that chaseΣ1(I) |= ϕ(ā). We need to prove

that chaseΣ2(I) |= R(ā). Notice that chaseΣ1(I) is an instance such that P chaseΣ1
(I) = P̂ I

for every P ∈ S1. Thus, if chaseΣ1(I) |= ϕ(ā) then I |= ϕ̂(ā) where ϕ̂(ā) is obtained from

ϕ(ā) replacing every P ∈ S1 by P̂ . Now, chaseΣ2(I) is an instance such that RchaseΣ2
(I) =

DI
R ∪ {ā | I |= α̂(ā)} where α(x̄) is a source rewriting of R(x̄) under M and α̂(x̄)

is obtained from α(x) replacing every P ∈ S1 by P̂ . Moreover, notice that for every

J ∈ SolM(chaseΣ1(I)) we have that J |= R(ā), thus ā ∈ certainM(R(x̄), chaseΣ1(I)).

This implies that chaseΣ1(I) |= α(ā), and thus I |= α̂(ā) which implies that ā ∈ RchaseΣ2
(I)

and thus chaseΣ2(I) |= R(ā). This was to be shown.

Thus we have that if I |= ΓS then we have that chaseΣ1(I)∪ chaseΣ2(I) is a minimum

solution for I under M1 ⊕M M2. In particular, this shows that I ∈ dom(M1 ⊕M M2) if

and only if I |= ΓS. Moreover, since M1 and M2 are st-tgds, we have that I ∈ dom(M1)

if and only if I ∈ dom(M2) if and only if I |= ΓS. Thus we have that dom(M1⊕MM2) =

dom(M1) = dom(M2). And thus (M3) holds.

217

We show now that for every L = J ∪K such that (J,K) ∈ M there exists an instance

I such that J = chaseΣ1(I), K = chaseΣ2(I) and I |= ΓS. In particular this implies two

facts: (1) for every (J,K) ∈ M there exists I ∈ S such that (I, J ∪ K) ∈ M1 ⊕M M2,

and (2) every instance L ∈ range(M1 ⊕M M2) is a minimum solution of some instance

I ∈ dom(M1 ⊕M M2). Now, given the instance J ∪ K such that (J,K) ∈ M consider

the following instance I of S. For every P ∈ S1 we have P̂ I = P J , and for every R ∈ S2

we have that DI
R = {ā | ā ∈ RK and J 6|= α(ā)} where α(x̄) is a source rewriting of R(x̄)

under M. First notice that every formula in ΓS is of the form α̂(x̄) → ¬DR(x̄) where α(x̄)

is a source rewriting of R(x̄) under M and α̂(x̄) is obtained from α(x) replacing every

P ∈ S1 by P̂ . Thus, by the construction of I we directly obtain that I |= ΓS and thus I is

in dom(M1 ⊕M M2). Now, it is straightforward to see that J = chaseΣ1(I), thus we just

need to prove that K = chaseΣ2(I). Let R ∈ S2. Notice that RchaseΣ2
(I) = DI

R ∪ {ā | I |=

α̂(ā)} where α(x̄) is a source rewriting of R(x̄) under M and α̂(x̄) is obtained from α(x)

replacing every P ∈ S1 by P̂ . Thus, since J = chaseΣ1(I) we know that I |= α̂(ā) if and

only if J |= α(ā). We have that RchaseΣ2
(I) = DI

R ∪ {ā | J |= α(ā)}, and then from the

definition of DI
R, we obtain that RchaseΣ2

(I) = {ā | ā ∈ RK and J 6|= α(ā)} ∪ {ā | J |=

α(ā)}. Now notice that (J,K) ∈ M thus if J |= α(ā) then K |= R(ā) which implies that

{ā | J |= α(ā)} ⊆ RK . From this last property we obtain that RchaseΣ2
(I) = {ā | ā ∈ RK

and J 6|= α(ā)} ∪ {ā | J |= α(ā)} equals RK . We have shown that for every R ∈ S2 it

holds that RchaseΣ2
(I) = RK which implies that chaseΣ2(I) = K. This completes this part

of the proof.

We have shown that if (J,K) ∈ M then there exists an instance I ∈ dom(M1 ⊕M

M2) such that (I, J ∪ K) ∈ M1 ⊕M M2. In particular, this shows that range(M1 ⊕M

M2) = {J ∪ K | (J,K) ∈ M}. Moreover, we have shown that every instance I ∈

dom(M1 ⊕M M2) has a minimum solution, and that every instance L ∈ range(M1 ⊕M

M2) is minimum solution of some instance. Thus, by Lemma 6.4.11 we conclude that

M1 ⊕M M2 is target non redundant. This proves condition (M1).

Now we show that M1 ⊕M M2 is source non-redundant. Notice that M1 ⊕M M2

has universal solutions and is closed under homomorphisms in range(M1 ⊕M M2). In

218

fact, since the dependencies defining M1 and M2 are full, we have that for every I ∈

dom(M1 ⊕M M2) the instance chaseΣ1(I) ∪ chaseΣ2(I) is a minimum solution, and for

every instance K such that K ∈ range(M1 ⊕M M2) and chaseΣ1(I) ∪ chaseΣ2(I) ⊆ K

we have that K is a solution for I . Thus, we can make use of Theorem 6.4.14 to show

that M1 ⊕M M2 is source non-redundant. Thus let I and L be two instances with the

same space of solutions under M1 ⊕M M2. We need to show that I = L. Notice that

chaseΣ1(I) ∪ chaseΣ2(I) is a minimum solution for I , and similarly for L. Thus, if I

and L have the same space of solutions, we have that chaseΣ1(I) = chaseΣ1(L) and that

chaseΣ2(I) = chaseΣ2(L). From chaseΣ1(I) = chaseΣ1(L) we obtain that for every P ∈

S1 it holds that P I = PL and thus, P̂ I = P̂L. Now, by the construction of Σ2, since

P̂ I = P̂L for every P ∈ S1, and since chaseΣ2(I) = chaseΣ2(L), it is easy to prove that

DI
R = DL

R for every R ∈ S2. Thus, we have that P̂ I = P̂L for every P ∈ S1 and that

DI
R = DL

R for every R ∈ S2 from which we conclude that I = L. This prove that M1 and

M2 also satisfy (M2), completing the proof of correctness of MERGE. ¤

219

8. CONCLUSIONS AND FUTURE WORK

The importance of schema mappings is widely recognized nowadays (Hernández et

al., 2002; Bernstein, 2003; Melnik, 2004; Fagin, Kolaitis, Popa, & Tan, 2005; Melnik et

al., 2005; Haas, Hernández, Ho, Popa, & Roth, 2005; Fagin, 2007; Fuxman et al., 2006;

Hernández et al., 2007; Arenas, Pérez, Reutter, & Riveros, 2009a; Arenas, Pérez, et al.,

2010; Fagin et al., 2011). In particular, the data-management community recognizes the

need to develop techniques to manipulate these schema mapping specifications, in order

to provide an integral solution to fundamental data-interoperability tasks such as data ex-

change, data integration, and peer data management. This dissertation presented several

contributions to the formal study of schema mapping operators, with special attention on

their use in data exchange systems. We proposed formal semantics for the inverse, extract

and merge operators, we presented algorithms to compute them, and study expressiveness

issues. More importantly, we studied the issue of finding mapping specification languages

that are closed under some operations. We also introduced the novel notions of informa-

tion and redundancy in schema mappings that we proved are essential to build a general

framework to study some fundamental properties of existing mapping operators as well as

to formalize new operators.

Several questions remain unanswered, and there are several open problems that can be

used to build an interesting program for future research. In particular, although almost all

the definitions for schema mapping operators presented in this dissertation apply to general

mappings (where mappings are simply sets of pair of instances), the results on mapping

languages, algorithms, and also some tools and characterizations, are proved for the rela-

tional case. Thus, as a first direction for future research it would be certainly relevant to

study the problem of operating schema mappings in a data model beyond the relational

model. One candidate to begin with is the XML data model. Although XML-schema map-

ping languages have been proposed and studied (Arenas & Libkin, 2008; Amano, Libkin, &

Murlak, 2009; Terwilliger, Bernstein, & Melnik, 2009; Arenas, Barceló, Libkin, & Murlak,

220

2010), little attention has been paid to the formal study of XML-schema mapping opera-

tors. For the case of the composition operator, a first insight has been given by Amano

et al. (2009), showing that the previous results obtained for the relational model are not

directly applicable over XML. Inversion of XML-schema mappings, as well as the appli-

cation of the other operators considered in this dissertation in the XML context, remains an

unexplored field.

In the relational model, there are still interesting problems to explore. Notice that al-

most all the technical results (algorithms, closure properties, characterizations) presented in

this dissertation, consider mapping languages given by L1-TO-L2 dependencies, that is, im-

plication formulas of the form ϕ(x̄) → ψ(x̄) with ϕ(x̄) a query in L1 and and ψ(x̄) a query

in L2. Thus, it would be interesting to study the application of the concepts presented in

this dissertation to mappings specified in other formalisms. A natural possibility is to con-

sider mappings specified by bidirectional-implication formulas of the form ϕ(x̄) ↔ ψ(x̄),

that in general provide more information about the relationship between source and tar-

get instances than mappings specified by implication formulas. One particular case where

bidirectional-implication formulas would be very useful, is the case of the merge operator

where the mapping is not actually used to exchange data, but to establish the correspon-

dence of existing pieces of data. Little research has been carried out to study operators for

mappings specified in this kind of formalisms. Nash et al. (2005) considered the compo-

sition operator for mappings specified by languages beyond implication formulas. Melnik,

Adya, and Bernstein (2008) also considered a special form of bidirectional-implication for-

mulas to define mappings when studying the notion of data-roundtripping, which is closely

related to the notion of inverting mappings. In any case, most of the questions considered in

this dissertation remain open for the composition, inversion, and the other operators when

schema mappings are specified by bidirectional-implication formulas.

Besides studying operators like inversion and composition for database models beyond

the relational model, or for mapping languages beyond L1-TO-L2 dependencies, we believe

that future efforts have to be focused in providing a unifying framework for these operators.

A natural question, for instance, is whether there exists a schema mapping language that is

221

closed under both composition and inverse. In this respect we have made some progress

by proposing the language of plain SO-tgds, which is closed under CQ-composition and

admits CQ-maximum recoveries. It follows easily from the results of this dissertation that

the language of plain SO-tgds is not closed under the notion of CQ-maximum recovery.

Thus, an interesting open question is whether some extension of the language of plain

SO-tgds enjoy such a closure property.

Another problem to explore is to define a notion of completeness for schema mapping

operators. Given an abstract complex task on schema mappings, like schema evolution or

the problem of building a global schema in a data integration system, under which con-

ditions a set of operators is considered to be complete for that task? We would also need

to answer questions like, can the result of some operator over schema mappings be ob-

tained as a combination of other operators? As pointed out by Melnik et al. (2005), these

are fundamental open problems on this area. Answering these questions would allow us

to characterize good sets of schema mapping operators that are complete and minimal to

achieve certain complex tasks.

As many information-system problems involve not only the design and integration

of complex application artifacts, but also their subsequent manipulation, the definition,

formalization and implementation of operators over schema mappings will continue to play

a fundamental role in the research on data-interoperability. We believe that the results

presented in this dissertation together with the solutions to the proposed open problems,

will play a significant role to advance our understanding of this fundamental area of data

management.

222

REFERENCES

Abiteboul, S., & Duschka, O. (1998). Complexity of answering queries using materialized

views. In PODS (p. 254-263).

Amano, S., Libkin, L., & Murlak, F. (2009). XML schema mappings. In Pods (p. 33-42).

Arenas, M. (2006). Personal communication.

Arenas, M., Barceló, P., Fagin, R., & Libkin, L. (2004). Locally consistent transformations

and query answering in data exchange. In PODS (p. 229-240).

Arenas, M., Barceló, P., Libkin, L., & Murlak, F. (2010). Relational and XML data

exchange. Morgan & Claypool Publishers.

Arenas, M., Barceló, P., & Reutter, J. L. (2009). Query languages for data exchange:

beyond unions of conjunctive queries. In ICDT (p. 73-83).

Arenas, M., Fagin, R., & Nash, A. (2010). Composition with target constraints. In ICDT

(p. 129-142).

Arenas, M., & Libkin, L. (2008). XML data exchange: Consistency and query answering.

J. ACM, 55(2).

Arenas, M., Pérez, J., Reutter, J. L., & Riveros, C. (2009a). Composition and inversion of

schema mappings. SIGMOD Record, 38(3), 17–28.

Arenas, M., Pérez, J., Reutter, J. L., & Riveros, C. (2009b). Inverting schema mappings:

Bridging the gap between theory and practice. PVLDB, 2(1), 1018–1029.

223

Arenas, M., Pérez, J., Reutter, J. L., & Riveros, C. (2010). Foundations of schema mapping

management. In PODS (pp. 227–238).

Arenas, M., Pérez, J., & Riveros, C. (2008). The recovery of a schema mapping: bringing

exchanged data back. In PODS (p. 13-22).

Arenas, M., Pérez, J., & Riveros, C. (2009). The recovery of a schema mapping: bringing

exchanged data back. TODS, 34(4).

Arocena, P. C., Fuxman, A., & Miller, R. J. (2010). Composing local-as-view mappings:

closure and applications. In ICDT (p. 209-218).

Bernstein, P. (2003). Applying model management to classical meta data problems. In

CIDR.

Bernstein, P., Halevy, A. Y., & Pottinger, R. (2000). A vision of management of complex

models. SIGMOD Record, 29(4), 55-63.

Bernstein, P., & Melnik, S. (2007). Model management 2.0: manipulating richer mappings.

In SIGMOD (p. 1-12).

Buneman, P., Davidson, S. B., & Kosky, A. (1992). Theoretical aspects of schema merging.

In EDBT (p. 152-167).

ten Cate, B., & Kolaitis, P. G. (2009). Structural characterizations of schema-mapping

languages. In ICDT (p. 63-72).

ten Cate, B., & Kolaitis, P. G. (2010). Structural characterizations of schema-mapping

languages. Commun. ACM, 53(1), 101-110.

Dawar, A. (1998). A restricted second order logic for finite structures. Inf. Comput., 143(2),

154-174.

224

Du, D.-Z., & Ko, K.-I. (2000). Theory of computational complexity. Wiley-Interscience.

Duschka, O. M., & Genesereth, M. R. (1997). Answering recursive queries using views.

In PODS (p. 109-116).

Fagin, R. (1982). Horn clauses and database dependencies. JACM, 29(4), 952-985.

Fagin, R. (2007). Inverting schema mappings. TODS, 32(4).

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: semantics and

query answering. TCS, 336(1), 89-124.

Fagin, R., Kolaitis, P. G., Nash, A., & Popa, L. (2008). Towards a theory of schema-

mapping optimization. In PODS (p. 33-42).

Fagin, R., Kolaitis, P. G., & Popa, L. (2005). Data exchange: getting to the core. TODS,

30(1), 174-210.

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W.-C. (2005). Composing schema mappings:

Second-order dependencies to the rescue. TODS, 30(4), 994-1055.

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W. C. (2008). Quasi-inverses of schema

mappings. TODS, 33(2).

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W.-C. (2009). Reverse data exchange: coping

with nulls. In PODS (pp. 23–32).

Fagin, R., Kolaitis, P. G., Popa, L., & Tan, W.-C. (2011). Schema mapping evolution

through composition and inversion. In Z. Bellahsene, A. Bonifati, & E. Rahm (Eds.),

Schema matching and mapping (p. 191-222). Springer.

225

Fuxman, A., Hernández, M. A., Ho, C. T. H., Miller, R. J., Papotti, P., & Popa, L. (2006).

Nested mappings: Schema mapping reloaded. In VLDB (p. 67-78).

Haas, L. M., Hernández, M. A., Ho, H., Popa, L., & Roth, M. (2005). Clio grows up: from

research prototype to industrial tool. In Sigmod conference (p. 805-810).

Halevy, A. (2000). Theory of answering queries using views. SIGMOD Record, 29(1),

40-47.

Halevy, A. (2001). Answering queries using views: A survey. VLDB J., 10(4), 270-294.

Hell, P., & Nes̆etr̆il, J. (2004). Graphs and Homomorphisms. Oxford University Press.

Hernández, M. A., Ho, H., Popa, L., Fuxman, A., Miller, R. J., Fukuda, T., et al. (2007).

Creating nested mappings with clio. In Icde (p. 1487-1488).

Hernández, M. A., Popa, L., Velegrakis, Y., Miller, R. J., Naumann, F., & Ho, C.-T. (2002).

Mapping XML and relational schemas with Clio. In Icde (p. 498-499).

Imielinski, T., & Lipski, W. (1984). Incomplete information in relational databases. Journal

of the ACM, 31(4), 761-791.

Kolaitis, P. G. (2005). Schema mappings, data exchange, and metadata management. In

PODS (p. 61-75).

Lenzerini, M. (2002). Data integration: a theoretical perspective. In PODS (p. 233-246).

Levy, A., Mendelzon, A., Sagiv, Y., & Srivastava, D. (1995). Answering queries using

views. In PODS (p. 95-104).

Levy, A., Rajaraman, A., & Ordille, J. J. (1996). Querying heterogeneous information

sources using source descriptions. In VLDB (p. 251-262).

226

Li, X., Quix, C., Kensche, D., & Geisler, S. (2010). Automatic schema merging using

mapping constraints among incomplete sources. In CIKM (p. 299-308).

Libkin, L. (2004). Elements of Finite Model Theory (1st ed.). Springer-Verlag.

Madhavan, J., & Halevy, A. Y. (2003). Composing mappings among data sources. In

VLDB (p. 572-583).

Maier, D., Mendelzon, A., & Sagiv, Y. (1979). Testing implications of data dependencies.

TODS, 4(4), 455-469.

Melnik, S. (2004). Generic model management: concepts and algorithms (Vol. 2967).

Springer.

Melnik, S., Adya, A., & Bernstein, P. A. (2008). Compiling mappings to bridge applica-

tions and databases. ACM Trans. Database Syst., 33(4).

Melnik, S., Bernstein, P. A., Halevy, A. Y., & Rahm, E. (2005). Supporting executable

mappings in model management. In SIGMOD (p. 167-178).

Nash, A., Bernstein, P. A., & Melnik, S. (2005). Composition of mappings given by

embedded dependencies. In PODS (p. 172-183).

Papadimitriou, C. M. (1994). Computational complexity. Reading, Massachusetts:

Addison-Wesley.

Pottinger, R., & Bernstein, P. (2003). Merging models based on given correspondences. In

VLDB (p. 826-873).

Pottinger, R., & Bernstein, P. (2008). Schema merging and mapping creation for relational

sources. In EDBT (p. 73-84).

227

Pottinger, R., & Halevy, A. Y. (2001). Minicon: A scalable algorithm for answering queries

using views. VLDB J., 10(2-3), 182-198.

Riveros, C. (2008). Recovering Information in Data Exchange. Master’s thesis, Depart-

ment of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile.

Segoufin, L., & Vianu, V. (2005). Views and queries: determinacy and rewriting. In PODS

(p. 49-60).

Terwilliger, J. F., Bernstein, P. A., & Melnik, S. (2009). Full-fidelity flexible object-oriented

XML access. PVLDB, 2(1), 1030-1041.

228

APPENDIX A. QUERY REWRITING TOOLS

A.1. Source Rewriting in Schema Mappings

In this section we show how source rewritings of conjunctive queries can be computed.

The main goal of this section is to provide formal proofs for Lemmas 3.3.1 and 3.3.9.

It should be noticed that the problem of computing rewritings of queries has been ex-

tensively studied in the database area (Levy et al., 1995; Abiteboul & Duschka, 1998) and,

in particular, in the data integration context (Halevy, 2000, 2001; Lenzerini, 2002). In par-

ticular, the class of CQ-TO-CQ dependencies corresponds to the class of GLAV mappings

in the data integration context (Lenzerini, 2002), and, as such, the techniques developed

to solved the query rewriting problem for GLAV mappings can be reused in our context.

It is important to notice that most of the query rewriting techniques have been developed

for two sub-classes of GLAV mappings, namely GAV mappings, which essentially cor-

responds to the class of mappings specified by full CQ-TO-CQ dependencies (Lenzerini,

2002), and LAV mappings, which are mappings specified by CQ-TO-CQ dependencies of

the form R(x1, . . . , xk) → ψ(x1, . . . , xk), where R is a source predicate (Lenzerini, 2002).

However, it is possible to reuse a large part of the work in this area as a GLAV mapping

can be represented as the composition of a GAV and a LAV mapping.

Example A.1.1. Assume that M is specified by dependency:

R(x) ∧ S(x) → ∃y T (x, y).

Then M is equivalent to the composition of a GAV mapping specified by dependency

R(x) ∧ S(x) → U(x) and a LAV mapping specified by dependency U(x) → ∃y T (x, y),

where U is an auxiliary relation. ¤

More formally, let M be a mapping specified by a set of CQ-TO-CQ dependencies

and Q a conjunctive query over the target of M. Then one can obtain a rewriting of Q over

the source as follows. First, one constructs, as in the above example, a GAV mapping M1

and a LAV mapping M2 such that M = M1 ◦M2. Second, one obtains a rewriting Q′ of

229

Q over the source of M2 by adopting one of the algorithms proposed in the literature for

query rewriting for LAV mappings (Levy, Rajaraman, & Ordille, 1996; Duschka & Gene-

sereth, 1997; Pottinger & Halevy, 2001). Finally, one obtains a rewriting Q′′ of Q′ over the

source of M1, which is the desired rewriting of Q, by simply unfolding Q′ according to

the dependencies of mapping M1 (Lenzerini, 2002).

It should be noticed that the time complexity of the rewriting procedure described

above is exponential in the size of the mapping and the query, and that this procedure can

also be used for the case of mappings specified by FO-TO-CQ dependencies. If M is

specified by a set of FO-TO-CQ dependencies, then by using the same idea as in Example

A.1.1, it is possible to show that M is equivalent to the composition of a mapping M1

specified by a set of full FO-TO-CQ dependencies and a LAV mapping M2. Thus, given

that the query unfolding process can be carried out over a set of full FO-TO-CQ depen-

dencies in the same way as for GAV mappings, the process described above can be used to

compute in exponential time the rewriting of a target conjunctive query over the source of

M.

For the sake of completeness, in this paper we propose a novel exponential-time al-

gorithm that given a mapping M specified by a set of FO-TO-CQ st-dependencies and a

conjunctive query Q over the target schema, produces a rewriting of Q over the source of

M. This algorithm does not follow the approach described above, as it directly uses the

dependencies specifying M to construct a query rewriting (it does not decompose M into

the composition of two mappings). In particular, the time complexity of the algorithm is

exponential, so it could be used as an alternative query rewriting algorithm. Another rea-

son to include a complete algorithm is that, in several results in this dissertation we need

to reason about the language used as the output of the query rewriting algorithm depending

on the language used to specify the input mappings. For example, when the input mapping

M is specified by FO-TO-CQ dependencies, our algorithm generates an FO query. More-

over, the output of our algorithm in this case is a query constructed as a combinations (by

using disjunctions, conjunctions, existential quantification, and equalities) of the premises

of the dependencies that defines M. On the other hand, if the input mapping is specified

230

by st-tgds, then our algorithm generates a query in UCQ= (see Lemma 3.3.3), and if the

input is specified by CQ 6=-TO-CQ dependencies, then our algorithm produces a query in

UCQ=,6= (see Lemma 6.2.5).

A.1.1. Proof of Lemma 3.3.1

To prove the lemma, we provide an algorithm that given an st-mapping M = (S,T, Σ)

such that Σ is a set of FO-TO-CQ dependencies, and a conjunctive query Q over schema

T, computes a query Q′ that is a rewriting of Q over the source schema S.

We first introduce the terminology used in the algorithm. The basic notion used in the

algorithm is that of existential replacement. In an existential replacement of a formula β,

we are allowed to existentially quantify some of the positions of the free variables of β.

For example, if β(x1, x2, x3) = P (x1, x2)∧R(x2, x3), then two existential replacements of

β(x1, x2, x3) are γ1(x2) = ∃u∃v (P (u, x2)∧R(x2, v)) and γ2(x1, x2, x3) = ∃z (P (x1, z)∧

R(x2, x3)). We note that both γ1 and γ2 are implied by β. In an existential replacement, we

are also allowed to use the same quantifier for different positions. For example, γ3(x2) =

∃w (P (w, x2)∧R(x2, w)) is also an existential replacement of β. We note that γ3 is implied

by β if x1 and x3 have the same value, that is, β(x1, x2, x3) ∧ x1 = x3 implies γ3. In

an existential replacement, these equalities are also included. Formally, given a formula

β(x̄) where x̄ = (x1, . . . , xk) is a tuple of distinct variables, an existential replacement

of β(x̄) is a pair of formulas (∃z̄ γ(x̄′, z̄), θ(x̄′′)), where: (1) ∃z̄ γ(x̄′, z̄) is obtained from

β(x̄) by existentially quantifying some of the positions of the free variables of β(x̄), and

z̄ is the tuple of fresh variables used in these quantifications, (2) θ(x̄′′) is a conjunction of

equalities such that xi = xj is in θ (1 ≤ i, j ≤ k and i 6= j) if we replace a position

with variable xi and a position with variable xj by the same variable z from z̄, and (3)

x̄′ and x̄′′ are the tuples of free variables of ∃z̄ γ(x̄′, z̄) and θ(x̄′′), respectively. Notice

that ∃z̄ γ(x̄′, z̄) is a logical consequence of β(x̄) ∧ θ(x̄′′). For example, the following are

existential replacements of the formula β(x1, x2, x3) = ∃y1 (R(x1, x2, y1)∧T (y1, x3, x2)):

(
∃y1 (R(x1, x2, y1) ∧ T (y1, x3, x2)), true

)
,

(
∃z1∃z2∃y1 (R(z1, x2, y1) ∧ T (y1, x3, z2)), true

)
,

231

(
∃z1∃z2∃y1 (R(z1, z1, y1) ∧ T (y1, z2, z2)), x1 = x2 ∧ x3 = x2

)
.

In the first existential replacement above, we have replaced no position, thus obtaining

the initial formula β(x1, x2, x3) and sentence true (this is a valid existential replacement).

In the second existential replacement, although we have replaced some positions of free

variables by existentially quantified variables z1 and z2, we include sentence true since no

positions with distinct variables are replaced by the same variable from (z1, z2).

In the algorithm, we use the following terminology for tuples of variables: x̄ ⊆ ȳ indi-

cates that every variable in x̄ is also mentioned in ȳ, (x̄, ȳ) is a tuple of variables obtained

by placing the variables of x̄ followed by the variables of ȳ, f : x̄ → ȳ is a substitu-

tion that replaces every variable of x̄ by a variable of ȳ (f is not necessarily a one-to-one

function), f(x̄) is a tuple of variables obtained by replacing every variable x in x̄ by f(x),

and if x̄ = (x1, . . . , xk) and ȳ = (y1, . . . , yk), we use formula x̄ = ȳ as a shorthand for

x1 = y1 ∧ · · · ∧ xk = yk.

Algorithm QUERYREWRITING(M, Q)

Input: An st-mapping M = (S,T, Σ) where Σ is a set of FO-TO-CQ dependencies, and

a conjunctive query Q over T.

Output: An FO query Q′ that is a rewriting of Q over the source schema S.

(1) Assume that Q is given by the formula ∃ȳψ(x̄, ȳ).

(2) Create a set Cψ of FO queries as follows. Start with Cψ = ∅ and let m be

the number of atoms in ψ(x̄, ȳ). Then for every p ∈ {1, . . . ,m} and tuple

((σ1, k1), . . . , (σp, kp)) ∈ (Σ × {1, . . . ,m})p such that k1 + · · · + kp = m,

do the following.

(a) Let (ξ1, . . . , ξp) be a tuple obtained from (σ1, . . . , σp) by renaming the vari-

ables of the formulas σ1, . . ., σp in such a way that the sets of variables of

the formulas ξ1, . . ., ξp are pairwise disjoint.

(b) Assume that ξi is equal to ϕi(ūi) → ∃v̄i ψi(ūi, v̄i), where ūi and v̄i are tuples

of distinct variables.

232

(c) For every tuple (χ1(w̄1, z̄1), . . . , χp(w̄p, z̄p)), where χi(w̄i, z̄i) is a conjunc-

tion of ki (not necessarily distinct) atoms from ψi(ūi, v̄i), w̄i ⊆ ūi, z̄i ⊆ v̄i,

and such that w̄i and z̄i are tuples of distinct variables, do the following.

(i) Let ∃z̄ χ(w̄, z̄) be the formula ∃z̄1 · · · ∃z̄p(χ1(w̄1, z̄1)∧· · ·∧χp(w̄p, z̄p))

with w̄ = (w̄1, . . . , w̄p) and z̄ = (z̄1, . . . , z̄p).

(ii) Then for every existential replacement (∃s̄∃z̄ γ(w̄′, z̄, s̄), θ(w̄′′)) of

∃z̄ χ(w̄, z̄) (up to renaming of variables in s̄), and for every pair of

variable substitutions f : x̄ → x̄ and g : w̄′ → x̄, check whether there

exists a variable substitution h : ȳ → (z̄, s̄) such that ψ(f(x̄), h(ȳ))

and γ(g(w̄′), z̄, s̄) are syntactically equal (up to reordering of atoms).

If this is the case, then add to Cψ the following formula:

∃ū1 · · · ∃ūp

(p∧

i=1

ϕi(ūi) ∧ θ(w̄′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

)
. (A.2)

(3) If Cψ is nonempty, then let α(x̄) be the FO formula constructed as the disjunc-

tion of all the formulas in Cψ. Otherwise, let α(x̄) be false, that is, an arbitrary

unsatisfiable formula (with x̄ as its tuple of free variables).

(4) Return the query Q′ given by α(x̄).

¤

Notice that in the algorithm, tuple x̄ is the set of free variables of formula (A.2) since

both w̄′ and w̄′′ are subsets of (ū1, . . . , ūp). Also notice that since ψ(f(x̄), h(ȳ)) and

γ(g(w̄′), z̄, s̄) are identical (up to reordering of atoms), f is a function from x̄ to x̄, g is

a function from w̄′ to x̄, and h is a function from ȳ to (z̄, s̄), we have that every variable x

in x̄ is equal to some variable u in (ū1, . . . , ūp) since x̄ = f(x̄)∧w̄′ = g(w̄′) is a subformula

of (A.2). This implies that formula (A.2) is domain independent since each formula ϕi(ūi)

is assumed to be domain independent. Thus, we also have that α(x̄) and Q′ are domain

independent.

233

Example A.1.2. Assume that Σ is given by dependency σ:

ϕ(x1, x2) → R(x1, x1, x2), (A.3)

where ϕ(x1, x2) is an FO formula over the source schema, and that Q(x1, x2, x3) is the con-

junctive query ∃y1 ψ(x1, x2, x3, y1), where ψ(x1, x2, x3, y1) = R(x1, x2, y1)∧R(y1, x3, x3).

Given that ψ(x1, x2, x3, y1) has two atoms, the algorithm considers the tuples (σ1, 2) from

(Σ × {1, 2})1 and ((σ1, 1), (σ2, 1)) from (Σ × {1, 2})2, where σ1 = σ2 = σ, to construct

a source rewriting of query Q(x1, x2, x3). We show here how tuple ((σ1, 1), (σ2, 1)) is

processed.

First, the algorithm generates a tuple (ξ1, ξ2) from (σ1, σ2) by renaming the variables of

σ1 and σ2 (in such a way that the sets of variables of ξ1 and ξ2 are disjoint). Assume that ξ1

is equal to ϕ(u1, u2) → R(u1, u1, u2) and ξ2 equal to ϕ(u3, u4) → R(u3, u3, u4). The algo-

rithm continues by considering all the tuples (χ1(u1, u2), χ2(u3, u4)) such that χ1(u1, u2)

and χ2(u3, u4) are nonempty conjunctions of atoms from the consequents of ξ1 and ξ2, re-

spectively. In this case, the algorithm only needs to consider tuple (R(u1, u1, u2), R(u3, u3, u4)).

The algorithm uses this tuple to construct formula χ(u1, u2, u3, u4) = R(u1, u1, u2) ∧

R(u3, u3, u4), and then looks for all the existential replacements of χ(u1, u2, u3, u4) that

can be made identical to ∃y1 ψ(x1, x2, x3, y1) by substituting some variables. For instance,

(∃s1 (R(u1, u1, s1) ∧ R(s1, u3, u4)), u2 = u3) is one of these existential replacements:

R(g(u1), g(u1), s1)∧R(s1, g(u3), g(u4)) is syntactically equal to ψ(f(x1), f(x2), f(x3), h(y1)),

where f(x1) = f(x2) = x1, f(x3) = x3, g(u1) = x1, g(u3) = g(u4) = x3 and h(y1) = s1.

The algorithm uses functions f , g and condition u2 = u3 from the existential replacement

to generate the following formula β(x1, x2, x3) (omitting trivial equalities like x1 = x1):

∃u1∃u2∃u3∃u4 (ϕ(u1, u2) ∧ ϕ(u3, u4) ∧

u2 = u3 ∧ x2 = x1 ∧ u1 = x1 ∧ u3 = x3 ∧ u4 = x3).

234

Formula β(x1, x2, x3) is added to Cψ. It is important to notice that β(x1, x2, x3) rep-

resents a way to deduce ∃y1 ψ(x1, x2, x3, y1) from ϕ(x1, x2), that is, β(x1, x2, x3) →

∃y1 ψ(x1, x2, x3, y1) is a logical consequence of formula (A.3).

In the last step of the algorithm, an FO formula α(x1, x2, x3) is generated by taking

the disjunction of all the formulas in Cψ. In particular, formula β(x1, x2, x3) above is one

of these disjuncts. The algorithm returns α(x1, x2, x3), which is a rewriting over the source

of conjunctive query Q(x1, x2, x3). ¤

Let M = (S,T, Σ) be an st-mapping with Σ a set of FO-TO-CQ dependencies, Q a

conjunctive query over T, and Q′ the output of QUERYREWRITING(M, Q). It is straight-

forward to prove that the algorithm runs in exponential time in the size of M and Q, and

that the size of Q′ is exponential in the size of M and Q. We now prove the correctness of

the rewriting algorithm. We need to show that for every instance I of S, it holds that:

Q′(I) = certainM(Q, I).

In this proof, we assume that Q is given by the formula ∃ȳψ(x̄, ȳ), and that Q′ is given by

the formula α(x̄) (that could be false).

We first show that Q′(I) ⊆ certainM(Q, I). The proof relies in the following claim.

CLAIM A.1.3. The formula ∀x̄(α(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of Σ.

PROOF. If α(x̄) is false, the property trivially holds. Now, assume that α(x̄) is the

disjunction of the formulas in the set Cψ constructed after step 2 of the algorithm. We show

that for every β(x̄) ∈ Cψ it holds that ∀x̄(β(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of

Σ, which implies that ∀x̄(α(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of Σ. Assume that

β(x̄) is equal to:

∃ū1 · · · ∃ūp

(p∧

i=1

ϕi(ūi) ∧ θ(w̄′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

)
,

where for every i ∈ {1, . . . , p}, it holds that ϕi(ūi) → ∃v̄i ψi(ūi, v̄i) is a dependency in

Σ. In step 2(c)i of the algorithm, formula ∃z̄χ(w̄, z̄) is defined as ∃z̄1 · · · ∃z̄p(χ1(w̄1, z̄1) ∧

235

· · · ∧ χp(w̄p, z̄p)), where χi(w̄i, z̄i) is a conjunction of atoms from ψi(ūi, v̄i), with w̄i ⊆ ūi

and z̄i ⊆ v̄i. Thus, we have that sentence Φ:

∀x̄
(
β(x̄) → ∃w̄

(
∃z̄ χ(w̄, z̄) ∧ θ(w̄′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

))

is a logical consequence of Σ. Given that (∃s̄∃z̄ γ(w̄′, z̄, s̄), θ(w̄′′)) is an existential replace-

ment of ∃z̄ χ(w̄, z̄), we know that ∃z̄ χ(w̄, z̄) ∧ θ(w̄′′) implies ∃s̄∃z̄ γ(w̄′, z̄, s̄). Thus, we

have that Φ implies:

∀x̄
(
β(x̄) → ∃w̄′

(
∃s̄∃z̄γ(w̄′, z̄, s̄) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

))
.

Now, we can safely replace w̄′ by g(w̄′), and drop the conjunction w̄′ = g(w̄′) and the

existential quantification over w̄′. Then we obtain that sentence:

∀x̄
(
β(x̄) → ∃s̄∃z̄ γ(g(w̄′), z̄, s̄) ∧ x̄ = f(x̄)

)

is a logical consequence of Φ. Thus, given that γ(g(w̄′), z̄, s̄) is syntactically equal to

ψ(f(x̄), h(ȳ)), we know that ∀x̄(β(x̄) → ∃s̄∃z̄ ψ(f(x̄), h(ȳ)) ∧ x̄ = f(x̄)) is also a con-

sequence of Φ. In this last formula, we can replace f(x̄) by x̄ and drop the conjunction

x̄ = f(x̄), obtaining ∀x̄(β(x̄) → ∃s̄∃z̄ ψ(x̄, h(ȳ))). Since h is a function from ȳ to (z̄, s̄),

we have that ∃z̄∃s̄ ψ(x̄, h(ȳ)) logically implies formula ∃ȳ ψ(x̄, ȳ) (because the variables

in ȳ are all distinct). We have shown that ∀x̄(β(x̄) → ∃ȳ ψ(x̄, ȳ)) is a logical consequence

of Φ and, therefore, it is a logical consequence of Σ. This concludes the proof of the

claim. ¤

We prove now that Q′(I) ⊆ certainM(Q, I) for every instance I ∈ Inst(S), by using

the above claim. Let I be an arbitrary instance, and assume that ā is a tuple of constant

values such that ā ∈ Q′(I). We need to show that for every J ∈ SolM(I) it holds that

ā ∈ Q(J). Since ā ∈ Q′(I) we know that I |= α(ā). Now let J ∈ SolM(I). From the

Claim A.1.3 we know that ∀x̄(α(x̄) → ∃ȳψ(x̄, ȳ)) is a logical consequence of Σ. Then

since (I, J) |= Σ and I |= α(ā), it holds that J |= ∃ȳψ(ā, ȳ), which implies that ā ∈ Q(J).

Thus we have that for every J ∈ SolM(I) it holds that ā ∈ Q(J). This was to be shown.

236

We now prove that certainM(Q, I) ⊆ Q′(I) for every instance I . First recall that

given an instance I of S, the instance chaseΣ(I) of T is constructed with the following

procedure (see Section 2.4). For every dependency σ ∈ Σ of the form ϕ(x̄) → ∃ȳ ν(x̄, ȳ),

with x̄ = (x1, . . . , xm), ȳ = (y1, . . . , yℓ) tuples of distinct variables, and for every m-tuple

ā of elements from dom(I) such that I |= ϕ(ā), do the following. Choose an ℓ-tuple n̄

of distinct fresh values from N, and include all the conjuncts of ν(ā, n̄) in chaseΣ(I). We

say that the conjuncts of ψ(a1, . . . , am, n1, . . . , nℓ) included in chaseΣ(I) are generated (or

justified) by σ.

We also make use of the notion of N-connected instances introduced in the Section 3.4

when proving Lemma 3.4.2 and Theorem 3.4.3. Recall that an instance I of S is N-

connected if the following holds. Let GI = (VI , EI) be a graph such that VI is composed

by all the tuples t ∈ RI for R ∈ S, and there is an edge in EI between tuples t1 and t2 if

there exists a value n ∈ N that is mentioned both in t1 and t2. Then I is N-connected if the

graph GI is connected. An instance I1 is an N-connected sub-instance of I , if I1 is a sub-

instance of I and I1 is N-connected. Finally, I1 is an N-connected component of I , if I1

is an N-connected sub-instance of I and there is no N-connected sub-instance I2 of I such

that I1 is a proper sub-instance of I2. We extend these definitions for formulas that are con-

junctions of atoms. Let ϕ(x̄) be a conjunction of atoms, and ā a tuple of values in C ∪ N.

We say that ϕ(ā) is N-connected, if the instance that contains exactly the atoms of ϕ(ā) is

N-connected. The definition of N-connected components of a conjunction of atoms ψ(ā),

is defined as for the case of instances. Notice that if I is such that dom(I) ⊆ C, then every

atom in an N-connected sub-instance of chaseΣ(I) is generated by a single dependency in

Σ.

We are ready now to prove that certainM(Q, I) ⊆ Q′(I) for every instance I in S.

Let I be an arbitrary instance of S. We use the following property of chaseΣ(I) (see Sec-

tion 2.4). Since Q is a conjunctive query, we know that certainM(Q, I) = Q(chaseΣ(I))↓,

where Q(chaseΣ(I))↓ denotes the set of tuples in Q(chaseΣ(I)) composed only by con-

stant values. Thus, in order to prove that certainM(Q, I) ⊆ Q′(I), it is enough to prove

that Q(chaseΣ(I))↓ ⊆ Q′(I). Next we show this last property.

237

Recall that Q is defined by formula ∃ȳψ(x̄, ȳ) and Q′ by α(x̄). Assume that x̄ is the

tuple of distinct variables (x1, . . . , xr) and let ā = (a1, . . . , ar) be a tuple of constant values

such that ā ∈ Q(chaseΣ(I))↓. Then we know that chaseΣ(I) |= ∃ȳψ(ā, ȳ). We need to

show that ā ∈ Q′(I), that is, we need to show that I |= α(ā). In order to prove this last

fact, we show that after step 2 of the algorithm, there exists a formula β(x̄) ∈ Cψ such that

I |= β(ā).

Assume that in formula ψ(x̄, ȳ), ȳ is the tuple of distinct variables (y1, . . . , yℓ). Since

chaseΣ(I) |= ∃ȳψ(ā, ȳ), we know that there exists a tuple b̄ = (b1, . . . , bℓ) composed

by constant and null values,such that chaseΣ(I) |= ψ(ā, b̄). Let ρ1(ā1, b̄1), . . . , ρp(āp, b̄p)

be the N-connected components of ψ(ā, b̄), and assume that ρi(āi, b̄i) is a conjunction of

ki (not necessarily distinct) atoms. Notice that if ψ(x̄, ȳ) has m atoms, then k1 + · · · +

kp = m. Without loss of generality, we can assume that ψ(ā, b̄) = ρ1(ā1, b̄1) ∧ . . . ∧

ρp(āp, b̄p) (otherwise we can always reorder the atoms in ψ(ā, b̄)). Since chaseΣ(I) |=

ψ(ā, b̄), we know that for every i ∈ {1, . . . , p}, the conjuncts of ρi(āi, b̄i) are included in

the same N-connected sub-instance of chaseΣ(I). Furthermore, as we have noted before,

for every set of facts J that forms an N-connected sub-instance of chaseΣ(I), there exists

a sentence in Σ that justifies J . Then there exist p (not necessarily distinct) sentences

(σ1, . . . , σp) ∈ Σp, such that the atoms in ρi(āi, b̄i) are generated by σi. Let (ξ1, . . . , ξp)

be a tuple of dependencies obtained by renaming the variables of (σ1, . . . , σp) in such a

way that the set of variables of the formulas ξ1, . . . , ξp are pairwise disjoint. Assume that

every ξi is of the form ϕi(ūi) → ∃v̄iψi(ūi, v̄i). Since σi generates all the atoms in ρi(āi, b̄i),

we know that for every i ∈ {1, . . . , p}, there exists a formula χi(w̄i, z̄i), and tuples c̄i

and n̄i of values in C and N, respectively, such that χi(w̄i, z̄i) is a conjunction of ki (not

necessarily distinct) atoms from ψi(ūi, v̄i) with w̄i ⊆ ūi and z̄i ⊆ v̄i, and such that χi(c̄i, n̄i)

is syntactically equal to ρi(āi, b̄i), up to reordering of atoms. Without loss of generality we

can assume that χi(c̄i, n̄i) = ρi(āi, b̄i). Let χ(w̄, z̄) = χ1(w̄1, z̄1) ∧ · · · ∧ χp(w̄p, z̄p), with

w̄ = (w̄1, . . . , w̄p) = (w1, . . . , wd) and z̄ = (z̄1, . . . , z̄p) = (z1, . . . , ze) tuples of distinct

variables. Then we have that χ(c̄, n̄) = ψ(ā, b̄), where c̄ = (c̄1, . . . , c̄p) is a tuple of values

in C, and n̄ = (n̄1, . . . , n̄p) is a tuple of values in N. Given that the conjuncts of ρi(āi, b̄i)

238

are facts in chaseΣ(I), and each ρi(āi, b̄i) = χi(c̄i, n̄i) is an N-connected component of

ψ(ā, b̄), we have that n̄ is a tuple of distinct values in N (since tuples n̄i and n̄j do not share

any values, for every i 6= j). Through the rest of the proof, we assume that c̄ = (c1, . . . , cd)

and n̄ = (n1, . . . , ne), that is, for every i ∈ {1, . . . , d}, ci is the value assigned to variable

wi, and for every i ∈ {1, . . . , e}, ni is the value assigned to zi.

Focus now in the positions of ψ(x̄, ȳ). For every i ∈ {1, . . . , r}, we call xi-position

to a position in ψ(x̄, ȳ) where variable xi occurs. Similarly, for every i ∈ {1, . . . , ℓ}, a

yi-position is a position in ψ(x̄, ȳ) where variable yi occurs. Since ψ(ā, b̄) and χ(c̄, n̄) are

syntactically equal, there is a one-to-one correspondence between the positions in ψ(x̄, ȳ)

and the positions in χ(w̄, z̄). Then we can talk about xi- or yi-positions in general when

referring to positions in ψ(x̄, ȳ) or in χ(w̄, z̄). We use this correspondence of positions and

the fact that ψ(ā, b̄) = χ(c̄, n̄), to create an existential replacement, and functions f , g, and

h, as in step 2(c)ii of the algorithm.

We know that ā is a tuple of constant values. Then from ψ(ā, b̄) = χ(c̄, n̄), we obtain

that every element of n̄ is equal to an element of b̄. Furthermore, this last fact implies that

every variable of z̄ occurs in a yi-position of χ(w̄, z̄), otherwise, it could not be the case

that ψ(ā, b̄) = χ(c̄, n̄). Consider now the variables yi such that a variable of w̄ occurs in a

yi-position of χ(w̄, z̄). Construct an existential replacement of ∃z̄χ(w̄, z̄) where, for every

such variable yi, all the yi-positions are replaced by an existentially quantified variable

si. Let (∃s̄∃z̄γ(w̄′, z̄, s̄), θ(w̄′′)) be such a replacement of ∃z̄χ(w̄, z̄). Notice that in the

formula γ(w̄′, z̄, s̄), every variable of w̄′ occurs in an xi-position. We define now function

h as follows. Let h : ȳ → (z̄, s̄) be a function such that, h(yi) = zj if zj occurs in a

yi-position, and h(yi) = si otherwise. Notice that h is well defined since if variable zj

occurs in a yi-position, then zj occurs in every yi-position (given that n̄ is a tuple of distinct

values of N, c̄ is a tuple of values of C, and χ(c̄, n̄) = ψ(ā, b̄)). We define now functions

f : x̄ → x̄ and g : w̄′ → x̄. For that purpose, we construct first a partition of the set of

variables of (x̄, w̄′), and then, we let f and g assign to every variable a representative of

its equivalent class. Consider then, for every value a in ā, the set Va of all the variables

xi of x̄ such that xi is assigned value a (that is, ai = a), plus all the variables wj of w̄′

239

such that wj is assigned value a (that is, cj = a). Note that, since χ(c̄, n̄) = ψ(ā, b̄) and

every variable of w̄′ occurs in an xi-position, sets Va do form a partition of (x̄, w̄′). Choose

as a representative of every equivalent class, the variable xi with minimum index in the

equivalent class. Then let f and g be such that, f(xi) = xj if xj is the representative of Vai
,

and similarly g(wi) = xj if xj is the representative of Vci
. By the definition of the existential

replacement, and the definitions of functions f , g, and h, and since ψ(ā, b̄) = χ(c̄, n̄), we

have that ψ(f(x̄), h(ȳ)) and γ(g(w̄′), z̄, s̄) are syntactically equal (they coincide in every

xi- and yi-position). Then we know that the formula:

β(x̄) = ∃ū1 · · · ∃ūp

(p∧

i=1

ϕi(ūi) ∧ θ(w̄′′) ∧ x̄ = f(x̄) ∧ w̄′ = g(w̄′)

)
,

is added to Cψ after step 2 of the algorithm. We claim that I |= β(ā).

Next we show that I |= ϕ1(c̄
⋆
1) ∧ · · · ∧ ϕp(c̄

⋆
p) ∧ θ(c̄′′) ∧ ā = f(ā) ∧ c̄′ = g(c̄′), where

c̄⋆
i is a tuple of elements in C that contains c̄i, c̄′ is the tuple obtained by restricting c̄ to the

variables of w̄′, and c̄′′ is the tuple obtained by restricting c̄ to the variables of w̄′′. Notice

that an equality wj = wk appears in the formula θ(w̄′′) if j 6= k and both wj and wk occur

in a yi-position. Then since ψ(ā, b̄) = χ(c̄, n̄), we know that bi (the value assigned to yi) is

equal to both cj and ck and, thus, cj = ck holds. We conclude that θ(c̄′′) holds. Consider

now equality ā = f(ā). We know by the definition of f that f(xi) = xj , if xj is the

representative of Vai
. Thus, we have that ai = aj , which implies that ā = f(ā) holds. Next

consider equality c̄′ = g(c̄′). We know by the definition of g that g(wi) = xj , if xj is the

representative of Vci
. Thus, we have that ci = aj , which implies that c̄′ = g(c̄′) holds.

Finally, given that for every i ∈ {1, . . . , p}, formula ψi(āi, b̄i) = χi(c̄i, n̄i) is justified by

dependency ϕi(ūi) → ∃v̄iψi(v̄i, w̄i), there exists a tuple c̄⋆
i that contains the elements in c̄i

and such that I |= ϕi(c̄
⋆
i). We have shown that I |= ϕ1(c̄

⋆
1) ∧ · · · ∧ ϕp(c̄

⋆
p) ∧ θ(c̄′′) ∧ ā =

f(ā) ∧ c̄′ = g(c̄′), and, hence, I |= β(ā).

We have shown that if chaseΣ(I) |= ∃ȳψ(ā, ȳ) for a tuple ā of constants, then there

exists a formula β(x̄) ∈ Cψ such that I |= β(ā). Thus, since α(x̄) is the disjunctions

of the formulas in Cψ, we have that I |= α(ā). Recall that ∃ȳψ(x̄, ȳ) defined query

240

Q and α(x̄) defines query Q′. Therefore, if a tuple ā of constants is such that ā ∈

Q(chaseΣ(I)) then we have that ā ∈ Q′(I), which implies that Q(chaseΣ(I))↓ ⊆ Q′(I)

and then certainM(Q, I) ⊆ Q′(I) which is the property that we wanted to obtain. This

completes the proof of correctness of the algorithm.

A.1.2. Proof of Lemma 3.3.9

The following algorithm computes a rewriting of a conjunctive query given by a single

atom without existential quantifiers.

Algorithm QUERYREWRITINGATOM(M, Q)

Input: An st-mapping M = (S,T, Σ) where Σ is a set of FO-TO-CQ dependencies, and

a conjunctive query Q given by a single atom over T without existential quantifiers.

Output: An FO query Q′ that is a rewriting of Q over the source schema S.

(1) Construct a set Σ′ of dependencies as follows. Start with Σ′ = ∅. For every

dependency σ ∈ Σ of the form ϕ(ū) → ∃v̄ψ(ū, v̄) do the following.

(a) For every atom P (ū′) that is a conjunct in ψ(ū, v̄) such that ū′ ⊆ ū, add

dependency ϕ′(ū′) → P (ū′) to Σ′, where ϕ′(ū′) = ∃ū′′ϕ(ū) with ū′′ the

tuple of variables in ū that are not mentioned in ū′.

(2) Rename the variables of the dependencies in Σ′ in such a way that the obtained

dependencies have pairwise disjoint sets of variables.

(3) Assume that Q is given by the atom R(x̄), where x̄ is a tuple of not necessarily

distinct variables that are not mentioned in the dependencies of Σ′.

(4) Create a set CR of FO queries as follows. Start with CR = ∅. Then for every

dependency ϕ(z̄) → R(z̄) in Σ′, add formula ∃z̄(ϕ(z̄) ∧ z̄ = x̄) to CR.

(5) If CR is nonempty, then let α(x̄) be the FO formula constructed as the disjunction

of all the formulas in CR. Otherwise, let α(x̄) be false, that is, an arbitrary

unsatisfiable formula (with x̄ as its tuple of free variables).

(6) Return the query Q′ given by α(x̄). ¤

241

It is straightforward to see that the algorithm runs in time O(‖Σ‖2) in the general case,

and in time O(‖Σ‖) if Σ is a set of full FO-TO-CQ dependencies, each dependency with

a single atom in its conclusion. Just notice that in the latter case, the set Σ′ constructed

in the step 1 of the algorithm is of size linear in the size of Σ. The proof of correctness

follows directly from the correctness of algorithm QUERYREWRITING of Lemma 3.3.1.

Just observe that if the input of the algorithm QUERYREWRITING is a query Q given by

the single atom R(x̄) with no existentially quantified variables, then in the step 2 of the

algorithm the parameter m is equal to 1. Also notice that an atom with existentially quan-

tified variables cannot be transformed into R(x̄) by applying existential replacements and

variable substitutions.

A.2. Strong Determination and Target Rewritability in Schema Mappings

The goal of this section is to prove Lemmas 6.2.3 and 6.2.4. These proofs are included

in Sections A.2.1 and Section A.2.2, respectively. But for presenting these proofs, we first

need to recall the notion of strong determination and apply it to the classical setting of

query rewriting using views (Levy et al., 1995; Segoufin & Vianu, 2005).

We introduce first the needed terminology regarding views and rewriting of queries

using views. A set of views V over a schema S is a non-empty set of queries over S.

We assume that every n-ary query Q in a set of views has an associated name RQ that

is an n-ary relational symbol. If V is the set of views {Q1, Q2, . . . , Qn} we say that

{RQ1 , RQ2 , . . . , RQn
} is the schema of V .

Given a set of views V over schema S, an instance I of S and a query Q over schema

V , the evaluation of Q over I can be computed following two strategies. The first one is

to unfold in Q the definition of each view and then evaluate the resulting query over I .

We denote by Qunf the query obtained after unfolding each view definition in Q. Thus,

the first strategy is to compute Qunf(I). The second strategy is to materialize the evalua-

tion of each view to construct a new instance over schema V and then simply evaluate Q

directly over this materialization. We denote by chaseV(I) the new materialized instance

242

over schema V obtained from I . We use this notation since the new instance can be ob-

tained by using the standard chase procedure: for every query Q in V we compute Q(I)

and include all the obtained tuples in (RQ)chaseV (I). Thus, the second strategy amounts to

compute Q(chaseV(I)). Notice that for every query Q over V and every instance I of S it

holds that Qunf(I) = Q(chaseV(I)).

We recall now the notion of strong determination1. Given two instances I1 and I2 over

S and a set V = {Q1, . . . , Qn} of views (queries) over S, we use V(I1) ⊆ V(I2) to denote

that Qi(I1) ⊆ Qi(I2) for every i ∈ {1, . . . , n}. Notice that V(I1) ⊆ V(I2) if and only

if chaseV(I1) ⊆ chaseV(I2). We say that query Q over S is rewritable using V if there

exists a query QV over schema V such that the evaluation of QV over I is the same as the

evaluation of Q over I for every instance I of S. That is, for every instance I of S it holds

that QV(chaseV(I)) = Q(I), or equivalently that (QV)unf(I) = Q(I). Finally, we say that

V strongly determines Q, and write V Z⇒ Q, when for every pair of instances I1 and I2 of

S if V(I1) ⊆ V(I2) then Q(I1) ⊆ Q(I2).

Segoufin and Vianu (2005) introduced the notion of determinacy of queries given a set

of views which is tightly related to our notion of strong determination. A set of views V

over S determines a query Q if for every pair of S instances I1, I2, it holds that V(I1) =

V(I2) implies Q(I1) = Q(I2). It is clear form the definition of strong determination that

if V strongly determines Q, then V determines Q according to the definition introduced by

Segoufin and Vianu (2005). Moreover, Segoufin and Vianu (2005) studied the relationship

between the notion of determinacy and rewriting of queries using views. In particular, they

show that there may exist sets of monotone views V that determines a monotone query Q

that cannot be rewritten as a monotone query over V . In contrast we show in this section

that for the case of strong determination this characterization is possible. That is, a set of

views V strongly determines a query Q if and only if Q can be rewritten as a monotone

query over V (see Lemma A.2.3).

1We use a slightly different notation compared with the definition of strong determination in Section 6.2.1

since in this section we call views to the set of queries over the schema S that participates in the definition of

strong determintation.

243

Before stating our main result regarding strong determination and rewriting we need

to introduce a technical lemma about a normal form for general queries.

LEMMA A.2.1. Every n-ary consistent query Q with n ≥ 1 over a source schema S

can be defined as a nonempty (and possibly infinitary) disjunction of FO formulas of the

form

γ(x̄) = ∃ȳ

(
α(x̄′, ȳ) ∧ δ(x̄′,ȳ) ∧ χ(x̄′, ȳ) ∧ θ(x̄′, x̄′′) ∧ ∀u ω(x̄′,ȳ)(u)

)
(A.4)

where:

• x̄ is an n-ary tuple of variables, x̄′ and x̄′′ are tuples of variables in x̄ with no

variables in common, and x̄ = (x̄′, x̄′′),

• α(x̄′, ȳ) is a nonempty conjunction of relational atoms over S that mentions ex-

actly variables (x̄′, ȳ),

• δ(x̄′,ȳ) is a conjunction of inequalities of the form u 6= v for every pair of distinct

variables u and v in (x̄′, ȳ),

• χ(x̄′, ȳ) is a (possibly empty) conjunction of negations of relational atoms of the

form ¬R(ū) for every m-ary relational symbol R ∈ S and m-ary tuple ū of

variables in (x̄′, ȳ) such that R(ū) is not a conjunct in α(x̄′, ȳ).

• θ(x̄′, x̄′′) is a conjunction of equalities of the form u = v with u a variable in x̄′

and v a variable in x̄′′ and such that all the variables in x̄′′ are mentioned in at

least one equality,

• ω(x̄′,ȳ)(u) is a disjunction of equalities of the form u = v for every variable v in

(x̄′, ȳ).

PROOF. Let Q be a n-ary query over S. Consider the set of all the pairs (I, (a1, . . . , an))

where I ∈ Inst(S), (a1, . . . , an) ∈ adom(I)n and (a1, . . . , an) ∈ Q(I). It is clear that

Q can be defined as a (possibly infinitary) disjunction of formulas γ(I,(a1,...,an))(x1, . . . , xn)

that define the instance I up to isomorphism replacing elements in (a1, . . . , an) by free vari-

ables (x1, . . . , xn) and the remaining elements by existentially quantified variables (plus the

244

necessary equalities xi = xj whenever ai = aj). Every formula γ(I,(a1,...,an))(x1, . . . , xn)

can be written in the form (A.4). ¤

The next lemma deals with the case when Q is a Boolean query. We need to consider

separately the case in which Q is satisfied by the empty instance. The empty instance I∅

over S is an instance such that for every relational symbol R in S it holds RI∅ = ∅. We

denote by ϕS

∅ a formula over S such that I |= ϕS

∅ if and only if I = I∅. Formula ϕS

∅ can

be defined as follows. Let m be the maximum of the arities of the relational symbols in S

and consider the tuple of variables x̄ = (x1, . . . , xm). Then ϕS

∅ = ∀x̄α(x̄) where α(x̄) is

a conjunction of negation of relational atoms of the form ¬R(x1, . . . , xk) for every k-ary

relational symbol R in S.

LEMMA A.2.2. Let Q be a Boolean query that is neither a tautology nor inconsistent.

Then Q is a disjunction of Boolean FO formulas where every disjunct is either of the

form (A.4), with x̄′, x̄′′ and x̄ empty tuples, or is the formula ϕS

∅ .

PROOF. We consider a construction similar to the one in the proof of Lemma A.2.1.

Consider first the set of all the nonempty instances I such that Q(I) = true and then con-

struct the disjunction of the formulas ϕI that define every I up to isomorphism. Moreover,

if Q(I∅) = true then also include formula ϕS

∅ as a disjunct. ¤

We can now state the relationship between strong determination and rewriting of queries

using views. In the lemma we do not make any assumption about the language used to

specify views or queries over a schema S.

LEMMA A.2.3. Let V be a set of views over schema S, and Q a query over schema S.

Then V Z⇒ Q if and only if Q can be rewritten as a monotone query over V .

PROOF. In the proof we use the following notation. Given a conjunction of relational

atoms α(x̄) over a schema S, we denote by Iα(x̄) the instance of S constructed as follows:

for every relational symbol R ∈ S and relational atom R(ū) occurring in α(x̄), we include

tuple ū in RIα(x̄) .

245

Assume first that Q can be rewritten as a monotone query QV over V . We show now

that V Z⇒ Q. Let I1 and I2 be two instances over S and assume that V(I1) ⊆ V(I2). Then by

the monotonicity of QV we obtain that (QV)unf(I1) ⊆ (QV)unf(I2) and then Q(I1) ⊆ Q(I2).

We have shown that if V(I1) ⊆ V(I2) then Q(I1) ⊆ Q(I2) for every pair of instances I1

and I2 which implies that V Z⇒ Q.

Assume now that V Z⇒ Q. We need to show that Q can be rewritten as a monotone

query QV over schema V . First notice that if Q is an inconsistent query over S, then it

is equivalent to any inconsistent query over V . Similarly, if Q is a tautology then any

tautology over V is equivalent to Q. Thus, we only have to consider the case when Q is a

query that is neither inconsistent nor a tautology. Then assume that Q is n-ary (with n ≥ 0)

and let x̄ be an n-tuple of distinct variables. By Lemmas A.2.1 and A.2.2 we know that Q

is defined by an FO formula ϕ(x̄) that is a nonempty (and possibly infinitary) disjunction

of formulas of the form (A.4) plus possibly a formula ϕS

∅ if Q is a Boolean query.

Before describing how to construct a rewriting of Q we need some technical claims.

First, assume that Q is not Boolean, thus tuple x̄ in ϕ(x̄) is not empty and every disjunct

in ϕ(x̄) is of the form (A.4). Let γ(x̄) = ∃ȳ
(
α(x̄′, ȳ) ∧ δ(x̄′,ȳ) ∧ χ(x̄′, ȳ) ∧ θ(x̄′, x̄′′) ∧

∀u ω(x̄′,ȳ)(u)
)

be one of the disjunct in ϕ(x̄) in the form (A.4). Consider the instance

Iα(x̄′,ȳ), we claim that every element in x̄′ appears in chaseV(Iα(x̄′,ȳ)). To derive a contra-

diction, assume not. Then some element x of x̄′ does not appear in chaseV(Iα(x̄′,ȳ)). Let

x̄⋆ be the tuple obtained from x̄′ replacing the element x by a fresh element x⋆. Notice

that a function that maps x to x⋆ and is the identity otherwise, is an isomorphism be-

tween Iα(x̄′,ȳ) and Iα(x̄⋆,ȳ). Thus, since x does not appear in chaseV(Iα(x̄′,ȳ)) we obtain that

chaseV(Iα(x̄′,ȳ)) = chaseV(Iα(x̄⋆,ȳ)) and then V(Iα(x̄′,ȳ)) = V(Iα(x̄⋆,ȳ)). Since V Z⇒ Q we

obtain that Q(Iα(x̄′,ȳ)) = Q(Iα(x̄⋆,ȳ)). Consider now the tuple ū = (x̄′, v̄) where v̄ is a tuple

of elements from x̄′ that satisfy the equalities in θ(x̄′, v̄). By the form of construction of

Iα(x̄′,ȳ) and ū, we know that Iα(x̄′,ȳ) |= γ(ū) and since γ(x̄) is a disjunct in the formula

defining Q, we have that ū ∈ Q(Iα(x̄′,ȳ)). Notice that ū contains the element x, thus, since

x does not appear in Iα(x̄⋆,ȳ) we have that ū /∈ Q(Iα(x̄⋆,ȳ)). This is a contradiction with

the fact that Q(Iα(x̄′,ȳ)) = Q(Iα(x̄⋆,ȳ)). We have shown that chaseV(Iα(x̄′,ȳ)) contains all

246

the elements in x̄′. Thus, we can assume that chaseV(Iα(x̄′,ȳ)) is an instance of the form

Iβ(x̄′,ȳ′) where β(x̄′, ȳ′) is a nonempty conjunction of relational atoms of schema V and ȳ′

is a (possible empty) tuple of variables from ȳ.

Assume now that Q is Boolean. Then we know that the every disjunct in ϕ is either

of the form (A.4) (with x̄ the empty tuple) or is the formula ϕS

∅ . Let γ be a disjunct in

ϕ and assume first that γ = ∃ȳ
(
α(ȳ) ∧ δȳ ∧ χ(ȳ) ∧ ∀u ωȳ(u)

)
is in the form (A.4). We

claim that chaseV(Iα(ȳ)) is not empty. To derive a contradiction, assume that chaseV(Iα(ȳ))

is the empty instance. Then we have that the evaluation of every view in V over Iα(ȳ) is

false which implies that V(Iα(ȳ)) ⊆ V(I) for every instance I of S. Thus, since V Z⇒ Q

we have that Q(Iα(ȳ)) ⊆ Q(I) for every I . Notice that Q(Iα(ȳ)) = true, thus, Q(I) = true

for every instance of I of S. This is a contradiction since we are assuming that Q is

not a tautology. We have shown that chaseV(Iα(ȳ)) is not empty. Thus, we can assume

that chaseV(Iα(ȳ)) is an instance of the form Iβ(ȳ′) where β(ȳ′) is a nonempty conjunction

of relational atoms of schema V and ȳ′ is a (possible empty) tuple of variables from ȳ.

Assume now that γ = ϕS

∅ . Then we know that Q(I∅) = true. We claim that chaseV(I∅)

is not the empty instance. Similarly to the previous case, if we suppose that chaseV(I∅) is

empty, we have that V(I∅) ⊆ V(I) for every instance I of S. Then from V Z⇒ Q we have

that Q(I∅) ⊆ Q(I) for every I and since Q(I∅) = true we obtain that Q(I) = true for every

I . This is a contradiction since we are assuming that Q is not a tautology. We have shown

that if ϕS

∅ is one of the disjunct in ϕ, then chaseV(I∅) is not empty. This implies that at

least one view in V evaluated over the empty instance generates a nonempty result. We are

assuming that evaluation of a query over an instance can only give as result elements that

are present in the active domain of the instance. Thus, if a view in V generates a nonempty

result over the empty instance, then that view is a Boolean query, and thus, the evaluation

is a 0-ary predicate. Therefore, we can assume that chaseV(I∅) is an instance of the form

Iβ where β is a nonempty conjunction of 0-ary relational atoms of schema V .

We are ready now to describe how to construct a formula ψ(x̄) over schema V defining

a monotone query QV that is a rewriting of Q. For every disjunct γ(x̄) in ϕ(x̄) of the

form (A.4), if chaseV(Iα(x̄′,ȳ)) = Iβ(x̄′,ȳ′) then we include the formula ∃ȳ′ β(x̄′, ȳ′)∧δ(x̄′,ȳ′)∧

247

θ(x̄′, x̄′′) as a disjunct in ψ(x̄). Moreover, whenever ϕ is a Boolean formula that contains

ϕS

∅ as a disjunct, if Iβ = chaseV(I∅) then we include formula β as a disjunct in ψ. Let QV

be the query over V defined by formula ψ(x̄). First notice that QV is a monotone query.

We show next that QV is a rewriting of Q. Thus, we need to show that for every instance I

of S, it holds that (QV)unf(I) = Q(I), or equivalently that QV(chaseV(I)) = Q(I).

We show first that Q(I) ⊆ QV(chaseV(I)). Let ā be a (possibly empty) tuple in Q(I).

Then we know that there exists a disjunct γ(x̄) in ϕ(x̄) such that I |= γ(ā). Assume first

that γ(x̄) = ∃ȳ
(
α(x̄′, ȳ)∧ δ(x̄′,ȳ) ∧χ(x̄′, ȳ)∧ θ(x̄′, x̄′′)∧∀u ω(x̄′,ȳ)(u)

)
is in the form (A.4).

Let ā′ be the tuple of elements in ā that correspond to the positions of variables x̄′ in tuple

x̄. From I |= γ(ā) and the specific form of formula γ(x̄) we obtain that there exists an

isomorphism h : (x̄′, ȳ) → adom(I) such that h(x̄′) = ā′ and h(Iα(x̄′,ȳ)) = Iα(h(x̄′,ȳ)) = I .

Now assume that chaseV(Iα(x̄′,ȳ)) is an instance of the form Iβ(x̄′,ȳ′). Then we know that

ψ(x̄) has a disjunct of the form ∃ȳ′ β(x̄′, ȳ′) ∧ δ(x̄′,ȳ′) ∧ θ(x̄′, x̄′′). On the other hand, since

Iα(x̄′,ȳ) and I are isomorphic instances via isomorphism h we have that chaseV(I) is an

instance of the form Iβ(h(x̄′,ȳ′)). Thus, we have that Iβ(h(x̄′,ȳ′)) = Iβ(ā′,h(ȳ′)) |= ∃ȳ′ β(ā′, ȳ′)∧

δ(ā,ȳ′). Moreover, if ā′′ is the the tuple of elements in ā that correspond to the positions of

variables x̄′′ in tuple x̄, from I |= γ(ā) we know that θ(ā′, ā′′) holds. Thus, we have that

chaseV(I) = Iβ(h(x̄′,ȳ′)) |= ψ(ā) which implies that ā ∈ QV(chaseV(I)). This was to be

shown.

Assume now that γ = ϕS

∅ . Notice that in this case we have that tuple ā is the

empty tuple. Now, since I |= γ we have that I = I∅. Moreover, if Iβ = chaseV(I∅),

then we have that ψ has a disjunct of the form β and thus Iβ |= ψ which implies that

chaseV(I∅) = chaseV(I) |= ψ. We have shown that chaseV(I) |= ψ, thus the empty tuple

is in QV(chaseV(I)). This completes the proof that Q(I) ⊆ QV(chaseV(I)).

We prove now that QV(chaseV(I)) ⊆ Q(I). Assume that ā is a (possibly empty) tuple

in QV(chaseV(I)). Then there exists a disjunct ξ(x̄) in ψ(x̄) such that chaseV(I) |= ξ(ā).

Since ξ(x̄) is a disjunct in ψ(x̄) we know that there exists a disjunct γ(x̄) in ϕ(x̄) such that:

248

a) γ(x̄) = ∃ȳ
(
α(x̄′, ȳ) ∧ δ(x̄′,ȳ) ∧ χ(x̄′, ȳ) ∧ θ(x̄′, x̄′′) ∧ ∀u ω(x̄′,ȳ)(u)

)
is in the

form (A.4), it holds that Iβ(x̄′,ȳ′) = chaseV(Iα(x̄′,ȳ)), and ξ(x̄) is of the form

∃ȳ′ β(x̄′, ȳ′) ∧ δ(x̄′,ȳ′) ∧ θ(x̄′, x̄′′), or

b) γ = ϕS

∅ , it holds that Iβ = chaseV(I∅) and ξ = β.

Consider first case a). Given that chaseV(I) |= ξ(ā) we know that chaseV(I) |=

∃ȳ′ β(ā′, ȳ′) ∧ δ(ā,ȳ′) and that θ(ā′, ā′′) holds where ā′ and ā′′ are the tuples of elements

from ā corresponding to the positions of variables x̄′ and x̄′′ in tuple x̄. Then we know

that there exists a 1-1 mapping h : (x̄′, ȳ′) → adom(chaseV(I)) such that h(x̄′) = ā′

and Iβ(h(x̄′,ȳ′)) ⊆ chaseV(I). Consider now a 1-1 mapping g with domain (x̄′, ȳ) that is

equal to h for every element in (x̄′, ȳ′) and is the identity otherwise. Notice that Iα(x̄′,ȳ)

and Iα(g(x̄′,ȳ)) are isomorphic instances. Thus, we have that chaseV(Iα(g(x̄′,ȳ))) is an in-

stance of the form Iβ(g(x̄′,ȳ′)) which is a subinstance of chaseV(I). We have shown that

chaseV(Iα(g(x̄′,ȳ))) ⊆ chaseV(I) which implies that V(Iα(g(x̄′,ȳ))) ⊆ V(I). Since V Z⇒ Q

we obtain that Q(Iα(g(x̄′,ȳ))) ⊆ Q(I). Now, notice that Iα(g(x̄′,ȳ)) = Iα(ā′,g(ȳ)) |= γ(ā), thus,

Iα(g(x̄′,ȳ)) |= ϕ(ā) which implies that ā ∈ Q(Iα(g(x̄′,ȳ))). Finally, since Q(Iα(g(x̄′,ȳ))) ⊆ Q(I)

we have that ā ∈ Q(I) which was to be shown.

Consider now case b). In this case we have that ā is the empty tuple. Now, since

chaseV(I) |= β then we have that Iβ = chaseV(I∅) ⊆ chaseV(I). Therefore we have that

V(I∅) ⊆ V(I), and thus, since V Z⇒ Q we have that Q(I∅) ⊆ Q(I). Notice that I |= γ

which implies that Q(I∅) contains the empty tuple and then Q(I) contains the empty tuple

which was to be shown. This completes the proof that QV(chaseV(I)) ⊆ Q(I). ¤

A.2.1. Proof of Lemma 6.2.3

Recall that given an st-mapping M = (S,T, Σ) where Σ is a set of FO-TO-CQ st-

dependencies, the set of queries (views) CM is constructed as follows (see Lemma 4.2.3):

for every dependency of the form ϕ(x̄) → ψ(x̄) in Σ the set CM contains a query that is a

rewriting of ψ(x̄) over the source schema S. We know that such a rewriting always exists

and can be expressed as an FO query (see Lemma 3.3.1). Furthermore, if Σ is a set of

st-tgds, then the rewriting of ψ(x̄) over the source can be expressed as a query in UCQ=

249

(see Lemma 3.3.3). Moreover, by following the proof of Lemma 3.3.1 we can conclude

that every target conjunctive query Q can be rewritten as a query Q′ that is a monotone

query over the set of views CM (that is, a monotone combination of the queries in CM). We

use this last fact in the proof of Lemma 6.2.3.

PROOF OF LEMMA 6.2.3. Only if. Assume first that Q is target rewritable in M. We

need to show that CM Z⇒ Q. By Lemma A.2.3 it is enough to show that Q can be rewritten

as a monotone query over the schema CM. In what follows we show this last property.

Since Q is target rewritable in M, then there exists a query Q′ over T such that

Q(I) = certainM(Q′, I) for every source instance I . The strategy of this part of the proof

is the following. We construct first a query Q′′ over T defined by a (possibly infinitary)

disjunction of queries in CQ=,6=,C, such that certainM(Q′, I) = certainM(Q′′, I) for every

source instance I . We then construct a source query Q⋆ that is a monotone combination

of the queries in CM and such that certainM(Q′′, I) = Q⋆(I) for every source instance I .

Finally, since Q(I) = Q⋆(I) for every I , we obtain that Q can be rewritten as a monotone

query over the set of views CM, and thus, by Lemma A.2.3 we obtain that CM Z⇒ Q.

To construct the query Q′′ we first define a set tip(Q′) as follows:

tip(Q′) = {(J, ā) | ā is a tuple of elements from dom(J) ∩ C and

for every instance J ′ of T, if there exists a homomorphism

h : dom(J) → dom(J ′), then ā ∈ Q′(J ′)}.

Now for every (J, ā) ∈ tip(Q′) we define a formula χ(J,ā)(x̄) over T as follows. As-

sume that ā = (a1, . . . , ak), where k ≥ 0, and dom(J) = {c1, . . . , cℓ, n1, . . . , nm}, where

{c1, . . . , cℓ} ⊆ C, ℓ ≥ 0, {n1, . . . , nm} ⊆ N and m ≥ 0. Moreover, let {y1, . . . , yℓ,

z1, . . . , zm} be a set of variables and ρ a substitution defined as ρ(ci) = yi and ρ(nj) = zj ,

for every i ∈ [1, ℓ] and j ∈ [1,m]. Let x̄ = (x1, . . . , xk), ȳ = (y1, . . . , yℓ) and z̄ =

250

(z1, . . . , zm). Then the formula χ(J,ā)(x̄) is given by:

∃ȳ∃z̄

(
θ(x̄, ρ(ā)) ∧ δ(ȳ) ∧ C(ȳ) ∧

(∧

R∈T

t̄∈RJ

R(ρ(t̄))

))
. (A.5)

where θ(x̄, ρ(ā)) is the formula x1 = ρ(a1) ∧ · · · ∧ xk = ρ(ak), δ(ȳ) is the conjunction

of inequalities yi 6= yj for every i, j ∈ [1, ℓ] such that i 6= j, and C(ȳ) is the formula

C(y1) ∧ · · · ∧ C(yℓ). Now consider the query Q′′ over T given by the formula:

χ(x̄) =
∨

(J,ā)∈tip(Q′)

χ(J,ā)(x̄).

Notice that χ(x̄) is a disjunction of formulas in CQ=,6=,C. We show next that certainM(Q′, I) =

certainM(Q′′, I).

We show first that certainM(Q′, I) ⊆ certainM(Q′′, I). Assume that ā ∈ certainM(Q′, I),

and let J⋆ be the canonical universal solution for I under M. Given that J⋆ is a universal

solution for I under M and M is specified by a set of FO-TO-CQ st-dependencies, we

know that if there exists a homomorphism h : dom(J⋆) → dom(J) then J ∈ SolM(I).

Then given that ā ∈ certainM(Q′, I) and ā is a tuple of constants, we have that if there

exists a homomorphism h : dom(J⋆) → dom(J) then ā ∈ Q′(J). This implies that

(J⋆, ā) ∈ tip(Q′), and thus the formula χ(J⋆,ā)(x̄) is a disjunct in χ(x̄). Now, by definition

of χ(J⋆,ā)(x̄), we know that J⋆ |= χ(J⋆,ā)(ā). Hence, given that χ(J⋆,ā)(x̄) is closed under

homomorphisms and J⋆ is a universal solution for I under M, we conclude that for every

J ∈ SolM(I) it holds that J |= χ(J⋆,ā)(ā). We have shown that χ(J⋆,ā)(x̄) is a disjunct in

χ(x̄) and that for every J ∈ SolM(I) it holds that J |= χ(J⋆,ā)(ā). This implies that for

every J ∈ SolM(I) it holds that J |= χ(ā) and thus ā ∈ certainM(Q′′, I) which was to be

shown.

We show now that certainM(Q′′, I) ⊆ certainM(Q′, I). Assume that ā ∈ certainM(Q′′, I),

and again let J⋆ be the canonical universal solution for I under M. We know that J⋆ |=

χ(ā) (since J⋆ ∈ SolM(I)), and then, there exists a disjunct χ(J,b̄)(x̄) of χ(x̄) such that

(J, b̄) ∈ tip(Q′) and J⋆ |= χ(J,b̄)(ā). Thus, by definition of χ(J,b̄)(x̄), we have that there

251

exists an instance J ′ of T such that (1) (J, b̄) ∼= (J ′, ā), (2) (J ′, ā) ∈ tip(Q′), and (3) there

exists a homomorphism h : dom(J ′) → dom(J⋆) (which is the identity on the constants).

Next we use this property to prove that ā ∈ certainM(Q′, I).

Let J ′′ ∈ SolM(I). Given that J⋆ is a universal for I under M solution, we have that

there exists a homomorphism g : dom(J⋆) → dom(J ′′). Then h◦g : dom(J ′) → dom(J ′′)

is a homomorphism that is the identity on the constants. Therefore, since (J ′, ā) ∈ tip(Q′)

and there is a homomorphism from J ′ to J ′′ we obtain that ā ∈ Q′(J ′′). We have shown that

for every J ′′ ∈ SolM(I), it holds that ā ∈ Q′(J ′′). Thus, we have that ā ∈ certainM(Q′, I),

which was to be shown.

Up to this point we have shown that certainM(Q′, I) = certainM(Q′′, I) for every

source instance I , and since Q′ is a target rewriting of Q we have that Q(I) = certainM(Q′′, I).

We show next that Q′′ can be rewritten back over the source as a query Q⋆ such that

Q⋆(I) = certainM(Q′′, I) for every source instance I and such that Q⋆ is a monotone

combination of the queries in CM.

Let (J, ā) ∈ tip(Q′) and χ(J,ā)(x̄) the formula defined in (A.5). Define γ(J,ā)(x̄, ȳ) as

the formula obtained from χ(J,ā)(x̄) by removing the existential quantification over ȳ and

the formulas δ(ȳ) and C(ȳ), that is:

γ(J,ā)(x̄, ȳ) = ∃z̄

(
θ(x̄, ρ(ā)) ∧

(∧

R∈T

t̄∈RJ

R(ρ(t̄))

))
. (A.6)

Given that M is a mapping specified by a set of FO-TO-CQ dependencies and γ(J,ā)(x̄, ȳ) is

a conjunctive query (with equalities) over T, we have that there exists a formula γ⋆
(J,ā)(x̄, ȳ)

that is a monotone query over CM that defines a rewriting of γ(J,ā)(x̄, ȳ) over the source (see

Lemma 3.3.1). Since γ⋆
(J,ā)(x̄, ȳ) is a source rewriting of γ(J,ā)(x̄, ȳ), we have that for every

source instance I and tuples b̄ and c̄ from dom(I), it holds that:

I |= γ⋆
(J,ā)(b̄, c̄) iff K |= γ(J,ā)(b̄, c̄) for every K ∈ SolM(I). (A.7)

252

Consider now the formula

χ⋆
(J,ā)(x̄) = ∃ȳ

(
γ⋆

(J,ā)(x̄, ȳ) ∧ δ(ȳ)

)

and the query Q⋆ defined by the formula

χ⋆(x̄) =
∨

(J,ā)∈tip(Q′)

χ⋆
(J,ā)(x̄).

Notice that since γ⋆
(J,ā)(x̄, ȳ) is a monotone query over CM we have that χ⋆

(J,ā)(x̄) is a

monotone query over CM, and thus, χ⋆(x̄) is also a monotone query over CM. We show

next that Q⋆(I) = certainM(Q′′, I) for every source instance I .

We prove first that certainM(Q′′, I) ⊆ Q⋆(I). Recall that Q′′ is defined by the formula

χ(x̄) =
∨

(J,ā)∈tip(Q′)

χ(J,ā)(x̄).

Now, let b̄ ∈ certainM(Q′′, I). We need to show that b̄ ∈ Q⋆(I). Let J⋆ be the canonical

universal solution for I under M. Since J⋆ ∈ SolM(I) we have that J⋆ |= χ(b̄) and then

there exists a disjunct χ(J,ā)(x̄) in χ(x̄) such that J⋆ |= χ(J,ā)(b̄). Notice that χ(J,ā)(x̄) =

∃ȳ (γ(J,ā)(x̄, ȳ) ∧ δ(ȳ) ∧ C(ȳ)). Thus, from J⋆ |= χ(J,ā)(b̄), we conclude that there exists

a tuple c̄ of pairwise distinct elements from dom(J⋆) ∩ C such that J⋆ |= γ(J,ā)(b̄, c̄).

Therefore, given that M is a mapping specified by a set of FO-TO-CQ st-dependencies,

γ(J,ā)(x̄, ȳ) is a conjunctive query J⋆ is the canonical universal solution for I under M, and

b̄ and c̄ are tuples of constants values, we conclude that for every K ∈ SolM(I) it holds

that K |= γ(J,ā)(b̄, c̄). Thus, from (A.7) we conclude that I |= γ⋆
(J,ā)(b̄, c̄). But this implies

that I |= χ⋆
(J,ā)(b̄) since c̄ is a tuple of pairwise distinct elements and, thus, since χ⋆

(J,ā)(x̄)

is a disjunct in χ⋆(x̄) we have that I |= χ⋆(b̄). This last fact implies that b̄ ∈ Q⋆(I) which

was to be shown.

We prove now that Q⋆(I) ⊆ certainM(Q′′, I). Assume that b̄ ∈ Q⋆(I). We need

to prove that b̄ ∈ certainM(Q′′, I). Now, since b̄ ∈ Q⋆(I) then there exists a disjunct

χ⋆
(J,ā)(x̄) in χ⋆(x̄) such that I |= χ⋆

(J,ā)(b̄). By the definition of χ⋆
(J,ā)(x̄) we know that there

exists a tuple c̄ of pairwise distinct elements from dom(I) such that I |= γ⋆
(J,ā)(b̄, c̄). Thus,

253

from (A.7) we conclude that for every K ∈ SolM(I) it holds that K |= γ(J,ā)(b̄, c̄). But we

know that c̄ is a tuple of pairwise distinct elements from C and, thus, K |= χ(J,ā)(b̄) for

every K ∈ SolM(I). Finally, since χ(J,ā)(x̄) is a disjunct in χ(x̄) we conclude K |= χ(b̄)

for every K ∈ SolM(I), and thus, b̄ ∈ certainM(Q′′, I). This was to be shown.

Finally, we have shown that if Q is target rewritable in M, then there exists a query

Q⋆ that is a monotone query over CM such that Q(I) = Q⋆(I) for every instance I of S.

By Lemma A.2.3 we obtain that CM Z⇒ Q, completing the proof of the “only if” part of the

lemma.

If. Assume now that CM Z⇒ Q. We need to show that Q is target rewritable in M. That is,

we need to show that there exists a query Q′ over T such that Q(I) = certainM(Q′, I) for

every source instance I . Since CM Z⇒ Q from Lemma A.2.3 we know that Q can we written

as a monotone query over CM. Assume that Q is an n-ary query and let x̄ = (x1, . . . , xn)

be a tuple of variables. Thus, we know that Q is defined by formula ϕ(x̄) that is a (possible

infinitary) disjunction of formulas of the form

γ(x̄) = ∃ȳ
(
β(x̄′, ȳ) ∧ δ(x̄′,ȳ) ∧ θ(x̄′, x̄′′)

)
(A.8)

where:

• x̄′ and x̄′′ are tuples of variables in x̄ with no variables in common, x̄ = (x̄′, x̄′′),

and θ(x̄′, x̄′′) is a conjunction of equalities of the form u = v with u a variable

in x̄′ and v a variable in x̄′′ and such that all the variables in x̄′′ are mentioned in

at least one equality,

• δ(x̄′,ȳ) is a conjunction of inequalities u 6= v for every pair of distinct variables u

and v in (x̄′, ȳ), and

• β(x̄′, ȳ) is a nonempty conjunction of queries in CM.

We first show that the conjunction β(x̄′, ȳ) in formula (A.8) can be rewritten into a target

query. We construct a formula β⋆(x̄′, ȳ) over T as follows. First notice that β(x̄′, ȳ) is a

conjunction of formulas α(ū) ∈ CM with ū a tuple of variables in (x̄′, ȳ). Moreover we

254

know that for every conjunct α(ū) in β(x̄′, ȳ) there exists a dependency ϕ(ū) → ψ(ū) ∈ Σ

such that α(ū) is a rewriting of ψ(ū) over the source schema. Thus, to construct β⋆(x̄′, ȳ)

we replace every conjunct α(ū) of β(x̄′, ȳ) by ψ(ū). We show next that β⋆(x̄′, ȳ) is a target

rewriting of β(x̄′, ȳ).

Let I be a source instance and assume that f : (x̄′, ȳ) → C is an assignment of

constants to the variables in (x̄′, ȳ) such that I |= β(f(x̄′, ȳ)). We show first that for every

J ∈ SolM(I) it holds that J |= β⋆(f(x̄′, ȳ)). Let J ∈ SolM(I) and let ψ(ū) be the

conjunctions in β⋆(x̄′, ȳ) obtained from formula α(ū) in β(x̄′, ȳ). Since I |= β(f(x̄′, ȳ))

we know that I |= α(f(ū)), and given that α(ū) is a source rewriting of ψ(ū) we obtain

that J |= ψ(f(ū)). This last fact holds for every conjunct in β(f(x̄′, ȳ)) and β⋆(f(x̄′, ȳ))

implying that J |= β⋆(f(x̄′, ȳ)) which was to be shown. The opposite direction is similar.

Assume that for every J ∈ SolM(I) it holds that J |= β⋆(g(x̄′, ȳ)) where g : (x̄′, ȳ) →

C∪N is an assignment of variables to constant and null values (notice that in this case we

cannot directly assume that g assigns only constant values). Consider the conjunctions α(ū)

in β(x̄′, ȳ) and its associated conjunctions ψ(ū) in β⋆(x̄′, ȳ). Since for every J ∈ SolM(I)

we have that J |= β⋆(g(x̄′, ȳ)) then J |= ψ(g(ū)) for every J ∈ SolM(I). Thus, given that

α(ū) is a source rewriting of ψ(ū) we have that I |= α(g(ū)) obtaining that I |= β(g(x̄′, ȳ)).

This completes the proof that β⋆(x̄′, ȳ) is a target rewriting of β(x̄′, ȳ).

To continue with the proof of the lemma, recall that the query Q is defined by a formula

ϕ(x̄) that is a (possibly infinitary) disjunction of formulas γ(x̄) of the form (A.8). We show

now that the query ϕ⋆(x̄) obtained from ϕ(x̄) replacing every disjunct γ(x̄) by

γ⋆(x̄) = ∃ȳ
(
β⋆(x̄′, ȳ) ∧ C(x̄′, ȳ) ∧ δ(x̄′,ȳ) ∧ θ(x̄′, x̄′′)

)
(A.9)

is a target rewriting of ϕ(x̄). Let I be a source instance and assume I |= ϕ(ā) for some

tuple ā of constant values. Then I |= γ(ā) for some γ(x̄) in the form (A.8) that is a disjunct

of ϕ(x̄). Let ā′ and ā′′ be the tuples of elements from ā corresponding to the positions

of variables x̄′ and x̄′′ in tuple x̄. Then, we know that there exists a tuple b̄ of constant

values such that I |= β(ā′, b̄) ∧ δ(ā′,b̄) ∧ θ(ā′, ā′′). Consider now an instance J ∈ SolM(I).

255

Since β⋆(x̄′, ȳ) is a target rewriting of β(x̄′, ȳ) we obtain that J |= β(ā′, b̄) and since

C(ā′, b̄)∧δ(ā′,b̄)∧θ(ā′, ā′′) holds, we have that J |= ∃ȳ
(
β(ā′, ȳ)∧C(ā′, b̄)∧δ(ā′,ȳ)∧θ(ā′, ā′′)

)
,

and thus J |= γ⋆(ā). We have shown that if I |= ϕ(ā) then for every J ∈ SolM(I) it holds

that J |= γ⋆(ā) for a disjunct γ⋆(x̄) of ϕ(x̄), and thus, for every J ∈ SolM(I) it holds

that J |= ϕ⋆(ā). The opposite direction is similar. Assume that ā is a tuple of values such

that for every J ∈ SolM(I) we have that J |= ϕ⋆(ā). Let J⋆ be the canonical universal

solution for I under M. Then we know that J⋆ |= ϕ⋆(ā) and then, there exists a disjunct

γ⋆(x̄) (of the form (A.8)) in ϕ⋆(x̄) such that J⋆ |= γ⋆(ā). Thus, there exists a tuple b̄ such

that J⋆ |= β⋆(ā′, b̄) ∧ C(ā′, b̄) ∧ δ(ā′,b̄) ∧ θ(ā′, ā′′). Notice that β⋆(x̄′, ȳ) is a conjunctive

query, and since (ā′, b̄) are constant values we know that there exists a homomorphism h

(that is the identity on C) such that every conjunct in h(β⋆(ā′, b̄)) is a fact in J⋆. Moreover,

by the properties of universal solutions we know that for every J ∈ SolM(I) there exists

a homomorphism g from J⋆ to J . Therefore, the homomorphism h ◦ g is such that every

conjunct in (h◦g)(β⋆(ā′, b̄)) is a fact in J , and thus, J |= β⋆(ā′, b̄). We have shown that for

every J ∈ SolM(I) it holds that J |= β⋆(ā′, b̄), and thus, since β⋆(x̄′, ȳ) is a target rewriting

of β(x̄′, ȳ) we have that I |= β(ā′, b̄). Now we have that I |= β(ā′, b̄) and we also know

that C(ā′, b̄)∧ δ(ā′,b̄) ∧ θ(ā′, ā′′) holds, then I |= ∃ȳ
(
β(ā′, ȳ)∧C(ā′, ȳ)∧ δ(ā′,ȳ) ∧ θ(ā′, ā′′)

)
,

and thus, I |= γ(ā) which implies that I |= ϕ(ā) which was to be shown. ¤

A.2.2. Proof of Lemma 6.2.4

Recall that for sets of queries (views) C1 and C2 we say that C1 strongly determines C2,

and write C1 Z⇒ C2, when for every query Q ∈ C2 it holds that C1 Z⇒ Q. We prove now

Lemma 6.2.4.

PROOF OF LEMMA 6.2.4. Let M = (S,T, Σ) be a mapping with Σ a set of FO-TO-CQ

st-dependencies. From Lemma 4.2.3 we know that the following property of the set CM

holds: for every pair of instances I1, I2, if CM(I1) ⊆ CM(I2) then SolM(I2) ⊆ SolM(I1).

Consider now the mappings M1 and M2 in the statement of the lemma. We show next

that M1 ¹S M2 if and only if CM2 Z⇒ CM1 . Notice that CM2 Z⇒ CM1 if and only if for

256

every pair of source instances I and K, if CM2(I) ⊆ CM2(K) then CM1(I) ⊆ CM1(K).

Thus, we know that CM2 Z⇒ CM2 if and only if for every pair of source instances I and K,

if SolM2(K) ⊆ SolM2(I) then SolM1(K) ⊆ SolM1(I). This last property is exactly the

characterization of ¹S in Proposition 6.1.8. Thus, we have shown that M1 ¹S M2 if and

only if CM2 Z⇒ CM1 . ¤

A.2.3. Proof of Lemma 6.2.6

The proof of this lemma is heavily based on the proof of Lemmas A.2.3 and 6.2.3.

PROOF OF LEMMA 6.2.6. We describe how the procedure TARGETREWRITING works.

Let α(x̄) be a formula in UCQ=,6= that is target rewritable under M. By combining Lem-

mas A.2.3 and 6.2.3 we know that α(x̄) can be written as a monotone query over CM. Thus

the procedure TARGETREWRITING first rewrites α(x̄) to obtain a logically equivalent for-

mula that is a monotone query over CM. To achieve this, we first write α(x̄) as a finite

disjunction of formulas of the form

∃ȳ
(
γ(x̄′, ȳ) ∧ δ(x̄′,ȳ) ∧ θ(x̄′, x̄′′)

)
.

where x̄ = (x̄′, x̄′′) where x̄′ and x̄′′ have no variables in common, θ(x̄′, x̄′′) is a conjunction

of equalities that respect the inequalities in α(x̄) and such that for every u in x̄′′ we have

that θ(x̄′, x̄′′) contains an equality u = v with v in x̄′, γ(x̄′, ȳ) is a subset of the conjuncts

of α(x̄) with variables in x̄′ replaced according to the equalities in θ(x̄′, x̄′′), and δ(x̄′,ȳ) is

a conjunction of inequalities for every pair of distinct variables in (x̄′, ȳ). Then we use

the process described in the proof of Lemma A.2.3 to obtain the desired rewriting over

CM. Notice that in this case we can effectively obtain such a rewriting since the number of

disjunct defining α(x̄) is finite. The process in the proof of Lemma A.2.3 essentially chase

with CM every instance Iγ(x̄′,ȳ) for every disjunct γ(x̄′, ȳ) defining α(x̄). If after chasing

Iγ(x̄′,ȳ) the instance obtained is Iγ⋆(x̄′,ȳ′), then we include ∃ȳ′
(
γ⋆(x̄′, ȳ′)∧δ(x̄′,ȳ′)∧θ(x̄′, x̄′′)

)

as a disjunct in the rewriting.

257

Notice that after the above described process we have the formula α(x̄) written as a

finite disjunction of formulas of the form (A.8) as described in the “if” part of the proof

of Lemma 6.2.3. Thus, we can effectively compute a target rewriting of α(x̄) by using the

process described in the proof of that lemma. Moreover, by inspecting the process in the

proof of Lemma 6.2.3 it is not difficult to see that the formula β(x̄) generated as a target

rewriting of α(x̄) is in UCQ=,6=,C such that if an inequality x 6= y occurs in β(x̄) then the

atoms C(x) and C(y) also occurs in β(x̄). ¤

258

