
nSPARQL: A Navigational Language

for RDF 1

Jorge Pérez a,c, Marcelo Arenas a,c, Claudio Gutierrez b,c

aDepartment of Computer Science, Pontificia Universidad Católica de Chile
bDepartment of Computer Science, Universidad de Chile

cKhipu: South Andean Center for Database Research

Abstract

Navigational features have been largely recognized as fundamental for graph database
query languages. This fact has motivated several authors to propose RDF query lan-
guages with navigational capabilities. In this paper, we propose the query language
nSPARQL that uses nested regular expressions to navigate RDF data. We study
some of the fundamental properties of nSPARQL and nested regular expressions
concerning expressiveness and complexity of evaluation. Regarding expressiveness,
we show that nSPARQL is expressive enough to answer queries considering the se-
mantics of the RDFS vocabulary by directly traversing the input graph. We also
show that nesting is necessary in nSPARQL to obtain this last result, and we study
the expressiveness of the combination of nested regular expressions and SPARQL
operators. Regarding complexity of evaluation, we prove that given an RDF graph
G and a nested regular expression E, this problem can be solved in time O(|G| · |E|).

1 Introduction

The Resource Description Framework (RDF) [8,18] is the W3C recommenda-
tion data model for the representation of information about resources on the
Web. The RDF specification includes a set of reserved keywords with its own
semantics, the RDFS vocabulary. This vocabulary is designed to describe spe-
cial relationships between resources like typing and inheritance of classes and
properties [8]. As with any data structure designed to model information, a

Email addresses: jperez@ing.puc.cl (Jorge Pérez), marenas@ing.puc.cl
(Marcelo Arenas), cgutierr@dcc.uchile.cl (Claudio Gutierrez).
1 This is an extended and revised version of [7,26].

Preprint submitted to Elsevier 4 March 2010

dom

CalaisParis Dover

sp sp sp

sp

TGV Seafrance NExpress

Dijon

train ferry bus

transport

sp

Hastings

London

coastal city

country

France

type

sp

dom

range

city

range sc

Fig. 1. An RDF graph storing information about transportation services between
cities.

natural question that arises is what the desiderata are for an RDF query lan-
guage. Among the multiple design issues to be considered, it has been largely
recognized that navigational capabilities are of fundamental importance for
data models with explicit tree or graph structure (like XML and RDF).

Recently, the W3C Working Group issued the specification of a query language
for RDF, called SPARQL [27], which is a W3C recommendation since January
2008. SPARQL is designed much in the spirit of classical relational languages
such as SQL. It has been noted that, although RDF is a directed labeled
graph data format, SPARQL only provides limited navigational functionali-
ties. This is more notorious when one considers the RDFS vocabulary (which
current SPARQL specification does not cover), where testing conditions like
being a subclass of or a sub-property of naturally requires navigating the RDF
data. A good illustration of this is shown by the following query, which can-
not be expressed in SPARQL without some navigational capabilities. Consider
the RDF graph shown in Fig. 1. This graph stores information about cities,
transportation services between cities, and further relationships among those
transportation services (in the form of RDFS annotations). For instance, in the
graph we have that a “Seafrance” service is a sub-property of a “ferry” service,
which in turn is a sub-property of a general “transport” service. Assume that
we want to test whether a pair of cities A and B are connected by a sequence
of transportation services, but without knowing in advance what services pro-
vide those connections. We can answer such a query by testing whether there
is a path connecting A and B in the graph, such that every edge in that path
is connected with “transport” by following a sequence of sub-property rela-
tionships. For instance, for “Paris” and “Calais” the condition holds, since
“Paris” is connected with “Calais” by an edge with label “TGV”, and “TGV”
is a sub-property of “train”, which in turn is a sub-property of “transport”.
Notice that the condition also holds for “Paris” and “Dover”.

2

Driven by these motivations, we introduce a language for navigating RDF
data grounded on paths expressed with regular expressions, that takes advan-
tage of the special features of RDF. Besides regular expressions, our proposed
language borrows the notion of branching from XPath [11], to obtain what
we call nested regular expressions. We also introduce the language nSPARQL,
that incorporates these navigational capabilities to a fragment of SPARQL,
and provide formal evidence that the capabilities of nSPARQL can be used to
pose many interesting and natural queries over RDF data.

We formally study several fundamental properties of nSPARQL. The first
of these fundamental questions is whether the navigational capabilities of
nSPARQL can be implemented efficiently. In this paper, we show that this
is indeed the case. More precisely, we show that nested regular expressions
can be evaluated efficiently; if the appropriate data structure is used to store
RDF graphs, then given an RDF graph G, a nested regular expression E and
nodes A, B in G, it is possible to check in time O(|G| · |E|) whether B is
reachable from A in G by following a path in E.

The second fundamental question about nSPARQL is how expressive the lan-
guage is. We first show that nSPARQL is expressive enough to capture the de-
ductive rules of RDFS. Evaluating queries which involve the RDFS vocabulary
is challenging, and there is not yet consensus in the Semantic Web community
on how to define a query language for RDFS. In this respect, we show that
the RDFS evaluation of an important fragment of SPARQL can be obtained
by posing nSPARQL queries that directly traverse the input RDF data. It
should be noticed that nested regular expressions are used in nSPARQL to
capture the inference rules of RDFS. Thus, a second natural question about
nSPARQL is whether these expressions are necessary to obtain this result.
In this paper, we show that nesting is indeed necessary in nSPARQL to deal
with the semantics of RDFS. More precisely, we show that regular expressions
alone are not enough in nSPARQL to obtain the RDFS evaluation of some
queries by simply navigating the RDF data.

Finally, we also consider the question of whether the SPARQL operators add
expressive power to nSPARQL. Given that nested regular expressions are a
powerful navigational tool, one may wonder whether the SPARQL operators
can be somehow represented by using these expressions. Or even if this is
not the case, one may wonder whether there exist natural queries that can
be expressed in nSPARQL, which cannot be expressed by using only nested
regular expressions. In our last result, we show that this is the case. More
precisely, we prove that there are simple and natural queries that can be
expressed in nSPARQL and cannot be expressed by using only nested regular
expressions.

Organization of the paper. In Section 2, we introduce some basic no-

3

tions about RDF, RDFS, and SPARQL. In Section 3, we define the notion of
nested regular expression, and prove that these expressions can be evaluated
efficiently. In Section 4, we define the language nSPARQL. In Section 5, we
show that nSPARQL can be used to answer RDFS queries. In Section 6, we
present some result regarding the expressiveness of nSPARQL. In particular,
we show that if nesting is disallowed in nSPARQL, then one obtains an strictly
less expressive language that cannot encode the process of inference in RDFS.
Related work is given in Section 7, and the concluding remarks are given in
Section 8.

2 Preliminaries

RDF is a graph data format for the representation of information in the Web.
An RDF statement is a subject-predicate-object structure, called RDF triple,
intended to describe resources and properties of those resources. For the sake
of simplicity, we assume that RDF data is composed only by elements from an
infinite set U of IRIs. Formally, an RDF triple is a tuple (s, p, o) ∈ U ×U ×U ,
where s is the subject, p the predicate and o the object. An RDF graph is a
finite set of RDF triples. Moreover, we denote by voc(G) the elements from U
that are mentioned in G.

In this paper, we do not consider anonymous resources called blank nodes in
the RDF data model, that is, our study focuses on ground RDF graphs. It
should be noticed that SPARQL [27], the W3C standard query language for
RDF, considers blank nodes simply as constants values without giving them
their existential semantics [18]. Moreover, there is not yet full consensus in the
Semantic Web community on how an RDF query language should deal with the
semantics of blank nodes. Thus, we decide not to make an assumption about
this semantics and focus in this paper on the fragment of RDF consisting of
ground graphs, for which the query answering process has a well-understood
semantics.

Fig. 1 shows an RDF graph that stores information about transportation
services between cities. In this figure, a triple (s, p, o) is depicted as an edge

s
p

−→ o, that is, s and o are represented as nodes and p is represented as
an edge label. For example, (Paris, TGV, Calais) is a triple in the graph that
states that TGV provides a transportation service from Paris to Calais. Notice
that an RDF graph is not a standard labeled graph as its set of edge labels
may have a nonempty intersection with its set of nodes. For instance, in the
RDF graph in Fig. 1, TGV is simultaneously acting as a node and as an edge
label.

The RDF specification includes a set of reserved words (reserved elements

4

(1) Sub-property:

(a) (A,sp,B) (B,sp,C)
(A,sp,C)

(b) (A,sp,B) (X ,A,Y)
(X ,B,Y)

(2) Subclass:

(a) (A,sc,B) (B,sc,C)
(A,sc,C)

(b) (A,sc,B) (X ,type,A)
(X ,type,B)

(3) Typing:

(a) (A,dom,B) (X ,A,Y)
(X ,type,B)

(b) (A,range,B) (X ,A,Y)
(Y,type,B)

Table 1
RDFS inference rules.

from U) with predefined semantics, the RDFS vocabulary (RDF Schema [8]).
This set of reserved words is designed to deal with inheritance of classes and
properties, as well as typing, among other features [8]. In this paper, we
consider the subset of the RDFS vocabulary composed by rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:range, rdfs:domain and rdf:type, which are denoted
by sc, sp, range, dom and type, respectively. This fragment of RDFS was
considered in [23]. In that paper, the authors provide a formal semantics for
it, and also show that this fragment is well-behaved as the remaining RDFS
vocabulary does not interfere with the semantics of this fragment. The seman-
tics proposed in [23] was shown to be equivalent to the full RDFS semantics
when one focuses on the fragment mentioned above. We further assume in this
paper that the reserved words sc, sp, range, dom and type, can only occur in
the predicate position of RDF triples.

We use the system of rules in Tab. 1. This system was proved in [23] to
be sound and complete for the inference problem for RDFS in the presence
of sc, sp, range, dom and type, under some mild assumptions (see [23] for
further details). In every rule, letters A, B, C, X , and Y , stand for variables
to be replaced by actual terms. More formally, an instantiation of a rule is a
replacement of the variables occurring in the triples of the rule by elements
of U . An application of a rule to a graph G is defined as follows. Given a
rule r, if there is an instantiation R

R′
of r such that R ⊆ G, then the graph

G′ = G ∪ R′ is the result of an application of r to G. We say that a triple t
is deduced from G, if either t ∈ G or there exists a graph G′ such that t ∈ G′

and G′ is obtained from G by successively applying the rules in Tab. 1.

Example 2.1. Let G be the RDF graph in Fig. 1. This graph contains RDFS
annotations for transportation services. For instance, (Seafrance, sp, ferry)
states that Seafrance is a sub-property of ferry. Thus, we know that there
is a ferry going from Calais to Dover since (Calais, Seafrance, Dover) is in
G. This conclusion can be obtained by a single application of rule (1b) to
triples (Seafrance, sp, ferry) and (Calais, Seafrance, Dover), from which we
deduce triple (Calais, ferry, Dover). Moreover, by applying the rule (3b) to
this last triple and (ferry, range, coastal city), we deduce triple (Dover, type,
coastal city) and, thus, we conclude that Dover is a coastal city. ¤

5

2.1 The RDF query language SPARQL

Jointly with the release of RDF in 1999 as Recommendation of the W3C,
the natural problem of querying RDF data was raised. Since then, several
designs and implementations of RDF query languages have been proposed [14].
In 2004, the RDF Data Access Working Group (part of the Semantic Web
Activity) released a first public working draft of a query language for RDF,
called SPARQL [27]. Currently, SPARQL is a W3C recommendation, and has
become the standard language for querying RDF data.

In this section, we present the query language SPARQL by considering the
algebraic formalization introduced in [25]. Assume the existence of an infinite
set V of variables disjoint from U . A SPARQL graph pattern is recursively
defined as follows:

• A tuple from (U∪V)×(U∪V)×(U∪V) is a graph pattern (a triple pattern).
• If P1 and P2 are graph patterns, then (P1 AND P2), (P1 OPT P2), and

(P1 UNION P2) are graph patterns.
• If P is a graph pattern and R is a SPARQL built-in condition, then the

expression (P FILTER R) is a graph pattern.

A SPARQL built-in condition is a Boolean combination of terms constructed
by using equality (=) among elements in U∪V , and the unary predicate bound
over variables. Formally,

• if ?X, ?Y ∈ V and c ∈ U , then bound(?X), ?X = c and ?X = ?Y are
built-in conditions; and

• if R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2)
are built-in conditions.

Given a graph pattern P , we denote by var(P) the set of variables occurring
in P . Similarly, for a built-in condition R, var(R) denotes the set of variables
occurring in R. We impose the following safety condition to graph patterns. A
graph pattern Q is safe if for every sub-pattern (P FILTER R) of Q, it holds
that var(R) ⊆ var(P). This is a natural safety condition which is present in
most database query languages. In this paper, we assume that every graph
pattern is safe.

To define the semantics of SPARQL graph patterns, we need to introduce
some terminology. A mapping µ from V to U is a partial function µ : V → U .
For a triple pattern t, we denote by µ(t) the triple obtained by replacing the
variables in t according to µ. The domain of µ, denoted by dom(µ), is the
subset of V where µ is defined. Two mappings µ1 and µ2 are compatible if for
every x ∈ dom(µ1) ∩ dom(µ2), it is the case that µ1(x) = µ2(x), i.e. when
µ1 ∪ µ2 is also a mapping. Let Ω1 and Ω2 be sets of mappings. We define the

6

join, the union, the difference, and the left-outer join between Ω1 and Ω2 as:

Ω1 1 Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible},

Ω1 Ω2 = (Ω1 1 Ω2) ∪ (Ω1 r Ω2).

The evaluation of a graph pattern over an RDF graph G, denoted by J · KG, is
defined recursively as follows:

• JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G}, where var(t) is the set of
variables occurring in t.

• J(P1 AND P2)KG = JP1KG 1 JP2KG, J(P1 UNION P2)KG = JP1KG ∪ JP2KG,
and J(P1 OPT P2)KG = JP1KG JP2KG.

The semantics of FILTER expressions goes as follows. Given a mapping µ and
a built-in condition R, we say that µ satisfies R, denoted by µ |= R, if (we
omit the usual rules for Boolean operators):

• R is bound(?X) and ?X ∈ dom(µ);
• R is ?X = c, where c ∈ U , ?X ∈ dom(µ) and µ(?X) = c;
• R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y).

Then J(P FILTER R)KG = {µ ∈ JP KG | µ |= R}.

It was shown in [25], among other algebraic properties, that AND and UNION
are associative and commutative, thus permitting us to avoid parenthesis when
writing sequences of either AND operators or UNION operators.

2.2 The semantics of SPARQL over RDFS

SPARQL follows a subgraph-matching approach, and thus, a SPARQL query
treats RDFS vocabulary without considering its predefined semantics. For ex-
ample, consider the RDF graph G in Fig. 2, which stores information about
soccer players, and consider the graph pattern P = (?X, works in, ?C). Note
that, although the triples (Ronaldinho, works in, Barcelona) and (Sorace,
works in, Everton) can be deduced from G, we obtain the empty set as the
result of evaluating P over G as there is no triple in G with works in in the
predicate position.

We are interested in defining the semantics of SPARQL over RDFS, that is,
taking into account not only the explicit RDF triples of a graph G, but also
the triples that can be derived from G according to the semantics of RDFS.

7

lives in

works in

Everton

company

ChileSorace

plays in

sp

range

Barcelona

soccer team

type

soccer player

Ronaldinho

person

sc

sc

type

dom

dom range

sportsman

Fig. 2. An RDF graph storing information about soccer players.

sc works in

Chile Everton

company

Sorace

plays in

sp

range

Barcelona

soccer team

type

type

type

type

sportsman

soccer player

Ronaldinho

person

sc

sc

type

type

type

type

type

type

dom

dom

lives in

range

Fig. 3. The closure of the RDF graph of Fig. 2.

Let the closure of an RDF graph G, denoted by cl(G), be the graph obtained
from G by successively applying the rules in Tab. 1 until the graph does not
change. For instance, Fig. 3 shows the closure of the RDF graph of Fig. 2. The
solid lines in Fig. 3 represent the triples in the original graph, and the dashed
lines the additional triples in the closure. The most direct way of defining
a semantics for the RDFS evaluation of SPARQL patterns is by considering
not the original graph but its closure. Thus, if we now evaluate pattern P =
(?X, works in, ?C) over the RDF graph in Fig. 3, we obtain the mappings
{?X → Ronaldinho, ?C → Barcelona} and {?X → Sorace, ?C → Everton}.
The theoretical formalization of such an approach was studied in [15]. The
following definition formalizes this notion.

Definition 2.2 Given a SPARQL graph pattern P , the RDFS evaluation of
P over G, denoted by JP Krdfs

G , is defined as the set of mappings JP Kcl(G), that

8

is, as the evaluation of P over the closure of G.

It is important to notice that the previous definition gives a simple algorithm
for evaluating SPARQL queries over RDFS data; given a query Q over an
RDF graph G with RDFS vocabulary, the closure cl(G) of G is materialized
first, and then Q is evaluated over cl(G). In particular, this algorithm has the
advantage that if several queries are to be posed over a fixed RDF graph G,
then cl(G) has to be computed only once in order to answer these queries.

Unfortunately, the approach mentioned in the previous paragraph has some
drawbacks that limit their practical applicability, First, it is known that the
closure of a graph G can be of quadratic size in the size of G [23], making the
computation and storage of the closure too expensive for web-scale applica-
tions 2 . Second, once the closure has been computed, the queries are evaluated
over a data source which can be much larger than the original one. This can
be particularly inefficient for queries that do not involve the RDFS vocab-
ulary and do not need any RDFS inference in order to be answered. Third,
the approach is not goal-oriented. Although in practice most queries use just a
fragment of the RDFS vocabulary and would need only to scan a small part of
the initial data, all the vocabulary and the data is considered when computing
the closure.

Let us present a simple scenario that exemplifies the benefits of a goal-oriented
approach. Consider an RDF graph G and a query Q that asks whether a
resource A is a sub-class of a resource B. Answering Q amounts to check
whether the triple (A, sc, B) is implied by G. The predefined semantics of
RDFS states that sc is a transitive relation among resources. Thus, to answer
Q, a goal-oriented approach should not compute the closure of the entire input
graph, but instead it should just verify whether there exist resources R1, R2,
. . ., Rn such that A = R1, B = Rn, and (Ri, sc, Ri+1) is a triple in G for
i = 1, . . . , n − 1. That is, one can answer Q by checking the existence of
an sc-path from A to B in G, which can be done in linear time by using
a graph reachability algorithm. It should be noticed that the approach that
materializes cl(G) cannot take less that quadratic time in answering this query,
as the size of cl(G) may be quadratic in the size of G.

It was shown in [23] that testing whether a triple is implied by an RDFS
graph G can be done without computing the closure of G. The idea is that the
RDFS vocabulary is weak enough to warrant that one can determine whether
a triple is implied by G just by checking the existence of some paths in G,
very much like our simple example above. The good news is that these paths
can be specified by using regular expressions plus some additional features.

2 Currently, one can find RDF databases of one or more gigabytes of data, whose
closure may need an exabyte of storage.

9

For example, to check whether (A, sc, B) belongs to the closure of a graph
G, we already saw that it is enough to check whether there is a path from A
to B in G where each edge has label sc. This observation motivates the use
of extended triple patterns of the form (A, sc+, B), where sc+ is the regular
expression denoting paths of length at least 1 and where each edge has label
sc. Thus, one can readily see that a language for navigating RDFS data would
be useful for answering queries according to the predefined semantics of the
RDFS vocabulary.

Driven by this motivation, in this paper we introduce the query language
nSPARQL that extends SPARQL with navigational capabilities. This lan-
guage is expressive enough to capture the deductive rules of RDFS. And not
only that, it can be used to pose many interesting and natural queries over
RDF data, which otherwise cannot be expressed. In the rest of this paper, we
formally introduce nSPARQL, and study some of its fundamental properties.
We start this study by introducing the notion of nested regular expression in
the following section, which is the building block of nSPARQL.

3 Nested Regular Expressions for RDF Data

One of our main goals in this paper is to define a query language that allows
to pose interesting navigational queries over an RDF graph. In this section, we
define such a navigational language providing a formal syntax and semantics.
Our language uses, as usual for graph query languages [22,5], regular expres-
sions to define paths on graph structures, but taking advantage of the special
features of RDF graphs. We extend classical regular expressions by borrowing
the notion of branching from XPath [11], to obtain the language of nested
regular expressions to navigate RDF data.

The navigation of a graph is usually done by using an operator next, which
allows one to move from one node to an adjacent one in a graph. In our
setting, we have RDF “graphs”, which are sets of triples, not classical graphs.
In particular, the sets of nodes and edge labels of an RDF graph can have a
nonempty intersection. Hence, a language for navigating RDF graphs should
be able to deal with this type of objects. In this section, we introduce the notion
of nested regular expression to navigate through an RDF graph. This notion
takes into account the special features of the RDF data model. In particular,
nested regular expressions use three different navigation axes next, edge and
node, and their inverses next-1, edge-1 and node-1, to move through an RDF
triple. These axes are shown in Fig. 4.

A navigation axis allows one to move one step forward (or backward) in an
RDF graph. Thus, a sequence of these axes defines a path in an RDF graph.

10

edge-1

b aa

p p

b

edge node

next next-1

node-1

Fig. 4. Forward and backward axes for an RDF triple (a, p, b).

r2

p1

p5

a3 a4

p4

a1 a2

a5 a6

p2 p3

r1

Fig. 5. Nodes a1 and a6 are connected by a path that follows the sequence of
navigational axes next/next/edge/next/next-1/node.

For instance, in the graph of Fig. 5, the sequence of axes

next/next/edge/next/next-1/node

defines a path between nodes a1 and a6 (the path is shown with dashed lines in
the figure). Moreover, one can use classical regular expressions over these axes
to define a set of paths that can be used in a query. The language considers
an additional axis self that is used not to actually navigate, but instead to
test the label of a specific node in a path. The language also allows nested
expressions that can be used to test for the existence of certain paths start-
ing at any axis. The following grammar defines the syntax of nested regular
expressions:

exp := axis | axis::a (a ∈ U) | axis::[exp] |

exp/exp | exp|exp | exp∗ (1)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}.

Before introducing the formal semantics of nested regular expressions, we give
some intuition about how these expressions are evaluated in an RDF graph.
The most natural navigation axis is next::a, with a an arbitrary element from
U . Given an RDF graph G, the expression next::a is interpreted as the a-
neighbor relation in G, that is, the pairs of nodes (x, y) such that (x, a, y) ∈ G.
Given that in the RDF data model a node can also be the label of an edge,
the language allows us to navigate from a node to one of its leaving edges by
using the edge axis. More formally, the interpretation of edge::a is the pairs
of nodes (x, y) such that (x, y, a) ∈ G. The nesting construction [exp] is used
to check for the existence of a path defined by expression exp. For instance,
when evaluating nested expression next::[exp] in a graph G, we retrieve the
pairs of nodes (x, y) such that there exists z with (x, z, y) ∈ G, and such that

11

JselfKG = {(x, x) | x ∈ voc(G)}

Jself::aKG = {(a, a)}

JnextKG = {(x, y) | there exists z s.t. (x, z, y) ∈ G}

Jnext::aKG = {(x, y) | (x, a, y) ∈ G}

JedgeKG = {(x, y) | there exists z s.t. (x, y, z) ∈ G}

Jedge::aKG = {(x, y) | (x, y, a) ∈ G}

JnodeKG = {(x, y) | there exists z s.t. (z, x, y) ∈ G}

Jnode::aKG = {(x, y) | (a, x, y) ∈ G}

Jaxis-1KG = {(x, y) | (y, x) ∈ JaxisKG} with axis ∈ {next, node, edge}

Jaxis-1::aKG = {(x, y) | (y, x) ∈ Jaxis::aKG} with axis ∈ {next, node, edge}

Jexp1/exp2KG = {(x, y) | there exists z s.t. (x, z) ∈ Jexp1KG and (z, y) ∈ Jexp2KG}

Jexp1|exp2KG = Jexp1KG ∪ Jexp2KG

Jexp∗KG = JselfKG ∪ JexpKG ∪ Jexp/expKG ∪ Jexp/exp/expKG ∪ · · ·

Jself::[exp]KG = {(x, x) | x ∈ voc(G) and there exists z s.t. (x, z) ∈ JexpKG}

Jnext::[exp]KG = {(x, y) | there exist z, w s.t. (x, z, y) ∈ G and (z, w) ∈ JexpKG}

Jedge::[exp]KG = {(x, y) | there exist z, w s.t. (x, y, z) ∈ G and (z, w) ∈ JexpKG}

Jnode::[exp]KG = {(x, y) | there exist z, w s.t. (z, x, y) ∈ G and (z, w) ∈ JexpKG}

Jaxis-1::[exp]KG = {(x, y) | (y, x) ∈ Jaxis::[exp]KG} with axis ∈ {next, node, edge}

Table 2
Formal semantics of nested regular expressions.

there is a path in G that follows expression exp starting in z.

The evaluation of a nested regular expression exp in a graph G is formally
defined as a binary relation JexpKG, denoting the pairs of nodes (x, y) such
that y is reachable from x in G by following a path that conforms to exp.
The formal semantics of the language is shown in Tab. 2. In this table, G is
an RDF graph, a ∈ U , voc(G) is the set of all the elements from U that are
mentioned in G, and exp, exp1, exp2 are nested regular expressions.

As is customary for regular expressions, given a nested regular expression exp,
we use exp+ as a shorthand for exp∗/exp. The following is a simple example
of the evaluation of a nested regular expression. We present more involved
examples when introducing the nSPARQL language.

Example 3.1. Let G be the graph in Fig. 1, and consider expression

exp1 = next::[next::sp/self::train].

12

The expression next::sp/self::train defines the pairs of nodes (z, w) such
that from z one can follow an edge labeled sp and reach a node w with
label train (expression self::train is used to perform this last test). Thus,
the nested expression [next::sp/self::train] performs an existential test; it
is satisfied by the nodes in G from which there exists a path that follows
an edge labeled sp and reaches a node labeled train. There is a single such
node in G, namely TGV. Restricted to graph G, expression exp1 is equivalent
to next::TGV and, thus, it defines the pairs of nodes that are connected
by an edge labeled TGV. Hence, the evaluation of exp1 in G is Jexp1KG =
{(Paris, Calais), (Paris, Dijon)}. ¤

In the following section, we introduce the language nSPARQL that combines
the operators of SPARQL with the navigational capabilities of nested regular
expressions. But before introducing this language, we show that nested regular
expressions can be evaluated efficiently, which is an essential requirement if
one wants to use nSPARQL for web-scale applications.

3.1 An efficient algorithm for evaluating nested regular expressions

In this section, we present an algorithm that efficiently solves the evaluation
problem for nested regular expressions over RDF graphs. More precisely, we
consider two problems associated to nested regular expressions. The first one
is the decision problem of verifying whether a given pair of nodes is in the
evaluation of a nested regular expression over an RDF graph. This decision
problem is formally defined as follows:

Problem : Evaluation problem for nested regular expressions.

Input : An RDF graph G, a nested regular expression exp,
and a pair (a, b).

Question : Is (a, b) ∈ JexpKG?

It is important to notice that this problem considers the pair of nodes (a, b)
as part of the input. This is the standard decision problem considered when
studying the complexity of a query language [28]. The second problem consid-
ered in this paper is the following computation problem associated to nested
regular expressions:

13

Problem : Computation problem for nested regular expressions.

Input : An RDF graph G, a nested regular expression exp,
and a node a.

Output : List all the elements b such that (a, b) ∈ JexpKG.

Thus, the problem is to give a list with all the nodes that are reachable from
a fixed node a by following an expression exp in an RDF graph G.

At this point, the reader may wonder why we do not consider the problem of,
giving a nested regular expression exp and an RDF graph G, listing all the
pairs in JexpKG. Notice that any algorithm that solves this last problem needs
at least quadratic time with respect to the RDF graph G, since just writing
down the output needs quadratic time in the worst case. On the other hand,
this lower bound cannot be directly proved for the two problems considered
in this section; the output of the decision problem is of constant size (it is a
no/yes answer), and the output of the problem of listing the nodes that are
connected to a given node is linear in the size of the input RDF graph. Thus, it
is worth studying whether these two problems can be solved efficiently (which
is by no means trivial).

In this section, we show that the two problems mentioned above can be solved
efficiently (in fact, in linear time with respect to the size of the input RDF
graph). More precisely, we provide algorithms that solve these problems in
time O(|G| · |exp|), where |G| denotes the size of the input RDF graph and
|exp| denotes the size of the nested regular expression being evaluated.

We assume that an RDF graph G is stored as an adjacency list that makes
explicit the navigation axes (and their inverses). Thus, every u ∈ voc(G)
is associated with a list of pairs α(u), where every pair contains a naviga-
tion axis and the destination node. For instance, if (s, p, o) is a triple in G,
then (next::p, o) ∈ α(s) and (edge-1::o, s) ∈ α(p). Moreover, we assume that
(self::u, u) ∈ α(u) for every u ∈ voc(G). Notice that if the number of triples
in G is N , then the adjacency list representation uses space O(N). Thus, when
measuring the size of G, we use |G| to denote the size of its adjacency list rep-
resentation. We further assume that given an element u ∈ voc(G), we can
access its associated list α(u) in time O(1). This is a standard assumption for
graph data-structures in a RAM model [13]. Fig. 6 shows an example of an
adjacency-list representation of an RDF graph. For a nested regular expression
exp, we use |exp| to denote the size of the expression.

The idea of the algorithm for the evaluation of nested regular expressions is
motivated by the algorithms for the evaluation of some temporal logics [12]
and propositional dynamic logic [1,16]. We say that expression exp ′ is a nested

14

b

c

ed

a

e

next-1::c, aself::b, b node-1::a, c

next::c, b edge::b, c

next::d, eself::c, c edge::e, d edge-1::b, a node::a, b

edge-1::e, cself::d, d node::c, e

next-1::d, cself::e, e node-1::c, d

self::a, aa

b

c

d

Fig. 6. Adjacency-list representation (below) of an RDF graph (above).

subexpression of exp, if the expression axis::[exp ′] occurs in exp, with axis ∈
{self, next, next-1, edge, edge-1, node, node-1}. Given an RDF graph G
and a nested regular expression exp, the algorithm proceeds by recursively
considering the nested subexpressions of exp, labeling every node u of G with
a set label(u) of nested expressions. Initially, label(u) is the empty set. Then
at the end of the execution of the algorithm, it holds that exp ∈ label(u) if and
only if there exists z such that (u, z) ∈ JexpKG. Before giving any technical
details, let us show the general idea of this process with an example. Fig. 7
exemplifies the process for a graph G and the nested expression:

β = next::a/(next::[next::b/self::c])∗/(edge::[next::d] | next::a)+. (2)

The process first considers the nested subexpressions γ = next::b/self::c
and λ = next::d, and marks the nodes in G according to which ones of these
subexpressions they satisfy. Thus, after this stage we have that γ ∈ label(r3)
since (r3, c) ∈ JγKG, and λ ∈ label(r6) since (r6, r7) ∈ JλKG (see Fig. 7). Using
this information, we mark the nodes according to whether they satisfy β,
but considering the previously computed labels (γ and λ) and the expression
β′ = next::a/(next::γ)∗/(edge::λ | next::a)+. In the example of Fig. 7, we
have that (r1, r5) ∈ JβKG and, thus, β ∈ label(r1).

We now explain how to efficiently carry out the labeling process by using
some tools from automata theory (here we assume some familiarity with this
theory). A key idea in the algorithm is to associate to each nested regular
expression a nondeterministic finite automaton with ε-transitions (ε-NFA).
Given a nested regular expression exp, we recursively define the set of depth-0
terms of exp, denoted by D0(exp), as follows:

D0(exp) = {exp} if exp is either axis, or axis::a, or axis::[exp ′],
D0(exp1/exp2) = D0(exp1|exp2) = D0(exp1) ∪ D0(exp2),
D0(exp

∗) = D0(exp),

15

a d

b

r4 r6r1 r7

c

r2

self::c

next::d

next::b

next::a next::γ

edge::λβ
γ

λ

G :

r3 r5

Fig. 7. Example of the labeling process of the RDF graph G according to expression
β = next::a/(next::[next::b/self::c])∗/(edge::[next::d] | next::a)+. First, node
r3 is marked with label γ = next::b/self::c (since (r3, c) ∈ JγKG), and node r6

with label λ = next::d (since (r6, r7) ∈ JλKG). Finally, node r1 is labeled with β
(since (r1, r5) ∈ JβKG). This last label is obtained by considering the expression
β′ = next::a/(next::γ)∗/(edge::λ | next::a)+.

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. For instance,
for the nested expression β in (2), we have that:

D0(β) = { next::a, next::[next::b/self::c], edge::[next::d] }.

Notice that a nested regular expression exp can be viewed as a classical regular
expression over the alphabet D0(exp). We denote by Aexp the ε-NFA that
accepts the language generated by the regular expression exp over the alphabet
D0(exp). For example, Fig. 8 shows an ε-NFA Aβ that accepts the language
generated by expression β in (2) over the alphabet D0(β). As for the case
of RDF graphs, we assume that ε-NFAs are stored using an adjacency-list
representation.

In the algorithm, we use the product automaton G×Aexp , which is constructed
as follows. Assume that we have the graph G labeled with respect to the nested
subexpressions of exp, that is, for every node u of G and nested subexpression
exp ′ of exp, we have that exp ′ ∈ label(u) if and only if there exists a node v such
that (u, v) ∈ Jexp ′KG. Let Q be the set of states of Aexp, and δ : Q×(D0(exp)∪
{ε}) → 2Q the transition function of Aexp . The set of states of G × Aexp is
voc(G)×Q, and its transition function δ′ : (voc(G)×Q)× (D0(exp)∪{ε}) →
2voc(G)×Q is defined as follows. For every (u, p) ∈ voc(G)×Q and s ∈ D0(exp),
we have that (v, q) ∈ δ′((u, p), s) if and only if q ∈ δ(p, s) and one of the
following cases hold:

• s = axis and there exists a such that (axis::a, v) ∈ α(u),
• s = axis::a and (axis::a, v) ∈ α(u),
• s = axis::[exp] and there exists b such that (axis::b, v) ∈ α(u) and exp ∈

label(b),

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Additionally,
if q ∈ δ(p, ε) we have that (u, q) ∈ δ′((u, p), ε) for every u ∈ voc(G). That is,

16

next::a

q1 q2

q3 qf

edge::[next::d]ε

next::[next::b/self::c]

q0

Aβ :

ε

ε

next::a ε

ε

r1, q0 r2, q1 r4, q1 r4, q2

r5, qf

r5, q3 r5, q2

r4, q3r2, q2 r2, q3

next::a next::[next::b/self::c]

G ×Aβ :
ε

ε

εε

ε edge::[next::d]

Fig. 8. Automaton Aβ for the nested regular expression β in (2), and product
automaton G ×Aβ .

G × Aexp is the standard product automaton of G and Aexp if G is viewed
as an ε-NFA over the alphabet D0(exp). Fig. 8 shows the product automaton
G ×Aβ for the nested expression β in (2) and the graph G of Fig. 7 (labeled
with respect to the nested subexpressions of β). For space reasons, we have
only depicted the states of G × Aβ that are reachable from the initial state.
For instance, we have that there is a transition from (r2, q1) to (r4, q1) with
symbol next::[next::b/self::c] since: (i) there is a transition from q1 to q1

with next::[next::b/self::c] in Aβ, and (ii) (next::r3, r4) ∈ α(r2) and γ =
next::b/self::c ∈ label(r3).

There are two key observations about the product automaton defined above
that should be made. Let G be a graph labeled with respect to the nested
subexpressions of exp, and Aexp an ε-NFA for exp. Assume that q0 is the
initial state of Aexp and qf is one of its final states. The first observation is
that if there exists two elements u, v ∈ voc(G) such that from (u, q0) one can
reach state (v, qf) in G×Aexp , then (u, v) ∈ JexpKG. In the example of Fig. 8,
we have that (r1, r5) ∈ JβKG since we can reach state (r5, qf) from state (r1, q0)
in G × Aβ. The second observation is that given a nested regular expression
exp, one can construct in linear time an ε-NFA for exp by using standard
techniques. Thus, given a nested regular expression exp and an RDF graph G
that has been labeled with respect to the nested subexpressions of exp, it is
easy to see that automaton G×Aexp can be constructed in time O(|G|·|Aexp|).

Now we have all the necessary ingredients to formally present the algorithm for
the evaluation problem for nested regular expressions. This algorithm is split
in two procedures: Label labels G according to the nested subexpressions

17

of exp as explained above, and Eval returns Yes if (a, b) ∈ JexpKG and No

otherwise.

Label(G, exp):
1. for each axis::[exp′] ∈ D0(exp) do

2. call Label(G, exp ′)
3. construct Aexp , and assume that q0 is its initial state and F is its set of final states
4. construct G ×Aexp

5. for each state (u, q0) that is connected to a state (v, qf) in G ×Aexp , with qf ∈ F do

6. label(u) := label(u) ∪ {exp}

Eval(G, exp, (a, b)):
1. for each u ∈ voc(G) do

2. label(u) := ∅
3. call Label(G, exp)
4. construct Aexp , and assume that q0 is its initial state and F is its set of final states
5. construct G ×Aexp

6. if a state (b, qf), with qf ∈ F , is reachable from (a, q0) in G ×Aexp

7. then return Yes

8. else return No

Theorem 3.2 Procedure Eval solves the evaluation problem for nested reg-
ular expressions in time O(|G| · |exp|).

Proof. Assume that for every u, it holds that label(u) = ∅. We argue that after
the execution of procedure Label(G, exp), it holds that exp ∈ label(u) if and
only if there exists v such that (u, v) ∈ JexpKG. We proceed by induction on the
depth in the tree of recursive calls to Label. The base case is when D0(exp)
have no expressions of the form axis::[exp ′]. The property in this case follows
by the definition of the product automaton G×Aexp . It is easy to see that there
exists a state (u, q0) that is connected to a state (v, qf) in G×Aexp , with q0 the
initial state of Aexp and qf a final state of Aexp , if and only if (u, v) ∈ JexpKG.
Just recall that D0(exp) has no expressions of the form axis::[exp ′] and, thus,
exp is a standard regular expression with no nested subexpressions. Now,
assume that D0(exp) contains some expression of the form axis::[exp ′]. At the
beginning, procedure Label is executed for every expression exp ′ such that
axis::[exp ′] ∈ D0(exp). By induction hypothesis, after these calls we have that
if axis::[exp ′] ∈ D0(exp), then exp ′ ∈ label(u) if and only if there exists v
such that (u, v) ∈ Jexp ′KG. Again by the definition of the product automaton
G×Aexp , it is easy to see that there exists a state (u, q0) that is connected to a
state (v, qf) in G×Aexp , with q0 the initial state of Aexp and qf a final state of
Aexp , if and only if (u, v) ∈ JexpKG. The correctness of procedure Eval follows
directly from this property.

It only remains to show that procedure Eval runs in time O(|G| · |exp|). To
prove this, we need some terminology. Define the set of depth-i terms (i ≥ 1)

18

of a nested expression exp by

Di(exp) =
⋃

axis::[exp′]∈Di−1(exp)

D0(exp
′).

For instance, for the nested expression

β = next::a/(next::[next::[edge::b]])+/next::[(next::b)∗/self::d],

we have that

D0(β) = { next::a, next::[next::[edge::b]], next::[(next::b)∗/self::d]},

D1(β) = {next::[edge::b], next::b, self::d},

D2(β) = {edge::b},

D3(β) = ∅.

Define the depth of a nested expression exp as the minimum integer d such
that Dd+1(exp) = ∅. For instance, the depth of expression β above is 2.

The first important observation is that the total number of recursive calls to
Label in the execution of the algorithm is at most:

k =
d

∑

i=1

|Di(exp)|,

where d is the depth of exp. Notice that k is bounded by |exp|. The second
important observation is that for every nested regular expression exp ′, one can
construct an automaton Aexp′ whose size is linear in the number of occurrences
of symbols of D0(exp

′) in exp ′. With these observations, we conclude that the
total time spent constructing all the product automata in the entire execution
of Label is O(|G| · |exp|). The final observation is how to efficiently execute
step 5 in each recursive call to Label. Assume that Label has been called
with expression exp ′. Notice that in step 5 we do not need to make an iteration
over the states of G × Aexp′ , but just to perform a depth-first search to find
the nodes of the form (u, q0) of G × Aexp′ , with q0 the initial state of Aexp′ ,
that reach a node (v, qf) with qf a final state of Aexp′ . This search can be done
in time O(|G| · |Aexp′|). With these observations it is easy to conclude that
with input exp, procedure Label runs in time O(|G| · |exp|). Similarly, step 6
of procedure Eval can be carried out in time O(|G| · |exp|) and, thus, Eval

runs in time O(|G| · |exp|). ¤

The above algorithms can be directly used to efficiently solve the computa-
tion problem of listing all the nodes that are reachable from a fixed node
by following a nested regular expression. As we have shown, after the call to
Label(G, exp), we have that (u, v) ∈ JexpKG if and only if there exists a path

19

from a state (u, q0) to a state (v, qf) in the automaton G ×Aexp , where q0 is
the initial state of Aexp and qf is one of its final states. Thus, given an element
a ∈ voc(G), one can list all the elements b ∈ voc(G) such that (a, b) ∈ JexpKG

by performing a depth-first search over G×Aexp starting at (a, q0). The whole
process takes time O(|G| · |exp|). Thus, we have the following result.

Theorem 3.3 Given an RDF graph G, a nested regular expression exp and
an element a, listing all the elements b such that (a, b) ∈ JexpKG can be done
in time O(|G| · |exp|).

4 nSPARQL: An RDF Query Language with Navigational Capa-

bilities

In this section, we introduce the language nested SPARQL (or just nSPARQL),
which is an RDF query language with navigational capabilities.

The query language nSPARQL is essentially obtained by using triple patterns
with nested regular expressions in the predicate position, plus SPARQL op-
erators AND, OPT, UNION, and FILTER as we defined them in Section 2.1.
More precisely, a nested-regular-expression triple (or just nre-triple) is a tuple
t of the form (x, exp, y), where x, y ∈ U ∪V and exp is a nested regular expres-
sion. nSPARQL graph patterns are then recursively defined from nre-triples:

• An nre-triple is an nSPARQL graph pattern.
• If P1 and P2 are nSPARQL graph patterns and R is a built-in condition,

then (P1 AND P2), (P1 OPT P2), (P1 UNION P2), and (P1 FILTER R) are
nSPARQL graph patterns.

It should be noticed that in nSPARQL, we are using the algebraic formaliza-
tion for SPARQL graph patterns proposed in [25]. In particular, we are not
considering projection (i.e. the SELECT operator) in our language. Clearly,
projection would add expressive power to the language, but at the cost of
increasing the complexity of the evaluation problem for some fragments of
the language (see Section 7 for a detailed discussion on this topic). Thus, we
have decided to use the core algebraic fragment of SPARQL [25] to construct
our nSPARQL language. As we show in the next sections, this decision allows
us to obtain a language with good properties regarding expressiveness and
complexity of evaluation.

To define the semantics of nSPARQL, we just need to define the semantics
of nre-triples, as the semantics of the operators AND, OPT, UNION, and
FILTER is defined exactly as for the case of SPARQL (see Section 2.1). The
evaluation of an nre-triple t = (?X, exp, ?Y) over an RDF graph G is defined
as the following set of mappings:

20

JtKG = {µ | dom(µ) = {?X, ?Y } and (µ(?X), µ(?Y)) ∈ JexpKG}.

Similarly, the evaluation of an nre-triple t = (?X, exp, a) over an RDF graph
G, where a ∈ U , is defined as {µ | dom(µ) = {?X} and (µ(?X), a) ∈ JexpKG},
and likewise for (a, exp, ?X) and (a, exp, b) with b ∈ U .

Notice that every SPARQL triple (?X, p, ?Y) with p ∈ U is equivalent to
nSPARQL triple (?X, next::p, ?Y). Also notice that, since variables are not
allowed in nested regular expressions, the occurrence of variables in the predi-
cate position of triple patterns is forbidden in nSPARQL. Nevertheless, every
SPARQL triple of the form (?X, ?Y, a), with a ∈ U , is equivalent to nSPARQL
pattern (?X, edge::a, ?Y). Similarly, the triple (a, ?X, ?Y) is equivalent to
(?X, node::a, ?Y). Thus, what we are losing in nSPARQL is only the pos-
sibility of using variables in the three positions of a triple pattern. We decided
not to include this type of triples in nSPARQL for two reasons: they do not
clearly represent the idea of navigation, and they are not needed in nSPARQL
to evaluate queries according to the semantics of RDFS (see Section 5). In
fact, a triple of the form (?X, exp, ?Y) indicates that one has to navigate from
?X to ?Y by following pattern exp, while a navigation criteria like this cannot
be used to evaluate a triple pattern of the form (?X, ?Y, ?Z).

As pointed out in the introduction, it has been largely recognized that nav-
igational capabilities are fundamental for graph databases query languages.
However, although RDF is a directed labeled graph data format, SPARQL
only provides limited navigational functionalities. In this paper, we propose
nSPARQL as a way to overcome this limitation. Moreover, we study some of
its fundamental properties in order to provide formal evidence of its usefulness
as a query language for RDF. In particular, we have already shown that nested
regular expressions can be evaluated efficiently, which is an essential require-
ment if one wants to use nSPARQL for web-scale applications. In the following
sections, we study some fundamental properties related to the expressiveness
of nSPARQL. But before doing that, we show through some examples how
the navigational capabilities of nSPARQL can be used to express queries that
are likely to occur in the Semantic Web, but cannot be expressed in SPARQL
without using nested regular expressions.

Example 4.1. Let G be the RDF graph of Fig. 1 and P1 the following pattern:

P1 = (?X, (next::TGV | next::Seafrance)+, Dover) AND (?X, next::country, ?Y)

Pattern P1 retrieves cities, and the country where they are located, such
that there is a way to travel from those cities to Dover using either TGV
or Seafrance in every direct trip. The evaluation of P1 over G is {{?X →
Paris, ?Y → France}}. Notice that although there is a direct way to travel
from Calais to Dover using Seafrance, Calais does not appear in the result
since there is no information in G about the country where Calais is located.

21

We can relax this last restriction by using the OPT operator:

P2 = (?X, (next::TGV | next::Seafrance)+, Dover) OPT (?X, next::country, ?Y)

Then we have that JP2KG = {{?X → Paris, ?Y → France}, {?X → Calais}}.
¤

Example 4.2. Assume that we want to obtain the pairs of cities (?X, ?Y)
such that there is a way to travel from ?X to ?Y by using either Seafrance or
NExpress, with an intermediate stop in a city that has a direct NExpress trip
to London. Consider nested expression:

exp1 = (next::Seafrance | next::NExpress)+/

self::[next::NExpress/self::London]/(next::Seafrance | next::NExpress)+

Then pattern P = (?X, exp1, ?Y) answers our initial query. Notice that ex-
pression self::[next::NExpress/self::London] is used to perform the inter-
mediate existential test of having a direct NExpress trip to London. ¤

Example 4.3. Let G be the graph in Fig. 1 and P1 the following pattern:

P1 = (?X, next::[(next::sp)∗/self::transport], ?Y). (3)

Pattern P1 defines the pairs of cities (?X, ?Y) such that, there exists a triple
(?X, p, ?Y) in the graph and a path from p to transport where every edge
has label sp. Thus, nested expression [(next::sp)∗/self::transport] is used to
emulate the process of inference in RDFS; it retrieves all the nodes that are
sub-properties of transport (rule (1a) in Tab. 1). Therefore, pattern P1 retrieves
the pairs of cities that are connected by a direct transportation service, which
could be a train, ferry, bus, etc. In general, if we want to obtain the pairs of
cities such that there is a way to travel from one city to the other, we can use
the following nSPARQL pattern:

P2 = (?X, (next::[(next::sp)∗/self::transport])+, ?Y). (4)

¤

In the following section, we prove that the navigational capabilities of nSPARQL
can be used to answer queries according to the semantics of RDFS. In partic-
ular, we show that the use of [·] is essential for this result, as patterns of the
form (3) are used in this proof, and they cannot be expressed in nSPARQL
without using nesting.

22

5 On RDFS and nSPARQL

In this section, we formally prove that the language of nested regular expres-
sions is powerful enough to deal with the predefined semantics of RDFS. More
precisely, we show that if one wants to compute the answer of a SPARQL graph
pattern P according to the semantics of RDFS, then one can rewrite P into an
nSPARQL graph pattern Q such that Q retrieves the answer to P by directly
traversing the input graph.

Let us show with an example how nSPARQL can be used to obtain the RDFS
evaluation of some patterns by directly traversing the input graph.

Example 5.1. Let G be the RDF graph in Fig. 2, and assume that we want to
obtain the type information of Ronaldinho. This information can be obtained
by computing the RDFS evaluation of the pattern (Ronaldinho, type, ?C).
By simply inspecting the closure of G in Fig. 3, we obtain that the RDFS
evaluation of (Ronaldinho, type, ?C) is the set of mappings:

{{?C → soccer player}, {?C → sportsman}, {?C → person}}

However, if we directly evaluate this pattern over G, we obtain a single map-
ping {?C → soccer player}. Consider now the nSPARQL pattern:

P = (Ronaldinho, next::type/(next::sc)∗, ?C).

The expression next::type/(next::sc)∗ is intended to obtain the pairs of nodes
such that there is a path between them that starts with label type followed by
zero or more labels sc. When evaluating this expression in G, we obtain the set
of pairs {(Ronaldinho, soccer player), (Ronaldinho, sportsman), (Ronaldinho,
person), (Barcelona, soccer team)}. Thus, the evaluation of P results in the
set of mappings:

{{?C → soccer player}, {?C → sportsman}, {?C → person}}

In this case, pattern P is enough to obtain the type information of Ronaldinho
in G according to the RDFS semantics, that is,

J(Ronaldinho, type, ?C)Krdfs
G = J(Ronaldinho, next::type/(next::sc)∗, ?C)KG.

Although the expression next::type/(next::sc)∗ is enough to obtain the type
information for Ronaldinho in G, it cannot be used in general to obtain the
type information of a resource. For instance, in the same graph, assume that we
want to obtain the type information of Everton. In this case, if we evaluate the
pattern (Everton, next::type/(next::sc)∗, ?C) over G, we obtain the empty

23

set. Consider now the nSPARQL pattern

Q = (Everton, node-1/(next::sp)∗/next::range, ?C).

With the expression node-1/(next::sp)∗/next::range, we follow a path that
first navigates from a node to one of its incoming edges by using node-1,
and then continues with zero or more sp edges and a final range edge. The
evaluation of this expression over G results in the set {(Everton, soccer team),
(Everton, company), (Barcelona, soccer team), (Barcelona, company)}. Thus,
the evaluation of Q in G is the set of mappings:

{{?C → soccer team}, {?C → company}}

By looking at the closure of G in Fig. 3, we see that pattern Q obtains exactly
the type information of Everton in G, that is, J(Everton, type, ?C)Krdfs

G =
JQKG. ¤

Next we show that the ideas of the previous example can be generalized to the
entire RDFS vocabulary. More precisely, we show that if a SPARQL pattern
P is constructed by using triple patterns having at least one position with
a non-variable element, then the RDFS evaluation of P can be obtained by
directly traversing the input graph with an nSPARQL pattern. More precisely,
consider the following translation function from elements in U to nested reg-
ular expressions:

trans(sc) = (next::sc)+

trans(sp) = (next::sp)+

trans(dom) = next::dom

trans(range) = next::range

trans(type) = (next::type/(next::sc)∗ |

edge/(next::sp)∗/next::dom/(next::sc)∗ |

node-1/(next::sp)∗/next::range/(next::sc)∗)

trans(p) = next::[(next::sp)∗/self::p] for p /∈ {sc, sp, range, dom, type}.

Notice that we have implicitly used this translation function in Examples 4.3
and 5.1. In the following lemma, we show that given an RDF graph G and a
triple pattern t not containing a variable in the predicate position, the above
translation function can be used to obtain the RDFS evaluation of t over G
by navigating G through a nested regular expression.

Lemma 5.2 Let (x, p, y) be a SPARQL triple pattern with x, y ∈ U ∪ V and
p ∈ U . Then J(x, p, y)Krdfs

G = J(x, trans(p), y)KG for every RDF graph G.

24

Proof. The proof follows by a case by case analysis of the rules in Tab. 1. For
the cases where p is either sp, sc, dom, or range, the proof is straightforward.
The most complicated case is for the type keyword. To prove the lemma, it
is enough to show that a triple of the form (a, type, b) can be deduced from
G if and only if (a, b) ∈ Jtrans(type)KG. We show the “only if” part of this
property by using an inductive argument. The other direction is similar. The
induction is on the number of rules used in a deduction of a triple of the
form (a, type, b). If no rule is used, then (a, type, b) ∈ G. In this case it is
clear that (a, b) ∈ Jtrans(type)KG since (a, b) ∈ Jnext::type/(next::sc)∗KG. If
(a, type, b) /∈ G then we have to consider three cases, depending on whether
rule (2b), (3a), or (3b) is the last rule used in a deduction of (a, type, b). As-
sume first that rule (2b) is the last rule used in a deduction of (a, type, b).
Then we know that there exist triples (a, type, c) and (c, sc, b) that can be de-
duced from G. By induction hypothesis we know that (a, c) ∈ Jtrans(type)KG.
Moreover, (c, sc, b) can only be generated by using a sequence of (zero or
more) applications of rule (2a), which implies the existence of a path that
follows only sc edges between c and b. Thus, (c, b) ∈ J(next::sc)∗KG, and
then (a, b) ∈ Jtrans(type)/(next::sc)∗KG. By the definition of trans(type), it
is easy to see that Jtrans(type)/(next::sc)∗KG = Jtrans(type)KG and, thus,
(a, b) ∈ Jtrans(type)KG. Assume now that rule (3a) is the last rule used in a
deduction of (a, type, b). Then there must exist triples (a, q, c) and (q, dom, b)
that can be deduced from G. Notice that we are assuming that RDFS vo-
cabulary only occurs in predicate position of triples. Thus, no rules can be
used to deduce a triple with dom in predicate position. Then we have that
(q, dom, b) belongs to G, and then (q, b) ∈ Jnext::domKG. Also notice that
q /∈ {sp, sc, dom, range, type}. Thus, given that (a, q, c) is deduced from
G, there exists a triple (a, q′, c) in G and a path from q′ to q that follows
only sp edges. We have that (a, q) ∈ Jedge/(next::sp)∗KG, and then (a, b) ∈
Jedge/(next::sp)∗/next::domKG. Finally, since Jedge/(next::sp)∗/next::domKG

⊆ Jtrans(type)KG, we have that (a, b) ∈ Jtrans(type)KG. The analysis for the
case of rule (3b) is analogous.

The only remaining case is when p /∈ {sp, sc, dom, range, type}. We have to
show that (a, p, b) can be deduced from G if and only if (a, b) ∈ Jtrans(p)KG. We
show the “only if” direction, as the other direction is similar. If (a, p, b) belongs
to G, then we have that (a, b) ∈ Jnext::pKG = Jnext::[self::p]KG. Thus, since
Jnext::[self::p]KG ⊆ Jtrans(p)KG, we have that (a, b) ∈ Jtrans(p)KG. Assume
now that (a, p, b) /∈ G. It is straightforward to see that (a, p, b) is deduced
from G if and only if there exists a triple (a, p′, b) in G and a path from p′ to p
that follows only sp edges. Then we have that (p′, p) ∈ J(next::sp)+/self::pKG

and, thus, (a, b) ∈ Jnext::[(next::sp)+/self::p]KG ⊆ Jtrans(p)KG. ¤

Suppose now that we have a SPARQL triple pattern t with a variable in
the predicate position, but such that the subject and object of t are not
both variables. We show how to construct an nSPARQL pattern Pt such

25

that JtKrdfs
G = JPtKG. Assume that t = (x, ?Y, a) with x ∈ U ∪ V , ?Y ∈ V ,

and a ∈ U , that is, t does not contain a variable in the object position.
Consider for every p ∈ {sc, sp, dom, range, type}, the pattern Pt,p defined as
((x, trans(p), a) AND (?Y, self::p, ?Y)). Then define pattern Pt as follows:

Pt = ((x, edge::a/(next::sp)∗, ?Y) UNION Pt,sc UNION Pt,sp UNION

Pt,dom UNION Pt,range UNION Pt,type).

We can similarly define pattern Pt for a triple pattern t = (a, ?Y, x), where
a ∈ U , ?Y ∈ V and x ∈ U ∪ V . Thus, we have the following result.

Lemma 5.3 Let t = (x, ?Y, z) be a triple pattern such that ?Y ∈ V and x /∈ V
or z /∈ V . Then JtKrdfs

G = JPtKG for every RDF graph G.

Proof. The proof follows from Lemma 5.2, and the fact that the evaluation of
nre-triple (?Y, self::p, ?Y) is always a single mapping µ such that dom(µ) =
{?Y } and µ(?Y) = p. ¤

Let T be the set of triple patterns of the form (x, y, z) such that x /∈ V or y /∈ V
or z /∈ V . We have translated every triple pattern t ∈ T into an nSPARQL
pattern Pt such that JtKrdfs

G = JPtKG. Moreover, for every triple pattern t,
its translation is of size linear in the size of t. Given that the semantics of
SPARQL is defined from the evaluation of triple patterns, we can state the
following result. Its proof follows directly from Lemmas 5.2 and 5.3.

Theorem 5.4 Let P be a SPARQL pattern constructed from triple patterns
in T . Then there exists an nSPARQL pattern Q such that JP Krdfs

G = JQKG for
every RDF graph G. Moreover, pattern Q can be automatically constructed
from P in linear time.

We conclude this section by pointing out that the combination of the trans-
lation function presented in this section and nested regular expressions can
be very useful in practice, as it allows one to write more expressive queries
that need to take into consideration the semantics of the RDFS vocabulary.
In fact, the following example shows a query that needs of this combination
in order to be expressed.

Example 5.5. Let G be the RDF graph shown in Fig. 1. Assume that one
wants to retrieve the pairs of cities such that there is a way of traveling (by us-
ing any transportation service) between those cities, and such that every stop
in the trip is a coastal city. The following nSPARQL graph pattern expresses
this query:

26

P = (?X, (trans(transport)/self::[trans(type)/self::coastal city])+, ?Y).

¤

6 On the Expressiveness of nSPARQL

A fundamental question about any query language is what are the relation-
ship between its different elements, and whether some of these elements are
redundant. In this section, we raise this question for the case of nSPARQL.
In particular, we consider in Section 6.1 the question of whether the nesting
construct [·] is necessary in order to encode the inference process of RDFS,
and then we consider in Section 6.2 the question of whether the SPARQL op-
erators add expressive power to nSPARQL. In both cases, we obtain a positive
answer.

6.1 Regular expressions alone are not enough

Regular expressions are the most common way of giving navigational capa-
bilities to query languages over graph databases [5], and recently to query
languages over RDF graphs [3,20,6]. Our language not only allows regular ex-
pressions over navigational axes but also nesting of those regular expressions.
In our setting, regular expressions are obtained by forbidding the nesting op-
erator and, thus, they are generated by the following grammar:

exp := axis | axis::a (a ∈ U) | exp/exp | exp|exp | exp∗ (5)

where axis ∈ {self, next, next-1, edge, edge-1, node, node-1}. Let regular
SPARQL (or just rSPARQL) be the language obtained from nSPARQL by
restricting nre-triples to contain in the predicate position only regular ex-
pressions (generated by grammar (5)). Notice that rSPARQL is a fragment of
nSPARQL and, thus, the semantics for rSPARQL is inherited from nSPARQL.

Next we prove that regular expressions are not enough to obtain the RDFS
evaluation of some simple SPARQL patterns by directly traversing the RDF
graphs. In fact, we actually show that even for the case of a SPARQL triple
pattern, it could be the case that its RDFS evaluation cannot be obtained
by any rSPARQL pattern. But before formally proving this, let us give some
intuition about this failure.

Example 6.1. Assume that we want to obtain the RDFS evaluation of pattern
P = (?X, works in, ?Y) over an RDF graph G. This can be done by first finding

27

all the properties p that are sub-properties of works in, and then finding all
the resources a and b such that (a, p, b) is a triple in G. A way to answer P
by navigating the graph would be to find the pairs of nodes (a, b) such that
there is a path from a to b that: (1) goes from a to one of its leaving edges,
then (2) follows a sequence of zero or more sp edges until it reaches a works in
edge, and finally (3) returns to the initial edge and moves forward to b. If such
a path exists, then it is clear that (a, works in, b) can be deduced from the
graph. The following is a natural attempt to obtain the described path with
a regular expression:

edge/(next::sp)∗/self::works in/(next-1::sp)∗/node.

The problem with the above expression is that, when the path returns from
works in, no information about the path used to reach works in has been
stored. In fact, if we evaluate the pattern

Q = (?X, edge/(next::sp)∗/self::works in/(next-1::sp)∗/node, ?Y)

over the graph G in Fig. 2, we obtain the set of mappings:

{{?X → Ronaldinho, ?Y → Barcelona}, {?X → Ronaldinho, ?Y → Everton},

{?X → Sorace, ?Y → Barcelona}, {?X → Sorace, ?Y → Everton}}

By simply inspecting the closure of G in Fig. 3, we obtain that:

JP Krdfs
G = {{?X → Ronaldinho, ?Y → Barcelona},

{?X → Sorace, ?Y → Everton}}

and, thus, we have that Q is not the right representation of P according to
the RDFS semantics (since JP Krdfs

G 6= JQKG). ¤

The following theorem shows that the failure in Example 6.1 is not a coinci-
dence, as there exist SPARQL patterns (in fact, an infinite number of patterns)
that cannot be rewritten into rSPARQL in order to obtain their RDFS evalu-
ation. Recall that T is defined as the set of triple patterns (x, y, z) such that
x /∈ V or y /∈ V or z /∈ V .

Theorem 6.2 There exists a SPARQL pattern P constructed from triple pat-
terns in T such that for no rSPARQL pattern Q, it holds that JP Krdfs

G = JQKG

for every RDF graph G.

In fact, we prove a stronger result, namely that there even exists a triple
pattern t such that, there is no rSPARQL pattern Q satisfying that JtKrdfs

G =
JQKG for every RDF graph G. It should be pointed out that the rSPARQL

28

pattern Q in the above theorem is allowed to use all the SPARQL operators
AND, FILTER, UNION and OPT, besides regular expressions.

Proof. Let P = (?X, p, ?Y), where p ∈ U r {sp, sc, type, dom, range}. Next
we show that there is no rSPARQL pattern Q such that JP Krdfs

G = JQKG for
every RDF graph G. On the contrary, assume that Q0 is an rSPARQL pattern
such that JP Krdfs

G = JQ0KG for every RDF graph G. Furthermore, assume that
a, b, p1 and p2 are elements from U that are not mentioned in Q0, and let G1

and G2 be the RDF graphs shown in the following figure:

G2

b

G1

a

p1

p2

p2

p1

p

sp sp

a b

p2 p2

p1

p1

p

sp
sp

That is, G1 = {(a, p1, a), (b, p1, b), (a, p2, b), (b, p2, a), (p1, sp, p)} and G2 =
{(a, p2, a), (b, p2, b), (a, p1, b), (b, p1, a), (p1, sp, p)}. We note that

JP Krdfs
G1

= {{?X → a, ?Y → a}, {?X → b, ?Y → b}}, (6)

JP Krdfs
G2

= {{?X → a, ?Y → b}, {?X → b, ?Y → a}}. (7)

In what follows, we show that JQ0KG1
= JQ0KG2

and, thus, we obtain a con-
tradiction since we assume that JP Krdfs

G1
= JQ0KG1

and JP Krdfs
G2

= JQ0KG2
, and

by (6) and (7) we have that JP Krdfs
G1

6= JP Krdfs
G2

.

To prove that JQ0KG1
= JQ0KG2

, it is enough to show that JtKG1
= JtKG2

for
every triple mentioned in Q0. Given that Q0 is an rSPARQL pattern, to prove
the previous condition, we need to show that JtKG1

= JtKG2
for every triple t of

the form (z, exp, w) with z, w ∈ U ∪V and exp a regular expression generated
by grammar (5). We show first that for a pattern t of the form (?Z, exp, ?W)
with ?Z, ?W ∈ V , it holds that JtKG1

= JtKG2
. In order to prove the latter

condition, it is enough to show that J(?Z, exp, ?W)KG1
= J(?Z, exp, ?W)KG2

with exp being any of the atomic cases in the definition of regular expressions
(see grammar (5)).

• If t = (?Z, next, ?W), then JtKG1
= JtKG2

= {{?Z → a, ?W → a}, {?Z →
a, ?W → b}, {?Z → b, ?W → a}, {?Z → b, ?W → b}, {?Z → p1, ?W →
p}}.

• If t = (?Z, next-1, ?W), then JtKG1
= JtKG2

= {{?Z → a, ?W → a}, {?Z →

29

a, ?W → b}, {?Z → b, ?W → a}, {?Z → b, ?W → b}, {?Z → p, ?W →
p1}}.

• If t = (?Z, edge, ?W), then JtKG1
= JtKG2

= {{?Z → a, ?W → p1}, {?Z →
a, ?W → p2}, {?Z → b, ?W → p1}, {?Z → b, ?W → p2}, {?Z → p1, ?W →
sp}}.

• If t = (?Z, edge-1, ?W), then JtKG1
= JtKG2

= {{?Z → p1, ?W → a}, {?Z →
p2, ?W → a}, {?Z → p1, ?W → b}, {?Z → p2, ?W → b}, {?Z → sp, ?W →
p1}}.

• If t = (?Z, node, ?W), then JtKG1
= JtKG2

= {{?Z → p1, ?W → a}, {?Z →
p1, ?W → b}, {?Z → p2, ?W → a}, {?Z → p2, ?W → b}, {?Z → sp, ?W →
p}}.

• If t = (?Z, node-1, ?W), then JtKG1
= JtKG2

= {{?Z → a, ?W → p1}, {?Z →
a, ?W → p2}, {?Z → b, ?W → p1}, {?Z → b, ?W → p2}, {?Z → p, ?W →
sp}}.

• If t = (?Z, self, ?W), then JtKG1
= JtKG2

= {{?Z → a, ?W → a}, {?Z →
b, ?W → b}, {?Z → p1, ?W → p1}, {?Z → p2, ?W → p2}, {?Z → sp, ?W →
sp}, {?Z → p, ?W → p}}.

• If t = (?Z, next::c, ?W), where c ∈ U \ {a, b, p1, p2} (recall that a, b, p1, and
p2 are not mentioned in Q0), then we have to consider three sub-cases:
- If c = p, then JtKG1

= JtKG2
= ∅.

- If c = sp, then JtKG1
= JtKG2

= {{?Z → p1, ?W → p}}.
- If c ∈ U \ {a, b, p1, p2, p, sp}, then JtKG1

= JtKG2
= ∅.

• If t = (?Z, next-1::c, ?W), where c ∈ U \ {a, b, p1, p2}, then we have to
consider three sub-cases:
- If c = p, then JtKG1

= JtKG2
= ∅.

- If c = sp, then JtKG1
= JtKG2

= {{?Z → p, ?W → p1}}.
- If c ∈ U \ {a, b, p1, p2, p, sp}, then JtKG1

= JtKG2
= ∅.

• If t = (?Z, edge::c, ?W), where c ∈ U \{a, b, p1, p2}, then we have to consider
three sub-cases:
- If c = p, then JtKG1

= JtKG2
= {{?Z → p1, ?W → sp}}.

- If c = sp, then JtKG1
= JtKG2

= ∅.
- If c ∈ U \ {a, b, p1, p2, p, sp}, then JtKG1

= JtKG2
= ∅.

• If t = (?Z, edge-1::c, ?W), where c ∈ U \ {a, b, p1, p2}, then we have to
consider three sub-cases:
- If c = p, then JtKG1

= JtKG2
= {{?Z → sp, ?W → p1}}.

- If c = sp, then JtKG1
= JtKG2

= ∅.
- If c ∈ U \ {a, b, p1, p2, p, sp}, then JtKG1

= JtKG2
= ∅.

• If t = (?Z, node::c, ?W), where c ∈ U \ {a, b, p1, p2}, then JtKG1
= JtKG2

= ∅.
• If t = (?Z, node-1::c, ?W), where c ∈ U \ {a, b, p1, p2}, then JtKG1

= JtKG2
=

∅.
• If t = (?Z, self::c, ?W), where c ∈ U \ {a, b, p1, p2}, then JtKG1

= JtKG2
=

{{?Z → c, ?W → c}}.

Assume now that t is of the form (z, exp, w) with z ∈ U or w ∈ U . We
have that z, w ∈ U r {a, b, p1, p2} and, thus, the only interesting case is when

30

z ∈ {p, sp} or u ∈ {p, sp}. We can use a similar argument to the one shown
above to prove that JtKG1

= JtKG2
. This concludes the proof of the theorem.

¤

It should be noticed that Theorems 6.2 and 5.4 imply that nSPARQL is strictly
more expressive than rSPARQL.

Corollary 6.3 There exists an nSPARQL pattern that is not equivalent to
any rSPARQL pattern.

6.2 On the expressiveness of the SPARQL operators in nSPARQL

Clearly, nested regular expressions add expressive power to SPARQL. The
opposite question is whether using SPARQL operators in nSPARQL patterns
add expressive power to the language. Next we show that this is indeed the
case. In particular, we show that there are simple and natural queries that
can be expressed by using nSPARQL features and that cannot be simulated
by using only nested regular expressions. Let us present the intuition of this
result with an example.

Example 6.4. Let G be the RDF graph shown in Fig. 1. Assume that one
wants to retrieve from G the cities ?X such that there exists exactly one city
that can be reached from ?X by using a direct Seafrance service. The following
nSPARQL pattern answers this query:

[

(?X, next::Seafrance/next-1, ?X)

OPT
((

(?X, next::Seafrance, ?Y) AND (?X, next::Seafrance, ?Z)
)

FILTER ¬?Y =?Z
)]

FILTER ¬bound(?Y)

The first nre-triple (?X, next::Seafrance/next-1, ?X) retrieves the cities ?X
that are connected with some other city by a Seafrance service. The optional
part obtains additional information for those cities ?X that are connected
with at least two different cities by a Seafrance service. Finally, the pattern
filters out those cities for which no optional information was added (by using
¬ bound(?Y)). That is, only the cities ?X that are connected with exactly one
city by a Seafrance service remains in the evaluation. If we evaluate the above
pattern over G, we obtain a single mapping µ such that dom(µ) = {?X} and
µ(?X) = Calais. ¤

The nSPARQL graph pattern in the above example is essentially counting
(up to a fixed threshold) the cities that are connected with ?X by a Seafrance
service. In the next result, we show that some counting capabilities cannot be
obtained by using nSPARQL patterns without considering the OPT operator,
even if we combine nested regular expressions by using the operators AND,

31

G2

a0

a1

a2

b0 b1

p

p

p

G1

Fig. 9. Two RDF graphs.

UNION and FILTER. The graph pattern used in the proof is similar to that
of Example 6.4. It retrieves the nodes ?X for which there exists at least two
different nodes connected with ?X. In particular, we prove a stronger result
stating that the fragment of nSPARQL that do not use the OPT operator is
strictly less expressive than the whole nSPARQL language.

Theorem 6.5 There is an nSPARQL graph pattern that is not equivalent
to any nSPARQL graph pattern that uses only AND, UNION, and FILTER
operators.

Proof. Let P be a query such that, for every RDF graph G, it holds that
µ ∈ JP KG if and only if dom(µ) = {?X} and G contains tuples (µ(?X), p, a),
(µ(?X), p, b), where a and b are distinct elements. For example, if G1 is the
RDF graph shown in Fig. 9, and µ0, µ1 are mappings such that dom(µ0) =
dom(µ1) = {?X}, µ0(?X) = a0 and µ1(?X) = a1, then µ0 ∈ JP KG1

and
µ1 6∈ JP KG1

. In fact, in this case we have that JP KG1
= {µ0}. We start by

showing that P is not equivalent to any nSPARQL pattern constructed by
using only the operators AND, UNION and FILTER.

On the contrary, assume that Q is an nSPARQL pattern such that Q does
not mention the OPT operator and JQKG = JP KG, for every RDF graph G.
It is easy to extend the results of [25] to show that the operator UNION is
associative in nSPARQL, and there exist nSPARQL patterns P1, . . ., Pn such
that each Pi is constructed by using only the operators AND and FILTER,
and JQKG = JP1 UNION P2 UNION · · ·UNION PnKG, for every RDF graph G.
Without loss of generality, we can assume that each Pi is satisfiable in the sense
that there exists an RDF graph G and a mapping µ such that µ ∈ JPiKG. Next
we show that for every pattern Pi, it is the case that var(Pi) = {?X}, where
var(Pi) is the set of variables mentioned in Pi

Claim 6.6: For every i ∈ {1, . . . , n}, it holds that var(Pi) = {?X}.

Proof of Claim 6.6. We prove the claim by contradiction. Assume that for
i ∈ {1, . . . , n}, it holds that var(Pi) 6= {?X}. Then either ?X 6∈ dom(Pi)
or there exists ?Y ∈ dom(Pi) such that ?X and ?Y are distinct variables.
Given that Pi is satisfiable, we know that there exists an RDF graph G and a

32

mapping µ such that µ ∈ JPiKG. Given that JP KG = JQKG, we conclude that
µ ∈ JP KG. Thus, if we assume that ?X 6∈ dom(Pi), we have that ?X 6∈ dom(µ),
which contradicts the definition of P . Moreover, if we assume that ?Y ∈
dom(Pi), with ?X and ?Y distinct variables, then given that Pi is an nSPARQL
expression constructed by using only the operators AND and FILTER, we
conclude that ?Y ∈ dom(µ), which again contradicts the definition of P . This
concludes the proof of the claim. ¤

For the rest of the proof, let G1 and G2 be the RDF graphs shown in Fig. 9,
and assume that a0, a1, a2, b0, b1 are elements of U that are not mentioned in

P1 UNION P2 UNION · · ·UNION Pn.

Let µ0 be a mapping such that dom(µ0) = {?X} and µ0(?X) = a0. As we
pointed out above, we have that µ0 ∈ JP KG1

. Thus, we have that µ0 ∈ JQKG1
,

which implies that µ0 ∈ JPkKG1
, for some k ∈ {1, . . . , n}.

Claim 6.7: Let f : U → U be a function defined as f(a0) = b0, f(a1) = f(a2) =
b1 and f(d) = d for every d ∈ U \ {a0, a1, a2}, axis ∈ {self, next, next-1,
edge, edge-1, node, node-1} and c an element of U that is mentioned in Pk.

(1) If (x, y) ∈ JaxisKG1
, then (f(x), f(y)) ∈ JaxisKG2

.
(2) If (x, y) ∈ Jaxis::cKG1

, then (f(x), f(y)) ∈ Jaxis::cKG2
.

Proof of Claim 6.7. It is enough to prove the claim for axis ∈ {self, next,
edge, node}.

(1) If axis = self, then we have that JaxisKG1
= {(a0, a0), (a1, a1), (a2, a2),

(p, p)}. Thus, by definition of f and given that (b0, b0), (b1, b1) and (p, p) belong
to JaxisKG2

, we conclude that the claim holds. If axis = next, then we have
that JaxisKG1

= {(a0, a1), (a0, a2)}. Thus, by definition of f and given that
(b0, b1) ∈ JaxisKG2

, we conclude that the claim holds. If axis = edge, then
we have that JaxisKG1

= {(a0, p)}. Thus, by definition of f and given that
(b0, p) ∈ JaxisKG2

, we have that the claim holds. Finally, if axis = node, then
we have that JaxisKG1

= {(p, a1), (p, a2)}. Thus, by definition of f and given
that (p, b1) ∈ JaxisKG2

, we conclude that the claim holds.

(2) If axis = self, then we have that the claim trivially holds since Jaxis::cKG1
=

Jaxis::cKG2
= {(c, c)} and f(c) = c (given that c is mentioned in Pk and a0, a1

and a2 are not mentioned in this expression). Thus, assume that axis ∈ {next,
edge, node}. If c 6= p, then the claim trivially holds since Jaxis::cKG1

= ∅
(given that a0, a1 and a2 are not mentioned in Pk). Thus, we assume that
c = p. If axis = edge or axis = node, then the claim also holds since
Jaxis::pKG1

= ∅. Thus, we only need to consider the case axis = next. But
Jnext::pKG1

= {(a0, a1), (a0, a2)} and, therefore, the claim holds by definition
of f and given that Jnext::pKG2

= {(b0, b1)}. This concludes the proof of the

33

claim. ¤

From Claim 6.7, we obtain the following corollary.

Corollary 6.8 Let f : U → U be a function defined as f(a0) = b0, f(a1) =
f(a2) = b1 and f(d) = d for every d ∈ U \{a0, a1, a2}, and exp a nested regular
expression mentioned in Pk. If (x, y) ∈ JexpKG1

, then (f(x), f(y)) ∈ JexpKG2
.

Let ξ0 be a mapping such dom(ξ0) = {?X} and ξ0(?X) = b0. We use Corollary
6.8 to prove that ξ0 ∈ JPkKG2

. Given that var(Pk) = {?X}, µ0 ∈ JPkKG1
and

Pk is an nSPARQL pattern constructed by using only the operators AND and
FILTER, to prove that ξ0 ∈ JPkKG2

, it is enough to show that for every triple
pattern t in Pk: (a) if var(t) = ∅, then t holds in G2, and (b) if var(t) = {?X},
then ξ0 ∈ JtKG2

. Next we show that (a) and (b) hold.

• If t = (c1, exp, c2), where c1, c2 ∈ U , then given that µ0 ∈ JPkKG1
and Pk

is an nSPARQL pattern constructed by using only the operators AND and
FILTER, we conclude that (c1, c2) ∈ JexpKG1

. Thus, we have by Corollary
6.8 that (f(c1), f(c2)) ∈ JexpKG2

. But we know that a0, a1 and a2 are not
mentioned in Pk and, hence, we have that f(c1) = c1 and f(c2) = c2. We
conclude that (c1, c2) ∈ JexpKG2

and, therefore, t holds in G2.
• If t = (c, exp, ?X), where c ∈ U , then given that µ0 ∈ JPkKG1

and Pk

is an nSPARQL pattern constructed by using only the operators AND and
FILTER, we conclude that (c, a0) ∈ JexpKG1

. Thus, we have by Corollary 6.8
that (f(c), b0) ∈ JexpKG2

. But we know that a0, a1 and a2 are not mentioned
in Pk and, hence, we have that f(c) = c. We conclude that (c, b0) ∈ JexpKG2

and, therefore, ξ0 ∈ JtKG2
.

• If t = (?X, exp, c), where c ∈ U , then we conclude that ξ0 ∈ JtKG2
as in the

previous case.
• If t = (?X, exp, ?X), then given that µ0 ∈ JPkKG1

and Pk is an nSPARQL
pattern constructed by using only the operators AND and FILTER, we
conclude that (a0, a0) ∈ JexpKG1

. Thus, we have by Corollary 6.8 that
(b0, b0) ∈ JexpKG2

and, hence, ξ0 ∈ JtKG2
.

Thus, we conclude that ξ0 ∈ JPkKG2
. But this implies that ξ0 ∈ JQKG2

, which
leads to a contradiction since JQKG2

= JP KG2
and ξ0 6∈ JP KG2

(by definition of
P).

To conclude the proof of the theorem, it only remains to show that P can be
expressed in nSPARQL. Consider first the following nSPARQL pattern:

Q =
[

(?Y, next::p/next-1, ?Y)

OPT
((

(?Y, next::p, ?Z) AND (?Y, next::p, ?W)
)

FILTER ¬?Z =?W
)]

FILTER ¬bound(?Z)

As we explained in Example 6.4, given an RDF graph G, a mapping µ is in
JQKG if and only if dom(µ) = {?Y } and there exists exactly one element b

34

such that (µ(?Y), p, b) is in G. In fact, if G1 and G2 are the graphs shown
in Fig. 9, we have that JQKG1

= ∅, while JQKG2
= {µ} where µ is such that

dom(µ) = {?Y } and µ(?Y) = b0. Consider now pattern:

[

(?X, next::p/next-1, ?X)

OPT
((

(?X, next::p/next-1, ?X) AND Q
)

FILTER ?X =?Y
)

]

FILTER ¬bound(?Y)

It is not difficult to see that the above graph pattern is equivalent to our initial
query P . This concludes the proof of the theorem. ¤

7 Related work.

The language of nested regular expressions has been motivated by some fea-
tures of query languages for graphs and trees, namely, XPath [11], tempo-
ral logics [12] and propositional dynamic logic [1,16]. In fact, nested regular
expressions are constructed by borrowing the notions of branching and nav-
igation axes from XPath [11], and adding them to regular expressions over
RDF graphs. The algorithm that we present in Section 3.1 is motivated by
standard algorithms for some temporal logics [12] and propositional dynamic
logic [1,16].

Regarding languages with navigational capabilities for querying RDF graphs,
several proposals can be found in the literature [24,3,20,6,4,2]. Nevertheless,
none of these languages is motivated by the necessity to evaluate queries over
RDFS, and none of them is comparable in expressiveness and complexity
of evaluation with the language that we study in this paper. Probably the
first language for RDF with navigational capabilities was Versa [24], whose
motivation was to use XPath over the XML serialization of RDF graphs.
Kochut et al. [20] propose SPARQLeR, an extension of SPARQL that works
with path variables that represent paths between nodes in a graph. This lan-
guage also allows to check whether a path conforms to a regular expression.
Anyanwu et al. [6] propose a language called SPARQ2L. The authors further
investigate the implementation of a query evaluation mechanism for SPARQ2L
with emphasis in some secondary memory issues. The language PSPARQL was
proposed by Alkhateeb et al. in [3]. PSPARQL extends SPARQL by allow-
ing regular expressions in triple patterns. The same authors propose a further
extension of PSPARQL called CPSPARQL [4] that allows constraints over reg-
ular expressions. CPSPARQL also allows variables inside regular expressions,
thus permitting to retrieve data along the traversed paths. In [3,4], the au-
thors study some theoretical aspects of (C)PSPARQL. Given the similarities
between nSPARQL and PSPARQL, in the next section we include a detailed
comparison between these two languages.

35

7.1 nSPARQL and PSPARQL

In this section, we compare our language with the closest proposal in the lit-
erature, namely the PSPARQL language proposed by Alkhateeb et al. in [3].
PSPARQL is a language that extends SPARQL by allowing regular expres-
sions in triple patterns. Alkhateeb has recently shown [2] that PSPARQL can
be used to answer queries that consider the special semantics of RDFS. As
explained in [2], this answering process needs the projection operator over
PSPARQL graph patterns, that is, it needs SELECT in order to accurately
capture the RDFS inference rules, and in particular, it needs extra variables
(not needed in the output solution) appearing in the predicate position of
triple patterns. In this section, we show that these features have an impact
on the complexity of the evaluation problem for PSPARQL, as this problem
becomes NP-complete for the conjunctive fragment of this language [2]. On
the contrary, it is shown in this section that this problem can be solved in
polynomial time for the conjunctive fragment of nSPARQL, since this frag-
ment does not include the aforementioned features (as they are not needed
in nSPARQL to answer queries with RDFS vocabulary). It is important to
notice that not only the computational complexity is a parameter to be taken
into account when comparing query languages, but also the expressiveness. In
particular, although we show that the conjunctive fragment of nSPARQL can
be evaluated more efficiently than the conjunctive fragment of PSPARQL, it
is possible to show that PSPARQL is strictly more expressive than nSPARQL.
We also discuss this topic in this section.

As mentioned above, PSPARQL [3,2] is a language that extends SPARQL by
allowing regular expressions in triple patterns. More precisely, a PSPARQL
query Q consists of a SPARQL graph pattern P that may include some regular
expressions over the vocabulary U in some triples, and possibly of a SELECT
operator that performs a projection over a subset of the variables appearing
in P .

Example 7.1. Let G be the following RDF graph storing a genealogy tree:

{(Joan, mother, John), (Joan, mother, Peter), (Joan, mother, Mary),

(John, father, Alan), (Mary, mother, Martin), (Martin, father, Mark)}.

Then PSPARQL query (?X, (mother+father)+, ?Y) returns the pairs (a, b) of
nodes such that b is a descendant of a. Furthermore, the following PSPARQL

36

query returns the pairs (c, d) of distinct nodes that have a common ancestor:

SELECT ?Y, ?Z

[(

(?X, (mother + father)+, ?Y) AND

(?X, (mother + father)+, ?Z)

)

FILTER ¬(?Y =?Z)

]

.

Notice that the SELECT operator is used to indicate that only the values of
?Y and ?Z should be displayed. Thus, if (c, d) is in the answer of this query,
then the common ancestors of these nodes are not displayed. ¤

As we have shown in Section 6.1, regular expressions can be used to obtain
the answer to some RDFS queries. For example, consider the RDF graph:

G = {(a, p, b), (p, sp, c), (c, sp, d), (d, sp, e)}.

To retrieve all the properties ?X that are sub-properties of e, one can use the
PSPARQL query (?X, sp+, e). Suppose now that one wants to retrieve “the
pair of nodes ?X, ?Y that are connected by property e”. To answer this query,
we need to consider the semantics of the RDFS vocabulary. In particular, given
that p is a sub-property of c, c is a sub-property of d, and d is a sub-property
of e, we have that p is a sub-property of e in G. Thus, given that a is connected
with b by property p, we conclude that a is connected with b by property e.
Thus, considering the RDFS semantics, the answer to the previous query over
G should be the mapping {?X → a, ?Y → b}. In [2], Alkhateeb proposes to
encode the above query by using the following PSPARQL pattern:

(?X, ?Z, ?Y) AND (?Z, sp∗, e). (8)

Notice that the evaluation of (8) is the mapping {?X → a, ?Z → p, ?Y → b}.
Thus, to actually obtain the desired result, a projection must be performed
over the variables ?X and ?Y , which gives rise to the following PSPARQL
query that retrieves the pair of nodes that are connected by property e:

SELECT ?X, ?Y
[

(?X, ?Z, ?Y) AND (?Z, sp∗, e)
]

. (9)

Hence, one needs the SELECT operator in PSPARQL to accurately answer
queries with RDFS vocabulary. On the other hand, the previous query can be
answered as follows in nSPARQL:

(?X, next::[(next::sp)∗/self::e], ?Y).

In this graph pattern, the use of projection has been replaced by the nesting
construct in nested regular expressions. We observe that from the results in
Section 5, we know that nSPARQL does not need the SELECT operator
in order to answer queries that consider the special semantics of the RDFS
vocabulary.

37

Next we show that the use of the SELECT operator makes the complexity of
the evaluation problem substantially harder. In order to prove this, we need to
introduce some terminology. Define the conjunctive fragment of PSPARQL as
the set of PSPARQL queries constructed by using only the AND and SELECT
operators. Similarly, define the conjunctive fragment of nSPARQL as the set of
nSPARQL patterns constructed by using only the AND operator. It is impor-
tant to notice that we have included the SELECT operator in the conjunctive
fragment of PSPARQL as it is needed in this language to answer queries with
RDFS vocabulary. On the other hand, SELECT is not considered in the con-
junctive fragment of nSPARQL as it is not needed in this language for the
encoding of RDFS (in fact, the entire language nSPARQL is defined without
considering the SELECT operator). Moreover, the evaluation problems for
nSPARQL and PSPARQL are defined as follows. Given a mapping µ, an RDF
graph G and an nSPARQL graph pattern P (PSPARQL query Q), the prob-
lem is to verify whether µ is in the evaluation of P (Q) over G. Notice that
for both PSPARQL and nSPARQL, the evaluation problem has been defined
as a decision problem [28].

Theorem 7.2

(1) The evaluation problem for the conjunctive fragment of PSPARQL is NP-
complete [2].

(2) The evaluation problem for the conjunctive fragment of nSPARQL can be
solved in polynomial time.

The NP-hardness in the first part of the above theorem can be proved by a
reduction from the evaluation problem for relational conjunctive queries [10].
The second part of the above theorem follows from the existence of a polynomial-
time algorithm for the evaluation problem for nested regular expressions (pro-
vided in Section 3.1), and a result in [25] stating that the complexity of the
evaluation problem for SPARQL graph patterns constructed by using only
the AND operator is polynomial. It should be noticed that if one adds the
SELECT operator to the conjunctive fragment of the nSPARQL language,
then the evaluation problem becomes NP-complete. Thus, the difference in
complexity between the two fragments mentioned in Theorem 7.2 essentially
comes from the use of the SELECT operator.

It is important to notice that not only the computational complexity is a
parameter to be taken into account when comparing query languages, but
also the expressiveness. In this respect, nested regular expressions can be en-
coded by using regular expressions and the SELECT operator and, thus, the
functionalities of nSPARQL can be encoded by using the functionalities of
PSPARQL. On the other hand, nSPARQL does not include the SELECT op-
erator and does not allow triples of the form (?X, ?Y, ?Z). Thus, as these
elements are included in PSPARQL, it is possible to conclude that PSPARQL

38

is strictly more expressive than nSPARQL.

We conclude this section by pointing out that Theorem 7.2 tells that the use
of projection and extra variables (not mentioned in the output) makes the
evaluation problem considerably harder. In fact, nSPARQL has been carefully
designed not to use these features, as shown in the following example.

Example 7.3. Let G be an RDF graph storing genealogical information, and
assume that we want to retrieve from G the pairs of distinct people that have
a common Italian ancestor. This query can be expressed in PSPARQL as
follows:

SELECT ?X, ?Y

[(

(?A, nationality, Italian) AND

(?A, (mother | father)+, ?X) AND

(?A, (mother | father)+, ?Y)

)

FILTER ¬(?X =?Y)

]

.

We note that the SELECT operator is used in this query to filter out the com-
mon ancestor ?A. Interestingly, this query can be expressed as an nSPARQL
graph pattern, without explicitly mentioning the common ancestor. In fact,
let exp be the following nested regular expression:

(next-1::mother | next-1::father)+/

self::[next::nationality/self::Italian]/(next::mother | next::father)+.

Then we have that the above query is equivalent to the following nSPARQL
graph pattern expression:

(?X, exp, ?Y) FILTER ¬(?X =?Y).

¤

Example 7.3 shows that some form of projection can be obtained by using
nested regular expressions, without using extra variables. Nevertheless, this
encoding of projection in nSPARQL is not general, as one would need extra
variables and operator SELECT to fully obtain projection capabilities. For
instance, assume that in an RDF graph storing genealogical information, one
needs to retrieve all the groups of three people having a common ancestor.
It is straightforward to extend the PSPARQL query in Example 7.3 for this
purpose, but it is not clear whether one can obtain the answer to this query
by using only nested regular expressions without adding extra variables and
projection.

It should be noticed that other query languages have followed before the same
approach as nSPARQL, and in particular, they have avoided the use of extra

39

variables. For instance, the XML query language Conditional XPath has the
same expressive power over trees as first-order logic [21], and includes the
language XPath. The main difference between Conditional XPath and first-
order logic is the use of extra variables and quantifiers in the latter. Exactly
as for the case of PSPARQL and nSPARQL, these extra features come with a
severe impact in the complexity of the evaluation problem for these languages,
as this problem can be solved in polynomial time for the case of Conditional
XPath [21] (and also for the case of XPath), while it is PSPACE-complete
for the case of first-order logic over trees (and NP-complete for the existential
fragment of this language).

8 Concluding Remarks

In this paper, we have proposed nested regular expressions to navigate through
an RDF graph, and the nSPARQL query language for RDF that uses nested
regular expressions as building blocks. We also study some of the fundamen-
tal properties of nested regular expressions and nSPARQL. We have shown
that nested regular expressions admit a very efficient evaluation method, that
justifies its use in practice. We further showed that the language nSPARQL is
expressive enough to be used for querying and navigating RDF data. In par-
ticular, we proved that besides capturing the semantics of RDFS, nSPARQL
provides some other interesting features that allows users to pose natural and
interesting queries over RDF data.

Evaluating queries which involve RDFS vocabulary is challenging, and there
is not yet consensus in the Semantic Web community on how to define a
query language for RDFS. Nevertheless, there have been several proposals
and implementations of query languages for RDF data with RDFS vocabu-
lary (e.g. [19,9,17,15]). As future work, it would be interesting to implement
nSPARQL, and to compare it with other implementations of RDFS query
languages. In particular, it would be interesting to see whether in practice the
process of answering a SPARQL query Q under the RDFS semantics can be
efficiently done by first transforming Q into an nSPARQL graph pattern Q′,
and then answering Q′ by using the algorithms developed in this paper.

Acknowledgments

The authors would like to thank the anonymous referees for their careful read-
ing of the paper, and for providing many useful comments. The authors were
supported by: Arenas - Fondecyt grant 1090565; Gutierrez - Fondecyt grant

40

1070348; Pérez - Conicyt Ph.D. Scholarship; Arenas, Gutierrez and Pérez -
grant P04-067-F from the Millennium Nucleus Center for Web Research.

References

[1] N. Alechina, N. Immerman. Reachability Logic: An Efficient Fragment of
Transitive Closure Logic. Logic Journal of the IGPL 8(3) (2000), 325-338.

[2] F. Alkhateeb. Querying RDF(S) with Regular Expressions. PhD Thesis,
Université Joseph Fourier, Grenoble (FR), 2008.

[3] F. Alkhateeb, J.-F. Baget and J. Euzenat. Extending SPARQL with regular
expression patterns (for querying RDF). In Web Semantics: Science, Services
and Agents on the World Wide Web 7(2), pages 57–73, 2009.

[4] F. Alkhateeb , J.-F. Baget, J. Euzenat. Constrained regular expressions in
SPARQL, In SWWS 2008, pages 91–99.

[5] R. Angles, C. Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1): 1–39 (2008).

[6] K. Anyanwu, A. Maduko, A. Sheth. SPARQ2L: Towards Support for Subgraph
Extraction Queries in RDF Databases. In WWW 2007, pages 797–806.

[7] M. Arenas, C. Gutierrez, J. Pérez. An Extension of SPARQL for RDFS. In
SWDB-ODBIS 2007, pages 1–20.

[8] D. Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-schema/

[9] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF schema. In ISWC 2002,
pages 54–68.

[10] A. K. Chandra, P. M. Merlin. Optimal Implementation of Conjunctive Queries
in Relational Data Bases. In STOC 1977, pages 77–90.

[11] J. Clark, S. DeRose. XML Path Language (XPath). W3C Recommendation,
November 1999. http://www.w3.org/TR/xpath

[12] E. Clarke, O. Grumberg, D. Peled. Model Checking. The MIT Press 2000.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to
Algorithms. The MIT Press, 2003.

[14] T. Furche, B. Linse, F. Bry, D. Plexousakis, G. Gottlob. RDF Querying:
Language Constructs and Evaluation Methods Compared. In Reasoning Web
2006, pages 1-52.

41

[15] C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations of Semantic Web
Databases. In PODS 2004, pages 95–106.

[16] D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA
(2000).

[17] S. Harris and N. Gibbins. 3store: Efficient bulk RDF storage. In PSSS 2003,
pages 1–15.

[18] P. Hayes. RDF Semantics. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-mt/

[19] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: a declarative query language for RDF. In WWW 2002, pages 592–603.

[20] K. Kochut, M. Janik. SPARQLeR: Extended SPARQL for Semantic Association
Discovery. In ESWC 2007, pages 145–159.

[21] M. Marx. Conditional XPath. ACM Trans. Database Syst. 30(4): 929-959
(2005)

[22] A. Mendelzon, P. Wood. Finding Regular Simple Paths in Graph Databases. In
SIAM J. Comput. 24(6): 1235–1258 (1995).

[23] S. Muñoz, J. Pérez, C. Gutierrez. Minimal Deductive Systems for RDF. In
ESWC 2007, pages 53–67.

[24] M. Olson, U. Ogbuji. The Versa Specification.
http://uche.ogbuji.net/tech/rdf/versa/etc/versa-1.0.xml.

[25] J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL.
ACM Trans. Database Syst. 34(3): Article No. 16 (2009)

[26] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A Navigational Language for
RDF. In ISWC 2008, pages 66–81.

[27] E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, January 2008.
http://www.w3.org/TR/rdf-sparql-query/.

[28] M. Y. Vardi. The Complexity of Relational Query Languages (Extended
Abstract). In STOC 1982, pages 137–146.

42

