
Expressiveness of Matrix and Tensor
�ery Languages in terms of ML Operators
Pablo Barceló Nelson Higuera Jorge Pérez Bernardo Subercaseaux

Department of Computer Science, University of Chile & IMFD Chile

ABSTRACT
Tensors are one of the most widely used data structures in modern

Machine Learning applications. Although they provide a �exible

way of storing and accessing data, they often expose too many

low-level details that may result in error prone code that is di�cult

to maintain and extend. Abstracting low-level functionalities into

high-level operators in the form of a query language is a task in

which the Data Management community has extensive experience.

It is thus important to understand how such an experience can be

applied in the design of useful languages for tensor manipulation.

In this short paper we study amatrix and a tensor query language

that have been recently proposed in the database literature. We

show, by using examples, how these proposals are in line with the

practical interest in rethinking tensor abstractions. On the technical

side, we compare the two languages in terms of operators that

naturally arise in Machine Learning pipelines, such as convolution,

matrix-inverse, and Einstein summation. We hope our results to

provide a theoretical kick-o� for the discussion on the design of

core declarative query languages for tensors.

ACM Reference Format:
Pablo Barceló Nelson Higuera Jorge Pérez Bernardo Suber-

caseaux. . Expressiveness of Matrix and Tensor Query Languages

in terms of ML Operators. In . ACM, New York, NY, USA, 5 pages.

1 INTRODUCTION
Matrices, and more generally tensors (multidimensional ar-

rays of data), are ubiquitous in Machine Learning (ML) appli-

cations. Despite their wide adoption, there has been a recent

interest in redesigning the way in which tensors are used in

Deep Learning code [4, 18, 19]. In the entry Tensor Considered
Harmful [18], Rush enumerates some pitfalls of the current

way in which tensors are abstracted, stating that it “forces
bad habits such as exposing private dimensions, broadcasting
based on absolute position, and keeping type information in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request

permissions from permissions@acm.org.

, ,
© Association for Computing Machinery.

documentation”. From a data management point of view, this

can be read as a call for a high-level language that manipu-

lates tensors. In this paper we explore some recent proposals

for matrix and tensor query languages, motivated by the

need to understand their theoretical properties in terms of

the functionalities required in ML applications.

Several papers have dealt with the implementation of

tensor-based tasks using data management technologies [9–

11, 16, 21], while others have studied how ML pipelines can

be speci�ed in-database [7, 8, 12]. Here, instead, we focus
on what declarative database query languages can do di-

rectly over tensors in order to tackle their aforementioned

pitfalls. We focus on two such languages,MATLANG [1] and

LARA [6], as they were both de�ned with a precise syntax

and formal semantics, and follow a minimalistic approach by

introducing a small set of core operators. This makes them

more amenable for theoretical exploration.

MATLANG is a language for matrix manipulation that

resembles the syntax of standard linear algebra. LARA [6]

consists of only three operators that provide a uni�ed frame-

work for linear and relational algebra. In what follows we in-

troduceMATLANG and LARA by using an intuitive presenta-

tion based on examples. Then in Section 3 we formally study

their expressiveness. While the expressiveness ofMATLANG
and LARA has been considered in isolation, here we focus

on comparing their expressiveness in terms of some popular

ML operators. For the sake of space proofs are presented in

an appendix available at http://dcc.uchile.cl/~jperez/papers/

deem19_sub.pdf.

2 MATLANG AND LARA
MATLANG. A schema for MATLANG expressions con-

sists of a �nite set of matrix variables and a mapping from

any such variable A to a type de�nition that speci�es the di-

mension ofA. For example, if variableA has type (α ,α), then
A represents a square matrix. We use a type of the form (α , 1)
for variables representing column vectors, and analogously,

(1,α) for rows and (1, 1) for scalars.
AMATLANG expression is a combination of matrix vari-

ables by means of linear algebra operators. As for matrix

variables, every expression has a type that is induced from

the types of its operands. Formally, the syntax of MATLANG

is de�ned by induction as follows. Ifφ1 andφ2 areMATLANG

http://dcc.uchile.cl/~jperez/papers/deem19_sub.pdf
http://dcc.uchile.cl/~jperez/papers/deem19_sub.pdf

, , Barceló, Higuera, Pérez, Subercaseaux

expressions of types (α1, β1) and (α2, β2), respectively, then
the following are also expressions:

• φT
1
is an expression of type (β1,α1) (transposition).

• 1(φ1) is an expression of type (α1, 1) (column of ones).

• diag(φ1) is an expression of type (α1,α1) provided that
β1 = 1, i.e., φ1 is a column vector (diagonalization).

• φ1 · φ2 is an expression of type (α1, β2) provided that

β1 = α2 (matrix multiplication).

• apply[f](φ1) where f is a function, is an expression

of type (α1, β1) (pointwise function application)

• apply[◦](φ1,φ2) where ◦ is a binary operation, is an

expression of type (α1, β1) provided that (α1, β1) =
(α2, β2) (pointwise operation of matrices).

Every MATLANG expression is evaluated over a matrix
database instance. An instance I of schema S assigns to

every variable A ∈ S a matrix I (A) that complies with the

type ofA. Given an expressionφ and an instanceI we denote

by φ (I) the evaluation of φ over I. The evaluation φ (I) can
easily be de�ned by using the linear-algebra de�nition of

every operator above [1].

A query Q over a schema S is a function that assigns to

every instance I of S an output matrix Q (I). A query Q
is expressible inMATLANG if there exists aMATLANG ex-

pression φ such that for every instance I of S it holds that

φ (I) = Q (I). Brijder et al. [1] studied the expressive power

ofMATLANG over Boolean matrices, showing that in spite

of the simplicity of the language it can express non-trivial

properties including: (i) all queries that can be expressed in

�rst-order logic with only three variables over binary matri-

ces, and (ii) aggregations such as computing the mimimum

value of a vector or the sum of all elements of a matrix.

Example 2.1 (From [1]). Let us de�ne an operator ◦≤ such

that a ◦≤ b = 1 if a ≤ b and it is 0 otherwise. Analogously

de�ne operator ◦=. The following expressions take a column

vector v and compute as output a vector that has a 1 exactly

on those positions of v that store its minimum value.

φ1 = v · 1(v)T (1)

φ2 = apply[◦≤](φ1,φ
T
1
) · 1(v) (2)

φ3 = 1(v) · 1(v)T · 1(v) (3)

φ4 = apply[◦=](φ2,φ3) (4)

Expression (1) replicates v in the columns of a square matrix.

Then expression (2) is used to compare every value in v with
all the other values. It does so by �rst producing a binary

square matrix (apply[◦≤](φ1,φ
T
1
)), which is then multiplied

with 1(v). This essentially performs a sum over the rows.

Thus φ2 represents a column vector storing, for each of the

values of v, how many other values are grater than or equal

to it. In expression (3) we produce a column vector storing in

every component the length of v, and �nally expression (4)

performs a point-wise comparison. Thus, the vector pro-

duced as output of expression (4) has a 1 exactly in those

positions of v that store its minimum value.

LARA. This is a language de�ned in terms of an alge-

bra over associative tables. An associative table is a rela-

tion A with two disjoint sets of attributes: key and value at-
tributes. We use A[K ,V] to denote an associative table with

K = {K1, . . . ,Kn } as its key attributes and V = {V1, . . . ,Vm }
as its value attributes. An associative table contains named tu-
ples of the form {K1:k1, . . . ,Kn:kn ,V1:v1, . . . ,Vm:vm }. To
simplify the exposition, we assume an arbitrary order among

key and value attributes, and thus the content of an asso-

ciative table can be seen as a standard set of tuples of the

form ((k1, . . . ,kn), (v1, . . . ,vm)). Associative tables satisfy
the following key constraint: if (¯k, v̄1) ∈ A and (¯k, v̄2) ∈ A,
then v̄1 = v̄2. Thus, for an associative table A[K ,V] and a

tuple (¯k, v̄) ∈ A we can safely denote v̄ = A(¯k).
An associative table is a generalization of a tensor (and

thus, also a generalization of a matrix). For example, a ten-

sor T of rank 3, can be represented as an associative ta-

ble with a single value attribute A[(I , J ,K), (val)] such that

A(i, j,k) = Ti jk . Notice that, as opposed to the typical ten-

sor data structure used in libraries such as numpy [15] or

(py)torch [2, 17], associative tables have named attributes

and LARA takes advantage of those attribute names to de-

�ne operators. As we will see, associative tables are more

similar to named tensors [4, 18]. From now on we focus on

associative tables with a single value attribute and call them

named tensors for simplicity.

LARA is de�ned in terms of three main operators: union,
join, and extend [6]. Here we introduce a modi�ed (less gen-

eral) version, but we note that our results in the next section

hold in general. We refer the reader to [5, 6] for the complete

set of operators. We consider the following operators:

• Join (Z⊗): Given named tensors A and B with key

attributes K1 and K2, respectively, and a binary oper-

ator ⊗, then T = (A Z⊗ B) is a new tensor with key

attributes K = K1 ∪ K2, and such that T(¯k1 ∪ ¯k2) =
A(¯k1) ⊗ B(¯k2). Notice that ¯k1 ∪ ¯k2 is a valid tuple only

when
¯k1 and ¯k2 give the same values to their key at-

tributes in common. Thus operator Z⊗ resembles the

natural join operator in relational algebra.

• Aggregation (./Lf (·)): Given named tensor A with key

attributes K , function f over sets of values, and set

L ⊆ K , then T = (./Lf (·) A) is a new named tensor with

key attributes L and T(¯`) = f ({A(¯k) | ¯` ⊆ ¯k }).
• Map (mapд (·)): If A is a named tensor with key at-

tributes K and д is a function, T = (mapд (·) A) is a
tensor with key attributes K and T(¯k) = д(A(¯k)).

Expressiveness of Matrix and Tensor �ery Languages in terms of ML Operators , ,

We also introduce the reduction operator as a useful syntactic
variation of aggregation. Given a named tensor A with key

attributes K , the reduction operation denoted by (¯ ./

L
f (·) A) is

de�ned as (./KrLf (·) A). Thus, in the reduction we explicitly state
the key attributes over which the aggregation is performed.

Example 2.2. Consider the named tensor

Seqs[(time, batch, features), (val)].

This is a typical structure obtained as the output of a recur-

rent neural network that processes input sequences. The

structure stores a set of features obtained when processing

input symbols from a sequence, one symbol at a time. For
e�ciency the network can simultaneously process a batch
of examples and give a single tensor as output. Assume that,

in order to make a prediction one wants to �rst obtain, for

every example, the maximum value of every feature over

the time steps, and then apply a softmax function. One can

specify all this process in LARA as follows.

Max = ¯ ./

(time)
max(·)

Seqs (5)

Exp = map
exp(·) Max (6)

SumExp = ¯ ./

(features)
sum(·)

Exp (7)

So�max = Exp Z÷ SumExp (8)

Expression (5) performs an aggregation over the time at-

tribute to obtain the new tensorMax[(batch, features), (val)]
such thatMax(b, f) = maxu=Seqs(t,b,f) u. That is,Max stores
the maximum value over all time steps (for every feature of

every example). Expression (6) applies a point-wise exponen-

tial function to obtain the tensor Exp[(batch, features), (val)]
such that Exp(b, f) = exp(Max(b, f)). In expression (7) we

apply another aggregation to compute the sum of the expo-

nentials of all the (maximum) features. Thus we obtain the

tensor SumExp[(batch), (val)] such that

SumExp(b) =
∑
f

Exp(b, f) =
∑
f

exp(Max(b, f)).

Finally, expression (8) mimics a broadcast by name [18] by ap-
plying point-wise division over Exp[(batch, features), (val)]
and SumExp[(batch), (val)]. This de�nes the new tensor

So�max[(batch, features), (val)] such that

So�max(b, f) =
Exp(b, f)
SumExp(b)

=
exp(Max(b, f))∑
f ′ exp(Max(b, f ′))

.

Thus, we e�ectively compute the softmax of the vector of

maximum features over time for every example in the batch.

The notions of queries and expressibility for LARA are

similar to that of MATLANG.

3 WHAT CAN AND CANNOT BE
EXPRESSEDWITH THESE LANGUAGES

Next we study the expressive power ofMATLANG and LARA
in terms of three important operations for ML applications:

convolution, matrix-inverse, and Einstein summation.

3.1 Convolution
Let A be an arbitrary matrix and K a square matrix. For

simplicity we assume that K is of odd size (2n + 1) × (2n + 1).
The convolution of A and K, denoted by A ∗ K, is a matrix of

the same size as A whose entries are de�ned as

(A ∗ K)i j =
2n+1∑
s=1

2n+1∑
t=1

Ai−n+s, j−n+t · Kst .

Notice that i − n + s and j − n + t could be invalid indices

for matrix A. The standard way of dealing with this issue,

and the one that we use here, is zero padding. This simply

assumes those entries outside A to be 0. In the context of the

convolution operator, one usually calls K a kernel. Our �rst
result shows that the convolution operator is not expressible

in MATLANG, even for �xed kernels. The proof is based on

a simple genericity property for the language that is not pre-

served by convolution. This property intuitively expresses

that MATLANG expressions are invariant under reordering

of rows and columns.

Theorem 3.1. Convolution is not expressible inMATLANG.
Moreover, there exists a �xed matrix K such that the convolu-
tion with K is not expressible in MATLANG.

On the other hand, the next result states that convolution

is expressible in LARA. This is due to the fact that LARA is

not generic in the form described above, as the language can

express arithmetic comparisons over the indices of a matrix.

Theorem 3.2. Convolution is expressible in LARA.

It is worth remarking that Hutchison et al. [5] showed

that for every �xed kernel K, the query (A ∗K) is expressible
in LARA. However, the LARA expression they construct de-

pends on the values of K, and hence their construction does

not show that in general convolution is expressible in LARA.
Our result in Theorem 3.2 is stronger, as we prove that there

exists a �xed LARA expression that takes A and K as input

and produces (A ∗ K) as output.

3.2 Inverse
Brijder et al. proved the following result.

Proposition 3.3 (From [1]). The language MATLANG
cannot express matrix-inversion.

The proof of this result is based on a locality argument for

MATLANG. Intuitively, the locality of MATLANG expresses

, , Barceló, Higuera, Pérez, Subercaseaux

that every expression in the language “can only see until

a �xed neighborhood of its free variables”’ [13]. What Bri-

jder et al. show is that if the inverse were expressible, then

MATLANG would also be able to express the reachability
query over undirected graphs. The latter, though, is not a

local query, thus leading to a contradiction.

In view of this observation, Brijder et al. [1] added the

matrix-inverse operator to MATLANG obtaining a language

MATLANG + INV. This language continues being generic

in the aforementioned sense, and thus we can prove that it

does not express convolution.

Proposition 3.4. The language MATLANG + INV cannot
express convolution.

For the case of LARA, we conjecture that matrix-inversion

is also not expressible, but we still do not have a complete

proof for this result. What we can actually prove is that

if we restrict LARA to only be able to express arithmetical

comparisons over the values of matrices, but not over its

indices, then inverse is not expressible. The reason is that

the resulting language, which we call tame-LARA, is local.
Thus, the same argument above to show that inverse is not

expressible inMATLANG applies.

Proposition 3.5. Matrix-inversion is not expressible in
tame-LARA.

3.3 Einstein summation
Einstein summation notation is another popular operator on

tensors that generalizes operations such as the inner product

of vectors, matrix trace, and tensor product and contraction.

It is based on implicitly specifying summation over indexes

in a formula. For instance, let A and B be two matrices and

consider the expression Ai jBjk . When viewed as an Einstein

summation, it is interpreted as a tensor T with two indexes

(that is, a matrix), such that Tik =
∑

j Ai j · Bjk , and thus,

de�nes matrix product. In general, every repeated index

in the expression implies a summation over such an index,

while indexes that are not repeated are consider free and
thus part of the output.

In modern tensor libraries [15, 17], Einstein summation is

implemented as an even more general function einsum that

gives a speci�c indexing to every input tensor, and speci�es

also the indexes expected in the output tensor. For simplicity,

we focus on the case when einsum receives only two input

tensors. It also receives a speci�cation of the form (α , β → γ)
such that α and β are the indexing of the input tensors A
and B, respectively, and γ ⊆ α ∪ β is the indexing of the

output. Every index in α ∪ β that is not in γ is summed in

the output. For instance, einsum((ij, jk → ik),A,B) is the
multiplication of matrices A and B. As a more general exam-

ple, consider tensors A and B of rank 3 and 4 respectively.

Then the expression einsum((ijk,k`js → `i),A,B) produces
a tensor T of rank 2 such that T`i =

∑
j
∑

k
∑

s Ai jk · Bk`js .
Notice that γ can be the empty set, in which case the output

is a scalar. For example, einsum((i, i → ∅), a, b) is the inner
product of a and b.

LARA can easily express a named version of einsum in

which α and β are renamings of the key attributes of the

input tensors.
1
In fact, it can be shown that LARA can ex-

press a renaming operator ρ such that ραA is a tensor with

exactly the same data as A but with its key attributes re-

named according to α . Thus einsum((α , β → γ),A,B) can
be expressed simply as ./

γ
+ (ραA Z· ρβB). Given that we are

dealing with named tensors, a special (and more natural)

case is when we use the original attribute names without

renaming and, instead of specifying the key attributes in the

output, we specify the attributes δ over which we want to

sum. In such a case we obtain the expression ¯ ./

δ
+ (A Z· B),

which resembles the named tensor contraction [18, 19].

For the case of MATLANG, since every expression pro-

duces a matrix, a vector or a scalar, we can only hope to

express einsum when |γ | ≤ 2. This is what we prove next.

Theorem 3.6. einsum((α , β → γ),A,B) can be expressed
in MATLANG, provided that |γ | ≤ 2.

4 CONCLUDING REMARKS
Proposals of declarative query languages for array-based

data can be traced back to AQL [14]. With the advent of deep

learning, and also the necessity of performing in-database

learning due to scalability issues, several new proposals have

emerged [7–10, 12]. We pickedMATLANG and LARA for our

study as they allow to express operations directly over matri-

ces and tensors, and also because they follow a minimalistic

presentation that lends itself for theoretical analysis.

Both languages have their pros and cons in terms of ex-

pressive power. On the one hand, MATLANG has a simple

and intuitive semantics, yet its expressive power is quite lim-

ited for expressing practically relevant ML operations. As we

explained, this is due to the genericity and locality properties

of the language. On the other hand, LARA is more powerful

in terms of its capability for expressing standard ML opera-

tions. In fact, LARA seems to be a good candidate language

for formalizing the named-tensor push coming from the deep

learning community [18, 19]. Still, several challenging ques-

tions regarding the expressive power of LARA remain open:

Can LARA express matrix-inversion? If not, can the language

express non-local properties? These are interesting questions

for future work.

1
For simplicity we assume that α does not contain repeated attributes, and

similarly for β . Repetitions are allowed in general in einsum. This case is
handled in the full version.

Expressiveness of Matrix and Tensor �ery Languages in terms of ML Operators , ,

REFERENCES
[1] Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weer-

wag. On the expressive power of query languages for matrices. In

ICDT, pages 10:1–10:17, 2018.
[2] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like

environment for machine learning. In BigLearn, NIPS Workshop, 2011.
[3] Martín Abadi et al. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensor�ow.org.

[4] Stephan Hoyer, Joe Hamman, and xarray developers. xarray de-

velopment roadmap. Technical report, 2018. Available at http:

//xarray.pydata.org/en/stable/roadmap.html, retrieved on March 2019.

[5] Dylan Hutchison, Bill Howe, and Dan Suciu. Lara: A key-value algebra

underlying arrays and relations. CoRR, abs/1604.03607, 2016.
[6] Dylan Hutchison, Bill Howe, and Dan Suciu. Laradb: A minimalist

kernel for linear and relational algebra computation. In Proceedings of
BeyondMR@SIGMOD 2017, pages 2:1–2:10, 2017.

[7] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan

Olteanu, and Maximilian Schleich. AC/DC: in-database learning thun-

derstruck. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, DEEM@SIGMOD 2018, Houston, TX,
USA, June 15, 2018, pages 8:1–8:10, 2018.

[8] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan

Olteanu, and Maximilian Schleich. In-database learning with sparse

tensors. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems, Houston, TX, USA, June 10-15,
2018, pages 325–340, 2018.

[9] Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and

Volker Markl. Bridging the gap: towards optimization across linear

and relational algebra. In BeyondMR@SIGMOD 2016, San Francisco,
CA, USA, July 1, 2016, page 1, 2016.

[10] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Tilmann

Rabl, and Volker Markl. BlockJoin: E�cient matrix partitioning

through joins. PVLDB, 10(13):2061–2072, 2017.
[11] Éric Leclercq and Marinette Savonnet. A tensor based data model for

polystore: An application to social networks data. In Proceedings of the
22nd International Database Engineering & Applications Symposium,
IDEAS 2018, Villa San Giovanni, Italy, June 18-20, 2018, pages 110–118,
2018.

[12] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. Mlog: To-

wards declarative in-database machine learning. PVLDB, 10(12):1933–
1936, 2017.

[13] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2004.

[14] Leonid Libkin, Rona Machlin, and Limsoon Wong. A query language

for multidimensional arrays: Design, implementation, and optimiza-

tion techniques. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996., pages 228–239, 1996.

[15] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing,

2006–.

[16] Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy

Mattson. The tiledb array data storage manager. Proceedings of the
VLDB Endowment, 10(4):349–360, 2016.

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. Automatic di�erentiation in PyTorch. In NIPS-W,

2017.

[18] Alexander M. Rush. Tensor considered harmful. Technical report,

Harvard NLP Blog, 2019. Available at http://nlp.seas.harvard.edu/

NamedTensor, retrieved on March 2019.

[19] Alexander M. Rush. Tensor considered harmful pt. 2. Technical report,

Harvard NLP Blog, 2019. Available at http://nlp.seas.harvard.edu/

NamedTensor2, retrieved on March 2019.

[20] Florin Rusu and Yu Cheng. A survey on array storage, query languages,

and systems. CoRR, abs/1302.0103, 2013.
[21] Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla.

Scidb: A database management system for applications with complex

analytics. Computing in Science and Engineering, 15(3):54–62, 2013.

A PROOFS
Proof of Theorem 3.1
We prove the Theorem by �rst providing an invariant prop-

erty forMATLANG expressions.

Let A be a matrix of dimensionsm×n, and πm , πn permuta-

tions over the domains {1, . . . ,m} and {1, . . . ,n} respectively
2
. We say that π = (πm ,πn) is a matrix permutation, and its

application π (A) is such that π (A)i j = Aπm (i)πn (j) . For every

permutation πn , one can construct a permutation matrix Pπn
by permuting the rows of the (n × n) identity matrix accord-

ing to π . Permutation matrices are such that for an (m × n)
matrix A it holds that π (A) = Pπn · A · P

T
πm . We will also use

the fact that permutation matrices are always orthogonal

(i.e. Pπn · P
T
πn = PTπn · Pπn = I).

We can naturally extend this de�nition in the following

way. Let f be a function that maps every n ≥ 1 to a permuta-

tion fn = πn , . We say that πf is a matrix permutation, and

its application πf (A) to a matrix of dimensions a × b is such

that πf (A)i j = Afa (i)fb (j) . From now on, when we say that π
is a matrix permutation, we will assume there is an implicit

function f de�ned for it.

We can now state the following invariance property. For

every instance I, matrix permutation π andMATLANG ex-

pression φ, we have that φ (π (I)) = π (φ (I)). We prove this

by estructural induction. When φ = A, the property holds by
de�nition. When φ = φ1 · φ2, assuming the result of φ1 has

dimensions a × b and φ2 has dimensions b × c (and thus φ
has dimensions a × c) we have that:

φ (π (I)) = φ1 (π (I)) · φ2 (π (I))

= π (φ1 (I)) · π (φ2 (I))

= Pπa · φ1 (I) · PTπb · Pπb · φ2 (I) · PTπc
= Pπa · φ1 (I) · φ2 (I) · PTπc
= π (φ (I)).

2
From now on, we will specify the domain of a permutation just by its

subindex

http://xarray.pydata.org/en/stable/roadmap.html
http://xarray.pydata.org/en/stable/roadmap.html
http://nlp.seas.harvard.edu/NamedTensor
http://nlp.seas.harvard.edu/NamedTensor
http://nlp.seas.harvard.edu/NamedTensor2
http://nlp.seas.harvard.edu/NamedTensor2

, , Barceló, Higuera, Pérez, Subercaseaux

When φ = φT
1
, assuming the result of φ1 has dimensions a×b

(and thus φ has dimensions b × a) we have that:

φ (π (I)) = φ1 (π (I))
T

= π (φ1 (I))
T

= (Pπa · φ1 (I) · PTπb)
T

= Pπb · φ
−1
1
(I) · PTπa

= π (φ (I)).

The cases where φ = 1(φ1) or φ = diaд(φ1) are similar.

With our invariance property it is easy to prove Theo-

rem 3.1. Let S be a schema with two matrices A and B, such
that A is of type (α ,α) and B of type (β , β). Consider an
instance I that assigns A to the following matrix

I (A) =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1



and B to the matrix

I (B) =



1 1 1

1 1 1

1 1 1



Then we have that (I (A) ∗ I (B)) is given by

(I (A) ∗ I (B)) =



2 2 1 0

2 2 1 0

1 1 2 1

0 0 1 1



Consider now the permutations π1 = (1), π3 = (1, 2, 3),
and π4 = (1, 3, 2, 4). If we consider π a matrix permutation

whose implicit function maps to the permutations described

above, we have that:

π (I (A) ∗ I (B)) =



2 1 2 0

1 2 1 1

2 1 2 0

0 1 0 1



while

π (I (A)) ∗ π (I (B)) =



1 1 0 0

1 2 1 1

0 1 2 2

0 1 2 2



Thus we have that π (I (A) ∗ I (B)) , π (I (A)) ∗ π (I (B))
which is enough to conclude thatMATLANG cannot express

the convolution.

A.1 Proof of Theorem 3.2
The full LARA language de�ne three operators: Join, Union

and Extend. We already de�ned Join in the body of the paper.

For this part we will also need the Extend operator that we

next de�ne (for the full de�nition of Union we refer the

reader to [6]).

Let T[K ,V] be an associative table and consider a new

set of key and value attributes K ′ and V ′. Now consider a

function f that assigns an associative table A(¯k,v̄)[K
′,V ′] to

every tuple (¯k, v̄) in T. Then E = extf T is a new associative

table with key attributes K ∪K ′ and value attributesV ′ such
that E(¯k ∪ ¯k ′) = A(¯k,v̄) (

¯k ′).
For the rest of the proof we need to introduce some addi-

tional notions. We �rst de�ne an expression in LARA that

computes the cartesian product of two associative tables.

Let A[K1,V1] and B[K2,V2] be tables such that K1 ∩ K2 =

V1 ∩V2 = ∅. The cartesian product is a new associative table

C[K1,K2,V1,V2] such that for every tuple (¯k1, v̄1) ∈ A and

(¯k2, v̄2) ∈ B we have that (¯k1, ¯k2, v̄1, v̄2) ∈ C. It is not dif-
�cult to prove that the cartesian product is expressible in

LARA (see Lemma ?? at the end of this section). Thus we can
safely add to the LARA language the operator × to express

the cartesian product between associative tables.

Another operator that we need to simplify our proof is

the �lter operator. Given an associative table A[K ,V] and
a logical expression φ (x̄ , ȳ), �ltering A with φ, denoted by

�lterφ (A) is a new associative table B[K ,V] such that (¯k, v̄)

is in B if and only if (¯k, v̄) ∈ A and (¯k, v̄) |= φ (i.e. the

logical expression φ (¯k, v̄) evaluates to true). It is not di�cult

to prove that the �lter operator is expressible in LARA (see

Lemma ?? at the end of this section). Finally, the renaming

operator ρα (A) is a simple operator that just change the

name of attributes of the associative table A according to the

assignment α . It can be easily de�ned as a special case of ext.

In our proof we use the aggregate operator +(·), that given
a multiset of numbers, returns the sum of the multiset. We

use two �ltering expressions de�ned as follows:

neighbors(i, i ′, j, j ′,m) :

i ′ ≥ i −
m − 1

2

∧ i ′ ≤ i +
m − 1

2

∧

j ′ ≥ j −
m − 1

2

∧ j ′ ≤ j +
m − 1

2

kernel(i, i ′, ik , j, j
′, jk ,m) :

ik = i
′ − i +

m − 1

2

+ 1 ∧ jk = j ′ − j +
m − 1

2

+ 1

Additionally, we use two ext functions: ζ (i, j,v,v ′,vk), that
computes a value attributev∗ such that in every tuple it maps

v∗ tov ′ ∗vk , and diag(i, j,v), that computes a value attribute

m that maps to 1 if i = j and to 0 if not. We can now prove

Expressiveness of Matrix and Tensor �ery Languages in terms of ML Operators , ,

Theorem 3.2, that is, that LARA can express the 2D matrix

convolution.

Let A[(i, j), (v)] and K[(ik , jk), (vk)] be two associative

tables that represents a matrix and the convolution kernel,

respectively. First calculate the dimension of the kernel using

M = ./∅+(·) extdiagK.

Notice extdiagK is a table of sort [(i, j), (m)] and M is a table

with no key attributes and a single value attribute m that

contains solely the dimension of the kernel. Now we proceed

to make the cartesian product of A with itself, K andM For

that we need to make a copy of A with renamed attributes.

We de�ne the copy of A as A′ = ρi:i′, j:j′,v:v ′A. The cartesian
product is C = A × A′ × K ×M. Then

C = �lterkernel (�lterneighbors (C)).

Now we just multiply v ′ with vk and aggregate over i, j
obtaining the �nal result for the convolution with the ex-

pression

C∗ = ./

i, j
+ extζC.

This table C∗ has attributes [(i, j), (v∗)]. It is not di�cult to

see that C∗ is a representation of the convolution. Notice

that for an arbitrary tuple (a,b, c) in A we have that:

• neighbors will select all the tuples such that they are in

a “radius” de�ned by the size of K (m in this case), with

(a,b) at the “center”. Notice that neighbors only selects
tuples in the table, so theres no need for padding.

• kernel makes a one to one correspondence between the

neighborhood and the kernel, such that (a,b) is paired
with the “center” of the kernel ((m − 1)/2, (m − 1)/2).

When doing the multiplication of the neighborhood with

the kernel and aggregating we obtain that of C∗ (a,b) is ex-
actly the value (A ∗ K)ab . Notice that, since we only use

standard operators in Relational Algebra, we can directly

translate our query into SQL (see Figure ??).
We �nish this section showing how can one construct

a LARA expression for the cartesian product and the �lter

operator.

Lemma A.1. The cartesian product is de�nable in LARA.

Proof. First consider the following extension functions:

• κx̄ ;ā , the function that, maintaining the original value

attributes �xed, adds new key attributes x̄ that eval-

uates to values ā in each tuple of the extended table,

with |x̄ | = |ā |.
• νx̄ ;ā , the function that, maintaining the original value

attributes �xed, adds new value attributes x̄ that eval-

uates to values ā in each tuple of the extended table,

with |x̄ | = |ā |.

SELECT B.i, B.j, SUM(A.val * K.val) AS val
FROM A, A AS B, K, (

SELECT COUNT(*) AS m
FROM K
WHERE K.i = K.j) AS KerDim

WHERE
A.i >= B.i - (m-1)/2 AND A.i <= B.i + (m-1)/2 AND
A.j >= B.j - (m-1)/2 AND A.j <= B.j + (m-1)/2 AND
K.i = A.i - B.i + (m-1)/2 + 1 AND
K.j = A.j - B.j + (m-1)/2 + 1

GROUP BY B.i, B.j

Figure 1: Convolution B = A ∗ K in SQL.

Given two associative tablesA[KA,VA] andB[KB ,VB] such
that KA ∩KB = ∅ andVA ∩VB = ∅, we de�ne the expression
for the cartesian product between them, denoted by A×B as

./

KA∪KB (extκд;1extνVB \VA ;0̄
A) ./+ (extκд;1extνVA\VB ;0̄

B),

with 0̄ a tuples of 0s of same length that VA \ VB . Notice
we used ./KA∪KB

to eliminate the key attribute д, and is not

parametized by an aggregate operator because it does not

incur on aggregation. �

Lemma A.2. The �lter operator is de�nable in LARA.

Proof. Given an associative table A[K ,V] and a logical

expression φ (x̄ , ȳ), the expression �lterφ (A) is equivalent to
extfφA, where fφ is an extension function that returns a table

T[∅,V] such that if (¯k, v̄) ∈ A and (¯k, v̄) |= φ, then T contains
just the values of the tuple, i.e, v̄, and if not, T is empty. �

A.2 Proof of Proposition 3.4
We follow the semantics for inverse proposed by Brijder [1],

and thus for an expression φ = inv(φ1) and an instance

I we have that φ (I) = (φ1 (I))
−1

if φ1 (I) is an invertible

square matrix, and φ (I) = Z otherwise where Z is a square

matrix of the same dimensions of φ1 (I) that has a 0 in all its

components.

Now to prove the result, we just extend the invariance

property presented in the proof of Theorem 3.1 to include

the inverse operation. Thus, assume that φ1 satis�es the

invariance property (induction hypothesis) and let φ = φ−1
1
.

Assuming the result of φ1 has dimensions a×a we have that:

φ (π (I)) = φ−1
1
(π (I))

= (φ1 (π (I)))
−1

= (π (φ1 (I)))
−1

= (Pπa · φ1 (I) · PTπa)
−1

= (PTπa)
−1 · (φ1 (I))

−1 · (Pπa)
−1

= Pπa · φ
−1
1
(I) · PTπa

= Pπa · φ (I) · P
T
πa

= π (φ (I)).

, , Barceló, Higuera, Pérez, Subercaseaux

In Theorem 3.1 we already proved that the convolution

operator breaks this invariance property and thus we obtain

that convolution cannot be expressed in MATLANG + INV.

A.3 Einstein summation
We give a formal extension to named tuples for the Einsten

summation. The general named Einstein summation expres-

sion is einsum((α , β → γ),A,B), where α = (ka
1
: i1 . . .k

a
n :

in), β = (kb
1
: j1 . . .k

b
m : jm) and γ ⊆ α ∪ β . The named Ein-

stein summation assigns names to every dimension of the

matrices. Notice this gives us a natural link to express named

Einstein summations in LARA as this algebra also works on

named tuples. In some instances, the Einstein summation

assigns the same index to two dimensions. This is interpreted

as saying that we only consider on the “diagonal” of such

dimensions. For example, einsum((k1 : i k2 : i → k1 : i),A)
calculates the trace of A when A is a matrix. But LARA does

not allow an associative table with repeated attribute names.

We circumvent this problem in LARA by renaming and ap-

plying a �lter that selects tuples such their correspond to

the diagonal of the dimensions with the same name. For-

mally, having the expression einsum((α , β → γ),A,B), for
every two dimensions kai ,k

a
j ∈ α with the same name ni j ,

we construct a �lter predicate φi j that selects only tuples

such that kai = kaj , apply the �lter to A, remove kaj from

α , and then proceed in the same fashion till there are no

more repeated indexes. Lets call α ′ the resulting renaming

and A′ the resulting tensor. For example, if α = (k1 : i,k2 : i),
then α ′ = (k1 : i) and A′ = �lterk1=k2 A. We do the same

for repeated names in β and B. Then, �nally the einsum
expression can be de�ned simply as ./

γ
+ (ρα ′A′ Z· ρβ ′B′).

Proof of Theorem 3.6
As there is a �nite number of non-equivalent combinations

for α , β and γ , it is enough to provide aMATLANG expres-

sion for each of them. We give a few representative examples.

We use the binary function ,1 (x ,y) that is equal toy if x = 1

and it is 0 otherwise.

First, we de�ne some shortcuts that will make our expres-

sions simpler.

rowsum(A) := A · 1(AT)

colsum(A) := rowsum(AT)

sum(A) := colsum(rowsum(A))

If A is a square matrix, then

extdiag(A) := rowsum(apply[,1](diag(1(A)),A))

With these shortcuts we can more easily de�ne einsum
expressions inMATLANG. Below we show some examples

(all the other cases are similar). To maintain some uniformity,

when |γ | = 1 we produce always a column vector.

einsum((ij → i),A) = rowsum(A)

einsum((ij → j),A) = colsum(A)

einsum((ij → ∅),A) = sum(A)

einsum((ii → i),A) = extdiag(A)

einsum((ii, ii → ∅),A,B) = extdiag(A)T · extdiag(B)

einsum((ij, jk → ik),A,B) = A · B

einsum((ij, ij → i),A,B) = extdiag(A · BT)

einsum((ik,kj → k),A,B) = apply[·](colsum(A), rowsum(B))

einsum((ij,kl → ∅),A,B) = sum(A) · sum(B)

einsum((ij, ik → ∅),A,B) = sum(AT · B)

	Abstract
	1 Introduction
	2 MATLANG and LARA
	3 What can and cannot be expressed with these languages
	3.1 Convolution
	3.2 Inverse
	3.3 Einstein summation

	4 Concluding Remarks
	References

