
Union and Intersection of Schema Mappings

Jorge Pérez1, Reinhard Pichler2, Emanuel Sallinger2, and Vadim Savenkov2

1 Department of Computer Science, Universidad de Chile
2 Faculty of Informatics, Vienna University of Technology

Abstract. Schema mappings have been extensively studied in database
research over the past decade – notably in the areas of data exchange
and data integration. Recently, the notion of an information transfer
order on schema mappings has been introduced to compare the amount
of source information that is actually transferred by two mappings. In
this paper, we present two new operators: the union and intersection of
mappings. The union of two mappings allows us to describe the sum of all
information transferred by several mappings. The intersection refers to
the common part of information transferred by several mappings. As one
of our main results we prove that there exists a large class of mappings
(containing the class of source-to-target tuple-generating dependencies)
that forms a complete lattice with respect to these two operators.

1 Introduction

Schema mappings allow us to describe the relationship between two schemas.
As such, schema mappings have been extensively studied in Data Exchange [9]
and Data Integration [12]. Bernstein and Melnik [5, 6, 15] have proposed several
fundamental operators on schema mappings, with composition [14, 7, 16, 2] and
inverse [8, 10, 4, 3] being the most prominent ones. Recently, new concepts have
been introduced [1, 10] to compare schema mappings in terms of the amount
of source information transferred by the mappings. In this work, we present
two new operators on mappings, which we consider as fundamental for studying
the information transferred by several mappings. We thus introduce the union
and intersection of mappings. The union of two mappings allows us to describe
the sum of all information transferred by the mappings. The intersection of two
mappings refers to the common part of information transferred by the mappings.

Before providing more details on our new schema mapping operators, we re-
call the notion of information transfer introduced by Arenas et al. [1]. Intuitively,
the authors define a criterion to compare the amount of information that two
mappings transfer from source to target. As an example consider the following
two mappings given by source-to-target tuple-generating dependencies (st-tgds):

M1 : A(x, y, z) → ∃uP (x, u)
M2 : A(x, y, z) → S(x, y)

Intuitively, M2 transfers more information than M1 since the first and second
component of tuples in A are being transferred to the target under M2, while

only the first component is being transferred under M1 [1]. This intuition was
formalized in [1] and several algorithmic properties were studied. In particular
the authors show that given two mappings M1 and M2 specified by st-tgds, it
can be decided whether M2 transfers more information than M1 [1]. A similar
notion of information transfer was proposed by Fagin et al. [10], and it has been
shown that both notions coincide for the important case of mappings specified
by st-tgds [1, 10].

A possible application of the information transfer notion is in automatic
mapping-generation tools [11]. As described in [10], if two possible mappings are
automatically generated by different tools, then a plausible criterion to decide
which mapping is the better to be used, is to choose the mapping that transfers
more information from source to target. But what happens if both tools gener-
ate incomparable mappings in terms of information transfer? Then the criterion
presented in [1, 10] can no longer be used to decide which mapping to choose.
This is one of the questions that motivate our research.

To illustrate our new schema mapping operators of intersection and union,
consider the following mapping with the same source schema as M1 and M2:

M3 : A(x, y, z) → T (x, z)

It can be shown that M2 and M3 are incomparable with respect to the informa-
tion that both mappings transfer from source to target. Assume now that M2

and M3 are mappings that have been generated independently by two different
tools. Since M2 and M3 are incomparable in terms of the information trans-
fer from the source, a conservative approach would be to synthesize from both
mappings a new mapping M′ that only transfers the shared source information
that is being mapped by both M2 and M3. Since M2 is transferring the first
and second component of relation A, and M3 is transferring the first and third
component of relation A, then M′ can be defined as:

M′ : A(x, y, z) → R(x)

that is, M′ only maps the first component of A. In our framework, mapping M′

is the intersection of M2 and M3. Formally, the intersection of M2 and M3 is
a new mapping N that transfers less information than M2 and M3 and such
that any other mapping that transfer less information than M2 and M3 also
transfers less information than N . That is, the intersection is the greatest lower
bound with respect to the information transfer order. It can be shown that the
intersection is not unique, in fact, both M′ and M1 are possible intersections of
M2 and M3. We formalize this notion and study several of its properties. In the
above example, computing the intersection was an easy task, but we show that
in general, intersecting mappings is not trivial. In fact, we prove that even for
mappings specified by st-tgds, the intersection may not be expressible in First-
Order logic (FO). On the other hand, we prove that Existential Second-Order
logic (ESO) suffices to express the intersection of such mappings.

The dual operator is the union of schema mappings. Intuitively, the union
of two mappings is a new mapping that transfers the sum of all the information

2

transferred by both initial mappings. In our example above, the union of M2

and M3 is the mapping

M′ : A(x, y, z) → S(x, y) ∧ T (x, z)

Formally, the union of M2 and M3 is a new mapping N that transfers more
information than M2 and M3 and such that any other mapping that transfers
more information than M2 and M3 also transfers more information than N .
That is, the union is the least upper bound with respect to the information
transfer order. As for the case of the intersection, dealing with union is not
always trivial. For example, one might be tempted to state that the following
mapping M′′ is also a union of M2 and M3:

M′′ : A(x, y, z) → R(x, y, z)

but it can be shown that M′′ is strictly more informative than M′ and thus
does not define the union for M2 and M3. However, if we are given the func-
tional dependencies {A[1] −→ A[2], A[1] −→ A[3]} over the source schema, then
M′′ becomes the union of M2 and M3. We show that, in the absence of source
constraints, the union is considerably easier to handle compared with the inter-
section. In particular, it can be shown that given mappings specified by a set of
st-tgds their union can also be specified by a set of st-tgds.

Organisation of the paper and summary of results. In Section 2, we
recall some basic notions and results. A conclusion is given in Section 6. The
main results of the paper are detailed in Sections 3 – 5:

• New operators. In Section 3, we introduce the union and intersection oper-
ators of schema mappings and state our main results, namely: for a large class
of mappings (containing the class of st-tgds) the union and intersection always
exist. More precisely, this class of mappings is the class Rec of all mappings
that have a maximum recovery [4] (we recall the definition of maximum recov-
ery in Section 2). Our new operators allow us to define a lattice of the mappings
in Rec w.r.t. to the information transfer order, s.t. the union (resp. intersec-
tion) corresponds to the least upper bound (resp. greatest lower bound) of two
mappings.

• Existence of the union. In Section 4, we show for the class Rec that the union
of two mappings always exists. The proof is constructive in that we describe how
to obtain the union. For mappings defined by a set of st-tgds we show that the
union can also be expressed by st-tgds. This allows us to prove an NEXPTIME

upper bound for checking if some mapping is the union of two other mappings
for the case of st-tgds.

• Existence of the intersection. In Section 5, we show several fundamental results
on the existence of the intersection. First, for two mappings from the class Rec,
the intersection always exists. However, in general, even for the restricted case
of st-tgds, this intersection is not expressible in First-Order logic (FO). On the
other hand, in Existential Second-Order logic (ESO) it is always possible to
express the intersection of mappings defined by st-tgds.

Due to lack of space, proofs are only sketched. Details are given in the appendix.

3

2 Preliminaries

2.1 Schemas and schema mappings

A schema S is a finite set {R1, . . . , Rk} of relation symbols, with each Ri having
a fixed arity ni ≥ 0. Let D be a countably infinite domain. An instance I of
S assigns to each relation symbol Ri of S a finite relation RIi ⊆ Dni . Inst(S)
denotes the set of all instances of S. We denote by dom(I) the set of all elements
that occur in any of the relations RIi . We say that Ri(t) is a fact of I if t ∈ RIi .
We sometimes denote an instance by its set of facts.

Given schemas S and T, a schema mapping (or just mapping) from S to T
is a subset of Inst(S) × Inst(T). We say that J is a solution for I under M
whenever (I, J) ∈ M. The set of all solutions for I under M is denoted by
SolM(I). For a mapping M from S to T, we denote by dom(M) the set of all
instances I ∈ Inst(S) such that SolM(I) 6= ∅. Moreover, M is said to be total if
dom(M) = Inst(S).

Notice that mappings are binary relations, and thus one can define the com-
position of mappings as for the composition of binary relations [15, 7]. Let M12

be a mapping from schema S1 to schema S2 and M23 a mapping from S2 to
schema S3. Then M12 ◦ M23 is a mapping from S1 to S3 given by the set
{(I, J) ∈ Inst(S1) × Inst(S3) | there exists K such that (I,K) ∈ M12 and
(K,J) ∈ M23} [15, 7].

2.2 Dependencies and definability of mappings

Given disjoint schemas S and T, a source-to-target tuple-generating dependency
(st-tgd) from S to T is a sentence of the form ∀x̄∀ȳ(ϕ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)),
where ϕ(x̄, ȳ) is a conjunctive query (CQ) over S, and ψ(x̄, z̄) is a CQ over T.
The left-hand side of the implication in an st-tgd is called the premise, and the
right-hand side the conclusion. A full st-tgd is an st-tgd with no existentially
quantified variables in its conclusion. We usually omit the universal quantifiers
when writing st-tgds. Suppose that we are given a set Σ of logical formulas over
the schemas S and T, e.g., a set of st-tgds from S and T, a set of First-Order
formulas or of Existential Second-Order formulas over the schemas S and T. We
say that a mapping M is specified by Σ, denoted by M = (S,T, Σ), if for every
(I, J) ∈ Inst(S)× Inst(T), we have (I, J) ∈ M if and only if (I, J) satisfies Σ.

As is customary in the data exchange literature, we assume the existence of
two disjoint sets of elements: constant values C and null values N. Thus, for
a mapping defined by st-tgds, we assume that source instances are constructed
by using only elements from C, while target instances are constructed by using
elements from C ∪N.

2.3 Maximum recovery

The notion of maximum recovery proposed in [4] is fundamental to our study.
It provides a natural notion for inverting schema mappings. In [4] the authors
first define recoveries of schema mappings and then restrict them to maximum
recoveries. Given a mapping M from S1 to S2, we say that M′ from S2 to S1

is a recovery of M if for every instance I in S1, it holds that (I, I) ∈ M ◦M′.

4

In symbols, M′ is a recovery of M if Id ⊆ M ◦ M′, where Id is the identity
mapping {(I, I) | I ∈ Inst(S1)}. Moreover, M′ is said to be a maximum recovery
of M if for every other recovery M′′ of M, it holds that M◦M′ ⊆ M ◦M′′.
Intuitively, M′ is a maximum recovery of M if M◦M′ is as close as possible to
the identity mapping Id. We write Rec to denote the class of all total mappings
that admit a maximum recovery.

2.4 Information Transfer

In [1] a notion of information transfer for schema mappings was defined to
compare the amount of information that two mappings transfer from source to
target. Formally, given mappings M1 and M2 with the same source schema
S, mapping M1 transfers at least as much source information as M2, denoted
by M2 �inf M1 if there exists a mapping N such that M1 ◦ N = M2 [1].
That is, M2 �inf M1 if M2 can be constructed from M1 via mapping com-
position. Notice that �inf is a pre-order, i.e., �inf is a reflexive and transitive,
but not antisymmetric relation. Thus, we say that M1 and M2 transfer the
same information from the source, denoted by M1 ≡inf M2 if M1 �inf M2 and
M2 �inf M1. By slight abuse of notation we consider �inf as an order (rather
than a pre-order) by identifying a mapping M with the equivalence class of all
mappings ≡inf -equivalent with M.

3 The union and intersection operators

Below, we make use of �inf to define the union and the intersection of two
mappings. Intuitively the union is a mapping that transfers the sum of all the
information transferred by the two initial mappings. Analogously, we define the
intersection of two mappings as a mapping that transfers only information which
is transferred by each of the initial mappings.

Definition 1. Let C be a class of mappings and M1 and M2 two mappings in C
with the same source schema. The union of M1 and M2 w.r.t. C, is a mapping
M ∈ C such that:

1. M1 �inf M,
2. M2 �inf M, and
3. if N is a mapping in C with M1 �inf N and M2 �inf N , then M �inf N .

The union of M1 and M2 w.r.t. C is denoted by M1 ⊔C M2.

Definition 2. Let C be a class of mappings and M1 and M2 two mappings in
C with the same source schema. The intersection of M1 and M2 w.r.t. C, is a
mapping M ∈ C such that:

1. M �inf M1,
2. M �inf M2, and
3. if N is a mapping in C with N �inf M1 and N �inf M2, then N �inf M.

The intersection of M1 and M2 is denoted by M1 ⊓C M2.

5

When the class C is clear from the context, we just write M1 ⊔ M2 (resp.
M1⊓M2) for the union (resp. for the intersection) of two mappings. Notice that
the definition of the union of mappings is just the least upper bound (supremum)
of M1 and M2 w.r.t. �inf (inside the class of mappings C). Analogously, the
intersection of mappings is just the greatest lower bound (infimum) of M1 and
M2 w.r.t.�inf (inside the class C). Also notice that the union and the intersection
as defined above are unique up to the equivalence relation ≡inf. This is why we
speak of the union resp. intersection of two mappings.

Notice that with the definition of union and intersection based on the order
�inf it is by no means evident that for any two mappings the union or intersection
always exists. Thus, a first important question that needs to be answered for
these operators is for which classes of mappings the existence of the intersection
or the union is guaranteed. As we will show next, the class Rec of mappings
having a maximum recovery will play a fundamental role in determining the
existence of the union and intersection.

Beside existence, there are two other important questions regarding these
operators that need to be addressed. One is the question of expressiveness: what
is the mapping language needed to express the union/intersection when it exists?
Another main question is about computing these operators: is there an algorithm
to compute the union/intersection? One of our main results is the following
general result that gives a positive answer to the existence question.

Theorem 1. There exists a class R of mappings (that contains the class of
mappings specified by st-tgds), such that for every pair of mappings M1 and M2

in R the union M1 ⊔R M2 and the intersection M1 ⊓R M2 always exist.

We will show that Rec is such a class R that satisfies the statement of
Theorem 1. By using notions of lattice theory, Theorem 1 can be restated as
follows. Recall that given an order relation ≤, a lattice is a structure 〈A,≤〉 such
that every two elements X,Y ∈ A have a least upper bound (supremum) and
a greatest lower bound (infimum) in A. Then Theorem 1 can be formulated as
follows.

Theorem 2. Let S be a relational schema. There exists a class RS that contains
the class of all mappings specified by st-tgds having S as source schema, such
that 〈RS,�inf〉 is a lattice (up to ≡inf -equivalence).

Theorem 1 is proved by combining the results in the following sections for
union and intersection. Theorem 2 is an immediate consequence of Theorem 1
given the following proposition:

Proposition 1. The union and intersection of mappings are invariant under
≡inf -equivalence. Formally, let M1,M

′
1,M2, and M′

2 be mappings from some
class C with M1 ≡inf M

′
1 and M2 ≡inf M

′
2. Then the following relations hold:

(1) If M1 ⊔C M2 exists, then M′
1 ⊔C M′

2 exists as well and the equivalence
M1 ⊔C M2 ≡inf M′

1 ⊔C M′
2 holds.

(2) If M1 ⊓C M2 exists, then M′
1 ⊓C M′

2 exists as well and the equivalence
M1 ⊓C M2 ≡inf M

′
1 ⊓C M′

2 holds.

6

Intuitively, Proposition 1 states that union and intersection of mappings are
preserved under ≡inf -equivalence. The proposition follows immediately from the
definition of ⊔C and ⊓C .

4 Existence of the union

In this section we propose a straightforward method to compute the union of
mappings specified by st-tgds (w.r.t. the class of mappings specified by st-tgds).
This method will allow us to provide a positive answer to all of the questions
concerning the existence, expressiveness, and computation of the union for this
class of mappings. In contrast, we will show in Section 5 that dealing with the
intersection operator is considerably more difficult.

The procedure to compute the union is very simple. Let M1 = (S,T1, Σ1)

and M2 = (S,T2, Σ2) be two mappings specified by st-tgds. Let T̂2 be a copy

of T2 such that T̂2 is disjoint with T1, and let Σ̂2 be the set of dependencies
that results from Σ2 by replacing every relation name in T2 by its copy in T̂2.
Consider the mapping M′ = (S,T1 ∪ T̂2, Σ1 ∪ Σ̂2). Then M′ is the union of
M1 and M2. From this we obtain the following result.

Proposition 2. Let S be the class of mappings specified by st-tgds, and M1 =
(S,T1, Σ1) and M2 = (S,T2, Σ2) be mappings such that Σ1 and Σ2 are sets
of st-tgds. Then the union M1 ⊔S M2 always exists. Moreover, there exists an
algorithm which, given M1 and M2, computes M1 ⊔S M2 in polynomial time.

Proposition 2 follows from a more general result on the existence of the union
for a class of mappings that properly contains the class of mappings specified
by st-tgds. Recall from Section 2.3 that we write Rec to denote the class of all
total mappings that admit a maximum recovery. It was shown in [4] that every
mapping specified by st-tgds is total and has a maximum recovery, and thus
Rec contains the class of all mappings specified by st-tgds. The following is the
general result for the union operator w.r.t. the class Rec.

Proposition 3. For every pair of mappings M1 and M2 in Rec having the
same source schema, the union M1 ⊔Rec M2 exists.

Proof (sketch). Let T1 and T2 be disjoint schemas, M1 a mapping in Rec

from S to T1, and M2 a mapping in Rec from S to T2. Consider the mapping
M1 ⊕M2 from S to T1 ∪T2 defined as follows:

M1 ⊕M2 = {(I, J1 ∪ J2) | (I, J1) ∈ M1 and (I, J2) ∈ M2}.

It can be shown that M1⊕M2 is the union of M1 and M2 w.r.t. Rec. If T1 and
T2 are not disjoint, one can always construct a copy T̂2 of T2 that is disjoint
with T1, and a mapping M̂2 from S to T̂2 such that M2 ≡inf M̂2, and then

M1 ⊕ M̂2 is the desired union. ⊓⊔

7

The proof of Proposition 2 follows from the proof of Proposition 3 plus the
fact that if M1 and M2 are specified by st-tgds, then M1 ⊕ M2 can also be
specified by a set of st-tgds. The following example shows that computing the
union is extremely easy for the case of mappings specified by st-tgds.

Example 1. Let mappings M1 and M2 be defined by the following sets of st-
tgds: M1 = {S(x, y) → T (x, y)}; M2 = {S(x, y) → T (x, y), Q(x) → T (x, x)}.
The union M1 ⊔Rec M2 is simply the mapping M containing all three depen-
dencies, with appropriately renamed target relation symbols:

M = {S(x, y) → T (x, y), S(x, y) → T ′(x, y), Q(x) → T ′(x, x)}

Proposition 2 also allows us to prove positive algorithmic results regarding
the union of schema mappings. The following result follows directly from Propo-
sition 2 and the results in [1] regarding the order �inf.

Proposition 4. Given mappings M1, M2, and M3 specified by st-tgds, it is
decidable (in NEXPTIME) whether M3 is the union of M1 and M2.

A legitimate question, of course, is if the characterization in the proof of
Proposition 3 also works outside Rec. We have to leave this as an open question
for future research. The following proposition shows that this is a tricky problem
which may even require some adaptation of the �inf relation.

Proposition 5. There exists a mapping M such that M ≺inf M⊕M (that is
M �inf M⊕M and M⊕M �inf M).

In other words, the �inf order displays an unexpected behaviour for mappings
outside Rec: intuitively, one would expect that the amount of source information
transferred remains unchanged if, for every source instance I, we combine all
pairs of solutions of I. For mappings inRec, this is of course the case. In contrast,
by Proposition 5, there are mappings outsideRec such that the amount of source
information transferred strictly increases by this simple syntactic trick.

5 Existence of the intersection

In this section we study the existence of the intersection. The main result is
stated in the following theorem. Again, we use Rec to denote the class of total
mappings that have a maximum recovery.

Theorem 3. For every pair of mappings M1 and M2 in Rec having the same
source schema, the intersection M1 ⊓Rec M2 exists.

Proof (sketch). To describe the proof of the theorem we need to introduce some
technical notions. Let S be a schema and consider a mapping M from S to
S (that is M ⊆ Inst(S) × Inst(S)). For a positive integer k, we define Mk

recursively as follows:

M1 = M,

Mk+1 = M◦Mk.

8

We shall also define M+ as the following mapping from S to S:

M+ =

∞⋃

i=1

Mi.

Notice that M+ is the transitive closure of M when it is viewed as a binary
relation over Inst(S).

Now consider mappings M1 and M2 in the statement of the theorem. Given
that M1 and M2 are mappings in Rec, we know that there exist mappings M′

1

and M′
2 such that M′

1 is a maximum recovery of M1, and M′
2 is a maximum

recovery of M2. Now consider the mapping M given by

M =

(
(M1 ◦M

′
1) ∪ (M2 ◦M

′
2)

)+

.

It can be shown that M is the intersection M1 ⊓Rec M2. ⊓⊔

Since every mapping given by st-tgds is total and has a maximum recovery [4],
from Theorem 3 we obtain that for mappings specified by st-tgds the intersection
(w.r.t. the class Rec) always exists.

Notice that Theorem 3 is only about existence and says nothing about the
language needed to express the intersection of mappings specified by st-tgds.
The following result shows that as opposed to the case of the union operator,
the intersection of mappings specified by st-tgds may not be expressible in First-
Order logic (FO).

Theorem 4. There exist mappings M1 and M2 specified by st-tgds such that
M1 ⊓Rec M2 cannot be specified by a set of FO sentences.

Proof (sketch). Consider the schemas S = {A(·, ·), B(·, ·)}, T1 = {T1(·, ·)}, and
T2 = {T2(·, ·)}. In the proof we use mappings M1 and M2 from S to T1 and
from S to T2, respectively, specified by the following st-tgds:

M1 : ∃u (A(x, u) ∧B(u, y)) → T1(x, y)

M2 : ∃u (B(x, u) ∧A(u, y)) → T2(x, y)

It can be shown by an argument based on Ehrenfeucht-Fräıssé games that
M1 ⊓Rec M2 cannot be expressed by an FO sentence. ⊓⊔

Notice that the above theorem states that M1 ⊓Rec M2 is not expressible
in FO. In principle, it might be the case that if we restrict ourselves to the
intersection with respect to a smaller class of mappings, for example the class
of mappings specified by st-tgds, then we could obtain better expressibility re-
sults. The following proposition shows a negative result in this respect. This is
a corollary of the proof of Theorem 4.

Proposition 6. Let S be the class of mappings specified by st-tgds. Then there
are mappings M1 and M2 in S such that M1 ⊓S M2 does not exist.

9

This raises the question as to which language is expressive enough to specify the
intersection of two mappings specified by st-tgds. Below we provide an answer
to this question.

Theorem 5. Given two schema mappings M1 and M2 given by st-tgds, the
intersection M1 ⊓Rec M2 is expressible by an Existential Second-Order logic
(ESO) formula.

Proof (sketch). Let S be the source schema of M1 and M2, and Ŝ a copy of
schema S. Moreover, let M′

1 and M′
2 be respective maximum recoveries of M1

and M2. One can show (see Appendix I) that the composition M1 ◦M′
1 can be

expressed as an FO formula:

∀x1(ϕ1(x1) → ψ1(x1)) ∧ . . . ∧ ∀xn(ϕn(xn) → ψn(xn))

where ϕi(xi) and ψi(xi) are FO formulas over S and Ŝ, respectively. Similarly,
M2 ◦ M′

2 can be expressed as ∀y1(α1(y1) → β1(y1)) ∧ . . . ∧ ∀ym(αm(ym) →
βm(ym)). The formula representing the intersection is based on the construction
in the proof of Theorem 3, thus we need to show how to express the transitive
closure of M1 ◦ M′

1 ∪ M2 ◦ M′
2. For this we use an intermediate schema S̃

constructed as follows: for every n-ary relation R of S, we include an (n+1)-ary

relation R̃ in S̃. The idea is that an atom R̃(a, g) will represent the atom R(a)
in the generation g of the computation of the transitive closure. Now, to define
the intersection, we use an ESO formula of the form

∃S̃ ∃s ∃ zero (Ωs ∧ΩR̃ ∧ΩE
R̃
)

where ∃S̃ denotes an existential quantification over all relation symbols in S̃, s
is a function symbol, and zero a first order variable. The rest of the formulas
is constructed as follows: Ωs is the formula ∀x∀y

(
(s(x) = s(y) → x = y) ∧

¬(s(x) = x) ∧ ¬(s(x) = zero)
)
that defines a successor function, with zero

as the first element; Ω
R̃

corresponds to the following FO formula (we assume
S = {R1, . . . , Rk} and zi is a tuple of variables of the same arity as Ri):

(
∀z1(R1(z1) → R̃1(z1, zero)) ∧ · · · ∧ ∀zk(Rk(zk) → R̃k(zk, zero))

)
∧

∀g

(n∧

i=1

∀xi
[
ϕ̃i(xi, g) → ψ̃i(xi, s(g))

]
∨

m∧

i=1

∀yi
[
α̃i(yi, g) → β̃i(yi, s(g))

])

where ϕ̃i(xi, g) is obtained from ϕi(xi) by replacing every relational symbol R(z)

by R̃(z, g), and ψ̃i(xi, s(g)) is obtained from ψi(xi) by replacing every relational

symbol R̂(z) by R̃(z, s(g)), and similarly for α̃i and β̃i. The intuition is that the

first line initializes the relations R̃i at generation 0, and the second line mimics
a formula representing (M1 ◦M

′
1 ∪M2 ◦M

′
2)

+ over schema S̃. Finally, ΩE
R̃

just
extracts the target relations at some generation g of the transitive closure:

∃g
(
∀z1(R̃1(z1, g) → R̂1(z1)) ∧ · · · ∧ ∀zk(R̃k(zk, g) → R̂k(zk))

)
. ⊓⊔

10

Example 2. Recall the mappings M1 and M2 from Example 1. Composed with
their maximum recoveries, they have the following form (see [4]):

M1 ◦M′
1 = {S(x1, x2) → Ŝ(x1, x2)} and

M2 ◦M
′
2 = {S(x1, x2) → Ŝ(x1, x2) ∨ (x1 = x2 ∧ Q̂(x1)),

Q(x1) → Ŝ(x1, x1) ∨ Q̂(x1)}.

The intersection M1 ⊓Rec M2 is expressed by the following ESO formula:

∃S̃∃Q̃∃s∃ zero
(
∀x∀y

(
(s(x) = s(y) → x = y) ∧ s(x) 6= x ∧ s(x) 6= zero

)
∧

∀x1∀x2
(
S(x1, x2) → S̃(x1, x2, zero)

)
∧ ∀x

(
Q(x) → Q̃(x, zero)

)
∧

∀g

(
∀x1∀x2

(
S̃(x1, x2, g) → S̃(x1, x2, s(g))

)
∨

[
∀x1∀x2

(
S̃(x1, x2, g) → S̃(x1, x2, s(g)) ∨ (x1 = x2 ∧ Q̃(x1, s(g)))

)
∧

∀x1∀x2
(
Q̃(x1, g) → S̃(x1, x1, s(g)) ∨ Q̃(x1, s(g))

)])
∧

∃g′
(
∀x1∀x2(S̃(x1, x2, g′) → Ŝ(x1, x2)) ∧ ∀x(Q̃(x, g′) → Q̂(x))

))

6 Conclusion

In this work, we have introduced two new operators union and intersection on
schema mappings. We have proved that these operators allow us to define a
lattice w.r.t. the order �inf (up to ≡inf -equivalence) for the mappings in Rec

(i.e., mappings having a maximum recovery). In particular, we have shown that
the union and intersection always exist for mappings in Rec. When restricting
us to the simple case of mappings specified by st-tgds it has turned out that
the intersection operator is considerably more difficult to handle than the union
operator. More specifically, the union of two mappings specified by st-tgds can
again be specified by a set of st-tgds. In contrast, First-Order logic (FO) does in
general not suffice to express the intersection of such mappings.

A lot of interesting research questions have been left for future work. First of
all, while our definitions of ⊔ and ⊓ are applicable to arbitrary mappings, we have
restricted ourselves to the mappings in Rec for investigating the questions of
existence, expressiveness, and computability of ⊔ and ⊓. We would like to extend
this study to arbitrary mappings. As has been illustrated in Proposition 5, such
an extension may even require an adaptation of the �inf -relation.

Recall that in Theorem 5 we have shown that ESO is expressive enough
to specify the intersection of two mappings given by sets of st-tgds. Further
analysis is required to determine if a smaller fragment of ESO would also suffice.
In addition it would be interesting to identify restrictions on the st-tgds such
that (some fragment of) FO is expressive enough for expressing the intersection
of mappings specified by such restricted st-tgds.

Finally, we would also like to extend our study to further set operators on
schema mappings. Above all, we would like to study the complement of a map-
ping M (i.e., a mapping that transfers all the source information not transferred
by M) and, more generally, the set difference of two mappings M and N (i.e., a

11

mapping that transfers all the source information that is transferred by M but
not by N). Overall, we think that the union and intersection operators can be
crucial in not only defining operators such as difference and complement, but in
laying the foundation to a framework of similar operators on schema mappings.

References

1. M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Foundations of schema mapping
management. In Proc. PODS, pages 227–238, 2010.

2. Marcelo Arenas, Ronald Fagin, and Alan Nash. Composition with target con-
straints. In Proc. ICDT’10, ACM International Conference Proceeding Series,
pages 129–142. ACM, 2010.

3. Marcelo Arenas, Jorge Pérez, Juan L. Reutter, and Cristian Riveros. Composition
and inversion of schema mappings. SIGMOD Record, 38(3):17–28, 2009.

4. Marcelo Arenas, Jorge Pérez, and Cristian Riveros. The recovery of a schema
mapping: Bringing exchanged data back. ACM Trans. Database Syst., 34(4), 2009.

5. P. Bernstein. Applying model management to classical meta data problems. In
Proc. CIDR, 2003.

6. P. Bernstein and S. Melnik. Model management 2.0: manipulating richer mappings.
In Proc. SIGMOD, pages 1–12, 2007.

7. R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing schema mappings:
Second-order dependencies to the rescue. TODS, 30(4):994–1055, 2005.

8. Ronald Fagin. Inverting schema mappings. ACM Trans. Database Syst., 32(4),
2007.

9. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

10. Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Reverse
data exchange: Coping with nulls. ACM Trans. Database Syst., 36(2):11, 2011.

11. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows up: from
research prototype to industrial tool. In Proc. SIGMOD, pages 805–810, 2005.

12. Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. PODS,
pages 233–246. ACM, 2002.

13. Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
14. Jayant Madhavan and Alon Y. Halevy. Composing mappings among data sources.

In Proc. VLDB’03, pages 572–583, 2003.
15. Sergey Melnik. Generic Model Management: concepts and Algorithms, volume 2967

of LNCS. Springer, 2004.
16. Alan Nash, Philip A. Bernstein, and Sergey Melnik. Composition of mappings

given by embedded dependencies. ACM Trans. Database Syst., 32(1):4, 2007.
17. Jorge Pérez. Schema Mapping Management in Data Exchange Systems. PhD

thesis, Escuela de Ingenieŕıa, Pontificia Universidad Católica de Chile, 2011.

12

A Preliminary tools for maximum recoveries

In this section we reproduce some results presented in [4, 1, 17] as well as some
new results about maximum recoveries and their relationship with the order
�inf.

The first result is a characterization for maximum recoveries proved in [17].

Lemma 1 ([17]). Let M be a total mapping that has a maximum recovery, and
let M′ be a maximum recovery of M. Then for every pair of instances I,K, it
holds that SolM(K) ⊆ SolM(I) if and only if (I,K) ∈ M ◦M′

The following result was provided in [4] as necessary and sufficient condition
for a mapping to have a maximum recovery. To formulate it we need to introduce
the notion of witness solution. We say that J is a witness solution of I under a
mapping M if J ∈ SolM(I) and for every other instance I ′ if J ∈ SolM(I ′) then
SolM(I) ⊆ SolM(I ′).

Lemma 2 ([4]). A mapping M has a maximum recovery if and only if every
source instance has a witness solution under M.

The following is a characterization of the order �inf for mappings that have
maximum recoveries.

Lemma 3 ([1]). Let M1 and M2 be mappings that have a maximum recovery.
Then M2 �inf M1 if and only if for every pair of instances I,K, if SolM1

(K) ⊆
SolM1

(I) then SolM2
(K) ⊆ SolM2

(I).

It turns out that the “only if” direction of Lemma 3 holds in general (not
restricted to mappings that have a maximum recovery).

Lemma 4. Let M1 and M2 be mappings such that M2 �inf M1. Then for ev-
ery pair of instances I,K, if SolM1

(K) ⊆ SolM1
(I), then SolM2

(K) ⊆ SolM2
(I).

Proof. Assume that SolM1
(K) ⊆ SolM1

(I) and let J ∈ SolM2
(K). SinceM2 �inf

M1 we know that there exists a mapping N such that M2 = M1 ◦ N , and
thus (K,J) ∈ M1 ◦ N which implies that there exists an instance L such that
(K,L) ∈ M1 and (L, J) ∈ N . Given that SolM1

(K) ⊆ SolM1
(I) we know

that (I, L) ∈ M1 which implies that (I, J) ∈ M1 ◦ N and thus (I, J) ∈ M2.
Thus we have that if J ∈ SolM2

(K) then J ∈ SolM2
(I) which implies that

SolM2
(K) ⊆ SolM2

(I). ⊓⊔

We use the above results to prove the following.

Lemma 5. Let M1 be a total mapping that has a maximum recovery, and as-
sume that M′

1 is the maximum recovery of M1. Then we have that M2 �inf M1

if and only if M2 = M1 ◦M′
1 ◦M2.

13

Proof. If M2 = M1 ◦ M′
1 ◦ M2, then by definition we have M2 �inf M1.

Towards the opposite direction, assume that M2 is such that M2 �inf M1. We
first prove that M2 ⊆ M1 ◦ M′

1 ◦ M2. Let (I, J) ∈ M2. Given that M1 is a
total mapping and M′

1 is a recovery of M1, we have that (I, I) ∈ M1 ◦M
′
1 and

then (I, J) ∈ M1 ◦M
′
1 ◦M2.

We now prove thatM1◦M′
1◦M2 ⊆ M2. Let (I, J) ∈ M1◦M′

1◦M2. We need
to prove that (I, J) ∈ M2. Now, since (I, J) ∈ M1◦M

′
1◦M2 we know that there

exists an instanceK such that (I,K) ∈ M1◦M
′
1 and (K,J) ∈ M2. By Lemma 1

we know that SolM1
(K) ⊆ SolM1

(I). Moreover, given that M2 �inf M1, by
Lemma 4 we have that SolM2

(K) ⊆ SolM2
(I). Thus, since J ∈ SolM2

(K), we
have that J ∈ SolM2

(I) and then (I, J) ∈ M2 which was to be shown. ⊓⊔

B Proof of Proposition 1

Proof. We only prove the claim for the union operator. The intersection is treated
analogously. Suppose that in the setting of this proposition, N = M1 ⊔C M2

exists. Then we have M′
i ≡inf Mi �inf N for i ∈ {1, 2}. Now suppose that

there exists some N ′ with M′
i �inf N

′ for i ∈ {1, 2}. Then also Mi �inf N
′ for

i ∈ {1, 2} holds and, therefore, N �inf N
′. Thus, also N = M′

1⊔CM
′
2 holds. ⊓⊔

C Proof of Propositions 2 and 3

We begin by proving Proposition 3. In the proof we denote by Rec the class of
total mappings that have maximum recovery. Moreover, given disjoint schemas
T1 and T2 we consider the mapping M1 ⊕M2 from S to T1 ∪T2 defined as:

M1 ⊕M2 = {(I, J1 ∪ J2) | (I, J1) ∈ M1 and (I, J2) ∈ M2}.

Proof (of Proposition 3). Let T1 and T2 be disjoint schemas, M1 a mapping in
Rec from S to T1, and M2 a mapping in Rec from S to T2. We prove next that
M1 ⊕M2 is the union M1 ⊔Rec M2. We show first that M1 ⊕M2 is in Rec.
Notice that M1⊕M2 is a total mapping (given that M1 and M2 is total), thus
we only need to prove that M1 ⊕M2 has a maximum recovery. For this we use
Lemma 2 that characterizes mappings that have maximum recovery by using the
notion of witness solution. Let I be an instance of S, and let J1 be the witness
solution of I under M1 and J2 the witness solution of I under M2 (we know
that they exist since M1 and M2 are in Rec). We claim that J1∪J2 is a witness
solution of I under M1 ⊕M2. Thus, let I

′ be an instance such that J1 ∪ J2 ∈
SolM1⊕M2

(I ′). We need to prove that SolM1⊕M2
(I) ⊆ SolM1⊕M2

(I ′). Given
that J1 ∪ J2 ∈ SolM1⊕M2

(I ′), and by the construction of M1 ⊕M2, we know
that J1 ∈ SolM1

(I ′) and J2 ∈ SolM2
(I ′), and therefor, SolM1

(I) ⊆ SolM1
(I ′)

and SolM2
(I) ⊆ SolM2

(I ′). Now, let K ∈ SolM1⊕M2
(I). By the construction of

M1⊕M2 we know that K = K1 ∪K2 with K1 ∈ SolM1
(I) and K2 ∈ SolM2

(I).
Given that SolM1

(I) ⊆ SolM1
(I ′) we obtain that K1 ∈ SolM1

(I ′), and by a
similar argument we have that K2 ∈ SolM2

(I ′) which implies that K1 ∪ K2 ∈

14

SolM1⊕M2
(I ′). This completes the proof that SolM1⊕M2

(I) ⊆ SolM1⊕M2
(I ′),

and then J1 ∪ J2 is a witness solution of I. From Lemma 2, we conclude that
M1 ⊕M2 has a maximum recovery and then M1 ⊕M2 is in Rec.

We prove now that M1 �inf M1 ⊕ M2. Consider the mapping N1 from
T1 ∪T2 to T1 defined as follows:

N1 = {(J1 ∪ J2, J1) | J1 ∈ Inst(T1) and J2 ∈ Inst(T2)}.

We prove now that (M1 ⊕ M2) ◦ N1 = M1. In order to prove that M1 ⊆
(M1 ⊕ M2) ◦ N1 let (I, J1) ∈ M1. Given that M2 is a total mapping, then
we know that there exists an instance J2 such that (I, J2) ∈ M2. Then we
have that (I, J1 ∪ J2) ∈ M1 ⊕ M2. Moreover, (J1 ∪ J2, J1) ∈ N1 and thus
(I, J1) ∈ (M1 ⊕ M2) ◦ N1. This proves that M1 ⊆ (M1 ⊕ M2). Assume now
that (I, J1) ∈ (M1 ⊕ M2) ◦ N1. Then we know that there exists an instance
L such that (I, L) ∈ M1 ⊕ M2 and (L, J1) ∈ N1. By the definition of N1 we
know that there exists an instance J2 ∈ Inst(T2) such that L = J1 ∪ J2. Thus,
since (I, J1 ∪ J2) ∈ M1 ⊕M2 we have that (I, J1) ∈ M1 and (I, J2) ∈ M2. We
have proved that if (I, J1) ∈ (M1 ⊕M2) ◦ N1 then (I, J1) ∈ M1 which proves
that (M1 ⊕ M2) ◦ N1 ⊆ M1. Thus, since (M1 ⊕ M2) ◦ N1 = M1 we have
that M1 �inf M1 ⊕M2. By using a symmetrical argument one can prove that
M2 �inf M1 ⊕M2.

To complete the proof of Proposition 3 we only need to show that if N is a
mapping in Rec such that M1 �inf N and M2 �inf N then M1 ⊕M2 �inf N .
Given that M1 ⊕ M2 and N are in Rec we can use the characterization
in Lemma 3. Thus, in order to prove that M1 ⊕ M2 �inf N we need to
show that for every pair of instances I and K, if SolN (I) ⊆ SolN (K) then
SolM1⊕M2

(I) ⊆ SolM1⊕M2
(K). Thus, assume that SolN (I) ⊆ SolN (K) and let

J ∈ SolM1⊕M2
(I). By definition of M1 ⊕M2 we know that J = J1 ∪ J2 with

J1 ∈ SolM1
(I) and J2 ∈ SolM2

(I). Now notice that M1 is also in Rec, then
since M1 �inf N and SolN (I) ⊆ SolN (K), we have that SolM1

(I) ⊆ SolM1
(K).

Similarly we can conclude that SolM2
(I) ⊆ SolM2

(K). Thus, given that J1 ∈
SolM1

(I) and J2 ∈ SolM2
(I) we have that J1 ∈ SolM1

(K) and J2 ∈ SolM2
(K),

and then J = J1∪J2 ∈ SolM1⊕M2
(K). We have shown that SolN (I) ⊆ SolN (K)

implies SolM1⊕M2
(I) ⊆ SolM1⊕M2

(K). Finally, by applying Lemma 3 we obtain
M1 ⊕M2 �inf N .

Assume now that M1 is a mapping in Rec from S to T1 and M2 is a
mapping in Rec from S to T2 such that T1 and T2 are not necessarily disjoint.
Then consider a copy T̂2 of schema T2 disjoint of T1, and the mapping

M̂2 = {(I, Ĵ) | (I, J) ∈ M2 and Ĵ the copy of J over T̂2}.

It is straightforward to show that M̂2 ≡inf M2 and thus, given that M1⊕M̂2 is

the union M1 ⊔Rec M̂2, we have that M1 ⊕M̂2 is also the union M1 ⊔Rec M2.
⊓⊔

We can now prove Proposition 2.

15

Proof (of Proposition 2). Let M1 = (S,T1, Σ1) and M2 = (S,T2, Σ2) be two

mappings specified by st-tgds. Let T̂2 be a copy of T2 such that T̂2 is disjoint
with T1, and Σ̂2 be the set that results from Σ2 by replacing every relation name
in T2 by its copy in T̂2. Now consider the mapping M′ = (S,T1∪ T̂2, Σ1∪ Σ̂2).

We show next that M′ = M1 ⊕ M̂2 where M̂2 is the mapping from S to T̂2

specified by Σ̂2.

Given an instance J over schema T1∪ T̂2 we denote by JT1
the restriction of

J to schema T1 and by J
T̂2

the restriction of J to schema T̂2. Now, assume that

(I, J) ∈ M′. Then (I, J) |= Σ1 and (I, J) |= Σ̂2. Moreover, since T1 and T̂2 are

disjoint, we have that (I, JT1
) |= Σ1 and (I, J

T̂2
) |= Σ̂2. Thus, (I, JT1

) ∈ M1,

(I, J
T̂2

) ∈ M̂2 and J = JT1
∪ J

T̂2
, which implies that (I, J) ∈ M1 ⊕ M̂2. The

other direction is similar.

It is straightforward that mapping M′ can be constructed from M1 and M2

in linear time. ⊓⊔

D Proof of Proposition 5

Proof. Consider M defined as {(I1, J1), (I2, J1), (I2, J2), (I3, J2)}. M has no
maximum recovery, since there is no witness solution for I2. We will make a
transition from M⊕M to M⊕M̂, where M̂ is obtained from M by renaming
apart the target relations. As mentioned in the proof of Proposition 3, M̂ ≡inf M
holds.

We observe that M◦N = M⊕ M̂ cannot be satisfied: Indeed, M⊕ M̂ =
{(I1, J1 ∪ Ĵ1), (I2, J1 ∪ Ĵ1), (I2, J1 ∪ Ĵ2), (I2, J2 ∪ Ĵ1), (I2, J2 ∪ Ĵ2), (I3, J2 ∪ Ĵ2)},
and a simple enumeration of all 16 possible images for J1 resp. J2 (24 possible
sets of target instances) shows that no mapping N can accommodate for the

equality M◦N = M⊕M̂.

In the other direction, the mapping N ′ = {(J1∪Ĵ1, J1), (J2∪Ĵ2, J2)} satisfies

the equality M = (M⊕M̂) ◦ N ′. ⊓⊔

E Proof of Proposition 4

In [1] it was shown that given mappings M1 and M2 specified by st-tgds, check-
ing whetherM1 �inf M2 can be done in NEXPTIME. Thus given three mappings
M1, M2 and M3 specified by st-tgds, in order to check whether M3 is the union
of M1 and M2 w.r.t. the class of mappings specified by st-tgds, one can do the
following:

1. First construct mapping M′ described in the proof of Proposition 2.

2. Then check that M3 �inf M
′ and that M′ �inf M3.

Step (1) can be done in linear time, and (2) can be done in NEXPTIME [1].

16

F Proof of Theorem 3

Proof. Let M1 and M2 be mappings with source schema S, and let M′
1 and

M′
2 be the maximum recoveries of M1 and M2, respectively. To simplify the

notation, let N = (M1 ◦ M′
1) ∪ (M2 ◦ M′

2). We prove next that N+ satisfies
the following properties:

(1) N+ �inf M1 and N+ �inf M2, and
(2) if M is an arbitrary mapping such that M �inf M1 and M �inf M2, then

M �inf N+.

Notice that (1) and (2) implies that N+ is the intersection M1 ⊓All M2, where
All is the class of all mappings.

We first prove (1). By using Lemma 5, in order to prove (1) it is enough to
show that

M1 ◦M
′
1 ◦ N

+ = N+ and M2 ◦M
′
2 ◦ N

+ = N+.

We begin by proving M1 ◦M
′
1 ◦ N

+ = N+. Consider first the inclusion N+ ⊆
M1◦M′

1◦N
+ and let (I, J) ∈ N+. Then, sinceM1 is total andM′

1 is a recovery
of M1, we have that (I, I) ∈ M1 ◦M

′
1, and thus (I, J) ∈ M1 ◦M

′
1 ◦N

+ which
was to be shown. In order to prove the inclusionM1◦M

′
1◦N

+ ⊆ N+, let (I, J) ∈
M1 ◦M′

1 ◦ N
+. Then there exists an instance K such that (I,K) ∈ M1 ◦M′

1

and (K,J) ∈ N+. Given that M1 ◦M
′
1 ⊆ N ⊆ N+ we have that (I,K) ∈ N+.

Finally, since (I,K) ∈ N+, (K,J) ∈ N+ and N+ is transitive, we obtain that
(I, J) ∈ N+ which was to be shown. The equality M1 ◦ M′

1 ◦ N+ = N+ is
proved similarly.

We now prove (2). Let M be a mapping such that M �inf M1 and M �inf

M2. We next prove that N+ ◦M = M which implies that M �inf N+. In order
to prove that N+ ◦M = M it is enough to show that for every positive integer
k it holds that N k ◦ M = M. We prove this by induction in k. For the base
case, we need to prove that N ◦M = M. Given that M �inf M1 by Lemma 5,
we know that M1 ◦M

′
1 ◦M = M. Similarly we have that M2 ◦M

′
2 ◦M = M.

This implies that

N ◦M =

(
(M1 ◦M

′
1) ∪ (M2 ◦M

′
2)

)
◦M

=

(
M1 ◦M

′
1 ◦M

)
∪

(
M2 ◦M

′
2 ◦M

)

= M∪M

= M

and thus, the base case holds. Now as induction hypothesis, assume that N k ◦
M = M, and consider N k+1 ◦ M. By definition we have that N k+1 ◦ M =
N k ◦ N ◦M. We also know that N ◦M = M and thus N k+1 ◦M = N k ◦M.
Finally, by induction hypothesis we know that N k ◦M = M, and thus we obtain
that N k+1 ◦M = M which completes the proof of (2).

17

Notice that we have shown that N+ is the intersection M1 ⊓All M2. Thus,
in order to prove that N+ is the intersection M1 ⊓Rec M2 we only need to
prove that N+ is in Rec. We prove next that N+ is its own maximum recovery.
First, given that M1 is a total mapping and M′

1 is a maximum recovery of M1,
then for every instance I of S, we have that (I, I) ∈ M1 ◦ M′

1 and similarly
(I, I) ∈ M2 ◦ M′

2. This implies that for every I in S we have (I, I) ∈ N and
thus (I, I) ∈ N+. Moreover, N+ ◦N+ = N+ (since N+ is a transitive relation),
and thus (I, I) ∈ N+ ◦ N+. This implies that N+ is a recovery of N+.

To complete the proof we use a characterization provided in [4]. It was proved
in [4] (Proposition 3.83) that for a total mapping M, the mapping M′ is a
maximum recovery of M if and only if M′ is a recovery of M and M◦M′◦M =
M. We already know that N+ is a recovery of N+. Moreover, since N+ is a
transitive relation, we have thatN+◦N+◦N+ = N+ and thusN+ is a maximum
recovery of N+. Thus we have proved that N+ is in Rec which completes the
proof of the Theorem. ⊓⊔

G Proof of Theorem 4

Recall that we are assuming that instances are constructed from a countably
infinite set D. We also assume that all formulas used to specify mappings are
domain independent. We also need the following technical definition. We say
that a mapping M is closed under isomorphisms, if for every (I, J) ∈ M and
injective function f : dom(I) ∪ dom(J) → D, it holds that (f(I), f(J)) ∈ M.

Before formally proving Theorem 4 we introduce some terminology and prove
some intermediate lemmas regarding M1 and M2.

Definition 3. Let M be a mapping from S to T.

– We say that M is invariant under source-isomorphisms if for every pair
of isomorphic instances I1 and I2 of schema S, it holds that SolM(I1) =
SolM(I2).

– We say that M is invariant under target-isomorphisms if for every instance
I of schema S and pair of isomorphic instances J1 and J2 of schema T, it
holds that J1 ∈ SolM(I) if and only if J2 ∈ SolM(I).

The following simple result shows the relationship between invariance under
source and target isomorphisms.

Lemma 6. Let M be a mapping from S to T and assume that M is closed
under isomorphisms. Then M is invariant under source isomorphism if and
only if M is invariant under target isomorphisms.

3 Proposition 3.8 uses the notion of reduced recovery to provide the characterization.
The notion of reduced recovery coincides with the notion of recovery for total map-
pings which is the case that we are considering in this proof

18

Proof. Assume first that M is invariant under source isomorphisms, and let
J1 ∈ SolM(I). Consider a isomorphic copy J2 of J1 and an isomorphism f such
that J2 = f(J1). Let f

′ be the extension of f over dom(I) such that for every
a ∈ dom(I)rdom(J1), the value f

′(a) is a fresh value (not in dom(I)∪dom(J1)∪
dom(J2)). Then (f ′(I), f ′(J1)) is isomorphic to (I, J1) and then (f ′(I), f ′(J1)) ∈
M (since M is closed under isomorphisms). Moreover f ′(J1) = f(J1) = J2.
Thus we have that J2 ∈ SolM(f ′(I)). Finally, since I is isomorphic to f ′(I), and
given that M is closed under source isomorphisms, we have that J2 ∈ SolM(I).
Thus we have shown that if J1 ∈ SolM(I) and J2 is an isomorphic copy of J1,
then J2 ∈ SolM(I). A symmetric argument shows that if J2 ∈ SolM(I) then
J1 ∈ SolM(I) implying that M is invariant under target isomorphisms.

For the other direction, assume that M is invariant under target isomor-
phisms, and let I1 and I2 be two isomorphic source instances of S and f the
isomorphism between I1 and I2, that is, I2 = f(I1). Now assume that J ∈
SolM(I1) and consider f ′ as the extension of f over dom(J) such that for ev-
ery a ∈ dom(J) r dom(I1), the value f ′(a) is a fresh value (not in dom(I1) ∪
dom(I2)∪dom(J)). Then (f ′(I1), f

′(J)) is isomorphic to (I1, J) and thus f ′(J) ∈
SolM(f ′(I1)). Moreover f ′(I1) = f(I1) = I2. Thus we have that f

′(J) ∈ SolM(I2),
or equivalently (I2, f

′(J)) ∈ M. Finally, since f ′(J) is isomorphic to J , and
given that M is closed under target isomorphisms, we have that (I2, J) ∈ M,
and thus J ∈ SolM(I2). Thus we have shown that SolM(I1) ⊆ SolM(I2). A
symmetric argument can be used to show that SolM(I2) ⊆ SolM(I1), and then
SolM(I1) = SolM(I2) which proves that M is invariant under source isomor-
phisms. ⊓⊔

Consider the schemas S = {A(·, ·), B(·, ·)},T1 = {T1(·, ·)}, andT2 = {T2(·, ·)}.
In the rest of the proof, we will use mappings M1 and M2 from S to T1 and
from S to T2, respectively, specified by the following st-tgds:

M1 : ∃u (A(x, u) ∧B(u, y)) → T1(x, y) (1)

M2 : ∃u (B(x, u) ∧A(u, y)) → T2(x, y) (2)

The following lemma shows that any mapping which is less informative than
both M1 and M2 defined above, must be invariant under source isomorphisms.

Lemma 7. Let M1 and M2 be the mappings (1) and (2), respectively. If M is
a mapping which is closed under isomorphisms and such that M �inf M1 and
M �inf M2, then M is invariant under source isomorphisms.

Proof. Let M be a mapping such that M �inf M1 and M �inf M2, and
consider two isomorphic instances I1 and I2 of schema S. We need to show that
SolM(I1) = SolM(I2). In the proof we assume that f is the isomorphism between
I1 and I2, that is, I1 = f(I2).

Consider first an instance I ′1 constructed from I1 as follows. Let g : dom(I1) →
D be an injective function such that for every element a ∈ dom(I1), the value
g(a) is a fresh element not present in dom(I1) ∪ dom(I2). Then we construct I ′1
as the set of facts:

I ′1 = {A(a, g(b)) | A(a, b) ∈ I1} ∪ {B(g(a), b) | B(a, b) ∈ I1}.

19

That is I ′1 is obtained from I1 by replacing elements in the second component
of relation A and in the first component of relation B, by fresh elements. It is
easy to see that SolM1

(I1) = SolM1
(I ′1). Just notice that buy the construction

of I1 we have that I |= ∃u (A(a, u) ∧ B(u, b)) for arbitrary elements a, b, if and
only if I1 |= ∃u (A(a, u) ∧ B(u, b)). Consider now an instance I ′′1 constructed
from I ′1 as follows. Let h : dom(I ′1) → D be an injective function such that for
every element in a ∈ dom(I1), the value h(a) is a fresh element not present in
dom(I1) ∪ dom(I2) ∪ dom(I ′1). Then we construct I ′′1 as the set of facts:

I ′′1 = {A(h(a), b) | A(a, b) ∈ I ′1} ∪ {B(a, h(b)) | B(a, b) ∈ I ′1}.

It is easy to prove that SolM2
(I ′1) = SolM2

(I ′′1). Just notice that by the con-
struction of I ′′1 we have that I ′1 |= ∃u (B(a, u) ∧ A(u, b)) for arbitrary elements
a, b, if and only if I ′′1 |= ∃u (B(a, u) ∧ A(u, b)). Finally, notice that I ′′1 can be
written in terms of I1 as the set of facts:

I ′′1 = {A(h(a), g(b)) | A(a, b) ∈ I1} ∪ {B(g(a), h(b)) | B(a, b) ∈ I1}.

Similarly as for I1, we construct two instances I ′2 and I ′′2 from I2 as follows.
The instance I ′2 is constructed as the set of facts:

I ′2 = {A
(
a, g(f−1(b))

)
| A(a, b) ∈ I2} ∪ {B

(
g(f−1(a)), b

)
| B(a, b) ∈ I2}.

Notice that, similarly as in the construction of I ′1, instance I
′
2 is obtained from

I2 by replacing every element a occurring in the second component of relation A
or in the first component of relation B, by a fresh element, in this case given by
g(f−1(a)). It is also easy to see that SolM1

(I2) = SolM1
(I ′2). Now to construct

I ′′2 we consider the following set of facts:

I ′′2 = {A
(
h(f−1(a)), b

)
| A(a, b) ∈ I ′2} ∪ {B

(
a, h(f−1(b))

)
| B(a, b) ∈ I ′2}.

It is easy to prove that SolM2
(I ′2) = SolM2

(I ′′2). Moreover, I ′′2 satisfies an addi-
tional property, namely, that I ′′2 = I ′′1 . To see that, notice I ′′2 can be written in
terms of I2 as the set of facts:

I ′′2 = {A
(
h(f−1(a)), g(f−1(b)

)
| A(a, b) ∈ I2} ∪

{B
(
g(f−1(a)), h(f−1(b))

)
| B(a, b) ∈ I2}.

Now since I1 = f(I2) and f is an isomorphism we have that I2 = f−1(I1), and
then A(a, b) ∈ I2 if and only if A(f−1(a), f−1(b)) ∈ I1, and B(a, b) ∈ I2 if and
only if B(f−1(a), f−1(b)) ∈ I1. This implies that we can write I ′′2 as

I ′′2 = {A
(
h(f−1(a)), g(f−1(b)

)
| A

(
f−1(a), f−1(b)

)
∈ I1} ∪

{B
(
g(f−1(a)), h(f−1(b))

)
| B

(
f−1(a), f−1(b)

)
∈ I1}.

Finally, since f is an isomorphism, we have that f−1 is just a renaming of the
elements in I1 and thus we can write I ′′2 as the set of facts

I ′′2 = {A(h(a), g(b)) | A(a, b) ∈ I1} ∪ {B(g(a), h(b)) | B(a, b) ∈ I1},

20

which implies that I ′′1 = I ′′2 .
So far we have constructed instances I ′1, I

′′
1 , I

′
2 and I ′′2 that satisfies the

following

SolM1
(I1) = SolM1

(I ′1) (3)

SolM2
(I ′1) = SolM2

(I ′′1) (4)

SolM1
(I2) = SolM1

(I ′2) (5)

SolM2
(I ′2) = SolM1

(I ′′2) (6)

plus the equality I ′′1 = I ′′2 .
Now consider mapping M. Since M �inf M1 we know that there exists a

mapping N1 such that M1 ◦ N1 = M. Then given that SolM1
(I1) = SolM1

(I ′1)
we know that SolM1◦N1

(I1) = SolM1◦N1
(I ′1), and thus, SolM(I1) = SolM(I ′1).

Moreover, since M �inf M2 we know that there exists a mapping N2 such that
M2 ◦ N2 = M. Then, from SolM2

(I ′1) = SolM2
(I ′′1) we obtain that SolM(I ′1) =

SolM(I ′′1). Thus we have that SolM(I1) = SolM(I ′1) = SolM(I ′′1). By a symmetric
argument it can be shown that SolM(I2) = SolM(I ′2) = SolM(I ′′2). Finally, since
SolM(I1) = SolM(I ′′1) and SolM(I2) = SolM(I ′′2), and given that I ′′1 = I ′′2 , we
obtain that SolM(I1) = SolM(I2) which was to be shown. ⊓⊔

From this last result and Lemma 6 we obtain the following corollary.

Corollary 1. Let M1 and M2 be the mappings (1) and (2), respectively. If M
is a mapping which is closed under isomorphisms and such that M �inf M1 and
M �inf M2, then M is invariant under target isomorphisms.

We almost have all the necessary ingredients to prove Theorem 4. We first
construct a family of mappings {C1, C2, . . .} that we later use in the proof. Let
S = {A(·, ·), B(·, ·)}. Define for every n ≥ 1 the sentence ϕn over S as:

ϕn : ∃x1∃y1 · · · ∃xn∃yn

[(n−1∧

i=1

A(xi, yi)∧B(yi, xi+1)

)
∧A(xn, yn)∧B(yn, x1)

]

That is, ϕn states that there exists an AB-cycle of length n. We consider now
for every n ≥ 1 a schema Tn = {P1(·), . . . , Pn(·)}, and the mapping Cn =
(S,Tn, Σn) where

Σn = { ϕ1 → ∃u P1(u)
...

ϕn → ∃u Pn(u) }.

(7)

Lemma 8. Let M1 and M2 be the mappings (1) and (2), respectively. For
every n ≥ 1 it holds that Cn �inf M1 and Cn �inf M2.

Proof. We consider first mapping M1. We need to prove that for every n ≥ 1
there exists a mapping N1 such that M1 ◦ N1 = Cn Consider for every n ≥ 1
the formula αn defined as:

αn : ∃x1 · · · ∃xn

[(n−1∧

i=1

T1(xi, xi+1)

)
∧ T1(xn, x1)

]

21

Then for the mapping N1 = (T,Tn, Γn) with Γn = {α1 → ∃uP1(u) , . . . , αn →
∃uPn(u)}, it is not difficult to prove that M1 ◦ N1 = Cn. To prove that Cn �inf

M2 we use a similar argument. ⊓⊔

We now have all the ingredients to prove Theorem 4.

Proof (of Theorem 4). Consider mappings M1 and M2 specified by (1) and (2),
respectively. Let M be a mapping from S to an arbitrary schema T such that M
is the intersection mapping for M1 and M2 w.r.t. Rec, that is M ≡inf M1⊓Rec

M2 and, in order to obtain a contradiction, assume that M is expressible in FO.
Thus there exists a sentence Φ in FO over schema S ∪T such that (I, J) ∈ M
if and only if (I, J) |= Φ. Notice that since M is expressible by an FO sentence,
then M is closed under isomorphisms.

In the proof we use the notion of Ehrenfeucht-Fräıssé game which charac-
terizes the expressibility of FO sentences [13]. Recall that S = {A(·, ·), B(·, ·)}.
Then for every n consider the instance ICn

over S constructed as follows. Let
a1, b1, . . . , an, bn be 2n different elements, then ICn

is the set of facts:

ICn
= {A(ai, bi) | 1 ≤ i ≤ n} ∪ {B(bi, ai+1) | 1 ≤ i ≤ n− 1} ∪ {B(bn, a1)}.

That is, ICn
is an AB-cycle of length n. Now by the properties of Ehrenfeucht-

Fräıssé games, we know that for every k there exists a value N such that the
duplicator has a winning strategy in the k-round Ehrenfeucht-Fräıssé game over
the instances ICN

and ICN+1
[13]. Moreover, if K is an instance such that

dom(K) ∩ dom(ICN
) = dom(K) ∩ dom(ICN+1

) = ∅ and the duplicator has a
winning strategy in the k-round Ehrenfeucht-Fräıssé game over the instances
ICN

and ICN+1
, then it is easy to see that the duplicator also has a winning

strategy in the k-round Ehrenfeucht-Fräıssé game over the instances (ICN
,K)

and (ICN+1
,K) (if the spoiler plays a value in dom(K) in some of the instances,

then the duplicator just play the same value in the other instance, and for all
values outside dom(K) the duplicator just repeat the strategy for the game over
instances ICN

and ICN+1
).

Now let k be the quantifier-rank of Φ, and let N be such that the duplica-
tor has a winning strategy in the k-round Ehrenfeucht-Fräıssé game over the
instances ICN

and ICN+1
. We show next that SolM(ICN

) = SolM(ICN+1
). As-

sume that J ∈ SolM(ICN
), that is (ICN

, J) ∈ M. Given that M �inf M1 and
M �inf M2 and since M is closed under isomorphisms, by Corollary 1 we know
that M is invariant under target isomorphisms. Let f : dom(J) → D be a
function that assigns a fresh element (not in dom(ICN

)∪dom(ICN+1
)∪dom(J))

to every element in dom(J). Since M is invariant under target isomorphisms
and (ICN

, J) ∈ M, we know that (ICN
, f(J)) ∈ M, and thus (ICN

, f(J)) |= Φ.
Now since dom(f(J)) ∩ dom(ICN

) = dom(f(J)) ∩ dom(ICN+1
) = ∅ we know

that the duplicator has a winning strategy in the k-round Ehrenfeucht-Fräıssé
game over the instances (ICN

, f(J)) and (ICN+1
, f(J)). By the properties of

Ehrenfeucht-Fräıssé games [13], this implies that Φ cannot distinguish between
instances (ICN

, f(J)) and (ICN+1
, f(J)), and then since (ICN

, f(J)) |= Φ we ob-
tain that (ICN+1

, f(J)) |= Φ, implying that (ICN+1
, f(J)) ∈ M. Finally, since

22

M is invariant under target isomorphisms, we obtain that (ICN+1
, J) ∈ M and

then J ∈ SolM(ICN+1
). This shows that SolM(ICN

) ⊆ SolM(ICN+1
). We can

use a similar argument to prove that SolM(ICN+1
) ⊆ SolM(ICN

), and then
SolM(ICN

) = SolM(ICN+1
). We show next that this leads to our desired contra-

diction.
Consider for every n the mapping Cn of Lemma 8. Notice that Cn is in Rec

for every n- Moreover, we know that Cn �inf M1 and Cn �inf M2, and then
Cn �inf M (since M is the intersection M1 ⊓Rec M2). In particular, CN+1 �inf

M, which implies that there exists a mapping N such that M◦N = CN+1. Thus,
since SolM(ICN

) = SolM(ICN+1
), we have that SolM◦N (ICN

) = SolM◦N (ICN+1
)

which implies that SolCN+1
(ICN

) = SolCN+1
(ICN+1

). Now consider the instance
J = {TN+1(a)} of schema TN+1, with a an arbitrary element. Then by the defi-
nition of mapping CN+1 we know that J ∈ SolCN+1

(ICN+1
) but J /∈ SolCN+1

(ICN
)

thus contradicting the fact that SolCN+1
(ICN

) = SolCN+1
(ICN+1

). This completes
the proof of the Theorem. ⊓⊔

H Proof Proposition 6

Let M1 and M2 be the mappings used in the proof of Theorem 4. Recall also
the mappings Cn used in the proof of the same theorem. Notice that for every n
the mapping Cn is specified by st-tgds. Moreover Cn �inf M1 and Cn �inf M2. It
was shown in the proof of Theorem 4 that there is no mapping N expressible in
FO such that Cn �inf N for every n. Thus, in particular, there is no mapping N
specified by st-tgds such that Cn �inf N for every n. This is enough to conclude
that M1 ⊓S M2 does not exist.

I Proof of Theorem 5

We will need a lemma about FO expressibility of FO-to-CQ mappings com-
posed with their maximum recoveries:

Lemma 9. Let M = (S,T, Σ) be an st-mapping where Σ is a set of FO-to-CQ

dependencies. There exists a set Σ∗ of FO-to-FO dependencies from S to Ŝ of
the form α(x) → α̂(x) such that, for every maximum recovery M′ of M it holds
that (I1, I2) ∈ M ◦M′ iff (I1, Î2) |= Σ∗.

Proof. Let M = (S,T, Σ) be an st-mapping where Σ is a set of FO-to-CQ de-
pendencies and let M′ = (T,S, Σ′) be the output of the algorithm Maximum-

Recovery(M). Since for every maximum recovery M′′ of M we know that the
composition M◦M′′ equals M◦M′, it is enough to show that the statement of
the proposition holds forM◦M′. For every σ ∈ Σ of the form ϕ(x) → ∃yψ(x,y),
let Cψ(x,y) be the set generated in Step 2 of the algorithm. Recall that the set Σ′

is built by considering the dependencies ψ(x,y)∧C(x) → α(x) where α(x) is the
disjunction of the formulas in Cψ(x,y). Now let Σ∗ be a set of dependencies con-
structed as follows. For every dependency σ ∈ Σ of the form ϕ(x) → ∃yψ(x,y)

23

add to Σ∗ the dependency α(x) → α̂(x), where α(x) is the disjunction of all the
formulas in Cψ(x,y). We claim that for every pair of instances I1, I2 ∈ Inst(S) it

holds that (I1, I2) ∈ M ◦M′ if and only if (I1, Î2) |= Σ∗.

We show first that if (I1, Î2) |= Σ∗ then (I1, I2) ∈ M◦M′. Let (I1, Î2) ∈ Σ∗.
In order to show that (I1, I2) ∈ M ◦ M′ we have to prove that there ex-
ists an instance J such that (I1, J) ∈ M and (J, I2) ∈ M′. We claim now
that chaseΣ(I1) is such an instance. Let σ′ be a formula in Σ′ of the form
∃yψ(x,y) ∧ C(x) → α(x). We show now that (chaseΣ(I1), I2) |= σ′. Assume
that there exists a tuple a, such that chaseΣ(I1) |= ∃yψ(a,y) ∧ C(a) holds.
We have to show that I2 |= α(a). In the proof of Theorem 7.3 [4] it is proved
that (chaseΣ(I1), I1) |= Σ′. Therefore, we know that (chaseΣ(I1), I1) |= σ′,
and hence, I1 |= α(a) must hold. Notice that α(x) → α̂(x) is a dependency
in Σ∗ and then, since (I1, Î2) |= Σ∗, we have that (I1, Î2) |= α(x) → α̂(x)
and, consequently, I2 |= α̂(a), which was to be shown. We have proved that
if σ′ is a dependency in Σ′ then (chaseΣ(I1), I2) |= σ′, and thus, we con-
clude that (chaseΣ(I1), I2) ∈ M′. Finally, since (I1, chaseΣ(I1)) ∈ M and
(chaseΣ(I1), I2) ∈ M′ we obtain that (I1, I2) ∈ M ◦M′.

We show now that if (I1, I2) ∈ M ◦ M′ then (I1, Î2) |= Σ∗. Let (I1, I2) ∈

M ◦ M′, we have to show that for every σ in Σ∗, it holds that (I1, Î2) |= σ.
Notice that since (I1, I2) ∈ M ◦ M′, there exists an instance, say J∗, such
taht (I1, J

∗) ∈ M and (J∗, I2) ∈ M′. Now, let α(x) → α̂(x) be a dependency
in Σ∗, and assume that I1 |= α(a) for some tuple a of elements in dom(I1).

We have to show that Î2 |= α̂(a). We know that α(a) is the disjunction of
the formulas in Cφ(x,y), where ∃yψ(x,y) is the consequent of a dependency
in Σ. Since I1 |= α(a) we know that there exists a disjunct β(x) ∈ Cψ(x,y)
such that I1 |= β(a). From Claim A.2 in the Electronic Appendix A.1 to [4]
we know that β(x) → ∃yψ(x,y) is a logical consequence of Σ, we obtain that
J∗ |= ∃yψ(a,y). Moreover, since a is a tuple of elements in dom(I1) it holds
that J∗ |= ∃yψ(a,y) ∧ C(a). Notice that formula yψ(a,y) ∧ C(a) → α(x) is
in Σ′. Then since (J, I2) ∈ M′ and yψ(a,y) ∧ C(a) → α(x), we obtain that

I2 |= α(a). Thus we have that Î2 |= α̂(a) which was to be shown. We have shown

that, if σ is a dependency in Σ∗ then (I1, Î2) |= σ and therefore, (I1, I2) |= Σ∗

thus completing the proof of the lemma. ⊓⊔

Now we can prove the Theorem:

Proof of Theorem 5.
Let S be the source schema of M1 and M2, and Ŝ a copy of schema S.

Moreover, let M′
1 and M′

2 be respective maximum recoveries of M1 and M2.
One can show (See Appendix I) that the composition M1 ◦M′

1 can be expressed
as an FO formula:

∀x1(ϕ1(x1) → ψ1(x1)) ∧ . . . ∧ ∀xn(ϕn(xn) → ψn(xn))

were ϕi(xi) and ψi(xi) are FO formulas over S and Ŝ, respectively. Similarly,
M2 ◦ M′

2 can be expressed as ∀y1(α1(y1) → β1(y1)) ∧ . . . ∧ ∀ym(αm(ym) →
βm(ym)). The formula representing the intersection is based on the construction

24

in the proof of Theorem 3, thus we need to show how to express the transitive
closure of M1 ◦ M′

1 ∪ M2 ◦ M′
2. For this we use an intermediate schema S̃

constructed as follows: for every n-ary relation R of S, we include an (n+1)-ary

relation R̃ in S̃. The idea is that an atom R̃(a, g) will represent the atom R(a)
in the generation g of the computation of the transitive closure. Now, to define
the intersection, we use an ESO formula of the form

∃S̃ ∃s ∃ zero (Ωs ∧ΩR̃ ∧ΩE
R̃
)

where ∃S̃ denotes an existential quantification over all relation symbols in S̃, s
is a function symbol, and zero a first order variable. The rest of the formulas
are constructed as follows: Ωs is the formula ∀x∀y

(
(s(x) = s(y) → x = y) ∧

¬(s(x) = x) ∧ ¬(s(x) = zero)
)
that defines a successor function, with zero

as the first element; Ω
R̃

corresponds to the following FO formula (we assume
S = {R1, . . . , Rk} and zi is a tuple of variables of the same arity as Ri):

(
∀z1(R1(z1) → R̃1(z1, zero)) ∧ · · · ∧ ∀zk(Rk(zk) → R̃k(zk, zero))

)
∧

∀g

(n∧

i=1

∀xi
[
ϕ̃i(xi, g) → ψ̃i(xi, s(g))

]
∨

m∧

i=1

∀yi
[
α̃i(yi, g) → β̃i(yi, s(g))

])

where ϕ̃i(xi, g) is obtained from ϕi(xi) by replacing every relational symbol R(z)

by R̃(z, g), and ψ̃i(xi, s(g)) is obtained from ψi(xi) by replacing every relational

symbol R̂(z) by R̃(z, s(g)), and similarly for α̃i and β̃i. The intuition is that the

first line initializes the relations R̃i at generation 0, and the second line mimics
a formula representing (M1 ◦M′

1 ∪M2 ◦M′
2)

+ over schema S̃. Finally, ΩE
R̃

just
extracts the target relations at some generation g of the transitive closure:

∃g
(
∀z1(R̃1(z1, g) → R̂1(z1)) ∧ · · · ∧ ∀zk(R̃k(zk, g) → R̂k(zk))

)
.

Before we prove the correctness of this ESO encoding, let us fix some termi-
nology concerning the intermediate schema S̃:

– We say that an instance K of schema S resp. Ŝ is encoded in S̃ at depth g,
if each atom R(x) of K is transformed into an atom R̃(x, g) in the instance

of S̃.
– Conversely, given an instance K̃ of S̃, we say that an instance K of the

schema S resp. Ŝ is extracted from K̃ at depth g, if for every atom R̃(x, g) ∈

K̃, there is an atom R(x) resp. R̂(x) in K. (As noticed above, the formula

ΩE
R̃

specifies the extraction of an instance of schema Ŝ, at some depth g).

The “If” direction. Let (I, Ĵ) ∈ (M1 ◦M
′
1 ∪M2 ◦M

′
2)

+. This means that there
exists some natural k, such that (I, Ĵ) ∈ (M1 ◦ M′

1 ∪ M2 ◦ M′
2)
k. Consider

an instance K̃ of schema S̃, encoding I at depth 0, and Ĵ at depth s...s︸︷︷︸
k

(0).

Moreover, at all other depths, from 1 to ω, we encode an instance such that the

25

following condition is satisfied: For each pair of instances I1, I2 encoded in K̃ at
depths g and s(g) respectively, (Ig, Is(g)) ∈ M1 ∪ M2 holds. It is now easy to

see, that (I, Ĵ) |= Ω, since it is possible to choose the relations R̃i as described
above, and set g equal k (in unary representation).

The “Only If” direction. Let instance (I, Ĵ) satisfy Ω. This means that all con-
juncts in it are satisfied. Let us take Ω

R̃
. Assuming that I is not empty, any set

of relations R̃1, ...R̃k (which we denote as an instance K̃ of schema S̃) must have

I encoded at depth 0. Note also, that by Ω
R̃
, K̃ must contain facts also at depths

s(0), Moreover, by construction of Ω
R̃
, we know that any pair of instances

extracted at the depths g and s(g) respectively, belongs to M1 ◦M′
1∪M2 ◦M′

2.
Finally, to satisfy the formula ΩE

R̃
, Ĵ must contain an instance extracted from

K̃ at some depth g. Thus, (I, Ĵ) ∈ (M1 ◦M
′
1 ∪M2 ◦M

′
2)

+ follows. ⊓⊔

26

