
Riccardo Torlone

Towards a new Foundation for Keyword
Search in Relational Databases

8th Alberto Mendelzon Int. Workshop on Foundations of Data Management – June 2-6 Cartagena, Colombia

Keyword search over relational data
�  Input: a relational database

�  Query: a set of keywords

�  Result: a set of tuples involving the keywords

Keyword search over relational data
�  Goal:

�  high-level access to data
�  free the user from the knowledge of:

�  query languages
�  data organization

�  A lot of work on the practical side
�  Few theoretical studies

� Kimelfeld and Sagiv, 2006.
� Qin, Yu, Chang, 2009.

Traditional approach

Let us change the schema

Let us change the schema

Another problem
�  Database

�  Query

�  Result

Limitations of the traditional approach
�  It depends on the specific distribution of data in relational tables
�  The result of a keyword query can change by just modifying the

organization of the database (e.g., for optimization purposes) even
if its actual content does not change.

�  Some meaningful results are not captured

Our proposal
�  A new framework for investigating, in a systematic way, the

problem of keyword search in relational databases
�  The framework is based on the weak instance model, an old

tool from relational database theory
�  In the weak instance model a database is considered as a whole,

regardless of the way in which data are decomposed in the various
relation schemes.

The weak instance model
�  U: a finite set of attributes U
�  F: a set of FDs over U
�  R = {R1(X1), . . . ,Rn(Xn)}: a relational database schema such that
∪i=1,..,n Xi = U.

�  An instance r of R is (globally) consistent if there is a relation w
on U, called a weak instance for r, that satisfies F and contains the
relations of r in its projections over the respective relation
schemes, that is: πXi (w)⊇ ri, for 1 ≤ i ≤ n

The representative instance
�  The definition of global satisfaction is not practical
�  A special relation on U that can be built to test for the existence of

a weak instance
�  State tableau Tr for a relational database r: formed by taking the

union of all the relations in r extended to U by means of unique
variables.

�  Representative instance RIr for r: the tableau obtained by
chasing Tr using the given FDs

An example

Two chase steps

The final representative instance

Properties of the representative instance
�  A database state is consistent if and only if the corresponding

representative instance can be built without encountering
contradictions [Honeyman, 1982].

�  For every consistent state r and for every X, the set of total tuples
in RIr on X (called the X-total projection of RIr) is equal to the set of
tuples that appear in the projection on X of every weak instance of r
[Maier, Ullman, and Vardi, 1984].

�  Total projection of the representative instance = the relation over
X implied by the current state.

�  Different databases with the same representative instance
�  have the same set of weak instances
�  represent the same information

Keyword search over weak instances
�  Given a tuple t over X ⊆ U,

�  t covers a set of constants C if, for each c in C, there is an attribute A in
X such that t[A] = c,

� T x-belongs to database r (in symbols t⋶r) if t belongs to the X-total
projection of the representative instance of r.

�  Definition 1. A base result of a keyword query Q on a database
r is a set of total tuples R such that, for every tuple t in R:
�  t covers Q and
�  t x-belongs to r for some X ⊆ U.

An example

r

r1
Emp Dept
John CS
Bob EE
Ann CS
Jim EE

r2
Dept Floor
CS 1
EE 5
MS 3

r3
Emp Proj
John Nana
John Trudy
Ann Nana
Ann Dante
Jim Dante

RI r Emp Dept Floor Proj
t1 John CS 1 Nana
t2 John CS 1 Trudy
t3 Bob EE 5 v1
t4 Ann CS 1 Nana
t5 Ann CS 1 Dante
t6 Jim EE 5 Dante
t7 v2 MS 3 v3

Fig. 1. A database state and its representative instance.

The main property of the representative instance is that a database state is
consistent if and only if the corresponding representative instance can be built
without encountering contradictions [5]. Also, for every consistent state r and
for every X , the set of total tuples in RI r on X (called the X-total projection
of RI r and denoted by π↓

X(RI r)) is equal to the set of tuples that appear in the
projection on X of every weak instance of r [7]. According to this definition, this
set of tuples is the relation over X implied by the current state.

3 Keyword search over weak instances

We assume that a keyword query Q is simply a finite and non-empty set of
constants {c1, . . . , cn} occurring in the domain D. Intuitively, the results of Q
on a database state r of a schema R is a set of related tuples that involve all the
constants in Q. Since Q does not refer to R, the result should be independent
of the way in which data are decomposed in the various relations of r. This
suggests that a natural definition of result of a keyword query is a set of tuples of
the representative instance since, in the weak instance approach, they actually
represent atomic pieces of information “embodied” in r independently of its
schema. This observation leads to the definitions that follow.

Given a tuple t over X ⊆ U , we first say that: (i) t covers a set of constants
C if, for each c ∈ C, there is an attribute A ∈ X such that t[A] = c, and (ii) t
x-belongs to database r (in symbols t∈̂r) if t belongs to the X-total projection
of the representative instance of r (that is: t ∈ π↓

X(RI r)).

Definition 1 (Base result). A base result of a keyword query Q on a database
r is a set of total tuples R such that, for every tuple t ∈ R: (i) t covers Q and
(ii) t x-belongs to r for some X ⊆ U .

Example 2. A base result of the keyword query {CS ,Nana} over the database r
in Figure 1, which basically asks for information about the Nana project in the
CS department, is composed by the tuples t1 and t4 of RI r. Similarly, a base
result of the keyword query {EE} is composed by tuple t6 of RI r of r and the
total tuple t′3 obtained by projecting tuple t3 of RI r on EDF .

Note that there can be different base results of the same query, with different
schemas and cardinalities. We then add to the results a property of “complete-
ness”, which captures the idea that all the possible values that are meaningful

Emp Dept Floor Proj
John CS v1 v2
Bob EE v3 v4
Ann CS v5 v6
Jim EE v7 v8
v9 CS 1 v10
v11 EE 5 v12
v13 MS 3 v14
John CS 1 Nana
John v17 v18 Trudy
Ann v19 v20 Nana
Ann v21 v22 Dante
Jim v23 v24 Dante

Dept ! Floor

RI r Emp Dept Floor Proj
t1 John CS 1 Nana
t2 John CS 1 Trudy
t3 Bob EE 5 v1
t4 Ann CS 1 Nana
t5 Ann CS 1 Dante
t6 Jim EE 5 Dante
t7 v2 MS 3 v3

RI r Emp Dept Floor Proj
John CS 1 Nana
Ann CS 1 Nana

A refinement of query result
�  A base result correlates values only on the basis of the functional

dependencies.
�  Other meaningful relationships can be established between values

in the database.

K-result
�  Two tuples t1 and t2 are joinable if t1[A] = t2[A] for some A in U
�  A tableau T is k-connected if there is an enumeration t1, . . . , tk of

the k tuples in T such that ti is joinable with tj, for1≤j<i≤k.
�  A set of total tuplesT covers a set of constants C if, for each c in C,

there is a tuple t in T that covers {c}.
�  Definition. A k-result of a keyword query Q over a database r

is a minimal set of total tuples Rk such that:
� Rk covers Q,
�  every tuple t in Rk x-belongs to r for some X ∈ U , and
�  the tableau Rk

∗ is k-connected.

An example

for the query should appear in a result. A tool that allows the comparison of
different tableaux is first needed. Given two tableaux T1, T2, we say that T1 is
contained in T2 (in symbols T1 ≤ T2) if there is a function ψ from D to D that
is the identity on constants such that ψ(T1) ⊆ T2.

Let T∗ denote the extension of a set of total tuples T to the universe U by
means of unique variables.

Definition 2 (Full result). A base result R of a keyword query Q is full if
there is no base result R′ ̸= R of Q such that R∗ ≤ R

′
∗.

For instance, {t1} and πEP ({t1, t4}) are non-full base results of the keyword
query {CS ,Nana}.

The notion of base result models answers to a keyword query composed
by tuples that: (i) involve the keyword and (ii) correlate tuples stored in the
underlying database on the basis of the functional dependencies. However, other
meaningful relationships can be established between the stored tuples that only
depend on the existence of common values. Consider for instance the keyword
query Q = {Nana,Trudy}. It makes sense to return as result of this query the
tuples t1 and t2 of RI r, since John, working in the CS department on the first
floor, correlates Nana and Trudy since he works on both projects.

We then refine the notion of result of a keyword query by assuming that
the keywords in the query can appear in different tuples of the representative
instance that are connected through common values on common attributes.

A number of preliminary notions are needed. We say that two tuples t1 and t2
are joinable if t1[A] = t2[A] for some A in U and that a tableau T is k-connected
if there is an enumeration t1, . . . , tk of the k tuples in T such that ti is joinable
with tj , for 1 ≤ j < i ≤ k. We also say that a set of total tuples T covers a set
of constants C if, for each c ∈ C, there is a tuple t ∈ T that covers {c}.

Definition 3 (K-result). A k-result of a keyword query Q over a database r
is a minimal set of total tuples R

k such that: (i) R
k covers Q, (ii) every tuple

t ∈ R
k x-belongs to r for some X ∈ U , and (iii) the tableau R

k
∗ is k-connected.

To combine the two notions, hereinafter a base result will be called 1-result and
denoted by R

1. The notion of full 1-result can be easily extended to k-results
and in the following we will only consider full results.

Example 3. The keyword query {Trudy,Dante} over the database r in Figure 1
has no 1-result but has one 2-result made of the tuples t2 and t5 of RI r. The
query {Nana,EE} has one 3-result (R3 = {t4, t5, t6}) and no 2 or 1-results.

This example clearly shows that the relationship between tuples in a k-result
becomes more and more weaker as k increases. This suggests that the parameter
k captures well the relevance of the result and then provide an effective tool to
order (and possibly limit) the tuples to return to the users.

The notion of k-result proposed in this section might be further refined, by
considering other aspects that may affect the granularity of a result and the
correlation between tuples belonging to a result. In particular, instead of entire

Emp Dept Floor Proj
John CS v1 v2
Bob EE v3 v4
Ann CS v5 v6
Jim EE v7 v8
v9 CS 1 v10
v11 EE 5 v12
v13 MS 3 v14
John CS 1 Nana
John v17 v18 Trudy
Ann v19 v20 Nana
Ann v21 v22 Dante
Jim v23 v24 Dante

Dept ! Floor

RI r Emp Dept Floor Proj
t1 John CS 1 Nana
t2 John CS 1 Trudy
t3 Bob EE 5 v1
t4 Ann CS 1 Nana
t5 Ann CS 1 Dante
t6 Jim EE 5 Dante
t7 v2 MS 3 v3

Emp Dept Floor Proj
John CS 1 Nana
Ann CS 1 Nana

Emp Dept Floor Proj
John CS 1 Trudy
Ann CS 1 Dante

Emp Dept Floor Proj
Ann CS 1 Nana
Ann CS 1 Dante
Jim EE 5 Dante

Another example

for the query should appear in a result. A tool that allows the comparison of
different tableaux is first needed. Given two tableaux T1, T2, we say that T1 is
contained in T2 (in symbols T1 ≤ T2) if there is a function ψ from D to D that
is the identity on constants such that ψ(T1) ⊆ T2.

Let T∗ denote the extension of a set of total tuples T to the universe U by
means of unique variables.

Definition 2 (Full result). A base result R of a keyword query Q is full if
there is no base result R′ ̸= R of Q such that R∗ ≤ R

′
∗.

For instance, {t1} and πEP ({t1, t4}) are non-full base results of the keyword
query {CS ,Nana}.

The notion of base result models answers to a keyword query composed
by tuples that: (i) involve the keyword and (ii) correlate tuples stored in the
underlying database on the basis of the functional dependencies. However, other
meaningful relationships can be established between the stored tuples that only
depend on the existence of common values. Consider for instance the keyword
query Q = {Nana,Trudy}. It makes sense to return as result of this query the
tuples t1 and t2 of RI r, since John, working in the CS department on the first
floor, correlates Nana and Trudy since he works on both projects.

We then refine the notion of result of a keyword query by assuming that
the keywords in the query can appear in different tuples of the representative
instance that are connected through common values on common attributes.

A number of preliminary notions are needed. We say that two tuples t1 and t2
are joinable if t1[A] = t2[A] for some A in U and that a tableau T is k-connected
if there is an enumeration t1, . . . , tk of the k tuples in T such that ti is joinable
with tj , for 1 ≤ j < i ≤ k. We also say that a set of total tuples T covers a set
of constants C if, for each c ∈ C, there is a tuple t ∈ T that covers {c}.

Definition 3 (K-result). A k-result of a keyword query Q over a database r
is a minimal set of total tuples R

k such that: (i) R
k covers Q, (ii) every tuple

t ∈ R
k x-belongs to r for some X ∈ U , and (iii) the tableau R

k
∗ is k-connected.

To combine the two notions, hereinafter a base result will be called 1-result and
denoted by R

1. The notion of full 1-result can be easily extended to k-results
and in the following we will only consider full results.

Example 3. The keyword query {Trudy,Dante} over the database r in Figure 1
has no 1-result but has one 2-result made of the tuples t2 and t5 of RI r. The
query {Nana,EE} has one 3-result (R3 = {t4, t5, t6}) and no 2 or 1-results.

This example clearly shows that the relationship between tuples in a k-result
becomes more and more weaker as k increases. This suggests that the parameter
k captures well the relevance of the result and then provide an effective tool to
order (and possibly limit) the tuples to return to the users.

The notion of k-result proposed in this section might be further refined, by
considering other aspects that may affect the granularity of a result and the
correlation between tuples belonging to a result. In particular, instead of entire

Emp Dept Floor Proj
John CS v1 v2
Bob EE v3 v4
Ann CS v5 v6
Jim EE v7 v8
v9 CS 1 v10
v11 EE 5 v12
v13 MS 3 v14
John CS 1 Nana
John v17 v18 Trudy
Ann v19 v20 Nana
Ann v21 v22 Dante
Jim v23 v24 Dante

Dept ! Floor

RI r Emp Dept Floor Proj
t1 John CS 1 Nana
t2 John CS 1 Trudy
t3 Bob EE 5 v1
t4 Ann CS 1 Nana
t5 Ann CS 1 Dante
t6 Jim EE 5 Dante
t7 v2 MS 3 v3

Emp Dept Floor Proj
John CS 1 Nana
Ann CS 1 Nana

Emp Dept Floor Proj
Ann CS 1 Nana
Ann CS 1 Dante
Jim EE 5 Dante

Computing the k-results
�  A brute force algorithm

�  three main steps:

1.  the construction of the representative instance (line 1),
2.  the search for the R1 results (lines 2),
3.  the recursive search for the subsequent Rk results (lines 3-6)

Algorithm 1: Computation of the top-k results of a keyword query
Input : A consistent database state r, a keyword query Q, a limit k > 0
Output: The Ri-results of Q on r (for 1 ≤ i ≤ k)

1 Build the representative instance T of r;
2 foreach tuple t in T do if t covers Q then output t;
3 for (i = 2; i ≤ k; i++) do
4 foreach tuple t in T that covers some c ∈ Q do
5 search and return the Ri-results including t with a depth-first visit of T from t;
6 remove t from T

The algorithm consists of three main steps: the construction of the representative in-
stance (line 1), the search for the R1 results (line 2), and the search for the subsequent
Rk results, for k > 1 (lines 3-6). It is known that the first step requires polynomial
time in the size of the database. In step 2 all the tuples of the representative instance are
checked to verify if they (completely) cover the query and so it requires linear time in
the size of RI r, which is proportional to |r|. Finally, step 3 involves, for each tuple of
RI r that covers some keyword in the query, a depth-limited search in a graphG where
the nodes represent the tuples and the edge represent the joinability relationship. In the
worst case, the cost of this task is proportional to the maximum number of k-long paths
in G, which is bounded by |RI r|k. It is then possibile to show the following result.

Theorem 1. Algorithm 1 computes, for some finite k > 0, all the first k-results of a
keyword queryQ of size q over a database state r of size n in time O(nq).

Algorithm 1 can be optimized in several ways. In particular, the representative instance
does not need to be built since, for significant classes of schemas, its total projection on
a set of attributes can be computed efficiently by means of simple SPJ expressions [2].
Using these results, together with a suitable use of an inverted index, we could restrict
our attention only to the relevant portion of the database. These issues and other exten-
sions of the framework presented here will be subject of future studies.

References
1. A.V. Aho, C. Beeri, and J.D. Ullman. The theory of joins in relational databases. ACM Trans.

on Database Syst., 4(3):297–314, 1979.
2. P. Atzeni and E.P.F. Chan. Efficient and optimal query answering on independent schemes.

Theoretical Computer Science, 77(3):291–308, 1990.
3. P. Honeyman. Testing satisfaction of functional dependencies. Journal of the ACM,
29(3):668–677, 1982.

4. V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational databases. In
VLDB, pages 670–681, 2002.

5. D. Maier, A.O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM
Trans. on Database Syst., 4(4):455–468, 1979.

6. D. Maier, J.D. Ullman, and M. Vardi. On the foundations of the universal relation model.
ACM Trans. on Database Syst., 9(2):283–308, 1984.

7. Y. Sagiv. A characterization of globally consistent databases and their correct access paths.
ACM Trans. on Database Syst., 8(2):266–286, 1983.

Complexity
�  Step 1: polynomial time in the size of the database.
�  Step 2: linear time in the size of RIr, which is proportional to |r|.
�  Step 3: a depth-limited search in a graph G where the nodes

represent the tuples and the edge represent the joinability
relationship. In the worst case, the cost of this task is proportional
to the maximum number of k-long paths in G, which is bounded
by |RIr|k.

�  Result. Algorithm 1 computes, for some finite k > 0, all the first k-
results of a fixed keyword query Q over a database state r of size n in time
O(nk).

Possible optimizations
�  The representative instance does not need to be completely

computed.
�  For significant classes of schemas, the total projection of the

representative instance can be computed efficiently by means of
simple SPJ expressions [Sagiv 1983].

�  The search for joinable tuples can be made efficient by exploiting
indexes and by adopting backtracking strategies.

Conclusions
�  We have proposed a formal framework for the investigating the

problem of querying a relational database with a set of keywords.
�  The approach is based on the weak instance model, which provides

a view of a relational database that is independent of its specific
organization in a set of relations.

�  We have shown that, in this model
�  the problem can be expressed in a simple and natural way
�  rhe computation of the first top-k results remains tractable

�  Future work
� Refinment of the model
� More efficient techniques for computing the k-results
�  Investigation in this model of other issues related to keyword-search

