
Robin Hood: An Active Objects Load Balancing
Mechanism for Intranet

Javier Bustos Jimenez

Departamento de Ciencias de la Computacion (DCC)
Universidad de Chile.

jbustos@dcc.uchile.cl

Abstract. Scheduling in distributed systems is an important issue, and it has
performance impact on parallel processing, load balancing and metacomputing.
An optimal load balance in a non-preemptive scheduling enviroment is NP-
complete, but preemptive scheduling is polynomial. This paper presents a heuris-
tic for preemptive load balancing based on a multicast channel to communicate
the distributed systems, a totally non-centralized architecture and the migration
scheme provided by the ProActive tools.

1 Introduction

The scheduling of parallel computations on a set of processors has been an active
study area in the fields of paralell computation and load balancing [5]. Theoretical
results show that optimal load balance in a non-preemptive scheduling enviroment is
NP-complete, but preemptive scheduling is polynomial in time.

Donald McLaughlin says in [5]: “preemptive scheduling in distribuited systems was
rare, if not non-existen”. Nevertheless, when Active Objects appeared a new research
area was (re)opened, by using those objects to migrate jobs from a machine to another
one (Virtual or Real machine). Therefore, now one have the tools to make a preemptive
scheduler.

1.1 Fundamentals of Load Balance

Load balancing in this paper is a technique to enhance resources, utilizing paralellism
exploiting, throughput improvisation, and to cut response time through an appropiate
distribution of the application [2]. To minimize the decision time is still one of the
objective for load balancing.

There exist two typical load balancing approaches:Static and Dynamic. Static
load balancing is characterized by pre-execution task placement based on a prior
knlowledge of the application and target system characteristics (figure 1.a). Dynamic
load balancing can adapt to changes in target systems, according to the protocol
provided for manage that changes (figure 1.b).



a)

Characterics
Abstractor

Unit
LoaderApplication

Pre−knowledge
Base b)

Characterics
Abstractor

Unit
LoaderApplication

Pre−knowledge
Base

Dynamic Application Information

Fig. 1. Static (a) versus Dynamic (b) Load Balancing.

1.2 Contributions

To the best of our knowledge, most of the preemptive scheduling use a centralized
architecture (client/server) for the load balancing (see [9, 5, 12, 11]). The contribution
of this paper is to present a new totally non-centralized solution: we use a multicast
channel to comunicate, and sincronize the processors (following the recomendations of
[15]), and using the ProActive [1] tools to migrate jobs between them.

1.3 Related Work

There are several works and research in this area: some use static load balancing like
Online Real-Time Schedulers ([9]), Pipeline and Batch Sharing ([6]); and some uses
dynamic load balancing like Condor [12], PLRM [11] and CAPE [17].

We focus our research indynamic load balancing. The main differences between
our scheme and the related works are: the non-centralized architecture for the load
balancer (Condor, PLRM, and others are centralized) and the non-broadcasting of the
balance of each node (like CAPE and CONDOR) because that produces an overload of
the network.

Other systems, like Amoeba [8] and eCluster [16] are complete micro-kernels that
provide load balancer. Therefore, that kind of research are out of the scope of this paper.

1.4 Organization of this paper

The section 2 shows the ProActive principles [1]. The section 3 presents the design of
our algorithm (called “Robin Hood”) and finally the conclusions and future of this work
in progress are presented.

2 ProActive

ProActive is a Java library (Source code under LGPL licence) for parallel, distributed,
and concurrent computing. Also, featuring mobility and security in a uniform frame-
work based on an ideas of Denis Caromel and others [4]. With a reduced set of simple
primitives, ProActive provides an API that simplify the programming of applications
that are distributed on a LAN, on cluster of workstations, or on Internet Grids [10]. The
library is based on an Active Object pattern that encapsulate:



– a remotely accessible object,
– a thread as an asynchronous activity,
– an actor with its own script,
– a server of incoming requests,
– a mobile and potentially secure agent.

ProActive is only made of standard Java classes, and requires no changes to the
Java Virtual Machine, no preprocessing or compiler modification. Based on a simple
Meta-Object Protocol, the library is itself extensible, making the system open for
adaptations and optimizations. ProActive currently uses the RMI Java standard library
as a portable transport layer.

For more information please visit [1].

3 Basis of the Robin Hood scheme

The “Robin Hood” scheme has two principles:

1. Every node (processor, JVM, etc.) only know its own load.
2. Job from nodes which have high load (the “rich” ones) are reassigned to nodes with

low load (the “poor” ones).

The first principle is easier usingjava.lang.Thread methods to know the CPU
load of each node, following the recomendations of [13]. For the second principle, we
have to use theMigration API of the ProActive libraries [1].

Thealgorithm is:

– If a node note that it is underloaded (less than 60% of the node capacity) then it
sends to the multicast channel a message with it owns reference (see figure 2).

– If a node note that it is overloaded (more than 90% of the node capacity) then read
from the multicast channel looking for some node underloaded (see figure 3.c). In
case that a message arrives from the multicast channel, the node migrate some of
its jobs to the underloaded node (figure 3.d).

– Otherwise, nothing is done.

To not overload the network with multicast packages, the node load has to be
checked in time intervals, for example: five or ten seconds.

4 The Design of the Robin Hood Load Balancer

For the design of the “Robin Hood” load balancer we use the pattern designsSingleton
to mantain only one “Robin Hood” per node andState to mantain the node states
(poor, normal, rich). The UML class diagram is in the figure 4.

But, there was a problem using the ProActive [1] libraries because it use weak
migration [7]. Then, only the active thread can make the migration of the active object.
For this reason is necesary add to all the objects the method:



A B

C D

load=70%

load=70% load=70%

load=70%

a)
A B

C D

load=50% load=70%

load=70% load=70%

"A"

"poor" node

b)

Fig. 2.a) Four nodes on equilibrium. b) One node is undeloaded, then sends a Multicast message
with its own reference.

A B

C D

load=50% load=70%

load=70%

"A"

"poor" node

load=95%
"rich" node

"A"

"A"

c)
A B

C D

load=70%

load=70%

load=75%

load=70%

d)

Fig. 3.c) A node is overloaded: listen the multicast channel. d) Found an underloaded node, then
the “Robin Hood” useProActive.migrateTo("A") over the job representd by a black
circle.

LoadSpy

<<create>> LoadSpy()

start() : void

isOverloaded() : boolean

isUnderloaded() : boolean

Multicast

Conect() : void

Disconect() : void

Read() : String

Write(s: String) : void

State

run() : void

Normal

run() : void

Rich

migrate(donde: String) : void

run() : void

Poor

run() : void

RobinHood

self : RobinHood

Channel : Multicast

st : State

createRobinHood(processorNode: void) : void

getRobinHood() : RobinHood

<<create>> RobinHood(localLoadSpy: void)

Multicast Channel

self

LoadMonitor

<<create>> LoadMonitor()

getRealLoad() : double

setRealLoad(load: double) : void

isOverloaded() : boolean

isUnderloaded() : boolean

update(load: long) : void

init() : void

run() : void

terminate() : void

Fig. 4. Robin Hood UML diagram.



public void migrate(String URL) {
ProActive.MigrateTo(URL);
};

Therefore, if one want to migrate an objecto the method call is
o.migrate("//host/node") . By now, one can use tools likeJavassist[3]
to made this change automatically.

5 Conclusions

We present a totally non-centralized load balancer, using the ProActive library for the
migration of jobs, and a multicast channel to coordinate the nodes. The next step in
our research is to compare “Robin Hood” against the existent ones in dynamic load
balancing, for example CONDOR, PLRM and CAPE.

We are currently working on possible solutions for the migration process. Our goal
is to make it clear and transparent to the user.

Our future work is to determine the optimal parameters for the load checking, and to
improve the migration strategy (choose which job has to be migrated) and the migration
itself. Also, we have to work in make the “Robin Hood” a strong fault tolerant [14]
tool for load balance in coordination with Christian Delbe of INRIA Sophia Antipolis,
France.

References

1. Oasis Group at INRIA Sohpia-Antipolis. “Proactive, the java library for parallel, distribuited,
concurrent computing with security and mobility”. http://www-sop.inria.fr/oasis/proactive/,
2002.

2. M. Bozyigita. “History-driven dynamic load balancing for recurring applications on network
of workstations”.Systems and Software, 2:61–72, 2000.

3. Shigeru Chiba. “Load-time structural reflection in java”. InIn Proc. of ECOOP 2000., pages
313–336, 2002.

4. Wilfired Klauser Denis Caromel and Julien Vayssire. “Towards seamless computing and
metacomputing in java”.Concurrency Practice and Experience, 1998.

5. Shantanu Sardesai Donald McLaughlin and Partha Dasgupta. “Preemptive scheduling for
distribuited systems”. InProc. of 11th International Conference on Paralell and Distribuited
Computing Systems, 1998.

6. Douglas Thain et al. “Pipeline and batch sharing in grid workloads”. InProc. of 12th IEEE
Symposium of High Performance Distribuited Computing, 2003.

7. F.M.T. Brazier et al. “Agent factory: Generative migration of mobile agents in heterogeneous
environments”. InIn Proc. of the 17th ACM Symposium on Applied Computing, 2002.

8. Amoeba Group. http://www.cs.vu.nl/pub/amoeba/amoeba.html, 1996.
9. Bhaskar Das Gupta and Michael Palis. “Online real-time preemptive scheduling of jobs with

deadlines on multiple machines”.Journal of Scheduling, Vol. 4:297–312, 2001.
10. Francoise Baude Laurent Baduel and Denis Caromel. “Efficient, flexible, and typed group

communications in java”. InProc. Joint ACM Java Grande - ISCOPE 2002 Conference,
2002.



11. Yang Xinyu Lu Lina, Liu Longguo. “An agent-based load balancing mechanism: Plrm
using java”. InProc. of the 37th International Conference on Technology of Object.Oriented
Languajes and Systems, pages 176–181, 2000.

12. Miron Livny Michael Litzkow and Matt Mutka. “Condor - a hunter of idle workstations”. In
Proc. of 8th International Conference on Distribuited Computing Systems, pages 104–111,
1998.

13. B. Toursel R. Olejnik, A. Bouchi. “An object observation for a java adaptative distributed
application platform”. InIn Proc. of International Conference on Parallel Computing in
Electrical Engineering (PARALALEC02), pages 171–176, 2002.

14. Douglas Thain and Miron Livny. “Error scope on a computational grid: Theory and practice”.
In Proc. of 11th IEEE Symposium of High Performance Distribuited Computing, 2002.

15. Douglas Thain and Miron Livny. “The ethernet approach to grid computing”. InProc. of
12th IEEE Symposium of High Performance Distribuited Computing, 2003.

16. XGForce. http://www.xgforce.com/eCluster.html, 2002.
17. Saneyasu Yamaguchi and Katsumi Maruyama. “Autonomous load balance system for

distributed servers using active objects”. InIn Proc. of 12th International Workshop on
Database and Expert Systems Applications (DEXA01)., pages 167–171, 2001.


