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We prove that, given a permutation π over [1..n] formed of nRuns sorted blocks of sizes
given by the vector R = 〈r1, . . . , rnRuns〉, there exists a compressed data structure encoding
π in n(1 +H(R)) = n +∑nRuns

i=1 ri log2
n
ri

� n(1 + log2 nRuns) bits while supporting access

to the values of π() and π−1() in time O(lognRuns/ log log n) in the worst case and
O(H(R)/ log log n) on average, when the argument is uniformly distributed over [1..n].
This data structure can be constructed in time O(n(1 +H(R))), which yields an improved
adaptive sorting algorithm. Similar results on compressed data structures for permutations
and adaptive sorting algorithms are proved for other preorder measures of practical and
theoretical interest.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Permutations of the integers [1..n] = {1, . . . ,n} are a fundamental mathematical structure, and a basic building block
for the succinct encoding of integer functions [39], strings [30,22,25,2,34,14], binary relations [9], and geometric grids [13],
among others. A permutation π can be trivially encoded in n�lg n� bits, which is within O(n) bits of the information theory
lower bound of lg(n!) bits, where lg x = log2 x denotes the logarithm in base two.

Efficient computation for both the value π(i) at any point i ∈ [1..n] of the permutation, and for the position π−1( j) of
any value j ∈ [1..n] (i.e., the value of the inverse permutation) is essential in most of those applications. A trivial solution
is to store explicitly both π and π−1, using a total of 2n�lg n� bits. Munro et al. [39] proposed three nontrivial alternatives.
The first consists in plainly representing π in n�lg n� bits (hence supporting the operator π() in constant time) and adding
a small structure of ε n lg n extra bits in order to support the operator π−1() in time O(1/ε). The second solution uses the
previous one to encode another permutation, the one mapping the original permutation to a cycle representation, which
yields support for any positive or negative power of π(), πk(i) for any k ∈ Z. The third solution uses less space (only
O(n) extra bits, as opposed to ε n lg n) but supports the operator πk( j) for any value of k and j in higher time, within
O(log n/ log log n). Each of those solutions uses at least �n log2 n� bits to encode the permutation itself.

The lower bound of lg(n!) bits to represent any permutation yields a lower bound of Ω(n log n) comparisons to sort a per-
mutation in the comparison model, in the worst case over all permutations of n elements. A large body of research has been
dedicated to finding better sorting algorithms that can take advantage of specificities of certain families of permutations.
Some examples are permutations composed of a few sorted blocks (also called “runs”) [35] (e.g., (1,3,5,7,9,2,4,6,8,10)

or (6,7,8,9,10,1,2,3,4,5)), or permutations containing few sorted subsequences [33] (e.g., (1,6,2,7,3,8,4,9,5,10)). Al-
gorithms performing possibly o(n log n) comparisons on such permutations, yet still O(n log n) comparisons in the worst

✩ An early version of this article appeared in Proc. STACS 2009 [10].
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case, are achievable and preferable if those permutations arise with sufficient frequency. Other examples are classes of
permutations whose structure makes them interesting for applications; see the seminal paper of Mannila [35], and the
survey of Moffat and Petersson [37].

Each sorting algorithm in the comparison model yields an encoding scheme for permutations: the result of all the com-
parisons performed uniquely identifies the permutation sorted, and hence encodes it. Since an adaptive sorting algorithm
performs o(n log n) comparisons on a class of “easy” permutations, each adaptive algorithm yields a compression scheme for
permutations, at the cost of losing a constant factor on the complementary class of “hard” permutations. Yet such compres-
sion schemes do not necessarily support efficiently the computation of arbitrary π(i) values, nor the inverse permutation
values π−1( j).

It is natural to ask whether it is possible to compress a permutation π [37] while at the same time supporting efficient
access to π and its inverse [39]. To the best of our knowledge, such a representation had not been described till now. In this
paper we describe a whole family of such compressed data structures, inspired by and improving upon the MergeSort
family of adaptive sorting algorithms [35]. All of them take advantage of permutations composed of a small number of
monotone subsequences, and support the operators π() and π−1() efficiently, taking less time on the more compressible
permutations.

Our central result (Theorem 3) is a compressed data structure based on the decomposition of a permutation π into
“runs”, that is, monotone subsequences of consecutive positions. If π is formed by nRuns runs of sizes given by the vector
R = 〈r1, . . . , rnRuns〉, our data structure encodes it in n(1 +H(R)) = n + ∑nRuns

i=1 ri lg n
ri

� n(1 + lgnRuns) bits and supports

access to the values of π() and π−1() in time O(lognRuns/ log log n) in the worst case and O(H(R)/ log log n) on average,
when the argument is uniformly distributed over [1..n]. The construction of this data structure yields an improved adaptive
sorting algorithm running in time O(n(1 +H(R))). Similar data structures and adaptive sorting algorithms are obtained, via
reductions, for other preorder measures of practical and theoretical interest, such as “strict runs”, a particular case of runs
with consecutive values, and “shuffled sequences”, monotone subsequences of not necessarily consecutive positions. Those
results have applications to the indexing of natural language text collections, the support of compressed suffix arrays, and
the representation of strings supporting operations access, rank, and select (Theorem 8). The latter result improves upon
the state of the art [16,23] in the average case when the queries are uniformly distributed, while retaining the space and
worst-case performance of the previous solutions.

2. Basic concepts and previous work

For completeness, we review here some basic notions and techniques about entropy (Section 2.1), Huffman codes (Sec-
tion 2.2), data structures on sequences (Section 2.3) and adaptive sorting algorithms (Section 2.4). Readers already familiar
with those notions can safely skip this section.

2.1. Entropy

We define the entropy of a distribution [15], a measure that will be useful to evaluate compressibility results.

Definition 1. The entropy of a sequence of positive integers X = 〈n1,n2, . . . ,nr〉 adding up to n is H(X) = ∑r
i=1

ni
n lg n

ni
. By

concavity of the logarithm, it holds that (r − 1) lg n � nH(X) � n lg r and that H(〈n1,n2, . . .nr〉) >H(〈n1+n2, . . . ,nr〉).

Here X = 〈n1,n2, . . . ,nr〉 is a distribution and H(X) measures how even is it. H(X) is maximal (lg r) when all ni = n/r
and minimal ( r−1

n lg n + n−r+1
n lg n

n−r+1 ) when they are most skewed (X = 〈1,1, . . . ,1,n − r + 1〉).
This measure is related to the entropy of random variables and of sequences as follows. If a random variable P takes the

value i with probability ni/n, for 1 � i � r, then its entropy is H(〈n1,n2, . . . ,nr〉). Similarly, if a string S[1..n] contains ni
occurrences of character ci , then its empirical zero-order entropy is H0(S) =H(〈n1,n2, . . . ,nr〉).

H(X) is then a lower bound to the average number of bits needed to encode an instance of P , or to encode a character
of S (if we model S statistically with a zero-order model, that is, ignoring the context of characters).

2.2. Huffman codes

Given symbols [1..r] with frequencies X = 〈n1,n2, . . . ,nr〉 adding up to n, Huffman [28] described how to build an
optimal prefix-free code for them. His algorithm can be implemented in time O(r log r). If �i is the bit length of the code
assigned to the ith symbol, then L = ∑

�ini is minimal and L < n(1 + H(X)). For example, given a string S[1..n] over
alphabet [1..r], with symbol frequencies X[1..r], one can compress S by concatenating the codewords of the successive
symbols S[i], achieving total length L < n(1 +H0(S)). (One also has to encode the usually negligible codebook of O(r log r)
bits.)

The algorithm to build the optimal prefix-free code starts with a forest of r leaves corresponding to the frequencies
{n1,n2, . . . ,nr}, and outputs a binary trie with those leaves, in some order. This so-called Huffman tree describes the optimal
encoding as follows: The sequence of left/right choices (interpreted as 0/1) in the path from the root to each leaf is the
prefix-free encoding of that leaf, of length �i equal to the leaf depth.
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Fig. 1. Partial order on some measures of disorder for adaptive sorting, completed from Moffat and Petersson’s 1992 survey [37]. Round boxes signal the
measures for which new results have been proved since then (all inspired by our results), and bold ones signal the results introduced in this article.
A measure A dominates a measure B (A → B) if all optimal algorithms for A have a better asymptotic complexity (i.e., for instances large enough and
ignoring constant factors) than some optimal algorithms for B . In this sense, the measures H(vSMS) and H(vSUS) are of theoretical interest because
their asymptotic complexities involve larger constant factors, while the measures H(vRuns) and H(vSRuns) are more practical. The measure nSRuns is
presented for completeness and the measure H(vLRM), not presented in this work, is a side result of another technique [7] (see Section 6.4).

A generalization of this encoding is multiary Huffman coding [28], in which the tree is given arity t , and then the Huffman
codewords are sequences over an alphabet [1..t]. In this case the algorithm also produces the optimal t-ary code, of length
L < n(1 +H(X)/ lg t).

2.3. Succinct data structures for sequences

Let S[1..n] be a sequence of symbols from the alphabet [1..r]. This includes bitmaps when r = 2 (where, for convenience,
the alphabet will be {0,1} rather than {1,2}). We will make use of succinct representations of S that support the rank and
select operators over strings and over binary vectors: rankc(S, i) gives the number of occurrences of c in S[1..i] and
selectc(S, j) gives the position in S of the jth occurrence of c.

When r = 2, S requires n bits and rank and select can be supported in constant time using O(n log log n/ log n) ⊂ o(n)

bits on top of S [38,21].
Raman et al. [43] devised a bitmap representation that takes nH0(S)+o(n) bits, while maintaining the constant time for

supporting the operators. For the binary case H0(S) is just m lg n
m + (n −m) lg n

n−m ∈ m lg n
m +O(m), where m is the number

of bits set to 1 in S . Pǎtraşcu [42] reduced the o(n)-bits redundancy in space to O(n/ logc n) for any constant c (we will use
just c = 2 in this paper).

When m is much smaller than n, the o(n)-bits term may dominate. Gupta et al. [27] showed how to achieve space within
m lg n

m +O(m log log n
m + log n) bits, which largely reduces the dependence on n, but now rank and select are supported

in time O(log m) via binary search [26, Theorem 17, p. 153].
For larger alphabets, of size r ∈ o(log n), Ferragina et al. [16] showed how to represent the sequence within nH0(S) +

o(n log r) bits and support rank and select in constant time. Golynski et al. [23, Lemma 9] improved the space to
nH0(S) + o(n log r/ log n) bits while retaining constant times.

Grossi et al. [24] introduced the wavelet tree, which decomposes a sequence over an alphabet of arbitrary size r into
several bitmaps. By representing the bitmaps in compressed form [42], the overall space is nH0(S) + o(n) and rank
and select are supported in time O(log r). Multiary wavelet trees decompose the sequence into subsequences over a
sublogarithmic-sized alphabet and reduce the time to O(1 + log r/ log logn) while retaining space nH0(S) + o(n) [16,23].

In this article n will generally denote the length of the permutation. All of our o() expressions, even those with several
variables, will be asymptotic in n.

2.4. Measures of presortedness in permutations

The complexity of adaptive algorithms, for problems such as searching, sorting, merging sorted arrays or convex hulls,
is studied in the worst case over instances of fixed size and difficulty, for a definition of difficulty that is specific to each
analysis. Even though sorting a permutation in the comparison model requires Θ(n logn) comparisons in the worst case
over all the permutations of n elements, better results can be achieved for some parameterized classes of permutations. We
describe some of those below, see the survey of Moffat and Petersson [37] for other results.

Knuth [32] considered runs (contiguous ascending subsequences) of a permutation π , counted by nRuns= 1 + |{i: 1 �
i < n, π(i + 1) < π(i)}|. Levcopoulos and Petersson [33] introduced Shuffled UpSequences and its generalization Shuf-
fled Monotone Sequences, respectively counted by nSUS= min{k :π is covered by k increasing subsequences}, and nSMS=
min{k: π is covered by k monotone subsequences}. By definition, nSMS� nSUS� nRuns. The relations between those pre-
order measures, others not described here, and new ones described in this article, are represented in Fig. 1.

Munro and Spira [40] took an orthogonal approach, considering the problem of sorting multisets through various algo-
rithms such as MergeSort. They showed that the algorithms can be adapted to run in time O(n(1 +H(〈m1, . . . ,mr〉)))
where mi is the number of occurrences of i in the multiset (note this is totally different from our results, which depend on
the distribution of the lengths of monotone runs).
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Fig. 2. Example of the runs-compressed data structure, highlighting in bold which of the variables computed during the compression represent the permu-
tation in the end.

Each adaptive sorting algorithm in the comparison model yields a compression scheme for permutations, but the en-
coding thus defined does not necessarily support the simple application of the permutation to a single element without
decompressing the whole permutation, nor the application of its inverse.

3. Contiguous monotone runs

Our most fundamental representation takes advantage of permutations that are formed by a few monotone (ascending
or descending) runs.

Definition 2. A down-step of a permutation π over [1..n] is a position 1 � i < n such that π(i + 1) < π(i). An ascending run
in a permutation π is a maximal range of consecutive positions [i.. j] that does not contain any down-step. Let d1,d2, . . . ,dk
be the list of consecutive down-steps in π . Then the number of ascending runs of π is denoted by nRuns = k + 1, and
the sequence of the lengths of the ascending runs is denoted by vRuns= 〈n1,n2, . . . ,nnRuns〉, where n1 = d1,n2 = d2 − d1,

. . . ,nnRuns−1 = dk − dk−1, and nnRuns = n − dk . (If k = 0 then nRuns= 1 and vRuns= 〈n1〉 = 〈n〉.) The notions of up step
and descending run are defined similarly.

For example, the permutation (8,9,1,4,5,6,7,2,3) of Fig. 2 contains nRuns= 3 ascending runs, of lengths forming the
vector vRuns= 〈2,5,2〉. We now describe a data structure that represents a permutation partitioned into nRuns ascending
runs, and is able to support any π(i) and π−1(i) efficiently.

3.1. Structure

Consider the sorting algorithm MergeSort. Its merging process can be represented as a balanced binary tree of height
lgn. Detecting runs and merging them pairwise and hierarchically makes MergeSort adaptive to the number nRuns of
runs. The reduced merging process is then represented by a balanced binary tree of height lgnRuns and the total sorting
time becomes O(n + n lognRuns). Merging the two shortest runs at each step further improves MergeSort, making
its running time adaptive to the entropy of the vector vRuns formed by the lengths of the runs, O(n + H(vRuns)).
The merging process is then represented by a tree with the same shape of a Huffman tree for the distribution vRuns.
Keeping the result of each comparison performed by those algorithms yields a compressed encoding of the permutation
that identifies it uniquely. To support forward and inverse access to the individual values of π in less time than required to
uncompress the whole encoding, it is enough to memorize the lengths of the runs and their reordering into the leaves of
the merging tree.

3.1.1. Construction
We find the down-steps of π in linear time, obtaining nRuns runs of lengths vRuns= 〈n1, . . . ,nnRuns〉, and then apply

the Huffman algorithm to the vector vRuns. When we set up the leaves v of the Huffman tree, we store their original index
in vRuns, idx(v), the starting position in π of their corresponding run, pos(v), and the length of their run, len(v). After
the tree is built, we use idx(v) to compute a permutation φ over [1..nRuns] so that φ(i) = j if the leaf corresponding to
ni is placed at the jth left-to-right leaf in the Huffman tree. We also precompute a bitmap C[1..n] that marks the beginning
of runs in π , with constant-time support for rank and select. Since C contains only nRuns bits set out of n, it is
represented in compressed form [43] within nRuns lg n

nRuns +O(nRuns) + o(n) bits.
Now we set a new permutation π ′ over [1..n] where the runs are written in the order given by φ−1: We first copy from

π the run whose endpoints are those of the leftmost tree leaf, then the run pointed by the second leftmost leaf, and so on.
The endpoints of the runs are obtained with pos(v) and len(v). Simultaneously, we create field pos′(v) as the starting
position of the area v covers in π ′ . After creating π ′ the original permutation π can be deleted. We say that an internal



Author's personal copy

J. Barbay, G. Navarro / Theoretical Computer Science 513 (2013) 109–123 113

Fig. 3. Computing π−1() on the runs-compressed data structure, using the example permutation of Fig. 2. We mark in bold the bits counted in the rank
operations.

node covers the contiguous area of π ′ formed by concatenating the runs of all the leaves that descend from v . We propagate
the leaf pos′ and len values to all the internal nodes v , so that pos′(v) is the starting position of the area covered by v
in π ′ , and len(v) is the length of that area.

Now we enhance the Huffman tree into a wavelet-tree-like structure [24] without altering its shape, as follows. Starting
from the root, first process recursively each child. For the leaves we do nothing. Once the left and right children, vl and vr ,
of an internal node v have been processed, the invariant is that the areas they cover have already been sorted in π ′ . We
create a bitmap for v , of size len(v). Now we merge the areas of vl and vr in time O(len(v)). As we do the merging,
each time we take an element from vl we append a bit 0 to the node bitmap, and a bit 1 when we take an element from
vr . When we finish, π ′ has been sorted and we can delete it. The Huffman-shaped wavelet tree (only with the bitmaps and
field pos, but storing nRuns pointers to the leaves and parent pointers), φ, and C , represent π . See Fig. 2 for an example.

3.1.2. Space and construction cost
Note that each of the ni elements of leaf i (at depth �i ) is merged �i times, contributing �i bits to the bitmaps of its

ancestors, and thus the total number of bits in all bitmaps is
∑

ni�i . Therefore, the total number of bits in the Huffman-
shaped wavelet tree is at most n(1 +H(vRuns)). Those bitmaps, however, are represented in compressed form [42], which
allows us to remove the n extra bits added by the Huffman encoding.

Let us call m j = nφ−1( j) the length of the run corresponding to the jth left-to-right leaf, and mi, j = mi + · · · + m j . The
compressed representation [42] takes, on a bitmap of length n and m 1s, m lg n

m + (n − m) lg n
n−m bits, plus a redundancy

of O(n/ log2 n) bits. We prove by induction (see also Grossi et al. [24]) that the compressed space allocated for all the
bitmaps descending from a node covering leaves [i..k] is

∑
i�r�k mr lg mi,k

mr
(we consider the redundancy later). Consider

two sibling leaves merging two runs of mi and mi+1 elements. Their parent bitmap contains mi 0s and mi+1 1s, and
thus its compressed representation requires mi lg mi+mi+1

mi
+ mi+1 lg mi+mi+1

mi+1
bits. Now consider a general Huffman tree node

merging a left subtree covering leaves [i.. j] and a right subtree covering leaves [ j + 1..k]. Then the bitmap of the node will
be compressed to mi, j lg mi,k

mi, j
+ m j+1,k lg mi,k

m j+1,k
bits. By the inductive hypothesis, all the bitmaps on the left child and its

subtrees add up to
∑

i�r� j mr lg
mi, j
mr

, and those on the right add up to
∑

j+1�r�k mr lg
m j+1,k

mr
. Adding up the three formulas

we get the inductive thesis.
Therefore, a compressed representation of the bitmaps requires nH(vRuns) bits, plus the redundancy. The latter,

added over all the bitmaps, is O(n(1 + H(vRuns))/ log2 n) ⊂ o(n) because H(vRuns) � lg n. To this we must add the
O(nRuns log n) bits of the tree pointers, bitmap pointers and lengths, fields pos, the permutation φ, and the bitmap C .

The construction time is O(nRuns lognRuns) for the Huffman algorithm, plus O(nRuns) for computing φ and filling
the node fields idx, pos, len and pos′ , plus O(n) for constructing π ′ and C , plus the total number of bits appended to
all the bitmaps, which includes the merging cost. The extra structures for rank are built in linear time on those bitmaps.
All this adds up to O(n(1 +H(vRuns))), because nRuns lgnRuns� nH(vRuns) + lg n by concavity, recall Definition 1.

3.2. Queries

3.2.1. Computing π() and π−1()

One can regard the wavelet tree as a device that tracks the evolution of a merge-sorting of π ′ , so that in the bottom we
have (conceptually) the sequence π ′ (with one run per leaf) and in the top we have (conceptually) the sorted permutation
(1,2, . . . ,n).

To compute π−1( j) for any j ∈ [1..n] we start at the top and find out where that position came from in π ′ . We start
at offset j′ = j of the root bitmap B . If B[ j′] = 0, then position j′ came from the left subtree in the merging. Thus we go
down to the left child with j′ ← rank0(B, j′), which is the position of j′ in the array of the left child before the merging.
Otherwise we go down to the right child with j′ ← rank1(B, j′). We continue recursively until we reach a leaf v . At this
point we know that j came from the corresponding run, at offset j′ , that is, π−1( j) = pos(v) + j′ − 1. See Fig. 3 for an
example.
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Fig. 4. Example of support of π() on a Runs-compressed Data Structure, using the same permutation as in Fig. 2. We mark in bold the bits counted in the
rank operations.

To compute π(i) for any i ∈ [1..n] we do the reverse process, but we must first determine the leaf v and offset i′ within
v corresponding to position i. We compute l = φ(rank1(C, i)), so that i falls at the lth left-to-right leaf. Then v is the lth
entry in our array of pointers to the leaves, and the offset is i′ = i − pos(v) + 1. We now start an upward traversal from v
using the parent pointers. If v is the left child of its parent u, then we set i′ ← select0(B, i′) to locate it in the merged
array of the parent, else we set i′ ← select1(B, i′), where B is the bitmap of u. Then we set v ← u and continue until
reaching the root, where we answer π(i) = i′ . See Fig. 4 for an example.

3.2.2. Query time
In both queries the time is O(�), where � is the depth of the leaf arrived at. If i is chosen uniformly at random in [1..n],

then the average cost is 1
n

∑
ni�i ∈ O(1 +H(vRuns)). However, the worst case can be O(nRuns) in a fully skewed tree.

We can ensure � ∈O(lognRuns) in the worst case while maintaining the average case by slightly rebalancing the Huffman
tree [36]. Given any constant x > 0, the height of the Huffman tree can be bounded to at most (1 + x) lgnRuns so that the
total number of bits added to the encoding is at most n · nRuns−x lg ϕ , where ϕ ≈ 1.618 is the golden ratio. This is o(n) if
nRuns ∈ ω(1), otherwise the cost is O(nRuns) ⊂O(1) anyway. Similarly, the average time stays O(1 +H(vRuns)), as it
increases at most by O(nRuns−x log ϕ) ⊂ O(1). This rebalancing takes just O(nRuns) time if the frequencies are already
sorted. Note also that the space required by the query is constant.

Theorem 1. There is an encoding scheme using at most nH(vRuns) + O(nRuns log n) + o(n) bits to represent a permutation π
over [1..n] covered by nRuns contiguous ascending runs of lengths forming the vector vRuns. It can be built within time O(n(1 +
H(vRuns))), and supports the computation of π(i) and π−1(i) in time O(1 + lognRuns) and constant space for any value of
i ∈ [1..n]. If i is chosen uniformly at random in [1..n] then the average computation time is O(1 +H(vRuns)).

We note that the space analysis leading to nH(vRuns) + o(n) bits works for any tree shape. We could have used a
balanced tree, yet we would not achieve O(1 + H(vRuns)) average time. On the other hand, by using Hu–Tucker codes
instead of Huffman, as in our previous work [10], we would not need the permutation φ and, by using compact tree repre-
sentations [46], we would be able to reduce the space to nH(vRuns) +O(nRuns log n

nRuns ) + o(n) bits. This is interesting
for large values of nRuns, as it is always nH(vRuns) + o(n(1 +H(vRuns))) even if nRuns ∈ Θ(n).3

3.3. Mixing ascending and descending runs

We can easily extend Theorem 1 to mix ascending and descending runs.

Corollary 1. Theorem 1 holds verbatim if π is partitioned into a sequence nRuns contiguous monotone (i.e., ascending or descending)
runs of lengths forming the vector vRuns.

Proof. We mark in a bitmap of length nRuns whether each run is ascending or descending, and then reverse descending
runs in π , so as to obtain a new permutation πasc , which is represented using Theorem 1 (some runs of π could now be
merged in πasc , but we force those runs to stay separate).

The values π(i) and π−1( j) are easily computed from πasc: If π−1
asc ( j) = i, we use C to determine that i is within run

πasc(�..r), that is, � = select1(rank1(C, i)) and r = select1(rank1(C, i) + 1) − 1. If that run is reversed in π , then

3 We do not follow this path because we are more interested in multiary codes (see Section 3.5) and, to the best of our knowledge, there is no efficient
(i.e., O(nRuns lognRuns) time) algorithm for building multiary Hu–Tucker codes [32].
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π−1( j) = � + r − i, else π−1( j) = i. For π(i), we use C to determine that i belongs to run π(�..r). If the run is descending,
then we return πasc(�+ r − i), else we return πasc(i). The operations on C require only constant time. The extra construction
time is just O(n), and no extra space is needed apart from nRuns ∈ o(nRuns log n) bits. �

Note that, unlike the case of ascending runs, where there is an obviously optimal way of partitioning (that is, maximize
the run lengths), we have some freedom when partitioning into ascending or descending runs, at the endpoints of the
runs: If an ascending (resp. descending) run is followed by a descending (resp. ascending) run, the limiting element can
be moved to either run; if two ascending (resp. descending) runs are consecutive, one can create a new descending (resp.
ascending) run with the two endpoint elements. While finding the optimal partitioning might not be easy, we note that
these decisions cannot affect more than O(nRuns) elements, and thus the entropy of the partition cannot be modified by
more than O(nRuns log n), which is absorbed by the redundancy of our representation.

3.4. Improved adaptive sorting

One of the best known sorting algorithms is MergeSort, based on a simple procedure to merge two already sorted
arrays, and with a complexity of n�lgn� comparisons and O(n log n) running time. It had been already noted [32] that
finding the down-steps of the array in linear time allows improving the time of MergeSort to O(n(1 + lognRuns)) (the
down-step concept can be applied to general sequences, where consecutive equal values do not break runs).

We now show that the construction process of our data structure sorts the permutation and, applied on a general
sequence, it achieves a refined sorting time of O(n(1 +H(vRuns))) ⊂O(n(1 + lognRuns)) (since H(vRuns) � lgnRuns).

Theorem 2. There is an algorithm sorting an array of length n covered by nRuns contiguous monotone runs of lengths forming the
vector vRuns in time O(n(1 +H(vRuns))), which is worst-case optimal in the comparison model.

Proof. Our construction of Theorem 1 (and Corollary 1) indeed sorts π (after converting it into π ′) within this time,
and it also works if the array is not a permutation. This is optimal because, even considering just ascending runs,
there are n!

n1!n2!...nnRuns! different permutations that can be covered with runs of lengths forming the vector vRuns =
〈n1,n2, . . . ,nnRuns〉. Thus lg n!

n1!n2!...nnRuns! comparisons are necessary. Using Stirling’s approximation to the factorial we

have lg n!
n1!n2!...nnRuns! ∈ (n + 1/2) lg n − ∑

i(ni + 1/2) lg ni − O(lognRuns). Since
∑

lg ni � nRuns lg(n/nRuns), this is
nH(vRuns) − O(nRuns log(n/nRuns)) ⊂ nH(vRuns) − O(n). The term Ω(n) is also necessary to read the input, hence
implying a lower bound of Ω(n(1 +H(vRuns))).

Note, however, that our formula n!
n1!n2!...nnRuns! is actually overcounting. That is, it properly counts the set of permutations

that can be covered with nRuns runs of lengths vRuns, but it includes permutations that can also be covered with fewer
runs (as two consecutive runs could be merged). Still the lower-bound argument is valid: We have proved that the lower
bound applies to the union of two classes: one (1) contains (some4) permutations of entropy H(vRuns) and the other (2)
contains (some) permutations of entropy less than H(vRuns). Obviously the bound does not hold for class (2) alone, as we
can sort it in less time. Since we can tell the class of a permutation in O(n) time by counting the down-steps, it follows
that the bound also applies to class (1) alone (otherwise O(n) + o(nH(vRuns)) would be achievable for (1) + (2)). �
3.5. Boosting time performance

The time achieved in Theorem 1 (and Corollary 1) can be boosted by an O(log logn) time factor by using Huffman codes
of higher arity. Given the run lengths vRuns, we build a t-ary Huffman tree for vRuns, with t = √

lg n. Since now we
merge t children to build the parent, the sequence stored in the parent to indicate the child each element comes from is
not binary, but over [1..t].

The total length of all the sequences stored at all the Huffman tree nodes is < n(1 +H(vRuns)/ lg t) [28]. To reduce
the redundancy, we represent each sequence S[1..m] stored at a node using the compressed representation of Golynski et
al. [23, Lemma 9], which takes mH0(S) +O(m log t log log m/ log2 m) bits.

For the string S[1..m] corresponding to a leaf covering runs of lengths m1, . . . ,mt , we have mH0(S) = ∑
mi lg m

mi
. From

there we can carry out exactly the same analysis done in Section 3.1 for binary trees, to conclude that the sum of the
mH0(S) bits for all the strings S over all the tree nodes is nH(vRuns). On the other hand, the redundancies add up to
O(n(1 +H(vRuns)/ log t) log t log log n/ log2 n) ⊂ o(n) bits.

The advantage of the t-ary representation is that the average leaf depth is 1 + H(vRuns)/ lg t ∈ O(1 + H(vRuns)/

log log n). The algorithms to compute π(i) and π−1(i) are similar, except that rank and select are carried out on se-
quences S over alphabets of size

√
lg n. Those operations can still be carried out in constant time on the representation we

have chosen [23].

4 Other permutations with vectors distinct from vRuns could also have entropy H(vRuns).
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For the worst case, if nRuns ∈ ω(1), we can again limit the depth of the Huffman tree to O(lognRuns/ log log n)

and maintain the same average time. The multiary case is far less understood than the binary case. An algorithm to
find the optimal length-restricted t-ary code was presented whose running time is linear once the lengths are sorted
[4]. To analyze the increase in redundancy, consider the suboptimal method that simply takes any node v of depth
more than � = 4 lgnRuns/ lg t and balances its subtree (so that height 5 lgnRuns/ lg t is guaranteed). Since any node
at depth � covers a total length of at most n/t�/2� (see next paragraph), the sum of all the lengths covered by
these nodes is at most nRuns · n/t�/2� . By forcing those subtrees to be balanced, the average leaf depth increases
by at most (lgnRuns/ lg t)nRuns/t�/2� � lg(nRuns)/(nRuns lg t) ∈ O(1). Hence the worst case is limited to O(1 +
lognRuns/ log log n) while the average case stays within O(1 +H(vRuns)/ log log n). For the space, since nRuns ∈ ω(1),
we can just charge the lgnRuns/ lg t levels added to all the nodes deeper than �, which cover at most nRuns · n/t�/2�
cells, and get lgnRuns · nRuns · n/t�/2� = n · lg(nRuns)/nRuns ∈ o(n) further bits.

The upper bound of n/t�/2� is obtained as follows. Consider a node v in the t-ary Huffman tree. Then len(u) � len(v)

for any uncle u of v , as otherwise switching v and u improves the already optimal Huffman tree (recall the definition of
the covered area len(·) from Section 3.1). Hence w , the grandparent of v (i.e., the parent of u) must cover an area of
size len(w) � t · len(v). Thus the covered length is multiplied at least by t when moving from a node to its grandparent.
Conversely, it is divided at least by t as we move from a node to any grandchild. As the total length at the root is n, the
length covered by any node v at depth � is at most len(v) � n/t�/2� .

This yields our final result for contiguous monotone runs.

Theorem 3. There is an encoding scheme using at most nH(vRuns) + O(nRuns log n) + o(n) bits to encode a permutation π
over [1..n] covered by nRuns contiguous monotone runs of lengths forming the vector vRuns. It can be built within time O(n(1 +
H(vRuns)/ log log n)), and supports the computation of π(i) and π−1(i) in timeO(1+ lognRuns/ log logn) and constant space for
any value of i ∈ [1..n]. If i is chosen uniformly at random in [1..n] then the average computation time is O(1 +H(vRuns)/ log log n).

The only missing part is the construction time, since now we have to build strings S[1..m] by merging t increasing runs.
This can be done in O(m) time by using atomic heaps [19]. The compressed sequence representations are built in linear
time [23]. Note that this implies that we can sort an array with nRuns contiguous monotone runs of lengths forming the
vector vRuns in time O(n(1 +H(vRuns)/ log log n)), yet we are not anymore in the comparison model.

This data structure yields almost directly a new representation of sequences, described in Section 6.3.

4. Strict runs

Some classes of permutations can be covered by a small number of runs of a stricter type. We present an encoding
scheme that takes advantage of them.

Definition 3. A strict ascending run in a permutation π is a maximal range of positions satisfying π(i + k) = π(i) + k. The
head of such run is its first position. The number of strict ascending runs of π is denoted by nSRuns, and the sequence of
the lengths of the strict ascending runs is denoted by vSRuns. We will call vHRuns the sequence of contiguous monotone
run lengths of the sequence formed by the strict run heads of π . Similarly, the notion of a strict descending run can be
defined, as well as that of strict (monotone) run encompassing both.

For example, our permutation π = (8,9,1,4,5,6,7,2,3) has nSRuns = 4 strict runs of lengths forming the vec-
tor vSRuns = 〈2,1,4,2〉. The run heads are 〈8,1,4,2〉, which form 3 monotone runs, of lengths forming the vector
vHRuns = 〈1,2,1〉. The number of strict runs can be anywhere between nRuns and n; for instance the permuta-
tion (6,7,8,9,10,1,2,3,4,5) contains nSRuns = nRuns = 2 runs, both of which are strict, while the permutation
(1,3,5,7,9,2,4,6,8,10) contains nSRuns= 10 strict runs, each of length 1, but only 2 runs, each of length 5.

Theorem 4. Assume there is an encoding P for a permutation over [1..n] with nRuns contiguous monotone runs of lengths form-
ing the vector vRuns, which requires s(n,nRuns,vRuns) bits of space and can apply the permutation and its inverse in time
t(n,nRuns,vRuns). Now consider a permutation π over [1..n] covered by nSRuns strict runs and by nRuns� nSRunsmonotone
runs, and let vHRuns be the vector formed by the nRuns monotone run lengths in the permutation of strict run heads. Then there is
an encoding scheme using at most s(nSRuns,nRuns,vHRuns) +O(nSRuns log n

nSRuns ) + o(n) bits for π . It can be computed in

O(n) time on top of that for building P . It supports the computation of π(i) and π−1(i) in time O(t(nSRuns,nRuns,vHRuns))

for any value i ∈ [1..n].

Proof. We first set up a bitmap R of length n marking with a 1 bit the beginning of the strict runs. We set up a second
bitmap Rinv such that Rinv[i] = R[π−1(i)]. Now we create a new permutation π ′ over [1..nSRuns] that collapses the strict
runs of π , π ′(i) = rank1(Rinv,π(select1(R, i))). All this takes O(n) time and the bitmaps take 2nSRuns lg n

nSRuns +
O(nSRuns) + o(n) bits in compressed form [43], where rank and select are supported in constant time.
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Fig. 5. Our strict runs-compressed data structure, on the permutation of Fig. 2.

Now we build the structure P for π ′ . The number of monotone runs in π is the same as for the sequence of strict run
heads in π , and in turn the same as the runs in π ′ . So the number of runs in π ′ is also nRuns and their lengths are
vHRuns. Thus we require s(nSRuns,nRuns,vHRuns) further bits.

To compute π(i), we find i′ ← rank1(R, i) and then compute j′ ← π ′(i′). The final answer is select1(Rinv, j′) + i −
select1(R, i′). To compute π−1( j), we find j′ ← rank1(Rinv, j) and then compute i′ ← (π ′)−1( j′). The final answer is
select1(R, i′) + j − select1(Rinv, j′). The structure requires only constant time on top of that to support the operator
π ′() and its inverse π ′ −1(). �

The theorem can be combined with previous results, for example Theorem 3, in order to obtain concrete data structures.
Fig. 5 illustrates such a construction on our example permutation.

This representation is interesting because its space could be much less than n if nSRuns is small enough. However, it
still retains an o(n) term that can be dominant. The following corollary describes a compressed data structure where the
o(n) term is significantly reduced.

Corollary 2. The o(n) term in the space of Theorem 4 can be replaced by O(nSRuns log log n
nSRuns + log n) at the cost of O(1 +

lognSRuns) extra time for the queries.

Proof. Replace the structure of Raman et al. [43] by the binary searchable gap encoding of Gupta et al. [27], which takes
O(1 + lognSRuns) time for rank and select (recall Section 2.3). �

Other trade-offs for the bitmap encodings are possible, such as the one described by Gupta [26, Theorem 18, p. 155].

5. Shuffled sequences

Up to now our runs have been contiguous in π . Levcopoulos and Petersson [33] introduced the more sophisticated
concept of partitions formed by interleaved runs, such as Shuffled UpSequences (SUS) and Shuffled Monotone Sequences (SMS).
We now show how to take advantage of permutations formed by shuffling (interleaving) a small number of runs.

Definition 4. A decomposition of a permutation π over [1..n] into Shuffled UpSequences is a set of, not necessarily consecu-
tive, disjoint subsequences of increasing numbers that cover π . The number of shuffled upsequences in such a decomposi-
tion of π is denoted by nSUS, and the vector formed by the lengths of the involved shuffled upsequences, in arbitrary order,
is denoted by vSUS. When the subsequences can be of increasing or decreasing numbers, we call them Shuffled Monotone
Sequences, call nSMS their number and vSMS the vector formed by their lengths.

For example, the permutation (1,6,2,7,3,8,4,9,5,10) contains nSUS= 2 shuffled upsequences of lengths forming the
vector vSUS= 〈5,5〉, but nRuns= 5 runs, all of length 2. Interestingly, we can reduce the problem of representing shuffled
sequences to that of representing strings and contiguous runs.
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Fig. 6. Example of an SUS-compressed data structure on a permutation that reduces to that of Fig. 2 via Theorem 5.

5.1. Reduction to strings and contiguous monotone sequences

We first show how a permutation with a small number of shuffled monotone sequences can be represented using strings
over a small alphabet and permutations with a small number of contiguous monotone sequences.

Theorem 5. Assume there exists an encoding P for a permutation over [1..n] with nRuns contiguous monotone runs of lengths
forming the vector vRuns, which requires s(n,nRuns,vRuns) bits of space and supports the application of the permutation and its
inverse in time t(n,nRuns,vRuns). Assume also that there is a data structure S for a string S[1..n] over an alphabet of size nSMS
with symbol frequencies vSMS, using s′(n,nSMS,vSMS) bits of space and supporting operators string_rank, string_select,
and access to values S[i], in time t′(n,nSMS,vSMS). Now consider a permutation π over [1..n] covered by nSMS shuffled mono-
tone sequences of lengths vSMS. Then there exists an encoding of π using at most s(n,nSMS,vSMS) + s′(n,nSMS,vSMS) +
O(nSMS log n

nSMS ) + o(n) bits. Given the covering by SMSs, the encoding can be built in time O(n), in addition to that of building

P and S. It supports the computation of π(i) and π−1(i) in time t(n,nSMS,vSMS) + t′(n,nSMS,vSMS) for any value of i ∈ [1..n].
The result is also valid for shuffled upsequences, in which case P is just required to handle ascending runs.

Proof. Given the partition of π into nSMS monotone subsequences, we create a string S[1..n] over alphabet [1..nSMS]
that indicates, for each element of π , the label of the monotone sequence it belongs to. We encode S[1..n] using the data
structure S . We also store an array A[1..nSMS] so that A[�] is the accumulated length of all the sequences with label less
than �.

Now consider the permutation π ′ formed by the sequences taken in label order: π ′ can be covered with nSMS
contiguous monotone runs vSMS, and hence can be encoded using s(n,nSMS,vSMS) bits using P . This computes π ′()
and π ′ −1() in time t(n,nSMS,vSMS) (again, some of the runs could be merged in π ′ , but we avoid that). Thus
π(i) = π ′(A[S[i]] +string_rankS[i](S, i)) is computed in time t(n,nSMS,vSMS) + t′(n,nSMS,vSMS). Similarly, π−1( j) =
string_select�(S, (π ′)−1( j) − A[�]), where � is such that A[�] < (π ′)−1( j) � A[� + 1], can also be computed in time
t(n,nSMS,vSMS) + t′(n,nSMS,vSMS), plus the time to find �. The latter is reduced to constant by representing A with a
bitmap A′[1..n] with the bits set at the values A[�] + 1, so that A[�] = select1(A′, �) − 1, and then � is simply computed
as � = rank1(A′, (π ′)−1( j)). With the structure of Raman et al. [43], A′ uses O(nSMS log n

nSMS ) + o(n) bits and operates in
constant time. �

See Fig. 6 for an example of this theorem. We will now obtain concrete results by using specific representations for P
and S , and specific methods to find the decomposition into shuffled sequences.

5.2. Shuffled upsequences

Given an arbitrary permutation, one can decompose it in linear time into contiguous runs in order to minimize
H(vRuns), where vRuns is the vector of run lengths. However, decomposing the same permutation into shuffled up (resp.
monotone) sequences so as to minimize either nSUS or H(vSUS) (resp. nSMS or H(vSMS)) is computationally harder.

Fredman [20] gave an algorithm to compute a partition of minimum size nSUS, into upsequences, claiming a worst case
complexity of O(n log n). Even though he did not claim it at the time, it is easy to observe that his algorithm is adaptive
in nSUS and takes O(n(1 + lognSUS)) time. We give here an improvement of his algorithm that computes the partition in
time O(n(1 +H(vSUS))), no worse than the time of his original algorithm since H(vSUS) � lgnSUS.

Theorem 6. Let an array D[1..n] be optimally covered by nSUS shuffled upsequences (equal values do not break an upsequence). Then
there is an algorithm finding a covering of size nSUS in time O(n(1 +H(vSUS))) ⊂O(n(1 + lognSUS)), where vSUS is the vector
formed by the lengths of the upsequences found.

Proof. Initialize a sequence S1 = (D[1]), and a splay tree T [47] with the node (S1), ordered by the rightmost value of the
sequence contained by each node. For each further array element D[i], search for the sequence with the maximum ending
point no larger than D[i]. If it exists, add D[i] to this sequence, otherwise create a new sequence and add it to T .
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Fredman [20] already proved that this algorithm finds a partition of minimum size nSUS. Note that, although the right-
most values of the splay tree nodes change when we insert a new element in their sequence, their relative position with
respect to the other nodes remains the same, since all the nodes at the right hold larger values than the one inserted. This
implies in particular that only searches and insertions are performed in the splay tree.

A simple analysis, valid for both the plain sorted array in Fredman’s proof and the splay tree of our own proof, yields an
adaptive complexity of O(n(1 + lognSUS)) comparisons, since both structures contain at most nSUS elements at any time.
The additional linear term (relevant when nSUS= 1) corresponds to the cost of reading each element once.

The analysis of the algorithm using the splay tree refines the complexity to O(n(1 + H(vSUS))), where vSUS is the
vector formed by the lengths of the upsequences found. These lengths correspond to the frequencies of access to each node
of the splay tree, which yields the total access time of O(n(1 +H(vSUS))) [47, Theorem 2]. �

The theorem obviously applies to the particular case where the array is a permutation. For permutations and, in gen-
eral, integer arrays over a universe [1..m], we can deviate from the comparison model and find the partition within time
O(n log log m), by using y-fast tries [48] instead of splay trees.

We can now give a concrete representation for shuffled upsequences. The complete description of the permutation re-
quires to encode the computation of the partitioning and of the comparisons performed by the sorting algorithm. This time
the encoding cost of partitioning is as important as that of merging.

Theorem 7. Let π be a permutation over [1..n] that can be optimally covered by nSUS shuffled upsequences, and let vSUS be the
vector formed by the lengths of an optimal decomposition found by an algorithm. Then there is an encoding scheme for π using at most
2nH(vSUS)+O(nSUS log n)+o(n) bits. It can be computed in additional time O(n(1 +H(vSUS))), and supports the computation
of π(i) and π−1(i) in time O(1 + lognSUS/ log log n) for any value of i ∈ [1..n]. If i is chosen uniformly at random in [1..n] the
average query time is O(1 +H(vSUS)/ log log n).

Proof. Once the algorithm finds the SUS partition of optimal size nSUS, and being vSUS the corresponding vector of the
sizes of the subsequences of this partition, we apply Theorem 5: For the data structure S we use Theorem 8 (see later,
Section 6.3), whereas for P we use Theorem 3. Note H(vSUS) is both H0(S) and H(vRuns) for permutation π ′ . The result
follows immediately. �

One would be tempted to consider the case of a permutation π covered by nSUS upsequences that form strict runs,
as a particular case. Yet, this is achieved by resorting directly to Theorem 3. The corollary extends verbatim to shuffled
monotone sequences.

Corollary 3. There is an encoding scheme using at most nH(vSUS) + O(nSUS log n) + o(n) bits to encode a permutation π over
[1..n] optimally covered by nSUS shuffled upsequences, of lengths forming the vector vSUS, and made up of strict runs. It can be built
within time O(n(1 +H(vSUS)/ log log n)), and supports the computation of π(i) and π−1(i) in time O(1 + lognSUS/ log log n) for
any value of i ∈ [1..n]. If i is chosen uniformly at random in [1..n] then the average query time is O(1 +H(vSUS)/ log log n).

Proof. It is sufficient to represent π−1 using Theorem 3, since in this case π−1 is covered by nSUS ascending runs of
lengths forming the vector vSUS: If i0 < i1 < · · · < im forms a strict upsequence, so that π(it) = π(i0) + t , then calling
j0 = π(i0) we have the ascending run π−1( j0 + t) = it for 0 � t � m. �

Once more, our construction translates into an improved sorting algorithm, reducing the complexity O(n(1 + lognSUS))

of the algorithm by Levcopoulos and Petersson [33].

Corollary 4. We can sort an array of length n, optimally covered by nSUS shuffled upsequences, in time O(n(1 +H(vSUS))), where
vSUS are the lengths of the decomposition found by the algorithm of Theorem 6.

Proof. Our construction in Theorem 7 finds, separates, and sorts the subsequences of π , all within this time (we do not
need to build string S). �
5.2.1. Open problem

Note that the algorithm of Theorem 6 finds a partition of minimum size nSUS (this is what we refer to with “optimally
covered”), but that the entropy H(vSUS) of this partition is not necessarily minimal: There could be another partition, even
of size larger than nSUS, with lower entropy. Our results are only in function of the entropy of the partition of minimal
size nSUS found. This is unsatisfactory, as the ideal would be to speak in terms of the minimum possible H(vSUS), just as
we could do for H(vRuns).

Consider for instance, for some even integer n, the permutation (1,2, . . . ,n/2−1,n,n/2,n/2+1, . . . ,n−1). The algorithm
of Theorem 6 yields the partition {(1,2, . . . ,n/2 − 1,n), (n/2,n/2 + 1, . . . ,n − 1)} of entropy H(〈n/2,n/2〉) = n lg 2 = n. This
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is suboptimal, as the partition {(1,2, . . . ,n/2 − 1,n/2,n/2 + 1, . . . ,n − 1), (n)} is of much smaller entropy, H(〈n − 1,1〉) =
(n − 1) lg n

n−1 + lg n ∈O(log n).
On the other hand, a greedy online algorithm cannot minimize the entropy of an SUS partitioning. As an example

consider the permutation (2,3, . . . ,n/2,1,n,n/2 + 1, . . . ,n − 1), for some even integer n. A greedy online algorithm that
after processing a prefix of the sequence minimizes the entropy of such prefix, produces the partition {(1,n/2+1, . . . ,n−1),

(2,3, . . . ,n/2,n)}, of size 2 and entropy H(〈n/2,n/2〉) = n. However, a much better partition is {(1,n), (2,3, . . . ,n − 1)}, of
size 2 and entropy H(〈2,n − 2〉) ∈O(log n).

We doubt that the SUS partition minimizing H(vSUS) can be found within time O(n(1 +H(vSUS))) or even O(n(1 +
lognSUS)). Proving this right or wrong is an open challenge.

5.3. Shuffled monotone sequences

No efficient algorithm is known to compute the minimum number nSMS of shuffled monotone sequences composing
a permutation, let alone finding a partition minimizing the entropy H(vSMS) of the lengths of the subsequences. The
problem is NP-hard, by reduction from the computation of the “cochromatic” number of the graph corresponding to the
permutation [31]. There exist, however, approximation algorithms. For example, Fomin et al. [18] obtain a decomposition
into O (nSMS) shuffled monotone sequences in O (n3) time.

Given any such partition into monotone subsequences, if it is of smaller entropy than the partitions considered in the
previous sections, this yields an improved encoding by doing just as in Theorem 7 for SUS.

6. Impact and applications

Permutations are everywhere, so that compressing their representation helps compress many other forms of data, and
supporting in reasonable time the operators on permutations yields support for other operators. From a practical viewpoint,
our encodings are simple enough to be implemented. Some preliminary results on inverted indexes and compressed suffix
arrays show good performance on practical data sets. As an external test, the techniques were successfully used to handle
scalability problems in MPI applications [29]. We describe here a selection of examples demonstrating the impact and
applicability of our results.

6.1. Natural language

Consider a natural language text tokenized into word identifiers. Its word-based inverted index stores for each distinct
word the list of its occurrences in the tokenized text, in increasing order. This is a popular data structure for text indexing
[5,49]. By regarding the concatenation of the lists of occurrences of all the words, a permutation π is obtained that is
formed by ν contiguous ascending runs, where ν is the vocabulary size of the text. The lengths of those runs corresponds
to the frequencies of the words in the text. Therefore our representation achieves the zero-order word-based entropy of the
text, which in practice compresses the text to about 25% of its original size [11]. With π(i) we can access any position of
any inverted list, and with π−1( j) we can find the word that is at any text position j. Thus the representation contains the
text and its inverted index within the space of the compressed text.

6.2. Compressed suffix arrays

Compressed suffix arrays (CSAs) are data structures for indexing general texts. A family of CSAs builds on a function
called Ψ [25,45,24], which is actually a permutation. Much effort was spent in compressing Ψ to the zero- or higher-order
entropy of the text while supporting direct access to it. It turns out that Ψ contains σ contiguous increasing runs, where
σ is the alphabet size of the text, and that the run lengths correspond to the symbol frequencies. Thus our representation
of Ψ would reach the zero-order entropy of the text. It supports not only access to Ψ but also to its inverse Ψ −1, which
enables so-called bidirectional indexes [44], which have several interesting properties. Furthermore, Ψ contains a number
of strict ascending runs that depends on the high-order entropy of the text, and this allows compressing it further [41].

6.3. An improved sequence representation

Interestingly, the results from Section 3 yield almost directly a new representation of sequences that, compared to the
state of the art [16,23], provides improved average time.

Theorem 8. Given a string S[1..n] over alphabet [1..σ ] with zero-order entropy H0(S), there is an encoding for S using at most
nH0(S) +O(σ log n) + o(n) bits and answering queries S[i], string_rankc(S, i) and string_selectc(S, j) in time O(1 +
logσ/ log log n) for any c ∈ [1..σ ], i ∈ [1..n], and j ∈ [1..nc], where c is the number of occurrences of c in S. When i is chosen
at random in query S[i], or c is chosen with probability nc/n in queries string_rankc(S, i) and string_selectc(S, i), the
average query time is O(1 +H0(S)/ log log n).
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Proof. We build exactly the same t-ary Huffman tree used in Theorem 3, using the frequencies nc instead of run lengths.
The sequences at each internal node are formed so as to indicate how the symbols in the child nodes are interleaved in S .
This is precisely a multiary Huffman-shaped wavelet tree [24,16], and our previous analysis shows that the space used by
the tree is exactly as in Theorem 3, where now the entropy is H0(S) = ∑

c
nc
n lg n

nc
. The three queries are solved by going

down or up the tree and using rank and select on the sequences stored at the nodes [24,16]. Under the conditions
stated for the average case, one arrives at the leaf of symbol c with probability nc/n, and then the average case complexities
follow. �
6.4. Followup

Our preliminary results [10] have stimulated further research. This is just a glimpse of the work that lies ahead on this
topic.

While developing, with J. Fischer, compressed indexes for Range Minimum Query indexes based on Left-to-Right Minima
(LRM) trees [17,46], we realized that LRM trees yield a technique to rearrange in linear time nRuns contiguous ascending
runs of lengths forming vector vRuns, into a partition of nLRM = nRuns ascending subsequences of lengths forming a
new vector vLRM, of smaller entropy H(vLRM) �H(vRuns) [7]. Compared to an SUS partition, the LRM partition can have
larger entropy, but it is much cheaper to compute and encode. We represent it in Fig. 1 between H(vRuns) and H(vSUS).

Barbay [6] described compressed data structures for permutations inspired in other measures of disorder and adaptive
sorting algorithms than those considered in this work. One such data structure takes advantage of both the number nRuns
and the minimum number nRem of elements to remove from a permutation in order to leave a sorted subsequence of
it, and supports operators π() and π−1() in time O (lgnRuns). Another structure takes advantage of the number nInv
of inversions contained in the permutation and supports operators π() and π−1() in constant time. We represent those
results in Fig. 1 by round boxes around the corresponding disorder measures nInv and nRem, and the disorder measures
dominated by them.

While developing, with T. Gagie and Y. Nekrich, an elegant combination of previously known compressed string data
structures to attain superior space/time trade-offs [8], we realized that this yields various compressed data structures for
permutations π such that the times for π() and π−1() are improved to log-logarithmic. While those results subsume our
initial findings [10], the improved results now presented in Theorem 3 are incomparable with those [8], and in particu-
lar superior when the number of runs is polylogarithmic in n. In addition, our representation has less redundancy, o(n)

whenever σ ∈ o(n/ log n), whereas the faster representation [8] requires o(n(1 +H(nRuns))) bits over the entropy.
Arroyuelo et al. [1] extended our result to range searches. The permutation is seen as a set of n points on an n × n grid,

and they use approximations to SMS partitioning to separate the points into nSMS′ = O (nSMS) increasing and decreasing
subsequences (called “monotonic chains” in there). An additional “non-crossing” geometric property is enforced on the
chains, which allows orthogonal range searches to be reduced to O (nSMS) binary searches, so that using fractional cascading
the search time is O (nSMS+ log n) plus the output size.

7. Discussion

7.1. Relation between space and time

Bentley and Yao [12] introduced a family of search algorithms adaptive to the position of the element sought (also
known as the “unbounded search” problem) through the definition of a family of adaptive codes for unbounded integers,
hence proving that the link between algorithms and encodings was not limited to the complexity lower bounds suggested
by information theory. Such a relation between “time” and “space” can be found in other contexts: algorithms to merge two
sets define an encoding for sets [3], and the binary results of the comparisons of any deterministic sorting algorithm in the
comparison model yields an encoding of the permutation being sorted.

We have shown that some concepts originally defined for adaptive variants of the algorithm MergeSort, such as runs
and shuffled sequences, are useful in terms of the compression of permutations, and conversely, that concepts originally
defined for data compression, such as the entropy of the sets of run lengths, are a useful addition to the set of difficulty
measures previously considered in the study of adaptive sorting algorithms.

More work is required to explore the application of the many other measures of preorder introduced in the study of
adaptive sorting algorithms to the compression of permutations. Fig. 1 represents graphically the relation between known
measures of disorder (adding to those described by Moffat and Petersson [37], those described in this and other recent work
[7,6]) and a preorder on them based on optimality implications in terms of the number of comparisons performed. This is
relevant for the space used by potential compressed data structures on those permutations. Yet other relations of interest
should be studied, such as those in terms of optimality of the running time of the algorithm, which can be distinct from
the optimality in terms of the number of comparisons performed. For instance, we saw that H(vSMS)-optimality implies
H(vSUS)-optimality in terms of the number of comparison performed, but not in terms of the running time.



Author's personal copy

122 J. Barbay, G. Navarro / Theoretical Computer Science 513 (2013) 109–123

7.2. Adaptive operators

It is worth noticing that, in many cases, the time to support the operators on the compressed permutations is smaller
as the permutation is more compressed, in opposition with the traditional setting where one needs to decompress part or
all of the data in order to support the operators. This behavior, incidental in our study, is a very strong incentive to further
develop the study of difficulty or compressibility measures: measures such that “easy” instances can both be compressed
and manipulated in better time capture the essence of the data.

7.3. Compressed indices

Interestingly enough, our encoding techniques for permutations compress both the permutation and its index (i.e., the
extra data to speed up the operators). This is opposed to previous work [39] on the encoding of permutations, whose data
encoding was fixed; and to previous work [9] where the data itself can be compressed but not the index, to the point where
the space used by the index dominates that used by the data itself. This direction of research is promising, as in practice it
is more interesting to compress the whole succinct data structure or at least its index, rather than just the data.
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