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Binary relations are an important abstraction arising in many data representation problems.
The data structures proposed so far to represent them support just a few basic operations
required to fit one particular application. We identify many of those operations arising in
applications and generalize them into a wide set of desirable queries for a binary relation
representation. We also identify reductions among those operations. We then introduce
several novel binary relation representations, some simple and some quite sophisticated,
that not only are space-efficient but also efficiently support a large subset of the desired
queries.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Binary relations appear everywhere in Computer Science. Graphs, trees, inverted indexes, strings and permutations are
just some examples. They also arise as a tool to complement existing data structures (such as trees [4] or graphs [1]) with
additional information, such as weights or labels on the nodes or edges, that can be indexed and searched. Interestingly,
the data structure support for binary relations has not undergone a systematic study, but rather one triggered by particular
applications. We aim to start such a study in this article.

Let us say that a binary relation R relates objects in [1,n] with labels in [1, σ ], containing t pairs out of the nσ possible
ones. We focus on space-efficient representations considering a simple entropy measure,

H(R) = lg

(
nσ

t

)
= t lg

nσ

t
+ O (t)

bits, which ignores any other possible regularity. Fig. 1 illustrates a binary relation (we identify labels with rows and objects
with columns henceforth).

Previous work focused on relatively basic primitives for binary relations: extract the list of all the labels associated with
an object or of all the objects associated with a label (an operation called access), or extracting the j-th such element (an
operation called select), or counting how many of these are there up to some object/label value (called operation rank).

The first representation specifically designed for binary relations [4] supports rank, select and access on the rows
(labels) of the relation, for the purpose of supporting faster joins on labels. The idea is to write the labels of the pairs in
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Fig. 1. An example of binary relation.

object-major order and to operate on the resulting string plus some auxiliary data. This approach was extended to support
more general operations needed for text indexing, such as giving labels to the pairs and querying them [17]. The first
technique [4] was later refined [5] into a scheme that allows one to compress the string while still supporting the basic
operations on both labels and objects. The idea is to store auxiliary data on top of an arbitrary representation of the binary
relation, which can thus be compressed. This was used to support labeled operations on planar and quasi-planar labeled
graphs [1], such as finding the neighbors of a node that have a given label, determining whether two nodes are connected,
listing the neighbors of a node in order, etc.

Ad-hoc compressed representations for inverted lists [38] and Web graphs [16] can also be considered as supporting
binary relations. The idea here is to write the objects of the pairs in label-major order, and to support extracting substrings
of the resulting string, that is, little more than access on labels. One can add support for access on objects by means
of string select operations [15]. The string can be compressed by different means depending on the application. Typical
operations supported in this way on Web graphs are counting and listing the nodes that are pointed from a node, or that
point to a node, or even from/to ranges of nodes. On inverted lists one can list the documents where a term appears, the
terms appearing in a document, and also extend those queries to ranges of terms (e.g., supporting on-the-fly stemming) and
ranges of documents (e.g., supporting queries on subcollections).

In this paper we aim at settling the foundations of efficient compact data structures for binary relations. In particular,
we address the following points:

• We define a large set of operations of relevance to binary relations, widely extending the classic set of rank, select
and access. We give a number of reductions among operations in order to define a core set that allows one to
efficiently support the extended set of operations.

• We explore the power of the reduction to string operators [4] when the operations supported on the string are limited
to rank, select and access. This structure is called BinRel-Str, and we show it achieves interesting bounds only
for a reduced set of operations.

• We show that a particular string representation, the wavelet tree [25], although not being the fastest one, provides
native support for a much wider set of operations within logarithmic time. We call BinRel-WT this binary relation
representation.

• We extend wavelet trees to generalized wavelet trees [19], and design new algorithms for various operations that take
advantage of their larger fan-out. As a result we speed up most of the operations within the same space. This structure
is called BinRel-GWT.

• We present a new structure, binary relation wavelet tree (BRWT), that is tailored to represent binary relations. Although
the BRWT gives weaker support to the operations, it is the only one that approaches the entropy space H(R) within a
multiplicative factor (of 1.272).

• At the end, we show how some of our results can be used to provide new representations of point grids within
asymptotically optimal space, supporting various geometric operations in improved time.

For the sake of brevity, we aim at the simplest description of the operations, ignoring any practical improvement that
does not make a difference in terms of asymptotic time complexity, or trivial extensions such as interchanging labels and
objects to obtain other space/time tradeoffs.

2. Compact data structures for sequences

Given a sequence S of length n, drawn from an alphabet Σ of size σ , we define the following queries (omitting S if
clear from context):

• ranka(S, i) counts the occurrences of symbol a ∈ Σ in S[1, i].
• selecta(S, j) finds the position of the j-th occurrence of symbol a ∈ Σ in S .
• access(S, i) = S[i].

The solutions in the literature are quite different depending on the alphabet size, σ .
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2.1. Binary sequences

For the special case Σ = {0,1}, there exist representations using o(n) bits on top of a plain representation of S , and
answering the three queries in constant time [14]. The extra space can be made as low as O (n lg lg n/ lg n), which is optimal
[22]. This extra data structure on top of a plain representation of S is called an index.

If we are allowed, instead, to represent S in a specific way, then one can compress the sequence while still supporting the
three operations in constant time. The overall space can be reduced to nH0(S) + o(n) bits [37]. Here H0(S) is the zero-order
entropy of sequence S , defined as

H0(S) =
∑
a∈Σ

na

n
lg

n

na
,

where na is the number of occurrences of symbol a in S . The o(n) extra space on top of the entropy can be made as small
as O (n/ lgc n) for any constant c [36].

2.2. Sequences over small alphabets

If σ = O (lgε n), for a constant 0 < ε < 1, it is still possible to retain the space and time complexities of binary sequence
representations [19]. The main idea is that we only need a compressed sequence representation that provides constant-time
access, or more precisely, that can access O (lgσ n) consecutive symbols from S in constant time (this is achieved by
extending similar compressed bitmap representations [37]).

Then, in order to support ranka and selecta , we act as if we had an explicit bitmap Ba[1,n], where Ba[i] = 1 iff
S[i] = a. Then ranka(S, i) = rank1(Ba, i) and selecta(S, j) = select1(Ba, j). We store only the rank/select index of
each Ba , and can solve rank/select on Ba by extracting any desired chunk from S . The only difference is that we cannot
access O (lg n) contiguous bits from Ba in constant time, but only O (lgσ n).

As a result, the index for each Ba requires O (n lg lg n/ lgσ n) bits of space. Added over all the a ∈ Σ , the total space for
the indexes is O (nσ lg lg n/ lgσ n) = o(n).

2.3. General sequences and wavelet trees

The wavelet tree [25] reduces the three operations on general alphabets to those on binary sequences. It is a perfectly
balanced tree that stores a bitmap of length n at the root; every position in the bitmap is either 0 or 1 depending on
whether the symbol at this position belongs to the first half of the alphabet or to the second. The left child of the root will
handle the subsequence of S marked with a 0 at the root, and the right child will handle the 1s. This decomposition into
alphabet subranges continues recursively until reaching level �lgσ �, where the leaves correspond to individual symbols. We
call B v the bitmap at node v .

The access query S[i] can be answered by following the path described for position i. At the root v , if B v [i] = 0/1, we
descend to the left/right child, switching to the bitmap position rank0/1(B v , i) in the left/right child, which then becomes
the new v . This continues recursively until reaching the last level, when we arrive at the leaf corresponding to the desired
symbol. Query ranka(S, i) can be answered similarly to access, except that we descend according to a and not to the bit
of B v . We update position i for the child node just as before. At the leaves, the final bitmap position i is the answer. Query
selecta(S, j) proceeds as ranka , but upwards. We start at the leaf representing a and update j to select0/1(B v , j)
where v is the parent node, depending on whether the current node is its left/right child. At the root, position j is the
result.

If the bitmaps B v are represented in plain form (with indexes that support binary rank/select), then the wavelet
tree requires n lgσ + o(n) lgσ bits of space, while answering all the queries in O (lgσ) time. If the bitmaps B v are instead
represented in compressed form [36], the wavelet tree uses nH0(S) + o(n) bits and retains the same time complexities.
Fig. 2 illustrates the structure. Wavelet trees are not only used to represent strings [19], but also grids [9], permutations
[7], and many other structures. We refer in particular to a recent article [21] where in particular some (folklore) capabilities
are carefully proved: any range of symbols [α,β] is covered by k = O (lg(β − α + 1)) wavelet tree nodes, and these can be
reached from the root by traversing O (k + lgσ) nodes.

A way to speed up the wavelet tree operations is to use generalized wavelet trees [19]. These are multiary wavelet
trees, with arity μ = O (lgε n), for a constant 0 < ε < 1. Bitmaps B v are replaced by sequences S v over a (small) alphabet
of size μ. All the operations on those sequences are still solved in constant time, but now the wavelet tree height is
reduced to O (lgμ σ ) = O (lgσ/ lg lg n), and thus this is the complexity of the operations. The space can still be bounded by
nH0(S) + o(n) [24].

Wavelet trees are not the only sequence representation achieving basically nH0(S) bits of space [23,3]. The best current
alternative [3] uses nH0(S) + o(nH0(S)) + o(n) bits and solves the three queries within time O (lg lgσ). This is preferable
when σ is large.
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Fig. 2. Example of a wavelet tree for the sequence EHDHACEEGBCBGCF.

2.4. Range minimum queries (RMQs)

The Range Minimum Query (RMQ) operation on a sequence S[1,n] was not listed among the basic ones, but we cover it
because we will make use of it in Lemma 11. It is defined as rmq(S, i, j) = arg mini�k� j S[k], that is, it returns the position
of the minimum value in a range S[i, j]. If there are more than one, it returns the leftmost minimum.

It is possible to solve this query in constant time using just 2n + o(n) bits of space, without even accessing S itself [20].

3. Operations

3.1. Definition of operations

We now motivate the set of operations we define for binary relations. Their full list, formal definition, and illustration,
are given in Appendix A.

One of the most pervasive examples of binary relations are directed graphs, which are precisely binary relations between
a vertex set V and itself. Extracting rows or columns in this binary relation supports direct and reverse navigation from
a node. To support powerful direct access to rows and columns we define operations obj_acc1(α, x, y), which retrieves
the objects in [x, y] related to label α, in arbitrary order, and the symmetric one, lab_acc1(α,β, x). In case we want
to retrieve the pairs in order, obj_min1(α, x), which gives the first object � x related to label α, can be used as an
iterator, and similarly lab_min1(α, x). These operations are also useful to find out whether the link (α, x) exists. Note that
adjacency list representations only support efficiently the retrieval of direct neighbors, and adjacency matrix only support
efficiently the test for the existence of a link.

Web graphs, and their compact representation supporting navigation, have been a subject of intense research in re-
cent years [8,10,16] (see many more references therein). In a Web graph, the nodes are Web pages and the edges are
hyperlinks. Nodes are usually sorted by URL, which not only gives good compression but also makes ranges of nodes cor-
respond to domains and subdirectories.4 For example, counting the number of connections between two ranges of nodes
allows estimating the connectivity between two domains. This count of points in a range is supported by our operation
rel_num(α,β, x, y), which counts the number of related pairs in [α,β] × [x, y]. The individual links between the two
domains can be retrieved, in arbitrary order, with operation rel_acc(α,β, x, y). In general, considering domain ranges
enables the analysis and navigation of the Web graph at a coarser granularity (e.g., as a graph of hosts, or institutions). Our
operations obj_acc(α,β, x, y), which gives the objects in [x, y] related to a label in [α,β], extends obj_acc1 to ranges of
labels, and similarly lab_acc(α,β, x, y) extends lab_acc1. Ordered enumeration and (coarse) link testing are supported
by operations obj_min(α,β, x), which gives the first object � x related to a label in [α,β], and similarly lab_min(α, x, y)

for labels.
A second pervasive example of a binary relation are the two-dimensional grids, where objects and labels are simply

coordinates, and where pairs of the relation are points at those coordinates. Grids arise in Geographic Information Systems
and many other geometric applications. Operation rel_num allows us to count the number of points in a rectangular area.
A second essential operation in these applications is to retrieve the points from such an area. If the retrieval order is not
important, rel_acc is sufficient. Otherwise, operation rel_acc_lab_maj(x, y,α, z) serves as an iterator to retrieve the
points in label-major order. It retrieves the first point in [α,α] × [z, y], if any, and otherwise the first point in [α+1, σ ] ×
[x, y]. Operation rel_acc_obj_maj(α,β,γ , x) is similar, for object-major order. For an even more sophisticated processing
of the points, rel_sel_lab_maj(α, j, x, y) and rel_sel_obj_maj(α,β, x, j) give access to the j-th element in such lists.

Grids also arise in more abstract scenarios. For example, several text indexing data structures [13,17,27,29] resort to
a grid, which relates for example text suffixes (in lexicographic order) with their text positions, or phrase prefixes and

4 More precisely, we have to sort by the reversed site string concatenated with the path.
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Fig. 3. Reductions among operations.

suffixes in Lempel–Ziv compression, or two labels that form a rule in grammar-based compression, etc. The operations most
commonly needed are, again, counting and retrieving (in arbitrary order) the points in a rectangle.

Another important example of binary relations are inverted indexes [38], which support word-based searches on natural
language text collections. Inverted indexes can be seen as a relation between vocabulary words (the labels) and the docu-
ments where they appear (the objects). Apart from the basic operation of extracting the documents where a word appears
(obj_acc1), a popular operation is the conjunctive query (e.g., in Google-like search engines), which retrieves the docu-
ments where k given words appear. These are solved using a combination of the complementary queries obj_rnk1(α, x)
and obj_sel1(α, x, j) [4,6]. The first operation counts the number of points in [α,α] × [1, x], whereas the second gives
the j-th point in [α,α] × [x,n].

Extending these operations to a range of words allows for stemmed and/or prefix searches (by properly ordering the
words), and are implemented using obj_rnk(α,β, x) and obj_sel(α,β, x, j), which extend obj_rnk1 and obj_sel1
to ranges of labels. Extracting a column, on the other hand (lab_acc1), gives important summarization information
on a document: the list of its different words. Intersecting columns (using the symmetric operations lab_rnk1(α, x)
and lab_sel1(α, x, j)) allows for analysis of content between documents (e.g., plagiarism or common authorship de-
tection). Handling ranges of documents (supported with the symmetric operations lab_acc, lab_rnk(α, x, y), and
lab_sel(α, j, x, y)) allows for considering hierarchical document structures such as XML or file systems (where one oper-
ates over a whole subtree or subdirectory).

Similar representations are useful to support join operations on relational databases and, in combination with data
structures for ordinal trees, to support multi-labeled trees, such as those featured by semi-structured documents (e.g., XML)
[4]. A similar technique [1] combining various data structures for graphs with binary relations yields a family of data
structures for edge-labeled and vertex-labeled graphs that support labeled operations on the neighborhood of each vertex.
For example, operations rel_min_lab_maj and rel_min_obj_maj support the search for the highest neighbor of a
point, when the binary relation encodes the levels of points in a planar graph representing a topography map [1].

The extension of those operations to the union of labels in a given range allows them to handle more complex queries,
such as conjunctions of disjunctions. For example, in a relational database, consecutive labels may represent a range of
parameter values (e.g., people of age between 20 and 40).

We define other operations for completeness: rel_rnk_lab_maj acts like the inverse of rel_sel_lab_maj, and sim-
ilarly rel_rnk_obj_maj; lab_num and obj_num are more complete versions of lab_rnk and obj_rnk; and rel_rnk
is a more basic version of rel_num.

3.2. Reductions among operations

We give a set of reductions among the operations introduced. The results are summarized in the following theorem.

Theorem 1. For any solid arrow op → op′ in Fig. 3, it holds that if op is solved in time t, then op′ can be solved in time O (t). For the
dotted arrows with associated penalty factors O (t′), it holds that if op is solved in time t, then op′ can be solved in time O (tt′).
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Fig. 4. Sequence S and bitmap B for representing the binary relation shown in Fig. 1.

Proof. Several reductions are immediate from the definition of the operations in Appendix A (those arrows are in bold in
Fig. 3). We prove now the other ones. We consider only the reductions for the left side of the figure (operations related to
labels); the same idea applies for the right side (objects).

• rel_rnk→ rel_num

rel_num(α,β, x, y) = rel_rnk(α − 1, x − 1) − rel_rnk(α − 1, y)

− rel_rnk(β, x − 1) + rel_rnk(α − 1, x − 1).

• rel_rnk_lab_maj→ rel_num

rel_num(α,β, x, y) = rel_rnk_lab_maj(β, x, y, y)

−rel_rnk_lab_maj(α − 1, x, y, y).

• rel_acc→ (lab_acc1,obj_acc1)

lab_acc1(α,β, x) = {
γ , (γ , x) ∈ rel_acc(α,β, x, x)

}
,

obj_acc1(α, x, y) = {
z, (α, z) ∈ rel_acc(α,α, x, y)

}
.

• rel_sel_lab_maj → rel_min_lab_maj: in order to solve query rel_min_lab_maj(α, x, y, z) we first test if
rel_sel_lab_maj(α,1, z, y) gives a pair of the form (α, w), in which case we return it. Otherwise, we return
rel_sel_lab_maj(α + 1,1, x, y).

• rel_min_lab_maj→ rel_acc: to solve rel_acc(α,β, x, y), we find a first point (γ , z) = rel_min_lab_maj(α, x,
y, x). The next element is obtained as (γ ′, z′) = rel_min_lab_maj(γ , x, y, z + 1) and so on, until we reach the first
answer with label greater than β .

• rel_min_lab_maj→ lab_min: let (γ , z) = rel_min_lab_maj(α, x, y, x), then lab_min(α, x, y) = γ .
• lab_min→ lab_acc: we report γ = lab_min(α, x, y), γ ′ = lab_min(γ + 1, x, y), and so on until reaching a result

larger than β . The points reported form lab_acc(α,β, x, y).
• lab_min1→ lab_acc1: similar to the previous reduction.

Finally, the non-constant time reductions are explained the following way:

• (rel_rnk_lab_maj,rel_sel_lab_maj) works in both ways by doing a binary search over the results of the other
operation, in the worst case considering nσ elements.

• (lab_num,lab_sel) operates the same way as the previous one, but searching among σ elements in the worst case,
thus the O (lgσ) penalty. (For the objects this becomes O (lg n).) �

The reductions presented here allow us to focus on a small subset of the most difficult operations. In some cases,
however, we will present more efficient solutions for the simpler operations and will not use the reduction.

4. Reduction to strings: BINREL-STR

A simple representation [4,17] for a binary relation R formed by t pairs in [1,n] × [1, σ ] uses a bitmap B[1,n + t]
and a string S[1, t] over the alphabet [1, σ ]. The bitmap B concatenates the consecutive cardinalities of the n columns
of the relation, in unary. The string S contains the rows (labels) of the pairs of the relation in column (object)-major
order. Fig. 4 shows the representation for the binary relation shown in Fig. 1. Barbay et al. [4] showed that an easy way
to support operations obj_rnk1 and obj_sel1 on the binary relation is to support the operations rank and select
on B and S , using any data structure known for bitmaps and strings (recall Section 2). Note also that the particular case
rel_num(1, σ , x, y) can be answered in O (1) time using B . In the sequel we extend Barbay et al.’s work as much as
possible considering our considerably larger set of operations. This approach, building only on rank, select and access
on B and S , will be called BinRel-Str.

We define some notation used in the rest of the paper. First, we call map(x) the mapping from a column number x
to its last element in S: map(x) = rank1(B,select0(B, x)). The inverse, from a position in S to its column number, is
called unmap(m) = rank0(B,select1(B,m)) + 1. Both mappings take constant time. Finally, let us also define for brevity
rankc(B, x, y) = rankc(B, y) − rankc(B, x − 1).
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Assume our representation of S supports access in time a, rank in time r and select in time s. Table 1 (column
2) shows the complexity achieved for each binary relation operation using this approach. As it can be seen, the scheme
extends nicely only to operations involving one row or one column. In all the other cases, the complexities are linear in the
lengths of the ranges to consider. As the algorithms are straightforward and their complexities uninteresting, we defer them
to Appendix B.5

Various string representations [23,3] offer times a, r, and s that are constant or log-logarithmic on σ . These yield the best
time complexities we know of for the row-wise and column-wise operations, although these form a rather limited subset
of the operations we have defined. We exemplify this in Table 1 using Golynski et al.’s representation [23] (the variant with
constant-time access) for the space and the few interesting operations.

The space used by techniques based on representing B and S (including BinRel-WT and BinRel-GWT) is usually un-
related to H(R), the entropy of the binary relation. Various representations for S[1, t] achieve space t H0(S) plus some
redundancy [25,23,3]. This is t H0(S) = ∑

α∈[1,σ ] nα lg t
nα

, where nα is the number of pairs of the form (α, ·) in R. While
this can be lower than H(R) (which shows that our measure H(R) is rather crude), it can also be arbitrarily higher. For ex-
ample an almost full binary relation has an entropy H(R) close to zero, but its t H0(S) is close to nσ lgσ . A clearer picture is
obtained if we assume that S is represented in plain form using t lgσ bits. This is to be compared to H(R) = t lg nσ

t + O (t),
which shows that the string representation is competitive for sparse relations, t = O (n).

5. Using wavelet trees: BINREL-WT

Among the many string representations of S we can choose in BinRel-Str scheme, wavelet trees [25] turn out to be
particularly interesting. Although the time wavelet trees offer for a, r and s is O (lgσ), which is not the best available
for large σ , wavelet trees allow one to support many more operations efficiently, via other algorithms than those used by
the three basic operations. We call this representation BinRel-WT. Table 1 (column 3) summarizes the time complexity for
each operation using BinRel-WT. Next, we show how to support some key operations efficiently; the other complexities are
inferred from Theorem 1.

The first lemma states a well-known algorithm on wavelet trees [29].

Lemma 1. BinRel-WT supports rel_rnk(α, x) in O (lgσ) time.

Proof. This is rank�α(S,map(x)), where operation rank�α(S, p) counts the number of symbols � α in S[1, p]. It can be
supported in time O (lgσ) on the wavelet tree of S by following the root-to-leaf branch corresponding to α, while counting
at each node the number of objects preceding position p that are related with a label preceding α, as follows. Start at
the root v with counter c ← 0. If α corresponds to the left subtree, then enter the left subtree with p ← rank0(B v , p).
Otherwise, enter the right subtree with c ← c + rank0(B v , p) and p ← rank1(B v , p). Continue recursively until a leaf is
reached (indeed, that of α), where the answer is c + p. �

The next lemma solves an extended variant of a query called range_quantile in the literature, which was also solved with
wavelet trees within the same O (lgσ) time complexity [21]. The lemma also gives a solution via reductions for lab_min,
within the same O (lgσ) time complexity. This was called range_next_ value in the literature [21] and solved with an ad-hoc
algorithm, within the same space and time. In the Conclusions we discuss the relation with faster recent solutions that,
however, use more space [11,34].

Lemma 2. BinRel-WT supports rel_sel_lab_maj(α, j, x, y) in O (lgσ) time.

Proof. We first get rid of α by setting j ← j + rel_num(1,α − 1, x, y) and thus reduce to the case α = 1. Furthermore
we map x and y to the domain of S by p ← map(x − 1) + 1 and q ← map(y). We first find which is the symbol β

whose row contains the j-th element. For this sake we first find the β such that rank�β−1(S, p,q) < j � rank�β(S, p,q).
This is achieved in time O (lgσ) as follows. Start at the root v and set j′ ← j. If rank0(B v , p,q) � j, then continue to
the left subtree with p ← rank0(B v , p − 1) + 1 and q ← rank0(B v ,q). Otherwise, continue to the right subtree with
j′ ← j′ − rank0(B v , p,q), p ← rank1(B v , p − 1) + 1, and y ← rank1(B v ,q). The leaf arrived at is β . Finally, we answer
(β,unmap(selectβ(S, j′ + rankβ(S, p − 1)))). �

The wavelet tree is asymmetric with respect to objects and labels. The transposed problem, rel_sel_obj_maj, turns
out to be harder. We present, however, a polylogarithmic-time solution.

Lemma 3. BinRel-WT supports rel_sel_obj_maj(α,β, x, j) in O (min(lg n, lg j lg(β − α + 1)) lgσ) time.

5 To simplify, in column 2 of Table 1 we omit some complexities that are most likely to be inferior to their alternatives.
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Table 1
Space of our representations (in bits, omitting O (n+t+σ) in general) and their time complexity for each operation. Parameter k is the output size for the access operators; one can consider k = 1 for the
reductions given in Theorem 1.

Operation\Space BinRel-Str (t lgσ(1 + o(1))) BinRel-WT (t lgσ ) BinRel-GWT (t lgσ(1 + o(1))) BRWT (lg(1+√
2 )H(R))

rel_num(α,β, x, y) O ((β − α + 1)r) or O ((y − x + 1)a lg β) O (lgσ) O (lgσ/ lg lgn) O (β − α + lgσ)

rel_rnk(α, x) O (αr) or O (xa lgα) O (lgσ) O (lgσ/ lg lgn) O (α + lgσ)

rel_rnk_lab_maj(α, x, y, z) O (αr) or O ((y − x + 1)a lgα) O (lgσ) O (lgσ/ lg lgn) O (α + lgσ)

rel_sel_lab_maj(α, j, x, y) O ((σ − α + 1)r + s) O (lgσ) O (lgσ) O ( j lgσ)

rel_min_lab_maj(α, x, y, z) O ((σ − α + 1)r + s) or O ((y − x + 1)a lgα) O (lgσ) O (lgσ/ lg lgn + lg lgn) O (lgσ)

rel_rnk_obj_maj(α,β,γ , x) O ((β − α + 1)r) or O (xa lgβ) O (lgσ) O (lgσ/ lg lgn) O (β − α + lgσ)

rel_sel_obj_maj(α,β, x, j) O ((n − x + 1)a lgβ) O (lg j lg(β − α + 1) lgσ) or O (lgn lgσ) O (lg j lg(β − α + 1) lgσ/ lg lg n)

or O (lgn lgσ/ lg lgn)

O ( j lgσ)

rel_min_obj_maj(α,β,γ , x) O ((β − α + 1)(s + r)) or O ((n − x + 1)a lgα) O (lgσ) O (lgσ/ lg lgn) O (lgσ)

rel_acc(α,β, x, y) O ((β − α + 1)r + sk)

or O ((y − x + 1)a lgα + ak)

O ((k + 1) lgσ) O ((k + 1) lgσ/ lg lgn) O ((k + 1) lgσ)

lab_num(α,β, x, y) O ((β − α + 1)r) O (β − α + lgσ) O (β − α + lgσ/ lg lgn) O (β − α + lgσ)

lab_rnk(α, x, y) O (αr) O (α + lgσ) O (α + lgσ/ lg lgn) O (α + lgσ)

lab_sel(α, j, x, y) O ((σ − α + 1)r) O ( j lgσ) O ( j(lgσ/ lg lgn + lg lgn)) O ( j lgσ)

lab_acc(α,β, x, y) O ((β − α + 1)r) or O ((y − x + 1)a lgα) O ((k + 1) lgσ) O ((k + 1)(lgσ/ lg lg n + lg lgn)) O ((k + 1) lgσ)

lab_min(α, x, y) O ((σ − α + 1)r) or O ((y − x + 1)a lgα) O (lgσ) O (lgσ/ lg lgn + lg lgn) O (lgσ)

obj_num(α,β, x, y) O ((y − x + 1)a lgα) O ((y − x + 1) lgσ) O ((y − x + 1) lgσ/ lg lgn) O ((y − x + 1) lgσ)

obj_rnk(α,β, x) O (xa lgα) O (x lgσ) O (x lgσ/ lg lgn) O (x lgσ)

obj_sel(α,β, x, j) O ((n − x + 1)a lgα) O ( j lgσ) O ( j lgσ/ lg lgn) O ( j lgσ)

obj_acc(α,β, x, y) O ((β − α + 1)(r + sk)) or O ((y − x + 1)a lgα) O ((k + 1) lgσ) O ((k + 1) lgσ/ lg lgn) O ((k + 1) lgσ)

obj_min(α,β, x) O ((β − α + 1)(r + s)) or O ((n − x + 1)a lgα) O (lgσ) O (lgσ/ lg lgn) O (lgσ)

lab_rnk1(α, x) O (a lgα), e.g., O (lgσ) O (lgσ) O (lgσ/ lg lgn) O (lgσ)

lab_sel1(α, j, x) O (a lgα), e.g., O (lgσ) O (lgσ) O (lgσ) O ( j lgσ)

lab_min1(α, x) O (a lgα), e.g., O (lgσ) O (lgσ) O (lgσ/ lg lgn + lg lgn) O (lgσ)

lab_acc1(α,β, x) O (a(k + lgα)), e.g., O (k + lgσ) O ((k + 1) lgσ) O ((k + 1) lgσ/ lg lgn) O ((k + 1) lgσ)

obj_rnk1(α, x) O (r), e.g., O (lg lgσ) O (lgσ) O (lgσ/ lg lgn) O (lgσ)

obj_sel1(α, x, j) O (r + s), e.g., O (lg lgσ) O (lgσ) O (lgσ/ lg lgn) O (lgσ)

obj_min1(α, x) O (r + s), e.g., O (lg lgσ) O (lgσ) O (lgσ/ lg lgn) O (lgσ)

obj_acc1(α, x, y) O (r + sk), e.g., O ((k + 1) lg lgσ) O ((k + 1) lgσ) O ((k + 1) lgσ/ lg lgn) O ((k + 1) lgσ)
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Proof. Remember that the elements are written in S in object major order. First, we note that the particular case where
[α,β] = [1, σ ] is easily solved in O (lgσ) time, by doing j′ ← j + rel_num(1, σ ,1, x − 1) and returning (S[ j′],unmap( j′)).
In the general case, one can obtain time O (lg n lgσ) by binary searching the column y such that rel_num(α,β, x, y − 1) <

j � rel_num(α,β, x, y). Then the answer is (lab_sel1(α, j − rel_num(α,β, x, y − 1), y), y) (note that Lemma 2 already
gives us lab_sel1 in time O (lgσ)).

To obtain the other complexity, we find the O (lg(β−α+1)) wavelet tree nodes that cover the interval [α,β]; let these be
v1, v2, . . . , vk . We map position p = map(x − 1)+ 1 from the root towards those vi s, obtaining all the mapped positions pi

in O (k + lgσ) time [21]. Now the answer is within the positions [pi, pi + j −1] of some i. We cyclically take each vi , choose
the middle element of its interval, and map it towards the root, obtaining position q, corresponding to pair (S[q],unmap(q)).
If rel_rnk_obj_maj(α,β, S[q],unmap(q)) − rel_num(α,β,1, x − 1) = j, the answer is (S[q],unmap(q)). Otherwise we
know whether q is before or after the answer. So we discard the left or right interval in vi . After O (k lg j) such iterations
we have reduced all the intervals of length j of all the nodes vi , finding the answer. Each iteration costs O (lgσ) time. �

The next lemma solves a more general variant of a problem that was called prevLess in the literature, and also solved
with wavelet trees [28] (again, we discuss in the Conclusions the relation with recent faster solutions that use more space
[34]). We achieve the same complexity for this more general variant. Note this is a simplification of rel_sel_obj_maj
that we can solve within time O (lgσ), whereas for general j we cannot.

Lemma 4. BinRel-WT supports rel_min_obj_maj(α,β,γ , x) in O (lgσ) time per pair output.

Proof. We first use lab_min1(γ , x) (which we already can solve in time O (lgσ) as a consequence of Lemma 2) to search
for a point in the band [γ ,β] × [x, x]. If we find one, then this is the answer, otherwise we continue with the area [α,β] ×
[x + 1,n].

Just as for the second solution of Lemma 3, we obtain the positions pi at the nodes vi that cover [α,β]. The first element
to deliver is precisely one of those pi . We have to merge the results, choosing always the smaller, as we return from the
recursion that identifies the vi nodes. If we are in vi , we return q = pi . Otherwise, if the left child of v returned q, we
map it to q′ ← select0(B v ,q). Similarly, if the right child of v returned q, we map it to q′′ ← select1(B v ,q). If we have
only q′ (q′′), we return q = q′ (q = q′′); if we have both we return q = min(q′,q′′). The process takes O (lgσ) time. When we
arrive at the root we have the next position q where a label in [α,β] occurs in S , and thus return unmap(q). �

The next result can also be obtained by considering the complexity of the BinRel-Str scheme implemented over a
wavelet tree.

Lemma 5. BinRel-WT supports obj_sel1(α, x, j) in O (lgσ) time.

Proof. This is a matter of selecting the j-th occurrence of the label α in S , after the position of the pair (α, x). The formula
is unmap(selectα(S, j + obj_rnk1(α, x − 1))). �

The next operation is the first of the set we cannot solve within polylogarithmic time.

Lemma 6. BinRel-WT supports lab_num(α,β, x, y) in O (β − α + lgσ) time.

Proof. After mapping [x, y] to positions S[p,q], we descend in the wavelet tree to find all the leaves in [α,β] while
remapping [p,q] appropriately. We count one more label each time we arrive at a leaf, and we stop descending from an
internal node if its range [p,q] is empty. The complexity comes from the number of wavelet tree nodes accessed to reach
such leaves [21]. �

The remaining operations are solved naively: lab_sel and obj_sel use, respectively, lab_min and obj_min succes-
sively, and obj_num and obj_rnk use obj_rnk1 successively.

The overall result is stated in the next theorem and illustrated in Fig. 5.

Theorem 2. The structure BinRel-WT, for a binary relationR of t pairs over [1, σ ] × [1,n], uses t lgσ + O (n + t) bits of space and
supports the operations within the time complexities given in Table 1 (column 3).

Proof. The space assumes a plain uncompressed wavelet tree and bitmap representations, and the time complexities have
been obtained throughout the section. �
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Fig. 5. Reductions among operations supported by BinRel-WT and BinRel-GWT. The dotted boxes are operations supported in ω(lgσ) time, the filled boxes
represent operations directly addressed in the paper, and the blank boxes are supported via reductions. The solid boxes are solved in time O (lgσ), but
BinRel-GWT achieves time O (lgμ σ) or O (lgμ σ + lgμ) in those with thick solid lines. Note that box rel_min_lab_maj is not directly addressed by
BinRel-WT, but just by a reduction to rel_sel_lab_maj, whereas BinRel-GWT directly addresses it and obtains better time.

6. Using a generalized wavelet tree: BINREL-GWT

The results we obtained for the wavelet tree can be extended to the generalized wavelet tree, improving complexities in
many cases (recall Section 2.3). We refer to the structure that represents S using the generalized wavelet tree as BinRel-

GWT, and we use μ to represent the fan-out of the tree. We require μ ∈ O (lgε(nσ)), assuming that the RAM machine can
address up to n × σ cells. To simplify we will assume σ � n and then use simply μ ∈ O (lgε n).

A first simple result stems from the faster string operations afforded by generalized wavelet trees (it also holds for
obj_rnk1, but we obtain this one via reductions from rel_rnk).

Lemma 7. BinRel-GWT supports obj_sel1 in time O (lgμ σ ) for any μ ∈ Θ(lgε n) and any constant 0 < ε < 1.

Proof. This follows directly from the results on general BinRel-Str structures. �
The following notation will be useful to describe our algorithms within wavelet tree nodes. Note that all are easily

computed in constant time.

• child(k): Given a symbol k ∈ [1,μ], this is the subtree labeled k of the current node.
• g(α): Given a symbol α ∈ [1, σ ], g(α) is the symbol k such that child(k) contains the leaf corresponding to α.
• g−1(k): Given a symbol k ∈ [1,μ], g−1(k) = min{α,k = g(α)}.

The next lemma shows how to speed up all the range counting operations. The result is known in the literature for n ×n
grids, even within n lg n(1 + o(1)) bits of space [9].

Lemma 8. BinRel-GWT supports rel_rnk(α, x) in O (lgμ σ ) time, for any μ ∈ Θ(lgε n) and any constant 0 < ε < 1.

Proof. As in the case of BinRel-WT, we reduce this problem to the one of computing rank�α(S,map(x)), which can be
done by following a similar procedure: We follow the path for α starting at the root in position p = map(x) and with a
counter c ← 0. Every time we move to a subtree, we increase c ← c + rank�g(α)−1(S v , p). When we arrive at the leaf, the
answer is c + p.

Operation rank�k(S v , p) can be solved in constant time for μ ∈ Θ(lgε n) with a procedure similar to rankk on small
alphabets (recall Section 2.2). We store for each k ∈ [1,μ] the index of a bitmap B�k such that B�k[i] = 1 iff S v [i] � k. Thus
rank�k(S v , p) = rank1(B�k, p) is computed in constant time and the whole process takes O (lgμ σ ) time. �
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The next lemma covers operation rel_sel_lab_maj, on which we could not improve upon the complexity given by
BinRel-WT.

Lemma 9. BinRel-GWT supports rel_sel_lab_maj(α, j, x, y) in O (lgσ) time.

Proof. This is solved in a similar way to the one presented for BinRel-WT. We find v such that rank�β−1(S, p,q) < v �
rank�β(S, p,q). The only difference is that in this case we have to do, at each node, a binary search for the right child
k ∈ [1,μ] to descend, and thus the time is O (lgμ lgμ σ ) = O (lgσ). �

For the next operations we will augment the generalized wavelet tree with a set of bitmaps inside each node v . More
specifically, we will add μ(μ + 1)/2 bitmaps Bk,l , where Bk,l[i] = 1 iff S v [i] ∈ [k, l]. Just as with bitmaps B�k , bitmaps Bk,l
are not represented explicitly, but only their index is stored (recall Section 2.2), and their content is simulated in constant
time using S v . Their total space for a sequence S v [1,n] is O (nμ2 lg lg n/ lgμ n). To make this space o(n), it is sufficient that
μ = O (lgε n) for any constant 0 < ε < 1/2. (A related idea has been used by Farzan et al. [18].)

The next lemma shows that the current solution for operation prevLess [28] can be sped up by a Θ(lg lg n) factor within
the same space.

Lemma 10. BinRel-GWT supports rel_min_obj_maj(α,β,γ , x) in O (lgμ σ ) time, for any μ ∈ Θ(lgε n) and any constant 0 <

ε < 1/2.

Proof. We first run query rel_min_obj_maj(γ ,β,γ , x), and if the result is on column x, we report it. Otherwise
we run query rel_min_obj_maj(α,β,α, x + 1). This means that we can focus on a simpler query of the form
rel_min_obj_maj(α,β, x), which finds the first pair in [α,β] × [x,n], in object-major order. We map [x,n] to S[p, t]
as usual and then proceed recursively on the wavelet tree, remapping p. At each node v , we decompose the query into
three subqueries, and then take the minimum result of the three:

1. rel_min_obj_maj(α,g−1(g(α) + 1) − 1, x) on node child(α);
2. rel_min_obj_maj(g−1(g(α) + 1),g−1(g(β)) − 1, x) on the same node v;
3. rel_min_obj_maj(g−1(g(β)), β, x) on node child(β).

Note that queries of type 1 will generate, recursively, only O (lgμ σ ) further queries of type 1 and 2, and similarly queries
of type 3 will generate O (lgμ σ ) further queries of type 3 and 2. The only queries that actually deliver values are those of
type 2, and we will have to take the minimum over O (lgμ σ ) such results.

A query of type 2 is solved in constant time using bitmap Bg(α)+1,g(β)−1, by computing q = select1(Bg(α)+1,g(β)−1,

rank1(Bg(α)+1,g(β)−1, p − 1) + 1). This returns a position S v [q]. As we return from the recursion, we remap q in its parent
in the usual way, and then (possibly) compare q with the result of a query of type 1 or 3 carried out on the parent. We
keep the minimum q value along the way, and when we arrive at the root we return (S[q],unmap(q)). �

For the next lemma we need a further data structure. For each sequence S v [1,n], we store an RMQ structure (Sec-
tion 2.4), using O (n) = o(n lgμ) bits and finding in constant time the position of a minimum symbol in any range S v [i, j].
This result improves upon the result for query range_next_value [21] within the same space.

Lemma 11. BinRel-GWT supports rel_min_lab_maj(α, x, y, z) in O (lgμ σ + lgμ) time, for any μ ∈ Θ(lgε n) and any constant
0 < ε < 1.

Proof. Again, we can focus on a simpler query rel_min_lab_maj(α, x, y). We map [x, y] to S[p,q] as usual, and the goal
is to find the leftmost minimum symbol in S[p,q] that is larger than α.

Assume we are in a wavelet tree node v and the current interval of interest is S v [p,q]. Then, if S v [p,q] contains symbol
g(α) (which is known in constant time with rankg(α)(S v , p,q) > 0), we have to consider it first, by querying recursively
the child labeled g(α). If this recursive call returns an answer p′ , we return it in turn, remapping it to the parent node. If
it does not, then any symbol larger than α in the range must correspond to a symbol strictly larger than g(α) in S v [p,q].
We check in constant time whether there is any value larger than g(α) in S v [p,q], using rank�g(α)(S v , p,q) < q − p + 1.
If there is none, we return in turn with no answer.

If there is an answer, we binary search for the smallest k ∈ [g(α) + 1,μ] such that rank�k(S v , p,q) >

rank�g(α)(S v , p,q). This binary search takes O (lgμ) time and is done only once along the whole process. Once we
identify the right k, we descend to the appropriate child and start the final stage of the process.

The final stage starts at a node where all the local symbols represent original symbols that are larger than α, and
therefore we simply look for the position m = rmq(S v , p,q), which gives us, in constant time, the first occurrence of the
minimum symbol in S v , and descend to child S[m]. This is done until reaching a leaf, from where we return to the root,
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at position p′ , and return (S[p′],unmap(p′)). It is easy to see that we work O (1) time on O (lgμ σ ) nodes and O (lgμ)

once. �
Lemma 12. BinRel-GWT supports rel_sel_obj_maj(α,β, x, j) in O (min(lg n, lg j lg(β − α + 1)) lgμ σ ) time, for any μ ∈
Θ(lgε n) and any constant 0 < ε < 1/2.

Proof. The complexities are obtained the same way as for BinRel-WT. The binary search over rel_num is sped up because
BinRel-GWT supports this operation faster. The other complexity is in principle higher, because the interval [α,β] is split
into as many as O (μ lg(β −α +1)) nodes. However, this can be brought down again to O (lg(β −α +1)) by using the parent
node v of each group of (up to μ) contiguous leaves [k, l], and using select1 on the bitmaps Bk,l of those parent nodes
in order to simulate a contiguous range with all the values in [k, l]. So we still have O (lg(β − α + 1)) binary searches of
O (lg j) steps, and now each step costs O (lgμ σ ). �
Lemma 13. BinRel-GWT supports lab_num(α,β, x, y) in O (β − α + lgμ σ ) time, for any μ ∈ Θ(lgε n) and any constant 0 < ε <

1/2.

Proof. We follow the same procedure as for BinRel-WT. The main difference is how to compute the nodes covering the
range [α,β]. This can be done in a naïve way by just verifying whether each symbol appears in the range of S v , but this
raises the complexity by a factor of μ. Thus we need a method to list the symbols appearing in a range of S v without
probing non-existent ones. We resort to a technique loosely inspired by Muthukrishnan [30]. To list the symbol from a
range [k, l] that exist in S v [p,q], we start with the first symbol of the range that appears in S v [p,q]. This is obtained with
p′ = select1(Bk,l,rank1(Bk,l, p − 1) + 1). If p′ > q then there are no such symbols. Otherwise, let k′ = S v [p′]. Then we
know that k′ appears in S v [p,q]. Now we continue recursively with subranges [k,k′ − 1] and [k′ + 1, l]. The recursion stops
when no p′ is found, and it yields all the symbols appearing in S v [p,q] in O (1) time per symbol. �

The remaining operations are obtained by brute force, just as with BinRel-WT. Fig. 5 illustrates the reductions used.

Theorem 3. The structure BinRel-GWT, for a binary relation R of t pairs over [1, σ ] × [1,n], requires t lgσ(1 + o(1)) + O (n + t)
bits of space and supports the operations within the time complexities given in Table 1 (column 4).

Proof. The space comes from the t lgσ + O (n + t) bits of the wavelet tree, even in multiary form (Section 2.2), plus the
indexes for the virtual bitmaps B�k . To this we must add the o(t lgσ) bits added by the structures Bk,l and the RMQs on
the virtual sequences S v , which add up to O (t lgμ σ ) = O (t lgσ/ lg lg n). The time complexities of the operations have been
obtained throughout the section. �
7. Binary relation wavelet trees (BRWT)

We propose now a special wavelet tree structure tailored to the representation of binary relations. This wavelet tree
contains two bitmaps per level at each node v , Bl

v and Br
v . At the root, Bl

v [1,n] has the x-th bit set to 1 iff there exists a
pair (α, x) with α ∈ [1, 
σ/2�], and Br

v has the x-th bit set to 1 iff there exists a pair (α, x) with α ∈ [
σ/2� + 1, σ ]. Left
and right subtrees are recursively built on the positions set to 1 in Bl

v and Br
v , respectively. The leaves (where no bitmap

is stored) correspond to individual rows of the relation. We store a bitmap B[1, σ + t] recording in unary the number
of elements in each row. See Fig. 6 for an example. For ease of notation, we define the following functions on B , trivially
supported in constant-time: lab(r) = 1+rank0(B,select1(B, r)) gives the label of the r-th pair in a label-major traversal
of R; while its inverse poslab(α) = rank1(B,select0(B,α)) gives the position in the traversal where the pairs for label
α start.

Note that, because an object x may propagate both left and right, the sizes of the second-level bitmaps may add up to
more than n bits. Indeed, the last level contains t bits and represents all the pairs sorted in row-major order. As we will see,
the BRWT has weaker functionality than our former structures based on wavelet trees, but it reaches space proportional to
H(R).

Lemmas 14 to 18 give a set of operations that can be supported with the BRWT structure.

Lemma 14. BRWT supports rel_num(α,β, x, y) in O (β − α + lgσ) time.

Proof. We project the interval [x, y] from the root to each leaf in [α,β], adding up the resulting interval sizes at the leaves.
Of course we can stop earlier if the interval becomes empty. Note that we can only count pairs at the leaves, not at internal
nodes. �
Lemma 15. BRWT supports rel_min_lab_maj(α, x, y, z) in O (lgσ) time.
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Fig. 6. Example of the BRWT for the binary relation in Fig. 1.

Proof. As before, we only need to consider the simpler query rel_min_lab_maj(α, x, y). We reach the O (lgσ) wavelet
tree nodes v1, v2, . . . that cover the interval [α,σ ], and map [x, y] to all those nodes, in O (lgσ) time [21]. We choose the
first such node, vk , left to right, with a nonempty interval [x, y]. Now we find the leftmost leaf of vk that has a nonempty
interval [x, y], which is easily done in O (lgσ) time. Once we arrive at such a leaf γ with interval [x, y], we map x back to
the root, obtaining x′ , and the answer is (γ , x′). �
Lemma 16. BRWT supports rel_min_obj_maj(α,β,γ , x) in O (lgσ) time.

Proof. As before, we only need to consider the simpler query rel_min_obj_maj(α,β, x). Similar to the proof of Lemma 4,
we cover [α,β] with O (lgσ) wavelet tree nodes v1, v2, . . ., and map x to xi at each such vi , all in O (lgσ) time. Now, on
the way back out of this recursion, we obtain the smallest y � x in the root associated to some label in [α,β]. In this
process we keep track of the node vi that is the source of y, preferring the left child in case of ties. Finally, if we arrive
at the root with a value y that came from node vi , we start from position x′ = xi at node vi and find the leftmost leaf
of vi related to y. This is done by going left whenever possible (i.e., if Bl

v [x′] = 1) and right otherwise, and remapping x′
appropriately at each step. Upon reaching a leaf γ , we report (γ , y). �
Lemma 17. BRWT supports obj_sel1(α, x, j) in O (lgσ) time.

Proof. We map x − 1 from the root to x′ in leaf α, then walk up the path from x′ + j to the root and report the position
obtained. �
Lemma 18. BRWT supports lab_num(α,β, x, y) in O (β − α + lgσ) time.

Proof. We map [x, y] from the root to each leaf in [α,β], adding one per leaf where the interval is nonempty. Recursion
can also stop when [x, y] becomes empty. �

The remaining complexities are obtained by brute force: rel_sel_lab_maj and rel_sel_obj_maj are obtained by
iterating with rel_min_lab_maj and rel_min_obj_maj, respectively; and similarly lab_sel, obj_sel and lab_sel1
using lab_min, obj_min, and lab_min1. Finally, as before obj_num and obj_rnk are obtained by iterating over
obj_rnk1. We have obtained the following theorem, illustrated in Fig. 7.

Theorem 4. The BRWT structure, for a binary relationR of t pairs over [1, σ ] × [1,n], uses lg(1 + √
2 )H(R) + O (t + n + σ) bits of

space and supports the operations within the complexities given in Table 1 (column 5).

Proof. The operations have been obtained throughout the section. For the space, B is of length σ + t , and thus O (t +n +σ)

bits account for B and for the 2n bits at the root of the wavelet tree. The rest of the bits in the wavelet tree can be counted
by considering that each bit not in the root is induced by the presence of a pair.

Each pair has a unique representative bit in a leaf, and also induces the presence of bits up to the root. Yet those
leaf-to-root paths get merged, so that not all those bits are different. Consider an element x related to tx labels. It induces tx

bits at tx leaves, and each such bit at a leaf induces a bit per level on a path from the leaf towards the single x at the root.6

6 For example, in Fig. 6, object x = 4 is related to labels C and D (see also Fig. 1). Its 1 at the second leaf, for C, induces a 1 at its parent, for C–D, and
a 1 at the root, for A–D. Its 1 at the third leaf, for E, induces a 1 at its parent for E–F and the 1 at the root for E–H. The fact that (4,C) ∈R induces the
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Fig. 7. Reductions among operations supported by BRWT. The dotted boxes are operations supported in ω(lgσ) time, the filled boxes represent operations
directly addressed in the paper, and the blank boxes are supported via reductions.

At worst, all the O (tx) bits up to level lg tx are created for these elements, and from there on all the tx paths are different,
adding up a total of O (tx) + tx lg σ

tx
bits. Adding over all x we get O (t) + ∑

x tx lg σ
tx

. This is maximized when tx = t/n for
all x, yielding O (t) + t lg σn

t = H(R) + O (t) bits.
Instead of representing two bitmaps (which would multiply the above value by 2), we can represent a single sequence

B v with the possible values of the two bits at each position, 00, 01, 10, 11. Only at the root is 00 possible. Except for those
2n bits, we can represent the sequence over an alphabet of size 3 with a zero-order representation [24], to achieve at worst
(lg 3)H(R) + o(t) bits for this part while retaining constant-time rank and select over each Bl

v and Br
v . (To achieve this,

we maintain the directories for the original bitmaps, of sublinear size.)
To improve the constant lg 3 to lg(1 + √

2 ), we consider that the zero-order representation actually achieves |B v |H0(B v)

bits. We call Bx the concatenation of all the symbols induced by x, 
x = |Bx| � tx , and Hx = |Bx|H0(Bx). Assume the tx bits
are partitioned into t01 01’s, t10 10’s, and t11 11’s, so that tx = t01 + t10 + 2t11, 
x = t01 + t10 + t11, and Hx = t01 lg 
x

t01
+

t10 lg 
x
t10

+ t11 lg 
x
t11

. As t11 = (tx − t01 − t10)/2, the maximum of Hx as a function of t01 and t10 yields the worst case at

t01 = t10 =
√

2
4 tx , so t11 = ( 1

2 −
√

2
4 )tx and 
x = ( 1

2 +
√

2
4 )tx , where Hx = lg(1 + √

2)tx bits. This can be achieved separately

for each symbol. Using the same distribution of 01’s, 10’s, and 11’s for all x we add up to lg(1 + √
2 )t lg σn

t + O (t) =
lg(1 + √

2)H(R) + O (t) bits. (Note that, if we concatenate all the wavelet tree levels, the Hx strings are interleaved in this
concatenation.) �

Note that this is a factor of lg(1 + √
2 ) ≈ 1.272 away of the entropy of R.

8. Conclusions and future work

Motivated by the many applications where a binary relation R between σ labels and n objects arises, we have pro-
posed a rich set of primitives of interest in such applications. We first extended existing representations and showed that
their potential is very limited outside single-row or single-column operations. Then we proposed a representation called
BinRel-WT, that uses a wavelet tree to solve a large number of operations in time O (lgσ). This structure has been already
used in particular cases, but here we have made systematic use of it and exposed its full potential. Furthermore, we have
extended the results to generalized wavelet trees, to obtain structure BinRel-GWT, which achieves O (lgσ/ lg lg n) time for
many operations.

Our model generalizes the well-known computational geometry scenario where n points are laid on an n × n grid. In
this case the entropy of the grid is H(R) = n lg n + O (n) bits, and our BinRel-GWT obtains asymptotically optimal space,

creation of one column at the leaf for C and one at its parent. On the other hand, there are two pairs related to object 1, but they are merged at the second
level and thus there is only one path arriving at the root.
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n lg n + o(n lg n) bits, with time O (lg n/ lg lg n) for many operations, including the basic range counting (i.e., our rel_rnk
operation) and range reporting (i.e., our rel_acc operation). This time is already optimal, within O (n polylog(n)) space, for
range counting [35]. This achievement, however, is not a novelty. Bose et al. [9] also obtained those time and spaces before,
for square grids. Within linear space (i.e., O (n) words, or O (n lg n) bits), range reporting can be done in time O (lgε n) per
point, for any constant ε > 0 [12]. Since this ε divides the space (i.e., O (n/ε) words), it seems unlikely that such a solution
can be adapted to use optimal space.

However, for more complex operations, structure BinRel-GWT offers the best results to date within optimal space.
One such operation of interest is the so-called range successor query, which corresponds to our rel_min_lab_maj and
rel_min_obj_maj queries, as well as to the range_next_value and prevLess queries we have mentioned. The current so-
lutions using optimal space [21,28] achieve O (lg n) time, whereas our BinRel-GWT reduces it to O (lg n/ lg lg n). This also
speeds up rectangle visibility queries and the problem of finding the dominant points in a range [32].

Faster competing solutions for range successor queries offer at best linear space. Within this space, they also achieve
O (lg n/ lg lg n) time. Only very recently, those operations were improved to O (lgε n) time within linear space (more precisely,
O (n/ε) words) [34]. We believe it is unlikely that sorted range reporting can be done better than O (lg n/ lg lg n) within
optimal space.

The other interesting operation is the range_quantile query, which corresponds to our rel_sel_lab_maj. Our BinRel-

GWT structure achieves O (lg n) time for it. This had been the best known complexity, within essentially subquadratic space,
for some time. Recently, a linear-space data structure achieved O (lg n/ lg lg n) time [11], and it has been shown this time
is optimal within O (n polylog(n)) space [26]. Obtaining this optimal time within optimal space is an interesting future
challenge.

Although our structures solve many of the queries we have proposed in polylogarithmic (and usually logarithmic) time,
supporting others remains a challenge. In particular, we have no good solutions for label-level or object-level rank and
select queries on ranges.

Another challenge is space. All of the described structures use essentially t lgσ bits of space, where t is the number of
pairs in the relation. While this is reasonable in many cases, it can be far from the entropy of the binary relation, H(R),
for dense relations. We have proposed a variant, BRWT, that uses space within a multiplicative factor 1.272 of H(R), yet
its functionality is more limited: Apart from label-level and object-level queries, this structure does not support efficient
counting and selection of arbitrary points in ranges, though it can efficiently enumerate them.

Since the publication of the conference version of this article [2], a followup work [18] used our representation BinStr-

WT as an internal structure to achieve asymptotically optimal space, H(R) + o(H(R)) bits, and was able to solve query
rel_rnk in time O (lg n), and queries rel_acc, rel_sel_lab_maj and rel_sel_obj_maj in time O (lg2 n), on n × n
grids. Using structure BinRel-GWT their times for rel_rnk and rel_acc can be divided by lg lg n. It is an open challenge
to reach the best possible times, for example those of BinRel-GWT, while approaching space H(R).

On the other hand, H(R) is a crude measure that does not account for regularities in the row/column distribution, or
clustering, that arises in real-life binary relations. For example, structures BinRel-WT and BinRel-GWT can be compressed
to the zero-order entropy of a string of length t , and this can in some cases be below H(R), which shows that this measure
is not sufficiently refined. It would be interesting to consider finer measures of entropy and try to match them.

There might also be other operations of interest apart from the set we have identified. For example, determining whether
a pair is related in the transitive closure of R is relevant for many applications (e.g., ancestorship in trees, or paths in graphs).
Another extension is to d-ary relations, which would more naturally capture joins in the relational model.

Finally, we have considered only static relations. Wavelet trees do allow dynamism, so that new pairs and/or objects
can be inserted in/deleted from the relation, within an O (lg n/ lg lg n) time penalty factor [33]. This is optimal, as it lets
BinRel-GWT match the Ω((lg n/ lg lgn)2) time lower bound on dynamic range counting [35]. Adding/removing labels is also
possible, yet the best current times are amortized [31].

Appendix A. Formal definition of operations

We formally define our set of operations. Fig. 8 graphically illustrates some of them.

• rel_acc(α,β, x, y) = {(γ , z) ∈R, γ ∈ [α,β] ∧ z ∈ [x, y]};
• rel_sel_lab_maj(α, j, x, y) = j-th smallest pair of rel_acc(α,σ , x, y) in order (α, x) � (β, y) ⇔ α < β ∨ (α = β ∧

x � y);
• rel_min_lab_maj(α, x, y, z) = under the same order, smallest pair of rel_acc(α,α, z, y)∪rel_acc(α +1, σ , x, y);
• rel_sel_obj_maj(α,β, x, j) = j-th smallest pair of rel_acc(α,β, x,n) in order (α, x) � (β, y) ⇔ x < y ∨ (x = y ∧

α � β);
• rel_min_obj_maj(α,β,γ , x) = under the same order, smallest pair of rel_acc(γ ,β, x, x)∪rel_acc(α,β, x + 1,n);
• lab_acc(α,β, x, y) = {γ , ∃z, (γ , z) ∈ rel_acc(α,β, x, y)};
• lab_acc1(α,β, x) = lab_acc(α,β, x, x);
• lab_sel(α, j, x, y) = j-th smallest label of lab_acc(α,σ , x, y);
• lab_sel1(α, j, x) = lab_sel(α, j, x, x), or rel_sel_lab_maj(α, j, x, x);
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Fig. 8. Some operations illustrated.

• lab_min(α, x, y) = lab_sel(α,1, x, y);
• lab_min1(α, x) = lab_min(α, x, x), or lab_sel1(α,1, x);
• obj_acc(α,β, x, y) = {z, ∃γ , (γ , z) ∈ rel_acc(α,β, x, y)};
• obj_acc1(α, x, y) = obj_acc(α,α, x, y);
• obj_sel(α,β, x, j) = j-th smallest object of obj_acc(α,β, x,n);
• obj_sel1(α, x, j) = obj_sel(α,α, x, j), or rel_sel_obj_maj(α,α, x, j);
• obj_min(α,β, x) = obj_sel(α,β, x,1);
• obj_min1(α, x) = obj_min(α,α, x), or obj_sel1(α, x,1);
• rel_num(α,β, x, y) = |rel_acc(α,β, x, y)|;
• rel_rnk(α, x) = rel_num(1,α,1, x);
• rel_rnk_lab_maj(α, x, y, z) = rel_num(1,α − 1, x, y) + rel_num(α,α, x, z);
• rel_rnk_obj_maj(α,β,γ , x) = rel_num(α,β,1, x − 1) + rel_num(α,γ , x, x);
• lab_num(α,β, x, y) = |lab_acc(α,β, x, y)|;
• lab_rnk(α, x, y) = lab_num(1,α, x, y);
• lab_rnk1(α, x) = lab_rnk(α, x, x), or rel_num(1,α, x, x);
• obj_num(α,β, x, y) = |obj_acc(α,β, x, y)|;
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• obj_rnk(α,β, x) = obj_num(α,β,1, x);
• obj_rnk1(α, x) = obj_rnk(α,α, x), or rel_num(α,α,1, x).

Appendix B. Algorithms on BINREL-STR

We prove some of the complexities in Table 1 (column 2). The others can be derived using Theorem 1.

Lemma 19. BinRel-Str supports rel_num(α,β, x, y) in O (min((β − α + 1)r, (y − x + 1)a lg β)) time.

Proof. We can compute rel_num(α,β, x, y) in two ways:

• Using the identities rel_num(α,β, x, y) = ∑
α�γ �β rel_num(γ ,γ , x, y) and rel_num(γ ,γ , x, y) =

rankγ (S,map(x − 1) + 1,map(y)), we achieve time O ((β − α + 1)r).
• Since rel_num(α,β, x, y) = ∑

x�z�y rel_num(α,β, z, z), we can compute the value for each z by searching for the
successor of α and the predecessor of β in S[map(z − 1) + 1,map(z)]. As this range of S is sorted we can find the
predecessors and successors using exponential search, which requires in O (lg β) access operations. Thus the whole
process takes time O ((y − x + 1)a lgβ). �

Lemma 20. BinRel-Str supports lab_num(α,β, x, y) in O (min((β − α + 1)r, (y − x + 1)(lgα + β − α)a)) time.

Proof. We can compute lab_num(α,β, x, y) in two ways:

• Using that lab_num(α,β, x, y) = ∑
α�γ �β lab_num(γ ,γ , x, y), and that lab_num(γ ,γ , x, y) = 1 iff rel_num(γ ,γ ,

x, y) > 0 and zero otherwise, we can achieve the same time as in the first alternative of Lemma 19.
• As lab_num(α,β, x, y) = | ∪x�z�y lab_acc(α,β, z, z)|, we can collect the labels in [α,β] × [z, z] for each z and insert

them into a dictionary. The labels related to a single z can be found by using a similar method as the one in Lemma 19:
use exponential search to find the first element � α in z’s area of S , and then scan the next symbols until surpassing β .
We mark each label found in a bitmap of length β − α + 1, and then we report the number of ones in it. �

Lemma 21. BinRel-Str supports obj_num(α,β, x, y) in O (min((y − x + 1)a lgα, (β − α + 1)(r + (y − x + 1)s))) time.

Proof. We can compute obj_num(α,β, x, y) in two ways:

• Using obj_num(α,β, x, y) = ∑
x�z�y obj_num(α,β, z, z), and since obj_num(α,β, z, z) = 1 iff rel_num(α,β, z, z) > 0

and zero otherwise, we can proceed similarly as in the second alternative of Lemma 19, by exponentially searching for
the first value � α in z’s area of S and checking whether it is � β .

• Because obj_num(α,β, x, y) = | ∪α�γ �β obj_acc(γ ,γ , x, y)|, we can collect the objects in [γ ,γ ] × [x, y] for each γ
and insert them into a dictionary, as in Lemma 20. The objects related to a single γ can be found by using successive
selectγ (S, j) operations on S[map(x − 1) + 1,map(y)], starting with j = rankγ (S,map(x − 1)) + 1. The complexity
considers the worst case where each such γ appears y − x + 1 times. �

Note that, when reducing to implement obj_rnk, the rankγ (S, ·) operation is not necessary. For obj_rnk1 it is better
to reduce from rel_num.

Lemma 22. BinRel-Str supports rel_sel_lab_maj(α, j, x, y) in O (min((σ − α)r + s, (y − x + 1)(σ − α + 1)a)) time.

Proof. Again, we have two possible solutions:

• Set c ← 0. For each label γ in [α,σ ], compute c′ ← c + rankγ (S,map(x − 1) + 1,map(y)). If at some step it holds
c′ � j, the answer is (γ ,unmap(selectγ (S, j − c + rankγ (S,map(x − 1))))). Otherwise, update c ← c′ . The whole
process takes O ((σ − α + 1)r + s) time.

• Similarly, but first accumulating all the occurrences of all the labels γ and then finding j using the accumulators.
We simply traverse the area S[map(z − 1) + 1,map(z)] backwards, for each z ∈ [x, y], accessing each label S[k] and
incrementing the corresponding counter. The process takes O ((y − x + 1)(σ − α + 1)a) time. �

From this operation we can obtain complexities for rel_min_lab_maj, lab_min, lab_min1, lab_acc, and
lab_acc1. Some of the results we give are better than those obtained by a blind reduction; we leave to the reader
to check these improvements. We also note that an obvious variant of this algorithm is our best solution to compute
lab_sel, which has the same time.
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Lemma 23. BinRel-Str supports rel_sel_obj_maj(α,β, x, j) in O (min((n − x + 1)a lgβ, (β −α + 1)((n − x + 1)s + r))) time.

Proof. Once again, we have two possible solutions:

• Set c ← 0. For each object z in [x,n], use exponential search on z’s area of S to find the range S[a,b] corresponding to
[α,β], and set c′ ← c + b − a + 1. If at some step it holds c′ � j, the answer is (S[ j − c + a − 1], z). Otherwise, update
c ← c′ . The whole process takes O ((n − x + 1)a lg β) time.

• Similarly, but first accumulating all the occurrences of all the objects z and then finding j using the accumulators. We
traverse the area S[map(x−1)+1,map(y)] for each label γ in [α,β], using successive selectγ (S, j′) queries, starting
at j′ = rankγ (S,map(x − 1)) + 1. The process takes O ((β − α + 1)((n − x + 1)s + r)) time. �

From this operation we can obtain complexities for rel_min_obj_maj, rel_acc, obj_min, obj_min1, obj_acc,
and obj_acc1. Once again, some of the results we give are better than a blind reduction and we leave the reader to verify
those. Finally, an obvious variant of this algorithm is our best solution to compute obj_sel.

A final easy exercise for the reader is to show that lab_sel1(α, j, x) can be solved in time O (a lgα), and that
obj_sel1(α, x, j) is solved in time O (r + s).
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