
3.7

An Experimental Investigation of Set
Intersection Algorithms for Text Searching

JÉRÉMY BARBAY

Universidad de Chile

and

ALEJANDRO LÓPEZ-ORTIZ, TYLER LU, and ALEJANDRO SALINGER

University of Waterloo

The intersection of large ordered sets is a common problem in the context of the evaluation of
boolean queries to a search engine. In this article, we propose several improved algorithms for
computing the intersection of sorted arrays, and in particular for searching sorted arrays in the
intersection context. We perform an experimental comparison with the algorithms from the pre-
vious studies from Demaine, López-Ortiz, and Munro [ALENEX 2001] and from Baeza-Yates and
Salinger [SPIRE 2005]; in addition, we implement and test the intersection algorithm from Barbay
and Kenyon [SODA 2002] and its randomized variant [SAGA 2003]. We consider both the random
data set from Baeza-Yates and Salinger, the Google queries used by Demaine et al., a corpus pro-
vided by Google, and a larger corpus from the TREC Terabyte 2006 efficiency query stream, along
with its own query log. We measure the performance both in terms of the number of comparisons
and searches performed, and in terms of the CPU time on two different architectures. Our results
confirm or improve the results from both previous studies in their respective context (comparison
model on real data, and CPU measures on random data) and extend them to new contexts. In
particular, we show that value-based search algorithms perform well in posting lists in terms of
the number of comparisons performed.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity—Nonnumerical Algorithms and Problems: Computations on discrete struc-
tures

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Database queries, set intersection

A preliminary version of this paper appeared in [Barbay et al. 2006].
First author’s address: Departamento de Ciencias de la Computación, Universidad de Chile, Av.
Blanco Encalada 2120, Tercer Piso, Santiago, C.P. 837-0459, Chile.
Second, third and fourth authors’ address: David R. Cheriton School of Computer Science, Univer-
sity of Waterloo, Waterloo, ON N2L 3G1, Canada.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1084-6654/2009/07-ART3.7 $10.00
DOI 10.1145/10.1145/1498698.1564507 http://doi.acm.org/10.1145/10.1145/1498698.1564507

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:2 • J. Barbay et al.

ACM Reference Format:
Barbay, J., López-ortiz, A., Lu, T., and Salinger, A. 2009. An experimental investigation of set
intersection algorithms for text searching. ACM J. Exp. Algor. 14, Article 3.7 (July 2009), 24 pages.
DOI = 10.1145/10.1145/1498698.1564507 http://doi.acm.org/10.1145/10.1145/1498698.1564507

1. INTRODUCTION

The intersection of large ordered sets is a common problem in the context of
the evaluation of relational queries to databases, as well as boolean queries
to a search engine. The worst-case complexity of this problem has long been
well understood, dating back to the algorithm by Hwang and Lin from over 3
decades ago [Hwang and Lin 1971, 1972], and the average case has been studied
in the case of the intersection of two sets, when the elements are uniformly
distributed [de la Vega et al. 1998].

In 2000, Demaine et al. [2000] introduced a new intersection algorithm,
termed Adaptive, which intersects all the sets in parallel so as to compute
the intersection in time proportional to the shortest proof of the result set. In a
subsequent study [Demaine et al. 2001], they compared its performance in prac-
tice, relative to a straightforward implementation of an intersection algorithm,
and proposed a new and better adaptive algorithm, which outperformed both
in practice. They measured the number of comparisons performed on the index
of a collection of plain text from web pages. In 2002, Barbay and Kenyon [2002]
introduced another intersection algorithm, which adapts to the correlation be-
tween the terms of the query, and one year later, Barbay [2003] introduced a
randomized variant. To the best of our knowledge, neither of these algorithms
were implemented before our study. In 2004, Baeza-Yates [2004] introduced
an intersection algorithm based on an alternative technique. Baeza-Yates and
Salinger [2005] measured the performance of the algorithm in terms of CPU
time, on pairs of random arrays.

In this article, we consider the number of comparisons and searches per-
formed, as well as the CPU time on two different architectures (RISC and
CISC), on three different data sets: (i) a random data set similar to the one con-
sidered by Baeza-Yates and Salinger [2005], (ii) the query log used by Demaine
et al. [2001] on a larger data set provided by Google, and (iii) the GOV2 cor-
pus, of size 361GB, with a larger query log, both from the TREC Terabyte 2006
efficiency query stream. This combines the previous studies and allows us to
compare all the aforementioned algorithms on common platforms. We propose
several variants for the intersection and search in sorted arrays in the context
of their intersection:

—We propose a variant of the algorithm from [Baeza-Yates 2004], which per-
forms the intersection of more than two sorted arrays without sorting the
intermediary results. This variant is significantly faster than the original
algorithm on real instances, both in terms of the number of comparisons
performed and in terms of CPU time.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:3

—We reduce the number of comparisons performed by each intersection algo-
rithm by introducing value-based search algorithms, and we further improve
their performance by introducing an adaptive value-based search algorithm.

—We show that a variant of binary search optimizes cache usage over the
original version, when the arrays are too large to fit in memory.

The article is structured as follows: In Section 2, we describe the data sets
and the architectures on which we evaluated the various algorithms discussed.
In Section 3, we describe in detail the intersection and search algorithms
studied. In Section 4, we present and analyze our experimental measures
in the various contexts. We conclude in Section 5 with a summary of our
experiments.

2. EXPERIMENTAL SET-UP

In this article, we measure the performance of the algorithms from [Demaine
et al. 2001], from [Barbay and Kenyon 2002] and from [Baeza-Yates 2004],
which were previously studied in different contexts (random or practical) and
under different measures (CPU or number of comparisons), so they had not,
until now, been directly compared. We perform this comparison under each of
the previous settings, as well as using a larger corpus, on which the performance
of algorithms is more sensitive to cache effects.

2.1 Data Sets

2.1.1 Random, Uniformly Distributed Data. We compare the performance
of the algorithms on pairs of sorted sets generated in the same way as Baeza-
Yates and Salinger [2005]: sequences of integer random numbers, uniformly
distributed in the range [1, 109]. The length n of the longest sequence varies
from 1,000 to 22,000, by steps of 3,000. The length m of the shortest sequence
varies from 100 to 400, by steps of 100.

For each algorithm and each pair of sizes (n, m), we generate 20 instances.
We measure the number of comparisons once for each algorithm and instance,
and we average the running time over 1,000 executions. Each execution, for a
given combination of algorithm and instance, is separated from the next one
with the same combination by the execution of all the other algorithms on all
the instances. This ensures a realistic simulation of the cache behavior.

2.1.2 Google Corpus and Query Log. We compare the performance of the
intersection algorithms to answer real queries on a sample web corpus, both
provided by Google. This is the same query log used by Demaine et al. [2001],
but on a substantially larger and more recent data set.

The set of Web pages contains 678,760 text documents in 6.85GB of text. As
the documents or web pages of the corpus were not given a numerical identifier
a priori, we numbered the documents as they were stored, by assigning them a
sequential number indicating their order in the indexing process. The resulting
inverted word index has 2,604,335 alphanumeric keywords with HTML markup
removed.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:4 • J. Barbay et al.

Table I. The distribution of the sizes of TREC queries: On average, 4.42 keywords
per query

of keywords (k) 1 2 3 4 5 6 7 8 9
of queries 105 778 12,66 12,17 793 414 198 98 53
of keywords (k) 10 11 12 13 14 15 16 17 18
of queries 44 14 7 4 5 2 0 1 1

The query log corresponds to 5,000 entries. For more details on the query log,
we refer the reader to [Demaine et al. 2001], where its properties are discussed
in detail.

2.1.3 TREC GOV2 Corpus and Query Log. We consider a larger Web cor-
pus and an associated query log, which form the data set TREC GOV2. This
Web corpus was collected by the TREC competition in information retrieval,
through a partial crawl of U.S. government Web sites.

The GOV2 Web corpus corresponds to approximately 361GB of text, which
once indexed associates 38,515,138 keywords to the references of 25,197,524
documents. Each document is on average 13.37KB long, most are in HTML, but
some are in PDF. The document numbering scheme is such that certain groups
of documents have numbers close to each other. As a result, this creates gaps
in the numbering scheme where certain numbers between document groups do
not appear.

The query log provided with the TREC GOV2 corpus corresponds to 100,000
queries with click-through to .gov domains. We randomly selected a sample of
5,000 queries for our simulations. There were 105 queries involving only one
keyword, and 305 queries where a keyword did not appear in the inverted word
index. This leaves 4,590 nontrivial queries, which corresponds to a query log
of similar size to the one used on the Google data set. The average size of a
query is 4.42 keywords. Table I shows the number of keywords distribution in
the queries: Most queries have less than 11 keywords.

2.2 Machines and Compilers

We implemented the algorithms in C++, and we ran our experiments on two
architectures. For each architecture, we measured only the performance of the
intersection on sorted arrays once they have been loaded in memory (and even-
tually cached on the swap partition of the hard drive). In particular, we did
not measure the performance of the indexing structure, which retrieves those
arrays from the index on the hard drive.

2.2.1 The INTEL platform. For all data sets, we used a PC running Linux
version 2.4.20-31.9 on a processor Intel Pentium 4, at 2.66GHz with a low
level 1 cache of 8K , a level 2 cache of 512K, 1GB of memory, and a swap partition
of size 4.16GB. We measured the CPU time using the rdtscl function, specific
to the Pentium, which measures the number of processor cycles, and hence
includes the time taken by hard-drive accesses to the swapped partition, and
by cache misses. The programs were compiled on this machine using gcc 3.2.2
with the optimization option -O3.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:5

For the largest data set, we also measured the CPU time using the times
function, from the sys/times.h library, to allow the comparison with the equiv-
alent measures on the other platform, which does not support the rdtscl
function.

2.2.2 The SUN platform. For very large instances, we ran additional simu-
lations using an UltraSparc III server from Sun running Unix on 8 processors
at 900MHz, with 16GB of RAM. As the largest sorted array uses 216MB, and as
each instance is composed of at most 18 arrays, no instance uses more than 4GB,
hence all intersection instances hold in main memory on this machine. This is a
RISC architecture, which means, in particular, that certain multiplications and
divisions may not be directly supported by the processor but computed through
function calls.

The CPU time was measured on this machine using the times function from
the sys/times.h library, which returns the elapsed real time, including time
taken by cache misses. The programs were compiled on this machine using
gcc 2.95.2 with the optimization option -O3.

3. ALGORITHMS

In this article, we define search and melding algorithms separately so that we
can study the impact of new search algorithms on all melding algorithms and
find the best combination over all possible ones.

3.1 Melding Algorithms

Various algorithms for the intersection of k sets have been introduced in the
literature [Barbay and Kenyon 2002, Demaine et al. 2000, 2001, Baeza-Yates
2004; Baeza-Yates and Salinger 2005; Barbay 2003]. Among those, we do not
consider the naı̈ve algorithm, which traverses each array linearly, as both theo-
retical and experimental analysis show that its performance in the comparison
model is significantly worse than the ones studied here. For similar reasons,
we do not consider either the Adaptive intersection algorithm, proposed by
Demaine et al. [2000], or the algorithm proposed by Hwang and Lin [Demaine
et al. 2001]. Instead, we focus on four main algorithms, some of them with minor
variants.

3.1.1 SvS and Swapping SvS. SvS is a straightforward algorithm widely
used, which intersects the sets two at a time in increasing order by size, starting
with the two smallest (see Algorithm 1). It performs a binary search to deter-
mine if an element in the first set appears in the second set. We also consider
variants of it, which replace the binary search with various other searches.

Demaine et al. considered the variant Swapping SvS, where the searched
element is picked from the set with the least remaining elements, instead of the
first (initially smallest) set in SvS. This algorithm was first proposed by Hwang
and Lin [1971]: It performs better when the size of the second set is substantially
reduced after a search although experiments show that this does not happen
often.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:6 • J. Barbay et al.

Algorithm 1. Pseudocode for SvS

SvS(set, k)
1: Sort the sets by size (|set[0]| ≤ |set[1]| ≤ . . . ≤ |set[k]|).
2: Let the smallest set set[0] be the candidate answer set.
3: for each set S from set do initialize �[S] = 0.
4: for each set S from set do
5: for each element e in the candidate answer set do
6: search for e in S in the range �[S] to |S|,
7: and update �[S] to the rank of e in S.
8: If e was not found then
9: remove e from candidate answer set,

10: and advance e to the next element in the answer set.
11: end if
12: end for
13: end for

Algorithm 2. Pseudocode for Small Adaptive

Small Adaptive(set, k)
1: while no set is empty do
2: Sort the sets by increasing number of remaining elements.
3: Pick an eliminator e = set[0][0] from the smallest set.
4: elimset ← 1.
5: repeat
6: search for e in set[elimset].
7: increment elimset.
8: until s = k or e is not found in set[elimset]
9: if s = k then

10: add e to answer.
11: end if
12: end while

3.1.2 Small Adaptive. Small Adaptive is a hybrid algorithm, which com-
bines the best properties of SvS and Adaptive (see Algorithm 2). For each ele-
ment in the smallest set, it performs a galloping search on the second smallest
set. If a common element is found, a new search is performed in the remaining
k − 2 sets to determine if the element is indeed in the intersection of all sets,
otherwise a new search is performed. Observe that the algorithm computes the
intersection from left to right, producing the answer in increasing order. After
each step, each set has an already examined range and an unexamined range.
Small Adaptive selects the two sets with the smallest unexamined range and
repeats the process described above until there is a set that has been fully
examined.

3.1.3 Sequential and Random Sequential. Barbay and Kenyon [2002] in-
troduced a fourth algorithm, called Sequential, which is optimal for a different
measure of difficulty, based on the nondeterministic complexity of the instance.
It cycles through the sets, performing one entire gallop search at a time in
each (as opposed to a single galloping step in Adaptive), so that it performs at

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:7

Algorithm 3. Pseudocode for Sequential

Sequential(set, k)
1: Choose an eliminator e = set[0][0], in the set elimset ← 0.
2: Consider the first set, i ← 1.
3: while the eliminator e �= ∞ do
4: search in set[i] for e.
5: if the search found e then
6: increase the occurrence counter.
7: if the value of occurrence counter is k then output e end if
8: end if
9: if the value of the occurrence counter is k, or e was not found then

10: update the eliminator to e ← set[i][succ(e)].
11: end if
12: Consider the next set in cyclic order i ← i + 1 mod k.
13: end while

most k searches for each comparison performed by an optimal nondeterministic
algorithm: Its pseudocode is given in Algorithm 3.

A randomized variant [Barbay 2003], RSequential, performs less compar-
isons than Sequential on average on instances where the searched elements
are present in roughly half of the arrays, rather than in almost all or almost
none of the arrays. The difference with Sequential corresponds to a single
line, the choice of the next set where to search for the “eliminator” (line 12
in Algorithm 3): Sequential takes the next set available while RSequential
chooses one at random among all the sets not yet known to contain the elimi-
nator.

3.1.4 Baeza-Yates and Baeza-Yates Sorted. BaezaYates algorithm was
originally intended for the intersection of two sorted lists. It takes the median
element of the smaller list and searches for it in the larger list. The element is
added to the result set if present in the larger list. The median of the smaller
list and the rank insertion of the median in the larger set divide the problem
into two subproblems. The algorithm solves recursively the instances formed by
each pair of subsets, always taking the median of the smaller subset and search-
ing for it in the larger subset. If any of the subsets is empty, it does nothing. In
order to use this algorithm on instances with more than two lists, Baeza-Yates
[2004] suggests to intersect the lists two-by-two, intersecting the smallest lists
first. As the intersection algorithm works for sorted lists and the result of the
intersection may not be sorted, the result set needs to be sorted before inter-
secting it with the next list, which would be highly inefficient. The pseudocode
for BaezaYates algorithm is shown in Algorithm 4.

To avoid the cost of sorting each intermediate result set, we introduce
So BaezaYates, a minor variant of BaezaYates, which does not move the ele-
ments found from the input to the result set as soon as it finds them, but only
at the last recursive step. This ensures that the elements are added to the result
set in order and trades the cost of explicitly sorting the intermediate results
with the cost of keeping slightly larger subsets.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:8 • J. Barbay et al.

Algorithm 4. Pseudocode for BaezaYates

BaezaYates(set, k)
1: Sort the sets by size (|set[0]| ≤ |set[1]| ≤ . . . ≤ |set[k]|).
2: Let the smallest set set[0] be the candidate answer set.
3: for each set set[i], i = 1 . . . k do
4: candidate ← BYintersect(candidate, set[i], 0, |candidate| − 1, 0, |set[i]| − 1)
5: sort the candidate set.
6: end for

BYintersect(setA, setB, minA, maxA, minB, maxB)
1: if setA or setB are empty then return ∅ endif.
2: Let m = (minA + maxA)/2 and let medianA be the element at setA[m].
3: Search for medianA in setB.
4: if medianA was found then
5: add medianA to result.
6: end if
7: Let r be the insertion rank of medianA in setB.
8: Solve the intersection recursively on both sides of r and m in each set.

Each of those algorithms has linear time worst-case behavior in the sum of
the sizes of the arrays, and each performs better than the others on a set of
instances. Note that BaezaYates, So BaezaYates, Small Adaptive, and SvS take
active advantage of the difference of sizes of the sets, and that Small Adaptive is
the only one that takes advantage of how this size varies as the algorithm elim-
inates elements, while Sequential and RSequential ignore this information.

3.2 Search Algorithms

We extend the set of search algorithms tested to value-based algorithms, such as
Interpolation, Extrapolation, or Extrapol Ahead and to some cache-oblivious
search algorithms, such as Rounded Binary.

3.2.1 Binary Search and Variants. Binary search is well known in the
literature. The adequate implementation1 finds the insertion rank p of a key
x in a sorted set A of size n in 1 + log2 n comparisons. In the context of the
intersection of sorted arrays, several elements are searched in each array, and
in many applications those elements are of increasing size, so that the position
of the last lookup during the previous search is a lower bound for the position
of the currently searched element. While using this lower bound reduces the
number of comparisons (we call this Adaptive Binary), it yields a slower CPU
performance when the array is very large and partially cached. Total Binary
ignores this lower bound and uses the cache more efficiently.

1It can be implemented in two different ways, each of them optimizing a different performance
measure, the number of two-way comparisons, closer to CPU time, and the number of three-way
comparisons, closer to the running time in the context of hierarchical memory. As the latter imple-
mentation performed poorly on all contexts, we discuss here only the one optimizing the number
of two-way comparisons.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:9

We test a third variant, Rounded Binary, which represents a trade-off be-
tween Adaptive Binary and Total Binary: It performs the same comparisons
as Total Binary so long as the compared elements are larger as the lower bound
obtained from the previous search, at which point it switches to a more sophis-
ticated mode taking advantage both of the positions of the previous compar-
isons and of the lower bound. This variant always performs more comparisons
than Adaptive Binary, and less than Total Binary, but it performs better in
terms of CPU on instances where the array searched is very large due to cache
effects.

3.2.2 Galloping Search. Originally introduced by Bentley and Yao [1976],
unbounded search is the problem of searching for the insertion rank p of a
key x in a sorted set A of unbounded size. The algorithm probes the i keys
with index {1, 3, 7, 15, . . . , 2i − 1} in sequence till it finds a key A[2i − 1] larger
than x, and then performs a binary search in A between positions 2i−1 − 1 and
2i−1. This technique is sometimes called one sided binary search [Skiena 1997],
exponential search [Chen 2003], doubling search [Barbay and Kenyon 2002],
or galloping [Demaine et al. 2000, 2001]: We will use this last name for our
implementation, Galloping search. It solves the unbounded search problem in
2 log2(p+1) comparisons.

3.2.3 Interpolation and Extrapolation Search. Interpolation search has
long been known to perform significantly better in terms of comparisons over
binary search on data randomly drawn from a uniform distribution, and recent
developments suggest that interpolation search is also a reasonable technique
for nonuniform data [Demaine et al. 2004]. Searching for an element of value
e in an array set[i] on the range a to b, the algorithm probes position I (a, b, e)
defined as follows:

I (a, b, e) =
⌊

e − set[i][a]
set[i][b] − set[i][a]

(b − a)
⌋

+ a

We propose a variant, Extrapolation search, which involves extrapolating
on the current and previous positions in set[i]. Specifically, the extrapolation
step probes the index I (p′

i, pi, e), where p′
i is the previous extrapolation probe.

This has the advantage of using “explored data” as the basis for calculating the
expected index: This strategy is similar to galloping, which uses the previous
jump value as the basis for the next jump (i.e., the value of the next jump is the
double of the value of the current jump).

3.2.4 Extrapolation Look Ahead Search. We propose another search al-
gorithm, Extrapol Ahead, which is similar to extrapolation, but rather than
basing the extrapolation on the current and previous positions, we base it on
the current position and a position that is further ahead. Thus, our probe index
is calculated by I (pi, pi+l , e) where l is a positive integer that essentially mea-
sures the degree to which the extrapolation uses local information. The algo-
rithm uses the local distribution as a representative sample of the distribution
between set[i][pi] and the eliminator: A large value of l corresponds to an al-
gorithm using more global information, while a small value of l correspond to

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:10 • J. Barbay et al.

an algorithm using only local information. If the index of the successor succ(e)
of e in set[i] is not far from pi , then the distribution between set[i][pi] and
set[i][pi + l] is expected to be similar to the distribution between set[i][pi] and
set[i][succ(e)] and the estimate will be fairly accurate. Thus, if the set is bursty,
or piecewise uniform, we would expect this strategy to outperform interpolation
because the set is locally representative. On the other hand, if the set comes
from a random uniform distribution, then we would expect interpolation to be
better because, in this case, using a larger range to interpolate is more accurate
than using a smaller range.

4. EXPERIMENTAL RESULTS

In each of the contexts defined in Section 2, we test all the algorithms defined
in Section 3, and we measure their performance in terms of the number of
searches and comparisons performed, and in terms of CPU time. The CPU
times for the Random and Google data sets correspond only to measures on
the INTEL platform, as the instances are too small for the execution time to be
measured on the SUN platform. Both platforms are considered for the larger
TREC GOV2 data set.

Note that the number of searches for a fixed merging algorithm does not
depend on which search algorithm is used (they all return the same position),
and that the number of comparisons performed does not depend on the archi-
tecture. Despite the fact that the CPU time on a particular instance can slightly
vary from one execution to another, we verified on small samples (50 queries
from the TREC data set, all queries from the Google data set) that the CPU
measures over a single run yield the same conclusion than averaging over 50
runs: Hence, we report our results on larger samples with a single run.

4.1 Experiments on Random, Uniformly Distributed Data

In the context of randomly generated data, we only measure the perfor-
mance of the algorithms with two lists, in a similar way to the study
by Baeza-Yates and Salinger [2005], which compare the CPU performance
on random data of the combinations BaezaYates using Adaptive Binary,
Small Adaptive using Galloping, and of the naı̈ve linear algorithm; BaezaYates
using Adaptive Binary was the best combination. We test a larger set of algo-
rithms, on random data generated in a similar way, and we measure both the
performance in CPU time and the number of comparisons and searches. Note
that RSequential behaves exactly the same as Sequential on two arrays and
thus is not represented.

We show on the plots the number of comparisons and CPU times for different
intersection and search algorithms as a function of the size n of the largest list
when the size of the smallest list m is fixed, for various values of m. The standard
deviation is usually very low, hence we omit in the figures with more than two
plots on them.

4.1.1 Comparison with Baeza-Yates and Salinger. In terms of CPU
time, our results agree with Baeza-Yates and Salinger’s study [2005]: Both

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:11

 140,000

 160,000

 180,000

 200,000

 220,000

 240,000

 260,000

 280,000

 0 5,000 10,000 15,000 20,000 25,000

 c
p
u

max array size

average Swapping SvS Adaptive Binary
average Baeza-Yates Adaptive Binary

average Baeza-Yates Sorted Adaptive Binary
average SvS Rounded Binary

average Baeza-Yates Rounded Binary

Fig. 1. CPU times for the five best combinations of algorithms on random generated instances.
BaezaYates using Adaptive Binary performs the best for all size ratios, closely followed by
Swapping SvS and SvS using Galloping.

BaezaYates and So BaezaYates using Adaptive Binary outperform any other
combination of algorithms. Figure 1 shows the performance of the five best com-
binations of algorithms on this data set. As Figure 2 shows, none of the other
search algorithms perform better than the initial choice proposed by Baeza-
Yates and Salinger.

The superiority of Adaptive Binary over all search algorithms when us-
ing BaezaYates or So BaezaYates is easily explained: Value-based search al-
gorithms, such as Interpolation, are too costly in CPU time, and adaptive
search algorithms, such as Galloping or Extrapol Ahead, are inefficient when
the searched position is in the middle of the array, on average. The superiority
of BaezaYates among melding algorithms is relative, as SvS and Swapping SvS
perform well for almost any search algorithm. The difference in CPU perfor-
mance between BaezaYates and So BaezaYates using Adaptive Binary, SvS,
Swapping SvS, or Small Adaptive using Galloping is minimal (see Table II).

4.1.2 Number of Searches and Comparisons. In terms of the num-
ber of searches, BaezaYates, SvS, Swapping SvS, and Small Adaptive per-
form the best, while Sequential and So BaezaYates perform much more
searches (see Table II). The difference of performance between BaezaYates
and So BaezaYates is easily explained: BaezaYates performs one more com-
parison per search to reduce the domain by one more value, which increases
the number of comparisons but reduces the number of searches in comparison
to So BaezaYates. The difference of performance between Sequential and the
other algorithms is due to the fact that Sequential always chooses the new

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:12 • J. Barbay et al.

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

 450,000

 500,000

 0 5,000 10,000 15,000 20,000 25,000

cp
u

max array size

average Baeza-Yates Total Binary
average Baeza-Yates Adaptive Binary
average Baeza-Yates Rounded Binary

average Baeza-Yates Galloping
average Baeza-Yates Interpolation

average Baeza-Yates Extrapolate Ahead
average Baeza-Yates Extrapolation

Fig. 2. CPU times for all search algorithms in combination with BaezaYates. The best search
algorithm is the one proposed originally, Adaptive Binary.

Table II. Total number of searches and comparisons and total running time performed by
each algorithm on the Random data set, when associated with the search algorithm

performing the best with it. The number of searches and comparisons are correlated, although
the difference in terms of the number of searches performed between BaezaYates and

So BaezaYates does not correspond to the difference in the number of comparison performed.
The CPU times are not correlated with the two other measures

Algorithm Searches Comparisons Runtime
SvS 200 1,024 (Extrapol Ahead) 242,986 (Rounded Binary)

Swapping SvS 200 1,024 (Extrapol Ahead) 230,916 (Adaptive Binary)

Small Adaptive 200 1,024 (Extrapol Ahead) 435,828 (Galloping)
BaezaYates 199 1,066 (Interpolation) 188,258 (Adaptive Binary)

So BaezaYates 328 1,064 (Interpolation) 218,156 (Adaptive Binary)

Sequential 385 1,198 (Extrapol Ahead) 327,075 (Adaptive Binary)

eliminator on the array previously searched: In the context where the elements
of the array are uniformly drawn and of very different size, it always results in
a worse performance than choosing the eliminator from the smallest array.

In terms of the number of comparisons, the use of value-based search algo-
rithms, such as Interpolation, Extrapolation, or Extrapol Ahead, results in
a better performance for any melding algorithm: Those algorithms outperform
other search algorithms on the uniform distribution of elements in the arrays.

The best combinations regarding the number of comparisons performed are
Swapping SvS using Extrapol Ahead and BaezaYates using Interpolation, even
though Figure 3 shows that Swapping SvS with Extrapol Ahead has a small
advantage over BaezaYates with Interpolation.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:13

 700

 750

 800

 850

 900

 950

 1,000

 1,050

 1,100

 1,150

 1,200

 1,250

 0 5,000 10,000 15,000 20,000 25,000

 c
o

m
p

a
ri
so

n
s

max array size

average Baeza-Yates Interpolation
average Swapping SvS Extrapolate Ahead

std Baeza-Yates Interpolation
std Swapping SvS Extrapolate Ahead

Fig. 3. Number of comparisons for BaezaYates using Interpolation and Swapping SvS using
Extrapol Ahead on the Random data set. Swapping SvS with Extrapol Ahead performs visibly
better.

Fixing the size of the smallest list to other values does not alter the relative
ranking (see Figure 4), so we only report the data for m = 200. For completeness,
we summarize the results across all algorithms on the whole random data set
in Table III.

4.2 Experiments on the Google Data Set

Demaine et al. [2001] studied the combinations of algorithms Small Adaptive
using Galloping, SvS, and Swapping SvS using Adaptive Binary, and found the
combination Small Adaptive using Galloping to outperform the others in terms
of the number of comparisons performed on a set of queries provided by Google
on the index of their own Web-crawl.

We measured the performance of each combinations of algorithms on the
same queries, but on the index of a larger Web crawl, also provided by Google.
Similar to the results given by Demaine et al., we show on the plots the number
of comparisons and CPU times as a function of the number k of keywords in the
queries, which corresponds to the number of arrays forming the instance. The
standard deviation of the two by two difference of performance on each instance,
not represented here, was always very low. We omit the standard deviation of
the average performance of each algorithm on instances composed of k arrays:
it mostly represents the variation of difficulty among queries with k keywords,
and not the stability of the results.

4.2.1 Comparison with Demaine et al. Considering the same algorithms
studied by Demaine et al. [2001], our results agree with the previous study:

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:14 • J. Barbay et al.

 200,000

 250,000

 300,000

 350,000

 400,000

 450,000

 500,000

 550,000

 0 5,000 10,000 15,000 20,000 25,000

 c
p

u

max array size

average Swapping SvS Adaptive Binary
average Baeza-Yates Adaptive Binary

average Baeza-Yates Sorted Adaptive Binary
average SvS Rounded Binary

average Baeza-Yates Rounded Binary

Fig. 4. CPU times for the five best combinations of algorithms on the Random data set with the
smallest list of size 400. The order of the algorithms is the same than when the smallest list has
size 200: BaezaYates using Adaptive Binary performs the best for all size ratios.

Small Adaptive using Galloping performs less comparisons than the other al-
gorithms, but in fact, Small Adaptive does not behave much differently from SvS
and Swapping SvS, as the combinations SvS using Galloping and Swapping SvS
using Galloping performs almost equally: The improvement in the number of
comparisons performed is mainly due to the usage of the Galloping search algo-
rithm (see Figure 5). This similarity of performance is likely to come from the
fact that there are 2.286 keywords per query on average: SvS, Swapping SvS,
and Small Adaptive behave the same on instances which consist of only two
arrays.

The number of comparisons performed is further reduced by the use of value-
based search algorithms. All intersection algorithms benefit from the use of
Interpolation, and all except BaezaYates and So BaezaYates benefit even more
from the use of Extrapol Ahead, the interpolation search variant that we intro-
duced (see Figure 5). As a result, the best combination of search and melding
algorithms regarding the number of comparison performed are Small Adaptive,
SvS and Swapping SvS using Extrapol Ahead, and results in an important im-
provement over the best solution proposed by Demaine et al.

4.2.2 Study of Barbay and Kenyon’s algorithm. The algorithm proposed
by Barbay and Kenyon [2002] and its randomized variant [Barbay 2003] both
perform noticeably more comparisons than the other intersection algorithms
measured, independently of the search algorithm chosen (see Table IV). This
high number of comparisons is correlated with the high number of searches

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:15

Table III. Total number of comparisons and CPU times performed by each algorithm over the
Random data set. In bold, the best performance in terms of the number of comparisons, for

various melding algorithms in combination with Extrapol Ahead, and the best performance in
terms of CPU: BaezaYates using Adaptive Binary

Comparisons SvS Swapping SvS Seq. BY So BY Small Adapt.

Total Binary 2,815 2,815 4,397 2,811 4,501 2,815
Adaptive Binary 2,469 2,469 2,632 1,620 1,620 2,469
Rounded Binary 2,623 2,623 3,997 2,629 4,190 2,623
Galloping 2,087 2,087 2,237 2,410 2,373 2,087
Interpolation 1,067 1,067 1,242 1,066 1,064 1,067
Extrapolation 1,281 1,281 1,444 1,261 1,262 1,281
Extrapol Ahead 1,024 1,024 1,198 1,085 1,073 1,024

CPU SvS Swapping SvS Seq. BY So BY Small Adapt.

Total Binary 262,397 254,008 457,540 250,018 402,544 677,318
Adaptive Binary 255,064 230,916 327,075 188,258 218,156 444,476
Rounded Binary 242,986 246,871 436,438 242,773 391,347 443,064
Galloping 245,333 244,216 332,311 255,945 286,040 435,828
Interpolation 279,127 280,624 374,779 275,463 304,616 466,446
Extrapolation 375,585 371,444 464,203 373,947 401,933 547,751
Extrapol Ahead 413,209 404,841 576,109 426,452 506,075 584,941

performed: The algorithms fails to find a shorter proof by cycling through the
arrays.

The searches performed by Sequential are shorter on average than other
similar algorithms: The ratio between the number of comparisons and the
number of searches is even smaller than for other algorithms, such as SvS
(see Table IV). This is probably explained by the fact that Sequential performs
many searches of average size, as opposed to algorithms such as SvS, which
perform many small searches in the smallest arrays, but a few rather large
ones in the other arrays.

Note that the number of comparisons (and ratio) of BaezaYates
and So BaezaYates using Galloping is not representative: When using
Adaptive Binary search, which is better suited to their behavior, the perfor-
mance in terms of the number of comparisons is much better (see Table IV).
The melding algorithm So BaezaYates is more efficient in terms of the number
of comparisons than BaezaYates, although it performs more searches, which
still results in a slightly smaller number of comparisons per searches: This cor-
responds to the additional comparison performed by BaezaYates to check if the
searched element is present in the searched array.

4.2.3 Real Time on Real Data. The CPU performance is correlated to the
number of comparisons for all melding and search algorithms, except for the
value-based search algorithms (see Figure 6). The fact that Interpolation gen-
erally performs more comparisons than Extrapol Ahead (see Table V) but uses
less CPU time indicates that the cost of the extra memory accesses performed
by Extrapol Ahead is more significant than the reduction in the number of com-
parisons: It might result in an additional cache miss, since it is at distance lg n
of the previous access, where n is the number of remaining element in the array.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:16 • J. Barbay et al.

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

 200,000

 2 4 6 8 10 12

co
m

p
a
ri
so

n
s

number of sets

average SvS Adaptive Binary
average SvS Galloping

average SvS Interpolation
average SvS Extrapolate Ahead

Fig. 5. Number of comparisons for SvS using Adaptive Binary, Galloping, Interpolation, or
Extrapol Ahead on the Google data set. Galloping and Interpolation successively improve on
Adaptive Binary search. The performance of Extrapol Ahead is almost indistinguishable from
Interpolation’s, although Table V shows that it does perform slightly better. Swapping SvS and
Small Adaptive show the same behavior.

Table IV. Number of comparisons and searches performed on the Google data
set. The average cost of a search (the log of its length), here measured in

number of comparisons, is smaller for Sequential and RSequential than for
SvS, Swapping SvS, or Small Adaptive

Algorithm Comparisons Searches Ratio
SvS using Galloping 16,884 3,542 4.77
Swapping SvS using Galloping 16,884 3,541 4.77
Small Adaptive using Galloping 16,884 3,542 4.77
Sequential using Galloping 25,440 5,801 4.39
RSequential using Galloping 24,518 5,873 4.17
BaezaYates using Galloping 24,285 3,327 7.30
So BaezaYates using Galloping 20,935 5,209 4.02
BaezaYates using Adaptive Binary 18,543 3,327 5.57
So BaezaYates using Adaptive Binary 15,689 5,209 3.01

For completeness, we summarize the results across all algorithms on the
whole data set in Table V.

4.3 Experiments on the TREC GOV2 Data Set

As for the Google data set, we measured the number of searches and compar-
isons performed and the CPU time used by the algorithms. As in the previous
section, we show on the plots the number of comparisons and CPU times for

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:17

Table V. Total number of comparisons and CPU times (in millions of cycles) performed by each
algorithm over the Google data set. In bold, the best performance in terms of number of

comparisons, SvS and Swapping SvS using Extrapol Ahead, and in terms of CPU times, SvS
using Galloping

Comparisons SvS Swapping SvS Seq. BY So BY Small Adapt. RSeq.

Total Binary 58,217 58,209 93,087 57,594 83,710 58,217 94,400
Adaptive Binary 39,221 39,221 55,817 18,543 15,689 39,225 54,210
Rounded Binary 54,674 54,671 87,267 54,286 78,511 54,679 88,509
Galloping 16,884 16,884 25,440 24,285 20,935 16,884 24,518
Interpolation 12,184 12,184 17,843 15,352 12,386 12,185 17,398
Extrapolation 13,426 13,426 19,672 17,455 14,428 13,427 19,100
Extrapol Ahead 12,125 12,125 17,701 16,179 13,145 12,126 17,279

CPU SvS Swapping SvS Seq. BY So BY Small Adapt. RSeq.

Total Binary 5.142 4.976 8.674 5.426 7.140 8.325 15.446
Adaptive Binary 3.762 3.937 6.704 3.284 3.113 7.208 13.401
Rounded Binary 4.684 4.831 8.260 5.327 6.908 7.995 14.873
Galloping 2.791 2.874 4.808 3.953 3.769 5.980 11.525
Interpolation 3.338 3.434 5.640 4.182 4.046 6.577 11.992
Extrapolation 4.229 4.248 6.617 5.426 5.258 7.493 13.104
Extrapol Ahead 5.480 5.424 8.641 6.637 7.279 8.614 15.036

different melding and search algorithms as a function of the number of arrays
forming the instances.

We restricted our study to the most promising algorithms from the study
on Google data set: In particular, we did not consider the melding algorithm
RSequential on the TREC GOV2 data set. The fact that the data set is larger
allows us to compare the CPU performance of the algorithms on two different
architectures: The SUN station has much more memory but a reduced set of
instructions which makes multiplication and divisions much more costly; while
the INTEL station has a larger set of instructions but much less memory, so that
part of the arrays will be cached on the swap partition of the hard drive.

4.3.1 Comparison with Demaine et al. In terms of the number of com-
parisons performed, the melding algorithm Small Adaptive outperforms all
the other melding algorithms, in combination with any search algorithm,
which confirms and extends the results reported by Demaine et al. [2001]
(see Table VI). As for the Google data set, the value-based search algorithm
Extrapol Ahead improves the performance of each melding algorithm, and in
particular, the performance of Small Adaptive (see Table VI). However, unlike
the Google data set, the performance of Interpolation is similar to that of
Galloping. This decrease in performance is mainly due to the fact that the
numbering scheme of TREC documents left many “gaps,” which contributes to
the nonuniformity of posting sets.

4.3.2 Study of Barbay and Kenyon’s Algorithm. As for the Google data
set, the algorithm Sequential [Barbay and Kenyon 2002] is much worse than
the other melding algorithms for any fixed search algorithm, in terms of the
number of comparisons or searches performed, as well as in terms of CPU time
(see Figure 7). This just hints that the instances from the TREC GOV2 data

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:18 • J. Barbay et al.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 2 4 6 8 10 12

cp
u

number of sets

average Baeza-Yates Adaptive Binary
average Baeza-Yates Sorted Adaptive Binary

average SvS Galloping
average SwSvS Galloping

Fig. 6. CPU times for the four best combinations: SvS and Swapping SvS using Galloping

search, BaezaYates, and So BaezaYates using Adaptive Binary search on Google data set. SvS,
Swapping SvS, and So BaezaYates perform very similarly, but BaezaYates performs slightly worse.

set are not too different from those from the Google data set, just larger, both
in terms of the sizes of the arrays and in the number of arrays.

4.3.3 Impact of the Cache. In contrast to the measures on the Google
data set, the number of comparisons is not always correlated to the CPU tim-
ings, even for comparison-based search algorithms. In particular, when using
the melding algorithms Small Adaptive or Sequential, the search algorithm
Rounded Binary performs more comparisons than Adaptive Binary but uses
less CPU (see Figure 9). This indicates that Rounded Binary generates less
cache misses, summing to a better overall time.

The same is not true with the other melding algorithms, perhaps because the
search queries generated by those algorithms are either shorter (in which case
no optimization of the cache is needed), or much larger (in which case cache
misses happen at a different level).

4.3.4 Impact of Architecture Differences. Not surprisingly, the cache opti-
mization of the Rounded Binary search algorithm does not give it any advantage
on a machine where all the data fits in memory, such as to SUN platform: There
all the binary variants perform very similarly (see Figure 10).

We were also able to measure a quantitative difference between the two
architectures: The difference of CPU performance between the comparison and
value-based search algorithms, such as Galloping and Interpolation, is much
larger on the SUN platform than on the INTEL platform, regardless of the melding
algorithm considered (see Figures 11 and 12). In general, the hardware cost

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:19

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 2 4 6 8 10 12 14 16 18

 c
o
m

p
a
ri
so

n
s

number of sets

average Baeza-Yates Sorted Galloping
average Small Adaptive Galloping

average Sequential Galloping
average SvS Galloping

average Swapping SvS Galloping

Fig. 7. Number of comparisons performed by various melding algorithms combined with
Galloping on the TREC GOV2 data set. The difference of performance from Sequential is even
worse than on the Google data set.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 4 6 8 10 12 14 16 18

 c
o

m
p

a
ri
so

n
s

number of sets

average Small Adaptive Total Binary
average Small Adaptive Adaptive Binary
average Small Adaptive Rounded Binary

Fig. 8. Number of comparisons performed by variants of binary search combined with
Small Adaptive on the TREC GOV2 data set. Rounded Binary and Total Binary perform roughly
the same, while Adaptive Binary performs much better.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:20 • J. Barbay et al.

 1

 10

 100

 1,000

 10,000

 2 4 6 8 10 12 14 16 18

cp
u

number of sets

average Small Adaptive Total Binary
average Small Adaptive Adaptive Binary
average Small Adaptive Rounded Binary

Fig. 9. CPU performance of the various variants of binary search on the INTEL platform, in com-
bination with Small Adaptive. The variant Rounded Binary is better in CPU time, thanks to its
optimization of the cache.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 4 6 8 10 12 14 16 18

cp
u

number of sets

average Small Adaptive Total Binary
average Small Adaptive Adaptive Binary
average Small Adaptive Rounded Binary

Fig. 10. CPU performance of the various variants of binary search on the SUN platform, in combi-
nation with Small Adaptive. The binary searches are performing roughly the same.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:21

 1

 10

 100

 2 4 6 8 10 12 14 16 18

cp
u

number of sets

average SvS Galloping
average SvS Interpolation

Fig. 11. CPU performance of Galloping compared to Interpolation, both combined with SvS,
when solving the TREC GOV2 data set on the INTEL platform. The advantage is not clear, but in
total, Galloping is performing a little better (see Table VI).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18

cp
u

number of sets

average SvS Galloping
average SvS Interpolation

Fig. 12. On SUN, CPU performance of Galloping compared to Interpolation, both combined with
SvS, when solving the TREC GOV2 data set on the SUN platform. Interpolation is definitely per-
forming worse.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:22 • J. Barbay et al.

Table VI. Total number of comparisons (in billions) performed by each algorithm over the
TREC GOV2 data set. In bold, the best results, obtained for Small Adaptive using

Extrapol Ahead.

SvS Swapping SvS Seq. BY So BY Small Adapt.

Adaptive Binary 13.41 13.44 28.66 7.87 4.12 13.32
Total Binary 21.70 21.64 39.90 22.43 28.73 21.54
Rounded Binary 20.46 20.57 37.83 21.43 27.15 20.44
Galloping 4.468 4.473 10.57 9.40 5.52 4.44
Interpolation 4.60 4.61 11.13 8.55 4.76 4.57
Extrapolation 4.25 4.26 9.84 8.61 4.78 4.23
Extrapol Ahead 3.76 3.77 8.09 8.05 4.23 3.74

Table VII. Total CPU time performed by each algorithm over the TREC GOV2 data set. In
bold, the smallest CPU times on the INTEL platform, obtained using Swapping SvS; and on the

SUN platform, obtained using SvS, both in combination with Galloping search.

INTEL SvS Swapping SvS Seq. BY So BY Small Adapt.

Adaptive Binary 117,303 57,686 901,254 53,363 36,273 180,957
Total Binary 360,526 81,227 598,387 93,341 88,081 320,692
Rounded Binary 64,910 63,693 169,797 75,730 83,717 108,728
Galloping 33,255 30,686 132,245 55,088 40,462 59,081
Interpolation 47,883 49,060 127,338 67,066 54,331 75,162
Extrapolation 49,694 50,570 136,946 77,592 63,244 78,606
Extrapol Ahead 61,731 62,021 155,396 87,303 81,922 88,674

SUN SvS Swapping SvS Seq. BY So BY Small Adapt.

Adaptive Binary 153,887 159,169 409,576 112,401 98,411 230,258
Total Binary 180,854 182,974 354,558 184,239 227,041 244,521
Rounded Binary 175,343 180,150 348,563 182,170 223,368 241,526
Galloping 96,907 102,197 219,816 125,904 111,422 162,243
Interpolation 134,960 140,272 327,509 157,669 142,653 200,471
Extrapolation 142,385 147,886 328,316 185,944 171,270 208,057
Extrapol Ahead 158,138 163,545 338,525 194,108 192,490 223,195

of interpolation search seems higher on a SUN architecture than on an Intel
architecture. We speculate that this might be caused by differences in RISC vs
CISC instruction set but the question remains to be studied further.

For completeness, we summarize the results across all algorithms on the
whole TREC GOV2 data set in Tables VI and VII.

5. CONCLUSIONS

To summarize our results:

—In terms of the number of searches performed, the best melding algo-
rithms are Small Adaptive, SvS and Swapping SvS on random data, and
Small Adaptive on real data.

—In terms of the number of comparisons performed, the best combinations on
random data consist in one of the melding algorithms Small Adaptive, SvS,
and Swapping SvS associated with the search algorithm Extrapol Ahead. On
real data, Small Adaptive leads over the others under this measure and per-
forms best when combined with Extrapol Ahead, which improves on previous
results [Demaine et al. 2001].

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

An Experimental Investigation of Set Intersection Algorithms • 3.7:23

—In terms of CPU time, the best performance on random data corresponds
to the BaezaYates algorithm using Adaptive Binary search (which confirms
previous results [Baeza-Yates and Salinger 2005]), closely followed by the SvS
algorithm using Galloping search. On real data, the algorithm SvS leads over
the others when used in combination with Galloping search, as previously
observed.

In terms of the number of searches or comparisons performed, the poor per-
formance of sophisticated algorithms, such as Sequential, designed to exploit
short certificates of the intersection [Barbay and Kenyon 2002], or of its ran-
domized variant [Barbay 2003], both on random and real data, indicates the
regularity of the instances in both settings: Most instances have a long certifi-
cate. On the other hand, the difference of performance of the intersection algo-
rithm BaezaYates on random and real data shows that real data are far from
randomly uniform. In particular, the good performance of the Extrapol Ahead
search algorithm shows that value-based search algorithms are not only per-
forming well on sorted arrays of random elements, but also on posting lists.

In terms of CPU time, the architecture differences between the platforms
led to both quantitative results variations (the gaps between the performance
of some algorithms was larger on the RISC architecture than on the CISC
architecture) and qualitative result variations (Rounded Binary optimizes the
cache on the architecture with the smallest amount of memory, but not on the
other one). The difference of size between the Google and the GOV2 data set led
to qualitative changes in the CPU performance between the variants of binary
search, as the variants optimized for cache effects performed better than others
on the largest data set, and worst on the smallest. As those search algorithms
are outperformed, both in number of comparison performed and in CPU time,
by more sophisticated algorithms, this does not yield any qualitative change,
but it does hint that optimizing the best search algorithm in CPU time, such
as Galloping, so that it takes a better advantage of the cache, might yield even
better CPU performance.

Finally, the best solution to compute the intersection of sorted arrays corre-
sponding to conjunctive queries in an indexed search engines seems to be one
of the simplest melding algorithm SvS, already used in practice but improved
by replacing the use of the Adaptive Binary search algorithm by an adaptive
search algorithm, Galloping search.

ACKNOWLEDGMENTS

We would like to thank Stefan Buettcher for interesting discussions and for
giving us access to the TREC GOV2 corpus and query log, Google for making
their corpus and query log available, Mike Patterson for his help concerning the
simulations on the SUN platform, Mirela Andronescu for her help concerning the
PERL scripts processing the data, and Joshua Tam for his initial contribution
to the coding of the algorithms as an undergraduate research assistant.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

3.7:24 • J. Barbay et al.

REFERENCES

BAEZA-YATES, R. A. 2004. A fast set intersection algorithm for sorted sequences. In Proceedings
of the 15th Annual Symposium on Combinatorial Pattern Matching (CPM). Springer, Berlin,
400–408.

BAEZA-YATES, R. A. AND SALINGER, A. 2005. Experimental analysis of a fast intersection algorithm
for sorted sequences. In Proceedings of the 12th International Conference on String Processing
and Information Retrieval (SPIRE). Springer, Berlin, 13–24.

BARBAY, J. 2003. Optimality of randomized algorithms for the intersection problem. In Proceed-
ings of the Symposium on Stochastic Algorithms, Foundations and Applications (SAGA). Springer,
Berlin, 26–38.

BARBAY, J. AND KENYON, C. 2002. Adaptive intersection and t-threshold problems. In Proceedings
of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and
Applied Mathematics, Philadelphia, 390–399.

BARBAY, J. AND KENYON, C. 2008. Alternation and redundancy analysis of the intersection problem.
ACM Trans. Algorithms 4, 1, 1–18.

BARBAY, J., LÓPEZ-ORTIZ, A., AND LU, T. 2006. Faster adaptive set intersections for text searching.
In Proceedings of the 5th International Workshop on Experimental Algorithms (WEA). Springer,
Berlin, 146–157.

BENTLEY, J. L. AND YAO, A. C.-C. 1976. An almost optimal algorithm for unbounded searching. Inf.
Process. Lett. 5, 3, 82–87.

CHEN, D. Z. 2003. Cse 413 – analysis of algorithms – fall. Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN.

DE LA VEGA, W. F., FRIEZE, A. M., AND SANTHA, M. 1998. Average-case analysis of the merging
algorithm of Hwang and Lin. Algorithmica 22, 4, 483–489.

DEMAINE, E. D., JONES, T. R., AND PATRASCU, M. 2004. Interpolation search for non-independent
data. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, Philadelphia, 529–530.

DEMAINE, E. D., LÓPEZ-ORTIZ, A., AND MUNRO, J. I. 2000. Adaptive set intersections, unions, and
differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, Philadelphia, 743–752.

DEMAINE, E. D., LÓPEZ-ORTIZ, A., AND MUNRO, J. I. 2001. Experiments on adaptive set intersec-
tions for text retrieval systems. In Proceedings of the 3rd Workshop on Algorithm Engineering
and Experiments. SIAM, Philadelphia. Lecture Notes in Computer Science (LNCS), vol. 2153.
Washington DC, 5–6.

HWANG, F. K. AND LIN, S. 1971. Optimal merging of 2 elements with n elements. Acta Inf., 145–158.
HWANG, F. K. AND LIN, S. 1972. A simple algorithm for merging two disjoint linearly ordered sets.

SIAM J. Comput. 1, 1, 31–39.
SKIENA, S. S. 1997. The Algorithm Design Manual. TELOS, State University of New York, Stony

Brook, NY.

Received September 2006; revised February 2009; accepted March 2009

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 3.7, Publication date: July 2009.

