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Abstract—We present an optimal adaptive algorithm for con-  request the text within the title field as followsBqok:
text queries in tagged content. The queries consist of loday (AUTHOR: (Shakespeare) ) (TITLE:...)). Observe that the key-
instances of a tag within a context specified by the query \y,rq Shakespeare is itself within parenthesis to indica t

using patterns with preorder, ancestor-descendant and pramity . o .
operators in the document tree implied by the tagged content Shakespeare should entainedwithin the author field. The

The time taken to resolve a queryQ on a document treeT is Same query without parenthesis arousistakespeare would
logarithmic in the size of T', proportional to the size of Q, and to not match <aut hor> W | i am Shakespeare </ aut hor >
the difficulty of the combination of @ with T', as measured by the nor <aut hor > <l ast nanme> Shakespeare </ | ast nane>
minimal size of a certificate of the answer. The performanceftthe <firstname> Wl liam</firstnanme> </ aut hor>

algorithm is no worse than the classical worst-case optimatvhile | | | h b | di .
provably better on simpler queries and corpora. More formally, n general, query languages have been enlarged in vari-

the algorithm runs in time O(sk1g(n/dk)) in the standard RAM ~ ous different ways to support the tag structure of the text.
model and in time O(6klglgmin(n,o)) in the ©(lg(n))-word Examples of such are the Westlaw legal search service

RAM model, where k is the number of edges in the queryd (http://www.westlaw.com), started in 1975 and more recently
is the minimum numbe_r of operations requwed_ to certify the the XPath query language [4], [7]. In this work we consider
answer to the query,n is the number of nodes in the tree, and . . A
o is the number of labels indexed. an e>§tenS|on wh|_ch is similar (but more powerf_ul) to a type
of twig query which evaluates to all instances in the corpus
|. INTRODUCTION of a target. The target is a tag within a context specified
We consider efficient algorithms for resolving queries in By additional preorder, ancestor-descendant and proximit
tagged text corpus. The tags delimit regions which are eithgatterns in the query. We term these quedestext queries
properly contained within one another or mutually disjoint A context query gives a sequence of tags and the relation-
As such, the tags can be interpreted as a fully parenthesizhip between them in the tag tree (XML tree). Recall that a
expression or document tree, with the ancestor relatipnshinearly, properly nested tagged text such as HTML and XML
denoting containment and the sibling relationship demptirtan be interpreted as a tree (see Figure 1).
iequentlal ordering in the linear presentation of the text. For the case of text it has been ohserved that proximity
mong well known examples of tagged content are SGMLé | ful orimiti dh it ted |
XML, HTML, RTF (rich text format) and PostScript. We arg> &S0 @ Uselul primitive and hience 1t Is supported in many

interested in a particular type of query consisting of a sege commercial query languages. For one, it is often used to

. . - ind passages where a given subject is being discussed. For
of tags with ancestor-descendant or sequential relatipns ; . . )
. o : . . “example, to find all places where President Clinton disalisse
between them, which are similar (though not identicafyiiy

queriesin XML content the AIDS crisis in Africa, a query such as Clinterithin.3.of

A : . . . Affrica within.3.of AIDS would find all text portions where the
query in a tagged corpus consists of an interleaving 0

keywords and structural terms that best denote the infchmmat\r’:’i(r)];dsvg:gga' Clinton and AIDS appear in a span of at most

that is being seeked. We illustrate with two examples hOWThe examples above show that nesting and proximity are
structural information can be used to create richer queries P 9 P ty

First, consider a corpus consisting of bibliographic infiar _r”ele\t/ar:t ;:r?mponer;ts 0{ at q(l:Jery._dIn this Iastteﬁgrgplﬁ t\t,1ve
tion. To retrieve a a list of all authors we query for thé'ustrate the use ol context. Lonsider a query 1o ind all tne

pattern AUTHOR:...). In this case the parenthesis denot%amples. that follow thgstatement of atheorem but precede
the fact that we are only interested in the regions of tH proof in the text. Th|s query would be denoted a§ follows
text tagged as author-name together with the text contain'QaIhe document tree implied by the tagged content:

within, denoted in this case by the ellipsis. A more compli- theorem

cated example would be to search for all books written by
Shakespeare. In this case we first restrict the search space t
book entries, and within those the ones listing Shakespeare
as author. Since we are searching for the titles only we statement- | example — proof




<li brary><book> <title> Conbi natori al

<library>
. . . . . book
@t imzation </ ti tI e> <aut h0|'> <f| rst> ) Dgti>tle>00n1)i natorial Optinization</title>
. - t h
Al exander </first> <l ast> Schrijver T st A exander </ 1irst>
</1ast> </ aut hor> <publ i sher> Spri nger o ot zSehrijver </ ast >
</ publ | Sher> </ b00k> <b00k> <t | tl e> </b;gtgl|sher>Spr|nger</pubI|sher>
. . . <book>
I nt r OdUCt 1 on tO I nf or ITBt 1 on Ret ri eVal 0glille>lmroduction to Information Retrieval </title>
. . . t h
</title> <author> <first> Christopher T stanri stopher</first>
</first> <l ast> Manning </l ast> </ aut hor> <ot popZhenni ng</ L ast>
. . <aut hor >
<aut hor> <first> Prabhakar </first> <l ast> <first>Prabhakar </ first>
<l ast >Ragh. </ | ast >
Raghavan </l ast> </ aut hor> <aut hor > antners onavansiias
. . . . <aut hor >
<first> Hinrich </first> <l ast> Schut ze it oH nri chel i rst>
</l ast> </ aut hor> <publ i sher> Canbri dge anhora e sst>
Uni ver Si ty Press </ pUbl | Shel’ > s/b;g:lilishewcanhridge Uni versity Press</publisher>
</ book></ | i brary> </Hibrary>

Fig. 1. Tagged text with its corresponding tree structupesentation

To sum up, context queries support ancestor-descendaesults as described above. Brueb al. [5], proposed an
proximity and precedence operators which are useful in nalgorithm that considers the query as a whole and avoids
rowing the set of potential answers. unnecessarily large intermediate results using only ateahs
A Previous Work amount of space in addition to the space required to save the

' L . results.

Bruno et al. [5] o_bserved that. it is possible to _compute In this paper we give an optimal adaptive algorithm for

L _ gontext queries in tagged text. The algorithm runsJk)
output size in the worst case. However, for certain probler’gg rches, wherg is the number of terms in the query, and

the worst case time can be_a large overe_stimate of th_e aCtHas the minimum number of operations required to certify

relqu8|redh t|med f(;]r a gr:\lllen hlnput. In particular, Inga;lae hthe answer to the query. The time required by each search
al. [8] s 1owe that while the yvorst case comp exity for t ﬁepends of the implementation chosen for the index. In the
intersection of sorted arrays 8(n), there are instances N 4--4 RAM model the index can be implemented via
which set intersection can be computedlil) time such as, postings lists, supporting the searches in amortized itrwai

for exam_ple{l, 2, [n/ﬂ} N{[n/2] +1,...,n}). In this time so that the algorithm runs in tin@(dk 1g(n/dk)), where
case a single comparison between the last element of the firs the number of nodes in the tree whose label appear

sorted array and the first element of the second array would,, query. In thed(lg(n))-word RAM model, the index

suffice to determine that. the intersgction is. empty NaMEYn pe encoded in auccinct data structurgl], supporting
[n/2] < [n/2] +1. Following up on this Demainet al.gave o cheg in timé (lg lg min(n, )) so that the algorithms runs

an adaptive set intersection algorithm whose running tisne-h time O(5k lg lg min(n, o)), whereo is the number of labels
proportional to the difficulty on the instances as measused dexed ’

a difficulty metric.D and inpu_t sizen. For simple instance§ ._The paper is organized as follows: In Section Il we define
the performance is far superior to the worst case, while it farmally the queries that we consider, and the notion of

never worse than the worst-cagn) algorithm. éﬁrtificate of the answer to a query on a given corpus. In

The same observation applies for context queries, in whi : . : :
; . . ection Il we describe our adaptive algorithm to solve éos
the worst case occurs only in certain contrived examples

. ; gHeries using the operators defined in the previous sedtien.
over a corpus with a complex tag structure. In practice su . . . . .
conclude in Section IV with a discussion of our results and a

instances are usually rare, and hence there would be mhctic .
benefits from an adaptive algorithm which is optimal Ovéarerspecnve on future research.
every instance. Moreover, it has been observed that careles I
evaluation of the query may result in large intermediateltes
even if the final answer is small [5]. We consider a tagged text corpus with the tags defining
The main techniques used so far to speed up query time eggions that are either properly nested or disjoint. As such
indexing and careful order of evaluation of the componenifse text can be represented as a tree with edges denoting
of the query. Grust [10] proposed a labeling scheme baseshtainment relationships between tags. This graph forms a
on the prefix and postfix rankings of the nodes. The resultitigge which is known as the document tree corresponding to
algorithm has query time linear in the worst case and subtinghe corpus. Nodes in the tree are labeled by the tag region
in practice. Shanmugasundaranal. [15] proposed storing they represent.
XML in relational databases, in order to benefit from the We consider context queries, partially inspired by the twig
extensive optimizations developed for those databasersgst queries originally defined by Brunet al. [5], with the key
but this tends to yield algorithms with very large internadi differences that context queries distinguish a particalzde

. DEFINITIONS



among the pattern and support successor-predecessotasperd. Difficulty of an Instance

between nodes. The distinguished node model allows theany correct algorithm must be able to prove that the answer
algorithm to avoid materializing a number of different ways i produces is correct. We formalize this notion through the
which the same target node satisfies the answer, which leagds, cept of certificate of an instance, based on basic opasati

in the worst case, to a combinatorial explosion. on the document tree, all supported by basic encodings of the
More formally, related ordinal tree and binary relation:

Definition 1 A context queryis a directed graph such that

« it has a distinguished node called tharget;
« each node has an associated tag or label

Definition 3 Consider a context query) of k& edges on a

multi-labeled treeT” and a set of node$ answering on

. X T. A certificate of S is a sequence of assertions of types

« each directed edge. is labeled as .one @fcestor, «, is a descendant off’, Iq and y are within distanc):/g
descendant, following, andpreceding; distance in preorder” and “z is the first node labeled!

¢ egch dlre(?ted edge is associated to a maX|_maI p_reordgﬁery in preorder”, such thatl" satisfies those assertions and
distancedistance € {1,...,n, 00}, whereco is coding ¢ thermore for any other tre@” satisfying these assertions,
for the absence of restriction. the answer taQ in 7" is the same se.

Definition 2 A nodex in the document tre@” is amatchto  \while the notion of minimal certificate is more common in

a context query? if its label is the same as the target nodeomputational complexity, we use it here to measure the- diffi
in @ and if each of the other nodes @f can be associated cyity of an instance, as a lower bound on the smallest number
to a node of the document so that the relations described §ly operations performed by a non-deterministic algoritm t
the edges are all respected. answer the query on the document.

A context query searches for occurrences of a given node = )
within a given context. Thus the expressivity of twig queriePefinition 4 Consider a context query) of £ edges on a
is enriched by supporting precedence operators and a -disfigcument tre€” onn nodes and labels, and a set of nodes
guished node. Observe that while it is true that contextigaer> SUPPosedly answering) on T'. The non-deterministic
(without following andpreceding) could be evaluated by complexity of @ on T is the length of the shortest certificate
performing the corresponding twig query without a distin®f the answer ofp onT.
guished node and then filtering the result set for duplicates
the twig query result set can be exponentially larger.

For example consider the following document tree a
context query:

Document; D Query: (D]

The non-deterministic complexity provides a lower bound
hich is not tight, but more importantly it provides a measur

the difficulty of the instance, as shown by the results af ou
algorithm.

B. Strategy of the Algorithm
A B ... A B A ... B Observe that the answer to a context query is a subset of

In this example the query has a single match, namely tH SetS of nodes with the same label as the target node.
nodeD whereas the corresponding twig query would produd straightforward algorithm WouI(_j be to |terat|vely_ test_clfaa
m(m — 1)/2 matches, wheren is the number of consecutivemember of the sef. However, this can be rather inefficient
pairs A()B() present in the query. if the resuIF set is comparatively much smaIIer.. In ggneral

Hence the concept of context queries allows both for richBfly resolving one aspect of a query expression without
expressivity and more efficient execution of certain queri®aying attention to others can result in large inefficiesicieor
which might otherwise be too burdensome. example, in the evaluation of Boolean set operations in sets

Figure 2 shows a context query for a medical file foRnd in database queries, it is not hard to construct an SQL
all patients to whom have been administrated a test wi# keyword based query in which one of a set of complex
resultY” after having been prescribed medicifie The query Views being joined is actually empty, and determining this
specifies the list of nodes labelgdt i ent , in whose subtree first would greatly reduce the amount of work. Similarly, for
a node labelegr escri ption with a descendant labeledContext queries, consider the impact of the order of evilnat

medi ci ne X precedes a node labelégst with a descen- N @ query tree with two subtrees, one of which has a large
dant labeledt esul t Y. evaluation cost and while the second readily evaluating to

the empty set. An algorithm that commits to fully evaluating
lIl. AN ADAPTIVE ALGORITHM FOR CONTEXT QUERIES  the more complex of the subtrees would be arbitrarily slower
In this section we first give a difficulty measure for a givethan one which hedge its bets between each of the subtrees.
instance which gives a lower bound on the minimum amouHience proper care must be taken in the order of evaluation of
of work that an algorithm must perform over an instance. Whe overall query (this observation is termed “holistic yue
then give an algorithm whose running time is proportional tevaluation” in the field of database research [5]). This rsean
the difficulty of the given instance. that if we wish to match the most efficient evaluation possibl



medfile

_ _ _ _ _ - —.~wpatient...
- |
-7 ... history . ..
prescription > test test prescription test
l l ... resulty ... i ... resulty
medigineX I’eSL\I|tY o medlglneX o A

Fig. 2. A context query on the left, on a subset of a medicahltte depicted on the right. Downward edges correspodésicendant
axes, and horizontal edges following,,, . axes. The target node (here thati ent node) is circled.

the algorithm must actively examine all relations in the rgue associated to the requiremeatof the edge. We then request
searching for the best possible way to select the next catedid the successor of positianin the ordered set of labeB. Letb

First, we denote each edge in the query(b}yr’ B) which be this node. The algorithm Verifies('ti, T, b) is indeed a valid
represents the requirement in the query that there be a néel@tion in the document tree of the text. If so it increments
labeledA in relationr with a node labeled in the document the count of number of relations satisfied thus far. Othexwis
tree of the text, where € {ancestor, predecessor, within}. the counter is reset to zero and we advamtxy searching for

The algorithm cycles repeatedly through the edges of tH¥ first closing tag of typel that appears after the opening
query in an arbitrary tour of minimal length. Such a tourtgisi 129 Of b. We repeat this process in the order of tour of the

at least once and at most twice every edge (because of #E"Y graph. Whenever the counter of satisfied re_Iatiorhseist
minimality), so that its length is at mogt if there arek edges S@Me as the number of edges in the query gr@ptiis means
in Q. For each edgéd, r, B), considerA the previous query- that all relations are satisfied the algorithm outputs threezu
node visited, and the first A-node in preorder of’ which is t&rget node and it advances this node.

a candidate for a match @} (the definition is symmetrical if ¢ pata Structures

B is the previous query-node visited). The algorithm seache

for the firstB-node in preorder of” which could be in relation help to envision the testing of each of the successor/ddscgn

r with a. If there is such a nodk; it is added to the potential operations as simple offset comparisons in the sorted dist a
match and the algorithm continues its tour. If there is nchsudP P b

. : described above. However, we note that any one of a variety of
node, then obviously is not part of a match o), hence the data structures implementing ordinal trees and binaryiogls
algorithm fixesh to the first B-node which could be in relation P 9

: : . . can be used (e.g. [9], [13], [11]). Each of them has a differen
r with a preordersuccessonf a, and continues its tour with : .
. . trade-off between the space used and the time required to
a potential match constituted only of

search in it, hence for generality we express the complexity

For the evaluation of the query as a whole (i.e. satisfyihg &), aigorithms in terms of the number of “search” operations

relations simultaneously) we observe that the set of nodkbs Wherformed on these data structures, so that the complekity o

the same given tag forms an ordered list of their positions jRe 5igorithm can be inferred for each data structure.
the corpus in left to right order of the text. The position d:m Two classic examples are (i) a binary search on a sorted
given as a byte offset, token count, or any other such seital. 5, \which finds the rankof a particular element in a sorted

mechanism. Hence an ancestor/descendant rglationshtp)scagrray ofn4 elements in tim&(lgn.4), and a straightforward
encoded by a predecessor/successor relation in the oféred, o iant can be used to search the positions of a setnof

In particular node is contained within node if the opening increasing values in timed(mlg(na/m)) [2] and (i) a

tag of b appears after the opening tag efbut before the omnressed bit-vector [14], [12], supporting the searcthef
closing tag ofa and nodeb is a successor of nodeif the 5y of 5 particular element in constant time, at the expense

closing tag ofa appears before the opening tagbof of space; or using less space at the expense of time [1].
Assume that we have identified a set of nodes which

satisfy all relations tested thus far. Let, r, B) be the next D- The Algorithm
edge in the traversal of the query. Since we traverse theWe now give a formal description of the procedure and its
graph in connected order there is already a candidate @modproof of correctness.

To simplify the understanding of the algorithm, it might



Theorem 1 Consider a context query) of k edges on a successor ofi by testing for the conditiom < b. The second
multi-labeled tree onn nodes ando labels. There is an is indirectly, by testing the conditiom < b’ and then deriving
algorithm solving@ in O(dk) operator calls and in time from the left to right ordering of the text th&t < b. Analogous
O(6k1g(n/ék)) on a document treqd’, whered is the non- conditions hold for descendant and within queries.
deterministic complexity of) on T'. This is optimal in the  From this it follows that every2k checks the algorithm
worst case over all instances of same difficulty, documestiove discovers at least one refutation which is also known
and query size, for any algorithm computing a certificate ag the non-deterministic algorithm. If the refutation was-d
described in Definition 3. covered explicitly by the non-deterministic algorithm thee
] . . ) have a ratio of 2k in the amount of extra work performed by

. Proof. For simplicity, we introduce a sgntmel node PO%ur algorithm. Alternatively, if the refutation was disared
sitioned atoo that m{:ltches all labels and is a successor ﬁ%plicitly by the non-deterministic algorithm, this is due
all nodes. The algorithm goes as follows: starting from th§ refutation for an elemeri’ appearing beforé. Observe
- however, that our algorithm must have considetédas a
Algorithm 1 Sol ve_Query(Q) potential candidate and discarded it, hence our algoritlsm a

Given a context query) of target nodecarget, the function knows thatb has been refuted implicitly and it wouldn't be
outputs the list of nodes matchingarget in the context ynder current consideration.

defined byQ. In sum, it takes at moskk steps to eliminate as many
Let A initially be the label of thetarget node inQ; potential result nodes as a non-deterministic algorithniclkvh
NumSatisfiedRelations « O; can “guess” which operation to perform to eliminate the éstg
a « the first availabled-node of the document. number of potential result nodes.
while a # oo do To show correctness, first we observe that if a nede
(A, r, B) « the next edge of); matching the label of the target node is output then it safsfi
b «— the next node matching and potentially in relation all & relations in the context query (some of them having been
r with a; tested twice) and hence by constructiois a correct answer.
if @ is in relationr with b then Conversely we need to show that if there is a nodeéhich is
NumSatisfiedRelations < avalid answer then the algorithm will report it.
NumSatisfiedRelations + 1; Sincet is a valid answer there is a set of nodgsin the
if NumSatisfiedRelations = 2k then text instantiating to the query nodes such that all the icriat

Output the current node matching therget node; are satisfied. We will show that the algorithm will either
a < the nexttarget node in the document tree; giscover this set of nodes or an alternative set of satigfyin

end if nodes involving the same target nodewill be discovered.
else We prove this by showing that the candidate node set held by
NumSatisfiedRelations < 0; the algorithm for a given target nodes never to the right of
end if the valid answer set corresponding to that target node
end while

We prove this by induction on the number of steps per-
formed. Initially this is trivially true, as the candidatetsof
target node, it cycles through the edges of the quély nodes is empty. Now by induction suppose the algorithm has a
updating for each query nodd the matching noder in candidate set of nodes each of which appears no later than the
the multi-labeled tree, such that anyrnode preceding: in  corresponding node i$*. When trying to satisfy a relation
preorder has already been considered and can be ignoredcorresponding to an eddel, », B) the algorithm searches for

After a tour where2k consecutive matches have beethe next nodeb that is in relationr with a. If this nodeb
successfully checked, the algorithm has found a match fgrto the right of the corresponding nodie in S*, we claim
@ and can output the tree-node corresponding totthizet that b* also satisfies the relation Observe that the relation
node. Observe that for evey: such checks that the algorithmoperators successor, descendant and within.n appeat io lef
considered, a correct non-deterministic algorithm neemls right order in the text, hence we haw¢ < b* anda < b.
either confirm all of them explicitly if the target node wasBy hypothesis we also have < b* < b, henceb* is also
found, or refute at least one relationship to prove that tkedescendant/successor/within.nsfind thus the algorithm
current node set is not a valid answer as it can be shown byngst have selectetl = b* if not an earlier instance. Hence
straightforward adversarial arguméniilote that in our model the condition holds.

there are two ways in which an algorithm (deterministic or \yhen the preorder rank of the node associated to any
otherwise) can learn that two given nodesand b are not qguery-node reaches the value, all nodes matching this
in the desired relatiom. One is by a direct testing # iS @ |ape| have been considered (hence the correctness), and the
1 N . algorithm has performe@dk operator calls where a non-
If none of the relationships have been refuted by the noerd®histic d inistic al ith Idh f d at leq
algorithm and it rejects the node, then an adversary cangehtre instance etermlnlst|g algorithm wou ave performed at @tence
to have the relationships hold and the non-determinisgiorithm is incorrect. the complexity result).




The optimality results from a simple reduction to the alter-
nation analysis of the conjunctive queries in the intefseact
problem [3]. A binary relation composed bfelations between
n objects andr labels can be encoded as a labeled tregetaof
nodes andr + 1 labels, where the root has a label of his own
and each branch corresponds to one objetihe nodes of this
branch being labeled with the labels associated,tm order.
The conjunctive query composed fabels then corresponds
to a twig pattern ofc edges, starting from the root and listing
k nodes labeled with thé labels in order. The matches of
this twig pattern trivially yield the answer to the conjuinet
query.

Since Barbay and Kenyon proved a computational lower
bound of Q(6k1g(ndk)) for solving the conjunctive query
in the comparison model, where is the non deterministic

Fig. 3.
tour of the query given in Figure 2 : the trace stops when tgerahm proves
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The first part of the execution trace of the algorithithvanother

complexity of the instancé; the nymber of terms in the query,that the firsmode does not belong to a match, becausepnescr i pt i on
and n the number of nodes which match at least one of thede precedes it.

label of the query, this trivially yield the desired optirtgalin
our model. [ |
Consider for instance the execution trace presented in
Figure 3 and 4, for a tour of the query consideringst
nodes beforgr escri pti on nodes. Even when the algo-
rithm chooses a non-optimal tour, it will find the match (or,
equivalently, the key operations to prove that some nodes
cannot belong to a match) using at m@ét times as many
operation as the best non-deterministic algorithm.

IV. CONCLUSIONS

We propose in this paper an adaptive algorithm for the
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evaluation of context _que_ries in tagged text. The algorithfyy. 4. The rest of the execution trace, where the algoritbliovs the tour
evaluates these queries ifi(dk) search operations, wherethrough the nodes labelgat escri pti on, medi ci ne, prescri pti on,

k is the number of terms of the query andis the non-
deterministic complexity of the query on the multi-labeteze
(e.g. the minimum number of operations required to check
the answer of the query). This corresponds to an execution
in O(6k1g(n/dk)) in the standard RAM model, whene is

the number of nodes in the tree; and to an execution time in
O(6k1glgmin(n, o)) in the©(Ig n)-word RAM model, where |4
o is the number of labels indexed.

A natural direction for future research is to extend our

technigue to support a broader range of queries. It seerhs thg

patient,test,result,test, andprescri pti on, at which point it
proved a match, having matched seven consecutive edgekenih of the
tour of the query.
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