
Efficient Algorithms for Context Query Evaluation
over a Tagged Corpus

Jérémy Barbay
Departamento de Ciencias de la Computación (DCC),

Universidad de Chile, Santiago, Chile.
Email: jbarbay@dcc.uchile.cl

Alejandro López-Ortiz
Cheriton School of Computer Science (CSCS),

University of Waterloo, Canada.
Email: alopez-o@uwaterloo.ca

Abstract—We present an optimal adaptive algorithm for con-
text queries in tagged content. The queries consist of locating
instances of a tag within a context specified by the query
using patterns with preorder, ancestor-descendant and proximity
operators in the document tree implied by the tagged content.
The time taken to resolve a queryQ on a document treeT is
logarithmic in the size of T , proportional to the size of Q, and to
the difficulty of the combination of Q with T , as measured by the
minimal size of a certificate of the answer. The performance of the
algorithm is no worse than the classical worst-case optimal, while
provably better on simpler queries and corpora. More formally,
the algorithm runs in time O(δk lg(n/δk)) in the standard RAM
model and in time O(δk lg lg min(n, σ)) in the Θ(lg(n))-word
RAM model, where k is the number of edges in the query,δ
is the minimum number of operations required to certify the
answer to the query,n is the number of nodes in the tree, and
σ is the number of labels indexed.

I. I NTRODUCTION

We consider efficient algorithms for resolving queries in a
tagged text corpus. The tags delimit regions which are either
properly contained within one another or mutually disjoint.
As such, the tags can be interpreted as a fully parenthesized
expression or document tree, with the ancestor relationship
denoting containment and the sibling relationship denoting
sequential ordering in the linear presentation of the text.
Among well known examples of tagged content are SGML,
XML, HTML, RTF (rich text format) and PostScript. We are
interested in a particular type of query consisting of a sequence
of tags with ancestor-descendant or sequential relationship
between them, which are similar (though not identical) totwig
queriesin XML content.

A query in a tagged corpus consists of an interleaving of
keywords and structural terms that best denote the information
that is being seeked. We illustrate with two examples how
structural information can be used to create richer queries.
First, consider a corpus consisting of bibliographic informa-
tion. To retrieve a a list of all authors we query for the
pattern (AUTHOR:...). In this case the parenthesis denote
the fact that we are only interested in the regions of the
text tagged as author-name together with the text contained
within, denoted in this case by the ellipsis. A more compli-
cated example would be to search for all books written by
Shakespeare. In this case we first restrict the search space to
book entries, and within those the ones listing Shakespeare
as author. Since we are searching for the titles only we

request the text within the title field as follows: (BOOK:
(AUTHOR: (Shakespeare) ) (TITLE :...)). Observe that the key-
word Shakespeare is itself within parenthesis to indicate that
Shakespeare should becontainedwithin the author field. The
same query without parenthesis aroundShakespeare would
not match<author> William Shakespeare </author>

nor <author> <lastname> Shakespeare </lastname>

<firstname> William </firstname> </author>

In general, query languages have been enlarged in vari-
ous different ways to support the tag structure of the text.
Examples of such are the Westlaw legal search service
(http://www.westlaw.com), started in 1975 and more recently
the XPath query language [4], [7]. In this work we consider
an extension which is similar (but more powerful) to a type
of twig query which evaluates to all instances in the corpus
of a target. The target is a tag within a context specified
by additional preorder, ancestor-descendant and proximity
patterns in the query. We term these queriescontext queries.

A context query gives a sequence of tags and the relation-
ship between them in the tag tree (XML tree). Recall that a
linearly, properly nested tagged text such as HTML and XML
can be interpreted as a tree (see Figure 1).

For the case of text it has been observed that proximity
is also a useful primitive and hence it is supported in many
commercial query languages. For one, it is often used to
find passages where a given subject is being discussed. For
example, to find all places where President Clinton discussed
the AIDS crisis in Africa, a query such as Clintonwithin.3.of
Africa within.3.of AIDS would find all text portions where the
words Africa, Clinton and AIDS appear in a span of at most
nine words.

The examples above show that nesting and proximity are
relevant components of a query. In this last example we
illustrate the use of context. Consider a query to find all the
examples that follow thestatement of a theorem but precede
its proof in the text. This query would be denoted as follows
in the document tree implied by the tagged content:

theorem

statement→ example → proof



<library><book> <title> Combinatorial

Optimization </title> <author> <first>

Alexander </first> <last> Schrijver

</last> </author> <publisher> Springer

</publisher> </book> <book> <title>

Introduction to Information Retrieval

</title> <author> <first> Christopher

</first> <last> Manning </last> </author>

<author> <first> Prabhakar </first> <last>

Raghavan </last> </author> <author>

<first> Hinrich </first> <last> Schutze

</last> </author> <publisher> Cambridge

University Press </publisher>

</book></library>

<library>
<book>

<title>Combinatorial Optimization</title>
<author>

<first>Alexander</first>
<last>Schrijver</last>

</author>
<publisher>Springer</publisher>

</book>
<book>

<title>Introduction to Information Retrieval</title>
<author>

<first>Christopher</first>
<last>Manning</last>

</author>
<author>

<first>Prabhakar</first>
<last>Raghavan</last>

</author>
<author>

<first>Hinrich</first>
<last>Schutze<last>

</author>
<publisher>Cambridge University Press</publisher>

</book>
</library>

Fig. 1. Tagged text with its corresponding tree structure representation

To sum up, context queries support ancestor-descendant,
proximity and precedence operators which are useful in nar-
rowing the set of potential answers.

A. Previous Work

Bruno et al. [5] observed that it is possible to compute
the answer to a Twig query in time linear on the input and
output size in the worst case. However, for certain problems
the worst case time can be a large overestimate of the actual
required time for a given input. In particular, Demaineet
al. [8] showed that while the worst case complexity for the
intersection of sorted arrays isΘ(n), there are instances in
which set intersection can be computed inO(1) time such as,
for example{1, 2, . . . , ⌈n/2⌉} ∩ {⌈n/2⌉+ 1, . . . , n}). In this
case a single comparison between the last element of the first
sorted array and the first element of the second array would
suffice to determine that the intersection is empty namely
⌈n/2⌉ < ⌈n/2⌉+1. Following up on this Demaineet al. gave
an adaptive set intersection algorithm whose running time is
proportional to the difficulty on the instances as measured by
a difficulty metric D and input sizen. For simple instances
the performance is far superior to the worst case, while it is
never worse than the worst-caseΘ(n) algorithm.

The same observation applies for context queries, in which
the worst case occurs only in certain contrived examples
over a corpus with a complex tag structure. In practice such
instances are usually rare, and hence there would be practical
benefits from an adaptive algorithm which is optimal over
every instance. Moreover, it has been observed that careless
evaluation of the query may result in large intermediate results,
even if the final answer is small [5].

The main techniques used so far to speed up query time are
indexing and careful order of evaluation of the components
of the query. Grust [10] proposed a labeling scheme based
on the prefix and postfix rankings of the nodes. The resulting
algorithm has query time linear in the worst case and sublinear
in practice. Shanmugasundaramet al. [15] proposed storing
XML in relational databases, in order to benefit from the
extensive optimizations developed for those database systems,
but this tends to yield algorithms with very large intermediate

results as described above. Brunoet al. [5], proposed an
algorithm that considers the query as a whole and avoids
unnecessarily large intermediate results using only a constant
amount of space in addition to the space required to save the
results.

In this paper we give an optimal adaptive algorithm for
context queries in tagged text. The algorithm runs inO(δk)
searches, wherek is the number of terms in the query, and
δ is the minimum number of operations required to certify
the answer to the query. The time required by each search
depends of the implementation chosen for the index. In the
standard RAM model the index can be implemented via
postings lists, supporting the searches in amortized logarithmic
time so that the algorithm runs in timeO(δk lg(n/δk)), where
n is the number of nodes in the tree whose label appear
in the query. In theΘ(lg(n))-word RAM model, the index
can be encoded in asuccinct data structure[1], supporting
searches in timeO(lg lg min(n, σ)) so that the algorithms runs
in timeO(δk lg lg min(n, σ)), whereσ is the number of labels
indexed.

The paper is organized as follows: In Section II we define
formally the queries that we consider, and the notion of
certificate of the answer to a query on a given corpus. In
Section III we describe our adaptive algorithm to solve those
queries using the operators defined in the previous section.We
conclude in Section IV with a discussion of our results and a
perspective on future research.

II. D EFINITIONS

We consider a tagged text corpus with the tags defining
regions that are either properly nested or disjoint. As such,
the text can be represented as a tree with edges denoting
containment relationships between tags. This graph forms a
tree which is known as the document tree corresponding to
the corpus. Nodes in the tree are labeled by the tag region
they represent.

We consider context queries, partially inspired by the twig
queries originally defined by Brunoet al. [5], with the key
differences that context queries distinguish a particularnode



among the pattern and support successor-predecessor operators
between nodes. The distinguished node model allows the
algorithm to avoid materializing a number of different waysin
which the same target node satisfies the answer, which leads,
in the worst case, to a combinatorial explosion.

More formally,

Definition 1 A context query is a directed graph such that
• it has a distinguished node called thetarget;
• each node has an associated tag or label
• each directed edge is labeled as one ofancestor,
descendant, following, andpreceding;

• each directed edge is associated to a maximal preorder
distancedistance ∈ {1, . . . , n,∞}, where∞ is coding
for the absence of restriction.

Definition 2 A nodex in the document treeT is a match to
a context queryQ if its label is the same as the target node
in Q and if each of the other nodes ofQ can be associated
to a node of the document so that the relations described by
the edges are all respected.

A context query searches for occurrences of a given node
within a given context. Thus the expressivity of twig queries
is enriched by supporting precedence operators and a distin-
guished node. Observe that while it is true that context queries
(without following andpreceding) could be evaluated by
performing the corresponding twig query without a distin-
guished node and then filtering the result set for duplicates,
the twig query result set can be exponentially larger.

For example consider the following document tree and
context query:

Document: D

A B . . . A B

Query: D

A . . . B

In this example the query has a single match, namely the
nodeD whereas the corresponding twig query would produce
m(m− 1)/2 matches, wherem is the number of consecutive
pairsA()B() present in the query.

Hence the concept of context queries allows both for richer
expressivity and more efficient execution of certain queries
which might otherwise be too burdensome.

Figure 2 shows a context query for a medical file for
all patients to whom have been administrated a test with
resultY after having been prescribed medicineX . The query
specifies the list of nodes labeledpatient, in whose subtree
a node labeledprescription with a descendant labeled
medicine X precedes a node labeledtest with a descen-
dant labeledresult Y.

III. A N ADAPTIVE ALGORITHM FOR CONTEXT QUERIES

In this section we first give a difficulty measure for a given
instance which gives a lower bound on the minimum amount
of work that an algorithm must perform over an instance. We
then give an algorithm whose running time is proportional to
the difficulty of the given instance.

A. Difficulty of an Instance

Any correct algorithm must be able to prove that the answer
it produces is correct. We formalize this notion through the
concept of certificate of an instance, based on basic operations
on the document tree, all supported by basic encodings of the
related ordinal tree and binary relation:

Definition 3 Consider a context queryQ of k edges on a
multi-labeled treeT and a set of nodesS answeringQ on
T . A certificate of S is a sequence of assertions of types
“ x is a descendant ofy”, “ x and y are within distance
distance in preorder” and “x is the first node labeledA
after y in preorder”, such thatT satisfies those assertions and
furthermore for any other treeT ′ satisfying these assertions,
the answer toQ in T ′ is the same setS.

While the notion of minimal certificate is more common in
computational complexity, we use it here to measure the diffi-
culty of an instance, as a lower bound on the smallest number
of operations performed by a non-deterministic algorithm to
answer the query on the document.

Definition 4 Consider a context queryQ of k edges on a
document treeT on n nodes andσ labels, and a set of nodes
S supposedly answeringQ on T . The non-deterministic
complexity of Q on T is the length of the shortest certificate
of the answer ofQ on T .

The non-deterministic complexity provides a lower bound
which is not tight, but more importantly it provides a measure
of the difficulty of the instance, as shown by the results of our
algorithm.

B. Strategy of the Algorithm

Observe that the answer to a context query is a subset of
the setS of nodes with the same label as the target node.
A straightforward algorithm would be to iteratively test each
member of the setS. However, this can be rather inefficient
if the result set is comparatively much smaller. In general
fully resolving one aspect of a query expression without
paying attention to others can result in large inefficiencies. For
example, in the evaluation of Boolean set operations in sets
and in database queries, it is not hard to construct an SQL
or keyword based query in which one of a set of complex
views being joined is actually empty, and determining this
first would greatly reduce the amount of work. Similarly, for
context queries, consider the impact of the order of evaluation
in a query tree with two subtrees, one of which has a large
evaluation cost and while the second readily evaluating to
the empty set. An algorithm that commits to fully evaluating
the more complex of the subtrees would be arbitrarily slower
than one which hedge its bets between each of the subtrees.
Hence proper care must be taken in the order of evaluation of
the overall query (this observation is termed “holistic query
evaluation” in the field of database research [5]). This means
that if we wish to match the most efficient evaluation possible



patient

prescription test

medicineX resultY

medfile

. . . patient. . .

. . . history . . .

test

. . . resultY . . .

prescription

. . . medicineX . . .

test

. . . resultY . . .

Fig. 2. A context query on the left, on a subset of a medical database depicted on the right. Downward edges correspond todescendant

axes, and horizontal edges tofollowing
pre

axes. The target node (here thepatient node) is circled.

the algorithm must actively examine all relations in the query
searching for the best possible way to select the next candidate.

First, we denote each edge in the query by(A, r, B) which
represents the requirement in the query that there be a node
labeledA in relationr with a node labeledB in the document
tree of the text, wherer ∈ {ancestor, predecessor, within}.

The algorithm cycles repeatedly through the edges of the
query in an arbitrary tour of minimal length. Such a tour visits
at least once and at most twice every edge (because of the
minimality), so that its length is at most2k if there arek edges
in Q. For each edge(A, r, B), considerA the previous query-
node visited, anda the firstA-node in preorder ofT which is
a candidate for a match ofQ (the definition is symmetrical if
B is the previous query-node visited). The algorithm searches
for the firstB-node in preorder ofT which could be in relation
r with a. If there is such a nodeb, it is added to the potential
match and the algorithm continues its tour. If there is no such
node, then obviouslya is not part of a match ofQ, hence the
algorithm fixesb to the firstB-node which could be in relation
r with a preordersuccessorof a, and continues its tour with
a potential match constituted only ofb.

For the evaluation of the query as a whole (i.e. satisfying all
relations simultaneously) we observe that the set of nodes with
the same given tag forms an ordered list of their positions in
the corpus in left to right order of the text. The position canbe
given as a byte offset, token count, or any other such suitable
mechanism. Hence an ancestor/descendant relationship canbe
encoded by a predecessor/successor relation in the orderedlist.
In particular nodeb is contained within nodea if the opening
tag of b appears after the opening tag ofa but before the
closing tag ofa and nodeb is a successor of nodea if the
closing tag ofa appears before the opening tag ofb.

Assume that we have identified a set of nodes which
satisfy all relations tested thus far. Let(A, r, B) be the next
edge in the traversal of the query. Since we traverse the
graph in connected order there is already a candidate nodea

associated to the requirementA of the edge. We then request
the successor of positiona in the ordered set of labelsB. Let b
be this node. The algorithm verifies if(a, r, b) is indeed a valid
relation in the document tree of the text. If so it increments
the count of number of relations satisfied thus far. Otherwise
the counter is reset to zero and we advancea by searching for
the first closing tag of typeA that appears after the opening
tag of b. We repeat this process in the order of tour of the
query graph. Whenever the counter of satisfied relations is the
same as the number of edges in the query graphQ, this means
that all relations are satisfied the algorithm outputs the current
target nodet and it advances this node.

C. Data Structures

To simplify the understanding of the algorithm, it might
help to envision the testing of each of the successor/descendant
operations as simple offset comparisons in the sorted list as
described above. However, we note that any one of a variety of
data structures implementing ordinal trees and binary relations
can be used (e.g. [9], [13], [11]). Each of them has a different
trade-off between the space used and the time required to
search in it, hence for generality we express the complexityof
our algorithms in terms of the number of “search” operations
performed on these data structures, so that the complexity of
the algorithm can be inferred for each data structure.

Two classic examples are (i) a binary search on a sorted
array which finds the rankof a particular element in a sorted
array ofnA elements in timeO(lg nA), and a straightforward
variant can be used to search the positions of a set ofm
increasing values in timeO(m lg(nA/m)) [2] and (ii) a
compressed bit-vector [14], [12], supporting the search ofthe
rank of a particular element in constant time, at the expense
of space; or using less space at the expense of time [1].

D. The Algorithm

We now give a formal description of the procedure and its
proof of correctness.



Theorem 1 Consider a context queryQ of k edges on a
multi-labeled tree onn nodes andσ labels. There is an
algorithm solvingQ in O(δk) operator calls and in time
O(δk lg(n/δk)) on a document treeT , whereδ is the non-
deterministic complexity ofQ on T . This is optimal in the
worst case over all instances of same difficulty, document
and query size, for any algorithm computing a certificate as
described in Definition 3.

Proof: For simplicity, we introduce a sentinel node po-
sitioned at∞ that matches all labels and is a successor to
all nodes. The algorithm goes as follows: starting from the

Algorithm 1 Solve_Query(Q)

Given a context queryQ of target nodetarget, the function
outputs the list of nodes matchingtarget in the context
defined byQ.

Let A initially be the label of thetarget node inQ;
NumSatisfiedRelations← 0;
a← the first availableA-node of the document.
while a 6=∞ do

(A, r, B)← the next edge ofQ;
b← the next node matchingB and potentially in relation
r with a;
if a is in relationr with b then
NumSatisfiedRelations ←
NumSatisfiedRelations+ 1;
if NumSatisfiedRelations= 2k then

Output the current node matching thetarget node;
a← the nexttarget node in the document tree;

end if
else
NumSatisfiedRelations← 0;

end if
end while

target node, it cycles through the edges of the queryQ,
updating for each query nodeA the matching nodex in
the multi-labeled tree, such that anyA-node precedingx in
preorder has already been considered and can be ignored.

After a tour where2k consecutive matches have been
successfully checked, the algorithm has found a match for
Q and can output the tree-node corresponding to thetarget

node. Observe that for every2k such checks that the algorithm
considered, a correct non-deterministic algorithm needs to
either confirm all of them explicitly if the target node was
found, or refute at least one relationship to prove that the
current node set is not a valid answer as it can be shown by a
straightforward adversarial argument1. Note that in our model
there are two ways in which an algorithm (deterministic or
otherwise) can learn that two given nodesa and b are not
in the desired relationr. One is by a direct testing ifb is a

1If none of the relationships have been refuted by the non-deterministic
algorithm and it rejects the node, then an adversary can change the instance
to have the relationships hold and the non-deterministic algorithm is incorrect.

successor ofa by testing for the conditiona < b. The second
is indirectly, by testing the conditiona < b′ and then deriving
from the left to right ordering of the text thatb′ < b. Analogous
conditions hold for descendant and within queries.

From this it follows that every2k checks the algorithm
above discovers at least one refutation which is also known
to the non-deterministic algorithm. If the refutation was dis-
covered explicitly by the non-deterministic algorithm then we
have a ratio of 1:2k in the amount of extra work performed by
our algorithm. Alternatively, if the refutation was discovered
implicitly by the non-deterministic algorithm, this is dueto
a refutation for an elementb′ appearing beforeb. Observe
however, that our algorithm must have consideredb′ as a
potential candidate and discarded it, hence our algorithm also
knows thatb has been refuted implicitly and it wouldn’t be
under current consideration.

In sum, it takes at most2k steps to eliminate as many
potential result nodes as a non-deterministic algorithm which
can “guess” which operation to perform to eliminate the largest
number of potential result nodes.

To show correctness, first we observe that if a nodet
matching the label of the target node is output then it satisfies
all k relations in the context query (some of them having been
tested twice) and hence by constructiont is a correct answer.
Conversely we need to show that if there is a nodet which is
a valid answer then the algorithm will report it.

Sincet is a valid answer there is a set of nodesS∗ in the
text instantiating to the query nodes such that all the relations
are satisfied. We will show that the algorithm will either
discover this set of nodes or an alternative set of satisfying
nodes involving the same target nodet will be discovered.
We prove this by showing that the candidate node set held by
the algorithm for a given target nodet is never to the right of
the valid answer set corresponding to that target nodet.

We prove this by induction on the number of steps per-
formed. Initially this is trivially true, as the candidate set of
nodes is empty. Now by induction suppose the algorithm has a
candidate set of nodes each of which appears no later than the
corresponding node inS∗. When trying to satisfy a relation
corresponding to an edge(A, r, B) the algorithm searches for
the next nodeb that is in relationr with a. If this nodeb
is to the right of the corresponding nodeb∗ in S∗, we claim
that b∗ also satisfies the relationr. Observe that the relation
operators successor, descendant and within.n appear in left to
right order in the text, hence we havea∗ < b∗ and a < b.
By hypothesis we also havea < b∗ < b, henceb∗ is also
a descendant/successor/within.n ofa and thus the algorithm
must have selectedb ≡ b∗ if not an earlier instance. Hence
the condition holds.

When the preorder rank of the node associated to any
query-node reaches the value∞, all nodes matching this
label have been considered (hence the correctness), and the
algorithm has performed2δk operator calls where a non-
deterministic algorithm would have performed at leastδ (hence
the complexity result).



The optimality results from a simple reduction to the alter-
nation analysis of the conjunctive queries in the intersection
problem [3]. A binary relation composed oft relations between
n objects andσ labels can be encoded as a labeled tree oft+1
nodes andσ + 1 labels, where the root has a label of his own
and each branch corresponds to one objectx, the nodes of this
branch being labeled with the labels associated tox, in order.
The conjunctive query composed ofk labels then corresponds
to a twig pattern ofk edges, starting from the root and listing
k nodes labeled with thek labels in order. The matches of
this twig pattern trivially yield the answer to the conjunctive
query.

Since Barbay and Kenyon proved a computational lower
bound of Ω(δk lg(nδk)) for solving the conjunctive query
in the comparison model, whereδ is the non deterministic
complexity of the instance,k the number of terms in the query,
and n the number of nodes which match at least one of the
label of the query, this trivially yield the desired optimality in
our model.

Consider for instance the execution trace presented in
Figure 3 and 4, for a tour of the query consideringtest
nodes beforeprescription nodes. Even when the algo-
rithm chooses a non-optimal tour, it will find the match (or,
equivalently, the key operations to prove that some nodes
cannot belong to a match) using at most2k times as many
operation as the best non-deterministic algorithm.

IV. CONCLUSIONS

We propose in this paper an adaptive algorithm for the
evaluation of context queries in tagged text. The algorithm
evaluates these queries inO(δk) search operations, where
k is the number of terms of the query andδ is the non-
deterministic complexity of the query on the multi-labeledtree
(e.g. the minimum number of operations required to check
the answer of the query). This corresponds to an execution
in O(δk lg(n/δk)) in the standard RAM model, wheren is
the number of nodes in the tree; and to an execution time in
O(δk lg lg min(n, σ)) in theΘ(lg n)-word RAM model, where
σ is the number of labels indexed.

A natural direction for future research is to extend our
technique to support a broader range of queries. It seems that
complex node tests cannot be supported by the data structure
without increasing its size by more than a lower order term.
The work from Chiniforooshanet al. [6] is a first step towards
an algorithm to support more complex node type tests.

An interesting open problem is whether there is a lower
bound on the complexity of any algorithm solving context
queries. Using a technique similar to the one used by Barbay
and Kenyon [2], it would not be difficult to prove a lower
bound on the number of operator calls performed by any
randomized algorithm solving context queries, but it seems
much more difficult to obtain a more general lower bound, that
does not assume that the algorithm uses a specific encoding
of the document tree.

medfile

. . . patient. . .

. . . history . . .

test

. . . resultY . . .

prescription

. . . medicineX . . .

test

. . . resultY . . .

Fig. 3. The first part of the execution trace of the algorithm with another
tour of the query given in Figure 2 : the trace stops when the algorithm proves
that the firstnode does not belong to a match, because noprescription
node precedes it.

medfile

. . . patient. . .

. . . history . . .

test

. . . resultY . . .

prescription

. . . medicineX . . .

test

. . . resultY . . .

Fig. 4. The rest of the execution trace, where the algorithm follows the tour
through the nodes labeledprescription, medicine, prescription,
patient, test, result, test, andprescription, at which point it
proved a match, having matched seven consecutive edges, thelength of the
tour of the query.

REFERENCES

[1] J. Barbay, M. He, J. I. Munro, and S. S. Rao. Succinct indexes for strings,
binary relations and multi-labeled trees. InProceedings of the 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 680–689.
ACM, 2007.

[2] J. Barbay and C. Kenyon. Adaptive intersection and t-threshold prob-
lems. In Proceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 390–399. Society for Industrial and Applied
Mathematics (SIAM), January 2002.

[3] J. Barbay and C. Kenyon. Alternation and redundancy analysis of the
intersection problem.ACM Trans. Algorithms, 4(1):1–18, 2008.

[4] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Ro-
bie, and J. Simon. XML Path language (XPath) 2.0. Technical report,
W3C Working Draft, November 2003. http://www.w3.org/TR/xpath20/.

[5] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal
XML pattern matching. InProceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 310–321. ACM
Press, 2002.

[6] E. Chiniforooshan, A. Farzan, and M. Mirzazadeh. Worst case optimal
union-intersection expression evaluation. In L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi, and M. Yung, editors,ICALP, volume 3580
of Lecture Notes in Computer Science (LNCS), pages 179–190. Springer,
2005.



[7] J. Clark and S. DeRose. XML Path language (XPath). Technical report,
W3C Recommendation, November 1999. http://www.w3.org/TR/xpath/.

[8] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptiveset
intersections, unions, and differences. InProceedings of the 11th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 743–752, 2000.

[9] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with
level-ancestor queries. InProceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1–10, 2004.

[10] T. Grust. Accelerating xpath location steps. InProceedings of the 2002
ACM SIGMOD international conference on Management of data, pages
109–120. ACM Press, 2002.

[11] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of
the 30th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989.

[12] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. InProceedings of the 14th International Work-
shop on Algorithms and Data Structures (WADS), volume 1671 of
Lecture Notes in Computer Science (LNCS). Springer-Verlag, 2007.

[13] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. InProceedings of
the 13th Annual ACM-SIAM Symposium on Discrete algorithms, pages
233–242, 2002.

[14] K. Sadakane and R. Grossi. Squeezing succinct data structures into en-
tropy bounds. InProceedings of the 17th annual ACM-SIAM symposium
on Discrete algorithm, pages 1230–1239, 2006.

[15] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and
J. F. Naughton. Relational databases for querying XML documents:
Limitations and opportunities. InThe VLDB Journal, pages 302–314,
1999.


