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Abstrat. In the ontext of queries to indexed searh engines suh as Google, Barbay and Kenyon [6℄
introdued and solved threshold set queries, answered by the set of referenes assoiated with at least
t keywords out of the k given as input, for some onstant parameter t. We sligthly generalize those
results to the easy ase where weights are assoiated to the keywords of the query, and to the more
di�ult ase where weights are assoiated to the pairs of the relation between keywords and referenes.
In the ontext of searh queries on indexed �le systems, Barbay et al. [5℄ introdued and solved path-
subset queries, answered by the minimum set of subtrees whih rooted path math all k keywords given
as input. We ombine both approahes to de�ne and solve weighted threshold path-subset queries,
answered by the minimum set of subtrees whih rooted path math at least t keywords out of the k

given as input, through the de�nition of a redution to threshold queries.
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1 Introdution

Consider the task of a searh engine answering onjuntive queries: given a set of keywords, it

must return a list of referenes to the objets relevant to all those keywords. These objets an be

web-pages as in the ase of a searh engine suh as Google or Yahoo!, douments as in a �le system,

or any other kind of data searhed by keywords. A searh engine typially uses a preomputed index,

representing a binary relation between the set of n objets and the set of σ admissible keywords, or a

labeled tree indexing a �le system. Conjuntive queries are shema-free [12, 16℄: they an be written

without making any assumption about the struture of the doument (e.g. its shema in XML [18℄

douments). This is important in appliations where many douments with many di�erent shemes

must be searhed [1℄.

Adaptive algorithms take advantage of �easy� instanes, i.e. their run-time depends on some

measure of the di�ulty of the instane. Demaine et al. [8℄ onsidered some appliations to queries

on postings lists and studied adaptive algorithms for the union, intersetion and di�erene of sets

represented by sorted arrays.

We onsider weighted queries on both weighted binary relations and weighted labeled trees,

based on the de�nition of a sore funtion on the objets of a binary relation or on the nodes of a

tree. We propose adaptive algorithms for two types of weighted queries: on weighted binary relations

and on weighted labeled trees with path non-inreasing weights. For eah result, we measure the

omplexity by the number of searh and priority queue operations performed.



The rest of the artile is organized as follows. We desribe the results that we either use, gener-

alize, or improve upon in Setion 2, in two ategories: data strutures (Setion 2.1) and algorithms

(Setion 2.2). We desribe our results on weighted binary relations in Setion 3, and our results on

trees with weighted labels in Setion 4. Setion 5 gives a disussion of the results.

2 Previous Work and Extensions

Various algorithms have been proposed to solve unweighted shema-free queries on binary relations,

labeled trees, and other data strutures. We review some examples of the data strutures onsidered,

and whih queries and algorithms our solutions extend.

2.1 Data Strutures

A binary relation between two ordered sets, suh as one assoiating labels with objets, an be

enoded as a set of sorted arrays alled postings lists. In this ase, the answer to a onjuntive

query is the intersetion of the subsets orresponding to those arrays. A binary searh �nds the

insertion rank 3 of a partiular element in a sorted array of nα elements in time O(lg nα), and a

straightforward variant an be used to searh the positions of a set of δ inreasing values in time

O(δ lg(nα/δ)) [6℄.
A binary relation an also be enoded as a set of ompressed bit-vetors [13, 15℄, supporting

the searh of the insertion rank of a partiular element in onstant time, at the prie of spae; or

using less spae at the ost of time [5℄. Similarly, a priority queue an be implemented using various

data strutures, for instanes based on sorted arrays or suint enodings in the word-RAM model.

While a trivial pointer-based tree struture with k elements will result in O(lg k) omparisons per

insertion or deletion in the worst-ase, the more advaned struture desribed by Andersson and

Thorup [2℄ has only O((lg lg k)2) per insertion or deletion amortized.

Considering the variety of data strutures that an be used to implement binary relations and

priority queues, eah of them with a di�erent trade-o� between the spae used and the time required

to searh in it, we express the omplexity of our algorithms in the number of searh and priority

queue operations performed, so that the omplexity of the algorithm an be inferred for eah data

struture.

The same holds for labeled trees, suh as XML douments or an index of a �le system, as

their enoding an be redued to the enoding of the tree struture and of the binary relation

assoiating the nodes in preorder to one or more label. Many e�ient enodings are known for

ordinal trees [10, 11, 14℄, and any enoding an be used to implement the binary relation and support

the searh for the �rst anestor or the next desendant of a node x mathing some label α [5℄.

2.2 Queries and Algorithms

Conjuntive queries are well known. Indeed, most searh engines implement them. Given a list of

labels (e.g. keywords), the answer onsists of all the objets (e.g. webpage referenes) whih are

assoiated with all of the labels. Given an index suh as desribed in the setion above, solving a

onjuntive query omposed of k labels implies omputing the intersetion of k rows in a binary

relation, whih is a well studied problem [3, 4, 8, 9℄

As an empty intersetion an be an uninformative answer to a onjuntive query, we should

onsider other approahes. Researhers in information retrieval suggest a number of ways to deal

3 The insertion rank of an element x in a set X is the rank (the linear order) of x in the set X ∪ {x}.
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with this problem. For example, one an relax both queries and doument index in a number of

di�erent ways that are summarized by Bordogna and Pasi [7℄. Barbay and Kenyon [6℄ proposed the

adaptive algorithm to answer the query where for a given parameter t the answer onsists of the

referenes mathing at least t of the k labels omposing the query. Given an index suh as desribed

in the setion above, solving this new type of query implies omputing the threshold set of k rows

in a binary relation, the set of objets assoiated with at least t labels among the k spei�ed.

We extend further this type of query to weighted threshold queries, by onsidering weighted

queries Q : [σ] → {0, . . . , µ
Q
}, where σ is the number of admissible keywords, and weighted binary

relations R : [σ]× [n] → {0, . . . , µ
R
} 4. The sore of an objet x relative to a query Q on a relation R

is then de�ned as the linear ombination of those weights, i.e. score(R,Q, x) =
∑

α∈[σ] Q(α)R(α, x),
that orresponds to the notion of the Retrieval Status Value (or RSV) desribed by Bordogna and

Pasi [7℄. The answer to a query with parameter t is the set of objets with sore at least t: this
de�nition mathes the original one from Barbay and Kenyon when eah weight is either null or

unitary (the unweighted ase).

On labeled trees, one possible adaptation of the idea of onjuntive query is the path-subset

query [5℄. Given a set of k labels, the answer to suh a query onsists of the set of nodes whose

path to the root mathes all the labels and that do not have any anestors with suh a property.

We extend this type of queries further to weighted threshold path-subset queries, by onsidering

weighted queries and weighted binary relations between labels and nodes in a tree (see Setion 4

for the formal de�nition).

3 Queries on Binary Relations

We propose an adaptive algorithm to answer weighted threshold queries on weighted binary

relations. It generalizes the original algorithm proposed for threshold queries on binary relations in

the unweighted ase [6℄, and its analysis is based on similar onepts, formalized and extended to

the weighted ase.

Any algorithm answering weighted threshold queries has to hek the orretness of its result, by

ertifying that eah objet in the answer set has sore at least the threshold. Rather than onsidering

eah objet separately (whih would require time linear in the total number of possible objets), an

algorithm must onsider whole bloks of onseutive objets at one in order to ahieve a sublinear

omplexity. We formalize this by the notion of partition-erti�ate of an instane: a partition (Ii)i∈[δ]

of the set [n] of all objets, suh that for any i ∈ [δ] either there is a set S of labels suh that no

objet of Ii is assoiated with a label in S, and the maximum potential sore of any of these objets

µ
R

∑
α/∈S Q(α) is less than the t; or Ii is a single objet {x} (whose sore an be larger or smaller than

the threshold). The presene of singletons whose elements are not in the result set, is unavoidable

in the weighted ase, where an objet an, for instane, be assoiated with all possible labels and

still not sore enough to be in the result set.

There are several ways to de�ne the di�ulty of an intersetion instane, suh as the minimal

enoding size of a erti�ate [8℄, or the minimal number of omparisons [6℄. We de�ne the alternation

of a weighted threshold set instane as the size δ of the smallest possible partition-erti�ate of

the instane. The alternation is related to the non-deterministi omplexity of the instane, as it

orresponds to the omplexity of a non-deterministi algorithm whih would produe the shortest

4 By [m] we denote {1, . . . , m} for any integer number m.
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partition-erti�ate of the instane. In the unweighted ase (where all weights are unitary), if no

objet math the query then the alternation is exatly the non-deterministi omplexity of the

instane, i.e. the omplexity of the best non-deterministi algorithm heking the answer to the

query.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Musi → 1 8 10 12 15 17 → 1 . . . . . . 1 . 1 . 1 . . 1 . 1 .

Jazz → 2 4 6 9 11 13 → . 1 . 1 . 1 . . 1 . 1 . 1 . . . . .

Rok → 3 5 7 14 16 18 → . . 1 . 1 . 1 . . . . . . 1 . 1 . 1

Fig. 1. An example of how a onjuntive query omposed of three keywords orresponds to the intersetion
of the three orresponding sets. The alternation of the instane is δ = 4, the number of intervals of a
partition erti�ate where eah interval has an empty intersetion with at least one of the sets. Barbay
and Kenyon's algorithm performs 7≤δk=12 searhes (for the numbers 1, 2, 3, 8, 9, 14, 15).

Barbay and Kenyon [6℄ proved that any randomized algorithm performs Ω(δk) searhes in the

worst ase over instanes of di�ulty δ on k labels, and proposed an optimal deterministi algorithm

for the unweighted ase on sorted arrays. We analyze the omplexity of the algorithms in terms of

searh and priority queue operations, where a priority queue operation is either an insertion or a

deletion from a priority queue, and where eah searh operation is a searh for the partiular objet

in a data struture representing an ordered list of objets. We propose an optimal algorithm for the

weighted ase with any data struture supporting the searh for the insertion rank in an indexed

set:

Theorem 1. Consider a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
}, a weighted query

Q : [σ] → {0, . . . , µ
Q
}, and a non-negative integer t. There is an algorithm that omputes the

threshold set for Q on R with threshold-value of t in O(δk) searh and priority queue operations,

where δ is the alternation of the instane and k is the number of labels of positive weight in Q.

Algorithm 1 Algorithm answering Threshold Set queries

Set x to −∞, NO and YES to ∅ and MAYBE to the set of all labels of non-null weight;
Update(x, YES, NO, MAYBE, score_min, score_max) using Algorithm 2;
while x < ∞ do

Set α to the next label from MAYBE in round robin order, and dedut µ
R

Q(α) from score_max;
Searh for the insertion rank of x among the objets labeled α;
if x is assoiated with a label α then

Move α from MAYBE to YES;
Add Q(α)R(α, x) to score_min and score_max;
if t ≤ score_min then Output x;

else
Move α from MAYBE to NO;

end if
if t ≤ score_min or t > score_max then

Update(x, YES, NO, MAYBE, score_min, score_max);
end if

end while
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Proof (of Theorem 1). Consider the steps of Algorithm 1: given a query Q with k positive weights

and a threshold-value t, the algorithm omputes the set of objets soring at least t for a weighted

binary relation R assoiating objets with labels.

Our algorithm goes through a number of phases. At eah phase it onsiders one objet x, in
inreasing order, and bounds its sore by an interval [score_min, score_max]. The algorithm an

deide whether x belongs to the result set through this interval and without omputing the objet's

exat sore (t ≤ score_min ≤ score(x)). On the other hand, if for a given interval of onseutive

objets there is a set of labels not assoiated with any of them with large total weight, this interval

erti�es that none of those objets belongs to the result set (score(x) ≤ score_max < t). The key

issue of the algorithm is the hoie of the values of x and of the labels to onsider.

This hoie is desribed in Algorithm 2, whih is based on the deomposition of the set of labels

of positive weights in three disjoint sets: YES, MAYBE and NO:

� YES orresponds to the labels already known to be assoiated with the urrent value of x. It an
be implemented as a simple set, for instane in an array.

� MAYBE orresponds to the labels whih ould be assoiated with the urrent value of x. It is

implemented as a FIFO queue so that eah label in it is onsidered equally often.

� NO orresponds to the labels whih are known not to be assoiated with the urrent value of x.
It is implemented as a priority queue of at most k elements, and the labels α it ontains are

ordered by the value of the �rst objet larger than x assoiated with label α.

The values of the bounds score_min and score_max on the potential sore of x are diret

onsequenes of those de�nitions: score_min depends on the weights of the labels in YES, i.e.

score_min =
∑

α∈YES Q(α)R(α, x); and score_max adds the maximum potential weights of the

labels in MAYBE to score_min, i.e. score_max = score_min +
∑

α∈MAYBE Q(α)µ
R
.

To hoose a new value for x, the algorithm removes labels from the set MAYBE till it reahes a

ritial weight, where removing any other label would make it impossible for an objet mathing

only the labels of MAYBE to sore above the threshold. Then, the smallest objet potentially in the

result set orresponds to the �rst label of the priority queue implementing set NO.

Consider a phase of the exeution where the algorithm is proessing an interval of the partition-

erti�ate onsisting of only one objet x. Algorithm 1 performs at most k iterations of the main

loop to deide whether x has enough sore or not without updating x (through Algorithm 2). One

the deision about x is made, the algorithm updates x and moves to the next phase. Updating of

x takes not more than k loop iterations of Algorithm 2. Thus during eah phase, the algorithm

performs at most O(k) searh and priority queue operations.

Consider a phase orresponding to the interval of the partition-erti�ate that does not have any

objets with enough sore and a subset S of labels that are not assoiated with any of the objets

in this interval. Algorithm 1 may update x more than one during the same phase. We prove the

upper bound on the number of operations through onsidering the way the algorithm moves labels

from one set to another.

The only way Algorithm 1 moves labels is from set MAYBE to either set YES or set NO. Algorithm 2,

on the other hand, move labels from YES to MAYBE, from MAYBE to NO, and from NO to YES in this

order. As it annot move labels that are in S to YES, the algorithm has the only possible loop

MAYBE −→ NO −→ YES −→ MAYBE for these labels.

However, the algorithm does not move any labels from S that it already moved to NO during

the proessing of the same interval, beause the label's suessor is out of the urrent interval and

annot be proessed in the urrent phase. While the algorithm retrieves labels from set MAYBE in
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round-robin order, it annot retrieve any label from set MAYBE for the seond time until all the labels

from subset S appear in set NO, whih e�etively means that the next element x will be outside of

the interval and the algorithm proeeds to the new phase. While it takes a onstant time for the

algorithm to move eah label from set MAYBE bak to set MAYBE, it needs O(k) searh and priority

queue operations to omplete this phase.

As the algorithm spends O(k) to omplete any phase, and any instane has δ intervals that

orrespond to δ phases, the total omplexity of the algorithm is O(δk). ⊓⊔

Algorithm 2 Update(x, YES, NO, MAYBE, score_min, score_max)

Add all the labels from YES to the set MAYBE and set score_max to
P

α∈MAYBE
Q(α)µ

R
;

Choose a label α in round-robin order from MAYBE;
while score_max− Q(α)µ

R
≥ t do

Dedut Q(α)µ
R
from score_max, and move α from MAYBE to NO;

Choose a label α in round-robin order from MAYBE;
end while
Find the subset S ⊂ NO of labels α suh that the suessor of x among the objets labeled α is minimal;
Move all the labels of S from NO to YES, and set score_min to

P

α∈YES
Q(α)R(α, x);

Update x to its suessor among the objets labeled α, for any label in YES;

Note that k is the number of labels with a positive weight (i.e. non-null). If the binary relation is

implemented by postings lists, and the priority queue is implemented using a heap, the omplexity

of the algorithm is O(δk lg(n/(δk))+δk lg k), where n is the sum of the sizes of all postings lists and

k is the maximum size of the priority queue. If the binary relation is implemented using Barbay et

al.'s [5℄ suint enoding and the priority queue is implemented using Andersson and Thorup's [2℄

struture, the omplexity of the algorithm is O(δk lg lg σ + δk(lg lg k)2) in the RAM model with

word size Θ(lg max{σ, n}).

4 Queries on Labeled Trees

The main idea of path-subset queries [5℄ is that the e�et of labels assoiated with nodes �propa-

gates� to the desendants of nodes. We extend this onept through the de�nition of a sore funtion

on the nodes of the tree that depends on the labels assoiated with a node and its anestors, and

on the weight of these assoiations.

Formally, given a query Q on a tree T labeled through the relation R, the path-sore of a node

x is de�ned as the sum of maximum values of Q(α)R(α, y) for eah node y whih is x or one of its

anestors, over all labels α ∈ [σ]. Eah label is ounted only one, i.e. a label α ontributes only

maxy R(α, y) to node x, where y is x or one of its anestor. This de�nes the path-sore of x as

path_score(T, R, Q, x) =
∑

α∈[σ]

Q(α) max
y∈ancestors(x)∪{x}

R(α, y).

Combining this sore funtion on nodes with the onept of weighted threshold set queries in

the ontext of weighted labeled trees brings the onept of weighted threshold path-subset queries,
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home
3

Musi
2

Classial
1

· · ·

Pop Jazz
1 1

· · ·

Pop Rok
1 1

· · ·

Video
2

Rok Conerts
1 1

· · ·

Jazz
1

· · ·

Previews
1

· · ·

Fig. 2. An example of a simple �le system. Eah node represents a folder and ontains the words assoiated with it,
along with the weight of these assoiations.

answered for a given parameter t by the set of nodes of path-sore at least t that do not have any

anestor mathing this property.

We propose an algorithm to solve these queries in the ase where the labels are assoiated

with the nodes on the same root-to-leaf path with non-inreasing weights, i.e. there is no suh a

node x that has a label α assoiated with it with some weight R(x, α) and that has a desendant x′

assoiated with the same label with larger weight R(x′, α) > R(x, α). This non-inreasing restrition
does not restrit instanes where the weights of the labels of the tree are all null or unitary: in both

ases trees are non-inreasing by de�nition.

This restrition makes the ontribution of a label α to the path-sore of a node x depend only

on the weight of the losest to the root anestor of the node x assoiated with the label α, instead
of depending on the arbitrary one with the large weight of its assoiation with the label α. To solve

weighted threshold path-subset queries in the general ase, an algorithm would have to ompute

maxy∈ancestors(x)∪{x} R(α, y) regularly, whih makes it more omplex.

We desribe an adaptive analysis of the omplexity of our algorithm by using a measure of

di�ulty inspired by the partition-erti�ates and alternation, as de�ned for queries on binary

relations. As before, any algorithm answering a weighted threshold path-subset query has to hek

the orretness of its result. For this query-type, it orresponds to produing a erti�ate that eah

node in the answer set has a path-sore of at least the threshold, and that eah node that is not

in the answer set either has an anestor that is in this set or has a path-sore smaller than the

threshold.

Any order of the nodes an be used to easily de�ne sets of nodes that annot belong to the

answer set. As threshold path-subset queries are based solely on the anestor-desendant relation

between nodes, we propose an analysis based on the preorder traversal of the tree, in whih all the

desendants of a node are onseutive. As Figure 2 represents an example of the �le system with

nodes orresponding to �les and folders and labels orresponding to their names, Figure 3 represents

the binary enoding of it.

We generalize the onept of the partition-erti�ate, introdued on binary relations, to multi-

labeled trees as a partition (Ii)i∈[δ] of the set [n] of all nodes, suh that for any i ∈ [δ] either
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1 2 3 4 5 6 7 8 9
Classial → . . 1 . . . . . .

Conerts → . . . . . . 1 . .

Home → 3 . . . . . . . .

Jazz → . . . 1 . . . 1 .

Musi → . 2 . . . . . . .

Pop → . . . 1 1 . . . .

Previews → . . . . . . . . 1
Rok → . . . . 1 . 1 . .

Video → . 2 . . . . . . .

1

2

3

· · ·

4

· · ·

5

· · ·

6

7

· · ·

8

· · ·

9

· · ·

Fig. 3. The enoding of the example of Figure 2 using a weighted binary relation. The null weights are noted by dots
for the sake of readability. Eah number in the shema of the tree is the preorder rank of the orresponding node.

(i) Ii orresponds exatly to a subtree with a root x, suh that the path-sore of x is at least the

threshold and eah anestor of x has a path-sore lower than the threshold; or

(ii) there is a set S of labels suh that no label from S is assoiated with any node in Ii or any of

its anestors, and suh that the sum of the maximum possible weights of the remaining labels

is insu�ient to reah the threshold-value:
∑

α/∈S Q(α)µ
R

< t; or
(iii) all the elements in Ii have path-subset smaller than threshold but are not in (ii), i.e. they do

not have a subset S of labels with the properties desribed.

In the �rst ase, Ii orresponds to a subtree suh that the path-sore of the root x is at least the

threshold, so that x is in the result set and all its desendant an be ignored. In the seond ase,

Ii orresponds to a blok of onseutive nodes in preorder that do not math enough labels to have

su�ient weight, even assuming that all other labels ontribute maximum possible value µ
R
to their

path-sore. In the third ase, Ii onsists of node(s) whose path-sore is less than the threshold as

in the seond ase, but that do not have a subset of labels mentioned above, i.e. they would have

gotten path-sore of threshold or more, if all the labels assoiated with them or their root path had

ontributed µ
R
eah.

As for binary relations, we de�ne the alternation as the size δ of the smallest possible partition-

erti�ate of the instane and use it to analyze the omplexity of our algorithm.

If we onsider the weighted tree at Figure 3, the weighted query of Figure 4 with a threshold-

value t = 5, and µ
R

= 3, we get the minimal partition-erti�ate shown at Figure 5. This partition-

erti�ate ontains all three possible types of intervals. The interval {2, . . . , 5} is the whole subtree

with the root {2} that has enough path-sore: path_score(2) = 3 × 1 + 2 × 2 = 7 > 5. The
intervals {1} and {6, . . . , 8} are intervals that have a subset of labels S = {Musi,Pop,Previews}
not assoiated with any node and that is large enough to guarantee that no nodes an have path-sore

of at least t: µ
R

∑
α/∈S Q(α) = 3 × 1 = 3 < 5 = t. And the interval {9} has a set S ∈ {Musi,Pop}

that is not large enough, but whose single node does not have enough weight either.

Barbay et al. [5℄ proved that any randomized algorithm performs Ω(δk) searh operations in the

worst ase over (unweighted) path subset queries of k labels and of alternation δ. This is a partiular
ase of weighted threshold path-subset queries, where µ

R
= µ

Q
= 1 and where the threshold-value

t is the number k of labels α of non-null weight Q(α). We propose an optimal algorithm for the

ases with arbitrary values for µ
R
, µ

Q
and t, restrited only in the weights assigned to labels in the

multi-labeled tree:

Theorem 2. Consider a tree T , a weighted binary relation R : [σ] × [n] → {0, . . . , µ
R
} assigning

path non-inreasing weighted labels to the nodes of T , a weighted query Q : [σ] → {0, . . . , µ
Q
}, and
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Keywords: (α ∈ Q) Home Musi Pop Previews
Weights: (Q(α)) 1 2 1 1

Fig. 4. An example of the weighted onjuntive
query of 4 words.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Home → 3 . . . . . . . . → 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Musi → . 2 . . . . . . . → . 2 ∗ ∗ ∗ . . . .

Pop → . . . 1 1 . . . . → . . . 1 1 . . . .

Previews → . . . . . . . . 1 → . . . . . . . . 1

Fig. 5. An example of the minimal partition-
erti�ate for the weighted tree and weighted query
desribed above and the t = 5. This partition-
erti�ate has all three possible types of intervals.
The alternation of the instane is δ = 4, the number
of intervals of a partition-erti�ate.

a non-negative integer t. There is an algorithm that omputes the threshold set for Q on T and R
with threshold-value of t in O(δk) searh and priority queue operations, where δ is the alternation

of the instane and k is the number of labels of positive weight in Q.

Proof (of Theorem 2). Consider the steps of Algorithm 3: given a query Q with k positive weights

and a threshold-value t, the algorithm omputes the set of the highest nodes with a path-sore of

at least t in a tree T labeled by a weighted binary relation R.

The algorithm proeeds along the nodes of the tree in inreasing order (aording to the preorder

de�ned on the tree). At eah phase it onsiders a node x and omputes the minimum possible path-

sore score_min and the maximum possible path-sore score_max for it. If score_min ≥ t, it
is in the threshold subset path. The algorithm puts it to the output and starts the next phase by

proeeding to the �rst suessor of x that is not one of its desendants, i.e. the algorithm skips

the whole subtree rooted with the node x. If t > score_max the node x is guaranteed to have the

path-sore smaller than the threshold, thus the algorithm proeeds to the next node in the tree that

might be in the threshold subset path �nishing the urrent phase as well.

The deision about the urrent node is made based on the division of the set of labels of positive

weights into three disjoint sets: YES, MAYBE and NO.

� YES onsists of the labels already known to be assoiated with the urrent node x or one of its

anestors.

� MAYBE onsists of the labels that we do not know yet whether they are assoiated with the

urrent node x or one of its desendant or not. This set is implemented as a queue so that eah

label in it is retrieved equally often.

� NO onsists of the labels that are known not to be assoiated with the urrent node x nor any

of its anestors. This set is implemented by a priority queue with at most k elements, and the

labels in it are ordered by the preorder number of the �rst α-suessor xα of the urrent node x.

The values of score_min and score_max here depend not only on the labels assigned

to x, but also on the labels assigned to its anestors, and are omputed as score_min =∑
α∈YES Q(α) maxy∈ancestors(x)∪{x} R(α, y) and score_max = score_min +

∑
α∈MAYBE Q(α)µ

R
.

After making a deision about the node x, Algorithm 3 updates the node (through Algorithm 4)

and �nds the next node x to advane to. It performs the searh for the next node x in the similar

to the ase of binary relations way, exept that now it should move some labels from set NO to set

MAYBE as well, beause the node x might have been already inreased by Algorithm 3, in the ase of

9



the phase where the algorithm is proessing an interval onsisted of the whole subtree with a root

node in the answer set.

The omplexity analysis of the algorithm is very similar to the one provided in Theorem 1. We

onsider the algorithm at eah phase and how it proesses eah type of intervals in the minimal

partition-erti�ate, and prove that for eah phase the algorithm does at most O(k) searh and

priority queue operations. While the number of intervals is δ, we ome up with the total omplexity

of O(δk). ⊓⊔

Algorithm 3 Algorithm answering Threshold Path-Subset queries

Set x to −∞, NO and YES to ∅ and MAYBE to the set of all labels of non-null weight;
Update(x, YES, NO, MAYBE, score_min, score_max) using Algorithm 4;
while x < ∞ do

Set α to the next label from MAYBE in round robin order, and dedut µ
R

Q(α) from score_max;
if x or one of its anestors is labeled α then

Move α from MAYBE to YES;
Find y, the losest to the root anestor of x with the label α;
Add Q(α)R(α, y) to score_min and score_max;
if t ≤ score_min then

Output x;
Update x to its �rst preorder suessor whih is not one of its desendants;

end if
else

Move α from MAYBE to NO;
end if
if t ≤ score_min or t > score_max then

Update(x, YES, NO, MAYBE, score_min, score_max);
end if

end while

Algorithm 4 Update(x, YES, NO, MAYBE, score_min, score_max)
Move all the labels from YES to the set MAYBE;
Move eah label α from NO that has α-suessor less than urrent node x to the set MAYBE;
Set score_max to

P

α∈MAYBE
Q(α)µ

R
;

Choose a label α in round-robin order from MAYBE;
while score_max− Q(α)µ

R
≥ t do

Dedut Q(α)µ
R
from score_max, and move α from MAYBE to NO;

Choose a label α in round-robin order from MAYBE;
end while
Find the subset S ⊂ NO of labels α suh that the preorder suessor of x among the nodes labeled α is minimal;
Move all the labels of S from NO to YES, and set score_min to

P

α∈YES
Q(α)maxy∈ancestors(x)∪{x} R(α, y)

Update x to its preorder suessor among the nodes labeled α, for any label of YES;

5 Disussion

In the ontext of the searh in binary relations, suh as the one assoiating labels with objets (e.g.

keywords with webpages), we identi�ed the intuition behind previous work on threshold set queries
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in binary relations [6℄ and applied it in muh more general ontexts: where weights are assoiated

with the terms of the query and with the relation between objets and labels.

In the ontext of the searh in a multi-labeled tree of unknown shema, suh as one representing

the index of a �le system, we applied the threshold set onept to path-subset queries [5℄. In both

ontexts we de�ne queries whih are more informative than the queries previously onsidered, while

being not substantially more expensive to answer.

The onept of weighted threshold set queries an be applied to some other type of shema-free

queries on multi-labeled trees, among whih we desribe three in partiular:

� additive path-subset queries, whih are similar to path-subset queries but with a di�erent sore

funtion, where for eah node x the ontribution of its anestors labeled α adds up to form its

sore;

� path-subsequene queries, whih are similar to path-subset queries but with a required order

on the labels of the query (obviously, the path-sore an then be de�ned in an additive or

non-additive way);

� labeled lowest ommon anestor, where the desendants of a node ontribute to its sore, rather

than its anestors (the onept was already de�ned without threshold nor weights [12, 16, 17℄).

As threshold set queries generalize onjuntive queries, for whih many algorithms have been

studied [3, 4, 8, 9℄, many other algorithms should be onsidered, some of whih ould take advantage

of properties of the instanes other than those desribed by the alternation measure of di�ulty.

Although the adaptive analysis is �ner than a typial worst ase analysis, its value for a par-

tiular appliation depends of the appropriateness of the orresponding di�ulty measure: some

experimentations will be neessary. It is reasonably easy to generate a weighted index, for instane

by assigning di�erent weights to the labels assoiated with the links to a webpage, in the title or in a

simple paragraph. It will be harder to generate realisti user queries for the threshold set: the users

usually use onjuntive queries and adapt their queries to the type of results returned. In partiular,

they give a small number of keywords to avoid reeiving a null answer. One solution is to onsider

onjuntive queries extended with some labels of small weight, orresponding to the pro�le of the

user: suh queries would help to adjust the answer to the initial onjuntive query based aording

to the user preferenes.
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