
Adaptive Planar Convex Hull Algorithmfor a Set of Convex HullsJérémy Barbay and Eri Y. ChenCheriton Shool of Computer SieneUniversity of Waterloo, Canada.{jbarbay,y28hen}�uwaterloo.aTehnial Report CS-2007-20Abstrat. An adaptive algorithm is one whih performane an be expressed more preisely thanas a mere funtion of the size of the input: output-sensitive algorithms are a speial ase of adaptivealgorithms. We onsider the omputation of the onvex hull of a set of onvex hulls, for instane in thease where the set of points has been omposed from simpler objets from a library, for eah of whihthe onvex hull has been preomputed. We show that in this ontext an adaptive algorithm performsbetter if it takes advantage of other features than the size of the output.Keywords: Computational geometry; Convex hulls; Adaptive Algorithm1 IntrodutionAdaptive algorithms are algorithms that take advantage of �easy� instanes of the problem at hand,i.e. their omplexity depends on some measure of di�ulty, for example a funtion of the size of theinstane and of other parameters.For example, sorting an array A of numbers is a basi problem, where some instanes are easierthan others to sort (e.g. a sorted array, whih an be heked/sorted in linear time). Consideringthe disorder in an array as a measure of the di�ulty of sorting this array [3, 11℄, one an yield a�ner analysis of the omplexity of the problem. There are many ways to measure this disorder: onean onsider the number of exhanges required to sort an array; the number of adjaent exhangesrequired; the number of pairs (i, j) in the wrong order, but there are many others [14℄. For eahdisorder measure, the logarithm of the number of instanes with a �xed size and a �xed number ofdisorder pairs forms a natural lower bound to the worst ase omplexity of any sorting algorithm inthe omparison model, as a orret algorithm must at least be able to distinguish all instanes. As aonsequene, there ould be as many optimal algorithms as the di�ulty measures. Indeed, one anredue di�ulty measures between themselves, whih yields a hierarhy of disorder measures [9℄.A partiular ase of this approah has been applied to some fundamental problems inomputational geometry, suh as onvex hull problems, intersetion-reporting of line segments [7℄.where algorithms said to be �output-sensitive� are analyzed under the assumption that the sizeof the output measures the di�ulty of eah instane. For example, Kirkpatrik and Seidel [10℄proposed an algorithm for omputing the onvex hull that has running time O(n log h), where n isthe number of input verties, and h is the number of output verties in the resulting onvex hull.It was later simpli�ed by Chan [4℄. As previously known algorithms guarantee only a running timeof O(n log n) in the worst ase, learly, the adaptive algorithm performs better when the size of theonvex hull size is small (e.g. a triangle).



Can we �nd an even �ner measurement and outperform output-sensitive algorithms? In thispaper, we fous on improving the omputation of the onvex hull in the ase where the set of pointsis omposed of a few simpler objets (i.e. k < n) for whih the onvex hull has been preomputed(e.g. an appliation ombining piees from a library of mehanial piees to obtain more omplexobjets). Let I = {H1, . . . ,Hk} be a set of k onvex hulls in the Eulidian plane, respetivelyomposed of n1, . . . , nk points eah, all distint and non-ollinear. We ompute the minimal onvexhull ontaining every point of I.We desribe adaptive algorithms whih take optimally advantage of the relative positions of theobjets omposing I, output the shortest possible desription of the onvex hull from the input, andwrite the result in a write-only stream, using working storage of O(k) words, independent of theinput size n.The asymptoti performane of our adaptive algorithms is never worse than the performaneof traditional or output-sensitive algorithms: their performane is O(n log h) in the worst ase overinstanes of input size n and output size h, and hene O(n log n) in the worst ase over instanesof input size n. In partiular, our adaptive algorithms perform better than any output-sensitivealgorithm on instanes of large output size whih solution an be shortly desribed and erti�ed.In this paper, we desribe an algorithm, the adaptive analysis of its omplexity and the mathingadaptive omputational lower bound, all in the planar omparison model where only point-to-pointand point-to-line omparisons are allowed. Our algorithm (Setion 2) omputes the onvex hull ofan instane I formed of k onvex upper hulls. We here only desribe the algorithm to omputethe upper hull of a set of upper hulls. The lower hull an be omputed symmetrially. To omputethe onvex hull, we an ompute the upper hull and lower hull separately, and then merge themtogether. The analysis of this algorithm introdues the notion of the erti�ate of an instane, whihis essential in both the proof of orretness and the omplexity analysis of our algorithms: thisnotion is similar in essene to the one used of the ombination of sorted sets in one dimension [1, 8℄.The adaptive omputational lower bound (Setion 3) shows that the worst ase omplexity of ouralgorithms over instanes of �xed input size n, k and di�ulty δ is optimal.2 Convex Hull Problem2.1 Notion of Certi�ateBefore we desribe our algorithms, we introdue the onept of the erti�ate for an instane.Given two upper hulls, in some irumstane, the merged hull is easier to ompute. For example,two horizontally disjoint upper hulls an be merged in O(log(n1)+ log(n2)) time [10℄, where n1 and
n2 are the size of the two upper hulls respetively. There are even easier ases: if all the points ofthe �rst upper hull are ontained in the trunated one formed by the �rst and last edges of theseond upper hull, then no point from the �rst upper hull will ontribute to the onvex union. Insuh a ase, the upper hull an be omputed in onstant time.By one assertion, we verify whether a point is above a line. Given two upper hulls, the mergedhull an be erti�ed by a set of suh assertions. We all one set of suh assertions a erti�ate.De�nition 1. Given k sorted upper hulls H1, . . . ,Hk represented by arrays of points A1, . . . , Akof respetive sizes n1, . . . , nk and their onvex hull H, expressed as several intervals on the arrays
A1, . . . , Ak. A erti�ate of H is a set of assertions of the type �Ai[p] is above1 the line (Aj [q], Aj [k])�,1 In the lokwise orientation. 2



suh that the onvex hull of any instane satisfying those assertions is given by the desription of H.The size of a erti�ate is the number of assertions ontained in it.we also note that suh a erti�ate not only justify the presene of eah point in the output, butalso justify the exlusion of the other points.It not hard to see that all those easier ases showed at the beginning of this setion have aerti�ate with small size, whih indiates the size of the erti�ate is a good measurement of thedi�ulty of an instane. Alternatively, the so-alled onvolution an also be used as a measure ofthe di�ulty.De�nition 2. A sliing of the instane is a partition (Ij)j∈[δ] of the domain of the x-oordinatessuh that, for eah interval Ij of the partition, the part of the upper hull interseting Ij an beerti�ed in k − 1 omparisons. The minimal size of a sliing of the instane measures the di�ultyto ertify this instane: we all it the onvolution of the instane.2.2 Basi OperationsComputing the 2D onvex hulls is onsidered as a natural extension of sorting problems. To omputethe merged hull (/em onvex union) of upper hulls is at one similar and distint from omputingthe union and intersetion of sorted arrays [8℄:� Whereas when omputing the union of k sorted arrays the union of eah pair of arrays matter,when omputing the onvex union of sorted upper hulls the interleaving from the lowest upperhulls an be ignored.� Whereas when omputing the intersetion of k sorted upper hulls, only two arrays need to beonsidered if their intersetion is empty, all the upper hulls need to be onsidered at least oneto ompute their onvex union.The analogy enables us to adapt some known tehniques from 1D adaptive algorithms and alsoenlightens us to design some new basi operations for our new adaptive algorithms. We presentthem by inreasing order of importane.Eliminator Line The main similarity between the onvex union of upper hulls and the intersetionof sorted arrays is that in some ases a large setion of one of the k omponents of the instane(sorted arrays for the intersetion problem, sorted upper hulls here) an be eliminated by a simpleoperation.Observation 1 Given a line l and an upper hull U , if the point U [p] is below l and the slope of
U [p]U [p + 1] is smaller than l, then all points right to U [p] is below l; if the point U [p] is below land the slope of U [p − 1]U [p] is greater than l, then all points left to U [p] is below l.Doubling Searh Another similarity between algorithms omputing the union of sorted arraysand the various �wrapping� algorithms omputing the onvex union of upper hulls, is that they bothompute the result from �left to right�. In this ontext, it is not neessary to perform a binary searhfor the insertion rank of a value (resp. for the tangent of a point) every time on the whole array(resp. on the whole sorted upper hull) at eah searh: a doubling searh [2℄ algorithm permits toamortize the sum of eah searh over the whole struture:3



Lemma 1. There is a deterministi algorithm in the omparison model whih deides if there is anedge [cp, cp+1] in an ordered upper hull c1, . . . , cn whih intersets a line of (a, b), and �nds it if itexists, in O(log p) omparisons.Proof. This is simply a doubling searh [2℄ on the x-oordinate of the points of the upper hull,performed in 2 log(p) operations. ⊓⊔Lemma 2. The tangent (x, cp) of a point x with an ordered upper hull c1, . . . , cn an be found in
O(log p) omparisons.Proof. The tangent an be found using a doubling searh algorithm [2℄ on the angle between (x, ci)and (ci, ci+1) in 2 log(i) operations. ⊓⊔Using these results yields a minor improvement of the �wrapping� algorithm proposed by Chan [4℄to ompute the onvex union of upper hulls.Hull to hull tangents While the gift-wrapping algorithm an take advantage of various featuresof the instanes whih make them easier, it is still performing in super-linear time to the size of theupper hulls. In the simple ase of two side by side upper hulls, of respetive sizes n1 and n2, thereis a erti�ate of onstant size, and as it an be solved in O(log n1 + log n2 + h) time, where h isonly required to output the result: Kirpatrik and Seidel [10℄ showed that, if the n1 points of a �rstupper hull are on the left of the n2 points of a seond upper hull, then the onvex union of the twoupper hulls an be omputed in O(log(n1) + log(n2)) time. Their algorithm is based on the searhfor a tangent of the two upper hulls, i.e. a line whih touhes eah hull at a single point [13℄ (insteadof zero or two, as most lines do). A slight modi�ation of their algorithm makes it adaptive in theposition of the point of the tangent in the seond hull:Lemma 3. Given upper hulls A and B, eah represented in the lokwise order in an array, withrespetive sizes m and n, suh that all the points of A are at the left of all the points of B, thetangent (A[i], B[j]) from A to B an be omputed in time O(log i + log j).Proof. This is just an adaptive variant of the original algorithm from Kirpatrik and Seidel [10℄,performing a doubling searh [2℄ on both hulls instead of mere binary searhes. ⊓⊔2.3 Adaptive Convex Hull AlgorithmTheorem 2. There is a deterministi algorithm in the omparison model whih omputes the onvexunion for an instane of onvolution δ omposed of k sorted upper hulls of respetive sizes n1, . . . , nkin O(δ

∑
log(ni/δ)) omparisons, whih is also in O(δk log(n/δk)).Proof (sketh). Consider Algorithm 1: after identifying the �rst point a of the onvex hull A,it iteratively omputes the tangent of a with any other hull using Lemma 2, and omputes theintersetion of these tangents with A using Lemma 1. Eah of those tangents yields either an aron whih A does not interset the onerned hull, so that some points of this hull are erti�ed notto ontribute to the onvex hull; or a bridge from A to this hull, suh that some points from A areerti�ed not to ontribute to the onvex hull.We prove the orretness of the algorithm by indution. Consider one iteration of the outer loop.The following invariant is kept: After eah iteration, A is on the merged hull. In the base ase, a isthe �rst point on the merged hull, thus the invariant is kept.In the indution step, we have two possible ases:4



Algorithm 1 Convex Upper Hull algorithmIdentify the starting point a (from Hull A) of the onvex union;repeatfor eah other hull B doompute the tangent from a to B, touhing B at band the rightmost intersetion a′ of (a, b) with A;if the segment ab does not ut A (i.e. a′ is right of b) then// B does not ut A in the slide [a, a′]ignore further the points left of a′ in B;memorize (a, b)'s slope;else// B uts A exatly one in the slie [a, a′]ompute the bridge [c, d] between the points from a to a′ in A and the points right of b in B;memorize the slope of this bridge;ignore further the predeessors of d in B;end ifend forif the highest slope s orresponds to at least one bridge thenoutput and further ignore points of A left of d;swith (a,A) to (d, B);elseupdate a to the last point of A of higher slope than s(but don't ignore its predeessors);end ifuntil no point is left in any hull� The highest slope s orresponds to the bridge between A and B. At the end of the iteration, ais the �rst point of the urrent hull and on the merged hull. Therefore, the invariant is kept.� The highest slope s orresponds to the ar with the highest slope. In this ase, any other hullis below this ar. Sine a is the last point on A above this ar, a is on the merged hull. Theinvariant is kept. ⊓⊔3 Adaptive Computational Lower BoundIn the previous setion we proved that our algorithm performs better than a naive algorithm onmany instanes. To omplete this result, we prove that our algorithm takes optimally advantageof the easiness of the instanes as measured by our di�ulty measure. For that we show that norandomized algorithm an perform better than our deterministi algorithm, in the worst ase overinstanes of �xed size and di�ulty, asymptotially in both the size and the di�ulty of the instane.The main work is done in Lemma 4, whih de�nes a probability distribution whih is �bad� for anydeterministi algorithm. Theorem 3 merely translates the orresponding lower bound into a lowerbound on the worst ase performane of any randomized algorithm, through a diret appliation ofthe Yao priniple [15℄.Lemma 4. For any �xed value of k, n1, . . . , nk, δ, there is a probability distribution over instanesof onvolution δ omposed of k sorted upper hulls of respetive sizes (n1, . . . , nk) suh that any(deterministi or) randomized algorithm omputing the sorted onvex hull of these instanes performs
Ω(δ

∑
log(ni/δ)) omparisons on average. Also, under similar onditions exept that the totalnumber of points n of the instane is �xed (instead of the sizes (n1, . . . , nk) of eah objet omposing5



the instane), there is a probability distribution over instanes mathing the riteria suh that Aperforms Ω(δk log(n/δk)) omparisons on average.Proof (sketh). The proof proeeds in two steps: �rst we de�ne a distribution over �elementary�instanes of arbitrary size but small di�ulty, then we show how to ombine them to formdistribution over instanes of arbitrary size and di�ulty, by ombining several elementary instanes.In our ontext, an �elementary� instane is an instane of onvolution 1. We de�ne a distributionover elementary instanes omposed of k of respetive sizes (n1, . . . , nk) (resp. of total size n), suhthat any deterministi algorithm performs Ω(k) searhes on average, orresponding to an averageost of Ω(
∑k

i=2 log(ni)) omparisons.We show how to ombine δ elementary instanes omposed of k hulls of respetive sizes
n1/δ, . . . , nk/δ (resp. of total size n/δ) into a larger instane omposed of sorted upper hulls ofrespetive sizes (n1, . . . , nk) (resp. of total size n) and of onvolution δ, suh that any algorithmsolving this instane has to solve eah of the elementary instane omposing it. Applying thisombination to elementary instanes randomly drawn from the probability distribution desribedabove yields a distribution over instanes of desired size and onvolution, foring any deterministialgorithm to perform Ω(δ

∑
log(ni/δ)) omparisons (resp. Ω(δk log(n/δk)) omparisons) onaverage. ⊓⊔Theorem 3. For any �xed value of k, n1, . . . , nk, δ, and for any (deterministi or) randomizedalgorithm A omputing the sorted onvex hull of sorted upper hulls, there is an instane ofonvolution δ omposed of k sorted upper hulls of respetive sizes n1, . . . , nk suh that A performs

Ω(δ
∑

log(ni/δ)) omparisons on it. Also, under similar onditions exept that the total numberof points n of the instane is �xed (instead of the sizes (n1, . . . , nk) of eah objet omposingthe instane), there is an instane mathing the riteria suh that A performs Ω(δk log(n/δk))omparisons on it.Proof. Applying the minmax theorem [12℄ from game theory, the Yao priniple [15℄ states thatthe average omplexity of the best deterministi algorithm on the worst probability distribution ofinstanes is equal to the worst ase omplexity of the best randomized algorithm. Applying thispriniple to Lemma 4 diretly yields the two results. ⊓⊔4 ConlusionVery large set of points for whih a onvex hull is required will not appear �out of nowhere�:most likely, they will be formed of several objets from a library, for whih a onvex hull an bepreomputed. In this ontext, we have given an algorithm to ompute the onvex hull of a setof onvex hulls whih outputs a desription of the onvex hull in a write-only streams, use littleworking spae, and take advantage of instanes where the relative positions of the objets makesthe onvex hull easier to ompute. While those improvements do not hange the omplexity of thealgorithm in the worst ase over instanes of �xed input and output size, they hange the omplexityof many instanes whih are likely to happen in pratie, and whih we formally identify throughthe de�nition of the erti�ate of an instane, and of a measure of the di�ulty of the instane.Our tehniques an be applied to ompute the intersetion of onvex upper hulls [5℄ (and hene theintersetion of any onvex objet), the union of onvex upper hulls (and hene the ontour of theunion of any set of onvex objets), and the intermediate relaxations of those problems: given k6



onvex planar upper hulls and a parameter t ≤ k, what is the region overed by at least t onvexplanar upper hulls? Clearly this is the intersetion for t = k and the union for t = 1: this relaxationtruly generalizes its equivalent on sorted sets in one dimension [1℄.As the basi operations are learly identi�ed in eah algorithm, our results are easily generalizableto the transdihotomous omputational model as well: eah of the basi operation an be supportedin time O(log n/ log log n) using a preomputed index [6℄.The ideas presented in this paper also apply to other problems, suh as the di�erene of onvexobjets, or some more arti�ial relaxation between the union and the onvex hull, de�ned on themodel of our relaxation between the intersetion and the ontour of the union. The onept oferti�ate is easily generalized to higher dimensions, but whereas in the plane the hoie of the bestbridge between two hulls is well de�ned, this hoie is not well de�ned even in three dimensions.Hene, the generalisation of our approah to three dimensions (and above) is still an open problem.A �rst goal would be to perform an adaptive analysis of the two base ases: the onvex hull of twototally disjoint onvex polytopes, and of the erti�ation that one onvex polytope is totally inludedin another. Algorithms are known for both, but it is not lear how to analize them adaptively.At a more general level, we showed that in the same way as the output-sensitive analysis is�ner than the typial worst ase analysis over instanes of �xed size; an even �ner analysis an beperformed for some problems in omputational geometry, in order to yield further improvementsover algorithms suggested by the output-sensitive analysis.Aknowledgements: Many thanks to Alejandro López-Ortiz for suggesting this diretion ofresearh, and to Timothy Chan and Alejandro Salinger for pointing to previous works. This workwas supported by a disovery grant from NSERC.
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