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Abstract

The methods most heavily used by search engines to answer conjunctive queries on binary relations (such as one associating
keywords with web-pages) are based on computing the intersection of postings lists stored as sorted arrays and using variants of
binary search. We show that a succinct representation of the binary relation permits much better results, while using less space than
traditional methods. We apply our results not only to conjunctive queries on binary relations, but also to queries on semi-structured
documents such as XML documents or file-system indexes, using a variant of an adaptive algorithm used to solve conjunctive
queries on binary relations.
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1. Introduction

Consider the task of a search engine answering conjunctive queries: given a set of keywords, it must return a list
of references to the objects relevant to all those keywords. These objects can be web-pages as in the case of a web
search engine such as Google, or documents as in the case of a search engine in a file system, or any other kind of
data searched by keywords. Rather than scan the set of all objects, which is usually huge, a good search engine uses a
precomputed index to represent the binary relation between the set of n objects and the set of σ admissible keywords.

Usually such an index is coded as a set of sorted arrays that are called postings lists, so that the answer to conjunctive
queries is the intersection of the subsets corresponding to those arrays. This intersection can then be computed in time
linear in the sum of the sizes of the arrays, but several adaptive algorithms have been studied for easier cases in which
the result can be determined much more quickly. For example, if we are to intersect two sorted arrays whose values
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are interleaved, linear time is clearly required. On the other hand, if all elements of one array fall between two values
in the other, two comparisons suffice to demonstrate that the intersection is indeed empty. This admits the notion of
describing the runtime as compared to the shortest possible proof of the correct answer in each particular instance
rather than simply the worst case over all possible instances of the given size. Returning to our example, we note that
comparison based methods would take time Θ(lg n) to discover between which elements of the second array all the
elements of the first array fit. Our results are motivated by the notion of improving on this “logarithmic style” bound
for situations in which the basic objects come from a bounded range, e.g. identifiers referring to web-pages.

Our results are threefold:

• First, instead of encoding postings lists as sorted arrays, we develop a space efficient data structure that permits
faster searches. We give a representation (Theorem 3.1) for binary relations associating n objects with σ labels in t
pairs from [n]×[σ ],1 where n, σ and t are non-constant parameters. This representation uses t

(
lg σ+o(lg σ)

)
bits,2

and it generalizes the results from Golynski et al. [11] for strings on large alphabets. These results can be directly
applied to conjunctive queries (Theorem 4.1), to improve the time complexity of the algorithm from Barbay and
Kenyon [2], and thus to reduce the time required to answer a conjunctive query.
• Next, we give a representation of labeled trees (Theorem 3.3) that encodes the tree structure and the labels

separately. This representation uses n
(
lg σ + o(lg σ)

)
bits and supports structure-based navigation operators in

constant time, and label-based search operators in time O(lg lg σ), improving the space used by the solutions
from both Geary et al. [10] and Ferragina et al. [9] for labeled trees, at the cost of increasing the time in which
some operators are supported. These results can be immediately generalized to multi-labeled trees (such as XML
documents or file-system indexes), so that the total number of (node, label) pairs is t , yielding a representation
which uses t

(
lg σ + o(lg σ)

)
bits and supports the same operators in the same time (Corollary 3.5).

• Our final results are motivated by performing searches in multilabeled trees (e.g. tree-structured file systems),
in which each node is associated with labels (e.g. keywords). We introduce the concept of path-subset queries,
answered by a description of all the nodes in the tree with ancestors matching a given set of labels. We prove tight
upper (Theorem 4.4) and lower (Theorem 4.6) bounds on the complexity of any randomized algorithm solving
these queries, thus generalizing the results of Barbay and Kenyon [2] from the intersection problem on arrays to
the path-subset queries for labeled and multilabeled trees.

All our results concerning the running time of operators and algorithms are in the Random Access Machine (RAM)
model, where words of Θ(lg(max{n, σ })) bits can be accessed and processed in constant time.

The paper is organized as follows. In the next section we describe related work on succinct encodings and adaptive
algorithms, that we either use or improve upon. In Section 3, we present our data structures for the three data types
considered: binary relations in Section 3.1, labeled and multi-labeled trees in Section 3.2. The encoding of binary
relations is independent of the encoding of labeled trees, and both are combined to encode multi-labeled trees.
Section 4 describes the algorithms that search efficiently those data structures: the adaptive algorithm for answering
conjunctive queries using our encoding of binary relations in Section 4.1, and our new adaptive algorithm for searching
multi-labeled trees in Section 4.2. We conclude in Section 5 with some perspectives on future work.

2. Related work

2.1. Succinct data structures

Succinct data structures were introduced by Jacobson [13], to encode bit vectors, (unlabeled) trees and planar
graphs in space essentially equal to the information-theoretic lower bound, while supporting appropriate operators
on them efficiently. For bit vectors, Jacobson defined two useful operators: given a bit vector B[0, . . . , n − 1], a bit
α ∈ {0, 1}, an object x ∈ [n] and an integer r ∈ {1, . . . , n}, the operator bin rankB(α, x) returns the number of
occurrences of α in B[0, ..., x], and the operator bin selectB(α, r) returns the position of the r -th label α in B . We
omit the subscript B when it is clear from the context. Lemma 2.1 gives two ways to support those operators, in which
part (a) is from Jacobson [13] and Clark and Munro [5], while part (b) is from Raman et al. [19].

1 We use [x] to denote the set {0, . . . , x − 1}.
2 We use lg σ to denote log2 σ , and the notation o(lg σ) infers that σ is not a constant.



Author's personal copy

286 J. Barbay et al. / Theoretical Computer Science 387 (2007) 284–297

Lemma 2.1 ([4,13,19]). A bit vector B of length n with v 1s can be represented using either: (a) n + o(n) bits, or
(b) lg

(n
v

)+ O(n lg lg n/ lg n) bits, to support the access to each bit, and the operators bin rank and bin select in
constant time in the RAM model with word size Θ(lg n).

Grossi et al. [12] generalized this problem to alphabets of arbitrary size σ , extending the operators to
string rank(α, x), the number of occurrences of α before position x ; string select(α, r), the position of the
r -th occurrence of α in the sequence, and string access(x), the character at position x in the sequence. Their
wavelet tree structure encodes a string of length n from an alphabet of size σ using nH0 + n o(lg σ) bits, where H0 is
the 0-th order entropy of the given string, to support all three operators in O(lg σ) time. Golynski et al. [11] gave two
different encodings supporting the same operators more efficiently. The following lemma describes their result (we
name the two encodings as select encoding and access encoding):

Lemma 2.2 ([11]). A sequence of n elements from an alphabet of size σ can be encoded using n(lg σ + o(lg σ)) bits
to achieve the following time bounds for the operators:

select encoding access encoding
string access O(lg lg σ) O(1)

string select O(1) O(lg lg σ)

string rank O(lg lg σ) O(lg lg σ lg lg lg σ)

We extend the problem to the encoding of sequences of n objects, where each object can be associated with several
labels through a binary relation of t pairs from [n]×[σ ]. Raman et al. [19] considered this problem as representing
a set of dictionaries (multiple indexable dictionaries) by treating the set of labels associated with each object as a
dictionary, and considered supporting rank and select operators on these sets. Here, we consider a different set of
operators, which is suitable for our application. We give a representation (Theorem 3.1) which uses t

(
lg σ + o(lg σ)

)
bits and supports the extended operators in the same time as them.

An ordinal tree is a rooted tree in which the children of a node are ordered and specified by their rank. Jacobson
originally proposed a succinct data structure to store a tree of n nodes, that supports the operations parent and i -th child
in O(lg n) bit probes. Other representations were proposed later: Munro and Raman [16] introduced the parenthesis
representation; Benoit et al. [4] introduced the DFUDS (Depth-First Unary Degree Sequence) representation; and
Geary et al. [10] proposed an encoding based on a recursive decomposition of the tree.

Each of these data structures uses 2n + o(n) bits which is close to the information-theoretic space lower bound of
2n− o(n) bits. These support various operators to navigate in the tree in constant time, on a Random Access Machine
(RAM model) with word size Θ(lg n), defined as follows:

Definition 2.3. The navigation operators on ordinal trees are defined as follows:

• tree ancestor(x, i), the i -th ancestor of node x (x is its own 0-th ancestor);
• tree rankpre/post/d f uds(x), the position of node x in the given tree-traversal;
• tree selectpre/post/d f uds(r), the r -th node in the given tree-traversal;
• tree child(x, i), the i -th child of node x for i ≥ 1;
• tree child rank(x), the number of siblings to the left of node x ;
• tree depth(x), the number of edges in the rooted path to x ;
• tree nbdesc(x), the number of descendants of x ;
• tree deg(x), the number of children of x .

Consider a set of σ labels, and an ordinal tree of n nodes such that each node is assigned a label: this is a labeled
tree [9,10]. Geary et al. [10] extended the navigation operators to consider labels from [σ ] associated with the nodes
of the tree and to support those operators in constant time, but their data structure for label-based operators on labeled
trees uses n

(
lg σ + O(σ lg lg lg n/ lg lg n)

)
bits, which is much more than the information-theoretic lower bound of

2n−o(n)+n lg σ suggested by information theory when σ is large. Ferragina et al. [9] also consider data structures for
labeled trees, but for a different set of operators. The structures they propose, however, either use 2n lg σ + O(n) bits,
which is roughly twice the minimum space required to encode the tree, or do not support efficiently the operators
necessary for our application. We give a near optimal encoding (using space close to the information-theoretic
minimum plus a lower order term) for labeled trees using n

(
lg σ +o(lg σ)

)
bits (Theorem 3.3). Our encoding supports
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the search for an α-ancestor or α-descendant of any node x in time O(lg lg σ). We extend the concept to multi-labeled
trees (Corollary 3.5), in which each node can have more than one label, and obtain similar results.

2.2. Adaptive algorithms

Adaptive algorithms are algorithms that take advantage of “easy” instances of the problem at hand, i.e. their run-
time depends on some measure of difficulty, which could, for example, be a function of instance size and other
parameters. For example, Kirkpatrick and Seidel [15] proposed an algorithm for computing the convex hull that has
running time O(n lg h), where n is the number of input vertices, and h is the number of output vertices in the resulting
convex hull. As previously known algorithms guarantee only a running time of O(n lg n) in the worst case, clearly,
the adaptive algorithm performs better when the size of the convex hull size is small (e.g. a triangle). Another example
is adaptive algorithms for sorting, which have been studied under various measures of difficulty. Estivill-Castro and
Wood summarized many of these results in a survey [8].

Closer to our applications, Demaine et al. [6], motivated by the manipulation of postings lists in search engines,
studied adaptive algorithms for the union, intersection and difference of sets represented by sorted arrays. Their
measure of difficulty is defined as the cost of encoding a certificate (e.g. a proof) confirming the correctness of the
result. They proved that their algorithm is optimal in the comparison-based model with respect to this measure of
difficulty. Barbay and Kenyon [2] defined another measure of difficulty (denoted δ) for the intersection problem.
This measure is based on the number of steps required by a non-deterministic algorithm to check the correctness of
the answer. They proved that their deterministic algorithm is optimal in the class of randomized algorithms in the
comparison-based model, with respect to this measure of difficulty.

Barbay and Kenyon’s deterministic algorithm [2] answers a conjunctive query of k labels from [σ ] in time
O(δ

∑k
i=1 lg(ni/δ)), where n1, n2, . . . , nk are the sizes of the postings lists associated with each label of the query.

We show that their algorithm can be adapted to use our data structure for binary relations in order to answer queries
in time O(δk lg lg σ) (Theorem 4.1) instead. We also extend their algorithm and analysis to path-subset queries on
multi-labeled trees (Theorems 4.4 and 4.6).

3. Data structures

3.1. Binary relations

Consider a binary relation R between the ordered set [n] of n objects, and the ordered set [σ ] of σ labels. Let t
denote the cardinality of R, i.e. the number of pairs (object, label) in R. In the context in which objects are references
to web-pages, and labels are keywords associated with the web-pages, such relations are used to answer conjunctive
queries, i.e. for a given set of keywords, to return all pages that are associated with all the keywords in the set.3

Typically, such a relation is encoded as a collection of postings lists. Each postings list is a sorted list of the web-
pages (objects) associated with (e.g. containing) a given keyword (label). A conjunctive query is then performed by
intersecting the lists corresponding to the appropriate keywords [2,3,6,7].

Let α be a label from [σ ], x be an object from [n], and r ≤ n be an integer. We consider the following operators
on the relation R:

• label rankR(α, x), the number of objects labeled α and preceding x ;
• label selectR(α, r), the position of the r -th object labeled α if any, or∞ otherwise;
• label nbR(α), the number of objects with label α;
• object rankR(x, α), the number of labels associated with object x and preceding label α;
• object selectR(x, r), the r -th label associated with object x , if any, or∞ otherwise;
• object nbR(x), the number of labels associated with object x ;
• table accessR(x, α), checks whether object x is associated with label α.

3 See the work of Demaine et al. [6] for a more detailed description.
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We omit the subscript R when it is clear from the context. The information-theoretic lower bound to encode a binary
relation on [n]×[σ ] of cardinality t is lg

(nσ
t

)
, which is asymptotically equivalent to t

(
lg(nσ)− lg t+O(1)

)
. The naive

encoding of such lists as sorted arrays uses t�lg n	 + σ�lg t	 bits of space and supports the operators label select
and label nb in constant time, but supports the operator label rank(α, x) in time logarithmic in the number of
objects associated with the label α. It is not clear how to support object rank(x, α) and object select(x, r)

with such an encoding. Alternatively, each postings list can be represented using a bit vector to support the operators
label rank and label select in constant time [5]. However, this representation uses a total of σn + o(σn) bits,
which is not optimal in the case where the number of pairs t is much smaller than σn. One can reduce the space
complexity to n lg σ + O(σn lg lg n/ lg n) bits using the fully indexable dictionaries of Raman et al. [19], but this
space is still too large for most applications where σ is large.

Strings can be considered as binary relations where each object (i.e. a position in a string) is associated with a
unique label (i.e. a character from an alphabet of size σ , that occurs at the given position in the string). The operators
label rank and label select are extensions of the operators string rank and string select defined by
Golynski et al. [11], who only considered the case of strings, or in other words, the case where each object (i.e. position
in a string) is associated with exactly one label (i.e. a character from an alphabet of size σ , that occurs at the given
position in the string). Our structures support the label rank and label select operators in the same time as theirs.
The operators object rank and object select are extensions of string access; while string access(x) gives
the label associated with x (i.e., the character at position x), the operators object rank and object select are used
to navigate in the set of labels that are associated with a given object. Some intersection algorithms require the operator
label nb (e.g. SmallAdaptive [7]). The techniques from Golynski et al. are not directly applicable to the case of
binary relations; however using similar ideas we obtain an efficient implementation of the operators object rank,
object select, label nb, object nb and table access.

In most applications, and in particular for conjunctive queries, it is reasonable to assume that each label and each
object is used, i.e. that each object is associated with at least one label, and that each label is associated with at least
one object, so that t ≥ max{n, σ }. This is because one can use the encoding of Lemma 2.1(a) to encode the sets of
objects and labels effectively used, using bit vectors of size n and σ respectively. The space taken by this additional
structure is at most linear in σ and n, so we can always assume that each label and object is used, and hence that
t ≥ max{n, σ }.
Theorem 3.1. Consider a binary relation R on [n] × [σ ] of cardinality t with t ≥ max{n, σ }. Then there are two
encodings (named label encoding and object encoding), each using t

(
lg σ + o(lg σ)

)
bits, that support the defined

operators with the following run-times:

label encoding object encoding
label rank(α, x) O(lg lg σ) O(lg lg σ lg lg lg σ)

label select(α, r) O(1) O(lg lg σ)

label nb(α) O(1) O(1)

object rank(x, α) O(lg lg σ lg lg lg σ) O(lg lg σ)

object select(x, r) O(lg lg σ) O(1)

object nb(x) O(1) O(1)

table access(α, x) O(lg lg σ) O(lg lg σ)

where x ∈ [n], α ∈ [σ ], and r is a positive integer.

Proof. This proof is organized as follows: first we show how to reduce the problem of encoding a relation of size
σ×n to the problem of encoding n/σ relations of size of σ×σ ; then we show how to encode each of these relations
using a string on an alphabet of size σ that supports string rank, string select, and string access operators;
and then we complement this encoding with one additional data structure that would allow us to achieve the claimed
run-time complexities. The first and the last steps of this proof are based on the techniques from Golynski et al. [11,
proof of Theorem 2].

We associate the binary relation with a binary matrix where the labels correspond to rows, the objects correspond
to columns, and object x is associated with label α when the entry of row α and column x is 1.

To encode this binary relation, we first assume that σ divides n: we show at the end of the proof that the additional
space required when it is not the case is small. Divide the original binary matrix R into n/σ chunks C1, C2, . . . , Cn/σ
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of size σ×σ and each chunk into σ blocks of size 1×σ . The cardinalities of the blocks are then stored in the binary
vector X using a unary representation. Namely,

X = 1b0 001b0 1 . . .01b0 n/σ−101b1 001b1 1 . . .01b1 n/σ−10 . . . 1bσ−1 001bσ−1 1 . . .01bσ−1 n/σ−10

where bi j is the cardinality of the i -th block of the j -th chunk (the integer bi j is encoded by bi j 1-bits followed by
a 0-bit). We encode the binary vector X using the encoding (a) from Lemma 2.1, so that it supports the operators
bin rank and bin select in constant time.

The operators object rank, object select and object nb on R translate directly to the corresponding
operators on the appropriate chunk. Formally, for 0 ≤ i ≤ n/σ and 0 ≤ j < σ such that x = iσ + j , the operators
are supported as follows:

object rankR(x, α) = object rankCi
( j, α)

object selectR(x, α) = object selectCi
( j, α)

object nbR(x) = object nbCi
( j).

The operators label rank, label select and label nb on R are more complex, we detail their implementation
one by one. We define for any label α and block number i the function p(α, i) = bin selectX (0, ασ + i) + 1 as
the position in X at which the description of the α-th block of the i -th chunk starts, and for convenience we define
p(0, 0) = 1. Then, the operator label rank on R is reduced to the corresponding operator on the chunk as follows:

label rankR(α, x) = label rankCi (α, j)+ bin rankX (1, p(α, i))− bin rankX (1, p(α, 0)).

Let s = bin selectX (1, bin rankX (1, p(α, 0))+ r) be the position of the corresponding 1-bit in X (every 1-bit in
R has the corresponding 1-bit in X). Then the operator label select on R is easy to reduce to the corresponding
operator on the chunk:

label selectR(α, r) = label selectCi (α, j)+ σ i

where i = bin rankX (0, s) − ασ is the number of the chunk where this 1-bit occurs, and j = r −
(bin rankX (1, p(α, i)) − bin rankX (1, p(α, 0))) is the rank of this 1-bit inside the α-th block of the i -th chunk.
Finally,

label nbR(α) = bin rankX (1, p(α + 1, 0))− bin rankX (1, p(α, 0)).

Now we only need to implement the six operators on a given chunk C . Our approach is to encode all occurrences
of 1-bits in C in the row- or column-major order 4 using a string on an alphabet of size σ , and then reduce our problem
to the problem of supporting string rank, string select, and string access on this string. Let us first describe
the row-major order encoding. For each label in ascending order, we list all the objects associated with it (also in the
ascending order), and denote the corresponding string by S. In addition to this string, we also maintain a binary vector
P that allows us to navigate in S efficiently.

P = 1b001b1. . .01bσ−10

where bi is the cardinality of the i -th block of C . Note that this vector is analogous to X ; however the cardinalities
b0 0, b0 1, . . . , bσ−1 n/σ−1 are stored in row-major order in X , and in column-major order in P . However for the case
of the column-major order encoding of C , the vector X is just the concatenation of vectors P for each chunk, and
hence we do not need to store P explicitly in this case. See the following example:

C =

⎛
⎜⎜⎝

0 1 0 0
1 1 1 0
1 0 0 1
0 1 0 0

⎞
⎟⎟⎠

S = 1, 0, 1, 2, 0, 3, 1
P = 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0

4 row (column)-major order lists the elements from the first row (column), then from the second row (column), and so on.
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The bit C[α, x] is 1 if and only if the label α is associated with the object x . Denote by tC = b0+ b1+ · · ·+ bσ−1 the
length of S. Now we have a choice to encode S using one of the two encodings, select encoding or access encoding,
mentioned in Lemma 2.2. Vector P is encoded using the encoding (a) from Lemma 2.1. The operators object rank
and object select are implemented using string rank and string select respectively as follows:

object rankC(x, α) = string rankS(x, p(α + 1))

object selectC(x, r) = q(string selectS(x, r))

where q(r) = bin rankP (0, bin selectP (1, r)) is the block number corresponding to the position r of S,
p(α) = bin selectP(0, α) + 1 is the position in P at which the description of the α-th block of C starts, and
p(0) = 1. The operator label select is implemented as follows:

label selectC (α, r) = string accessS(bin rankP(1, p(α))+ r).

We can implement the operator label rank(α, x) using a binary search for x on Sα = S[p(α) . . . p(α + 1)− 2],
the part of S that corresponds to the label α (recall that Sα is an ascending sequence of objects). If we denote by l the
length of Sα , the run-time complexity of the operator is O(lg l · (complexity of string access)), which can be much
larger than the run-time of the other operators, since l can be as large as σ .

Instead, let us fix the parameter z = lg σ and let Y be the string obtained by taking every z-th character of
the original string Sα . We encode the set of objects corresponding to the string Y using a y-fast trie (as defined
by Willard [21]). This structure supports the rank operator on Y in time O(lg lg σ) using O( l

z log σ) = O(l)
bits (which is O(t) for all blocks), since we are using the word size lg σ . Note that label rank(α, x) ∈
[z rankY ( j), z (rankY ( j) + 1)], where rankY is the set rank, which denotes how many elements in Y are smaller
than j . The result of label rank(i, j) can be computed using a binary search in an interval of size lg σ in time
O(lg lg σ · (complexity of string access)).

The operator label nb(α) can be implemented as follows

label nb(α) = p(α + 1)− p(α)− 1.

The operator table access(α, x) can be implemented either as the difference between label rank(α, x + 1) and
label rank(α, x), or as the difference between object rank(x, α + 1) and object rank(x, α).

Each chunk C can be encoded in four different ways: using the row or column major order, and then encoding the
resulting string S using the select or access encoding. Regardless of the choice of the encoding, the operator
table access is supported in time O(lg lg σ), and the operators label nb and object nb are supported in
constant time. But each encoding gives a different combination of supporting times for the operators label rank,
label select, object rank, and object select:

label rank label select object rank object select

row/select O
(
(lg lg σ)2) O(lg lg σ) O(lg lg σ) O(1)

row/access O(lg lg σ) O(1) O(lg lg σ lg lg lg σ) O(lg lg σ)

column/select O(lg lg σ) O(1) O
(
(lg lg σ)2) O(lg lg σ)

column/access O(lg lg σ lg lg lg σ) O(lg lg σ) O(lg lg σ) O(1)

As the column/select encoding is always worse than the row/access encoding and the row/select encoding is always
worse than the column/access encoding, we can safely ignore them. We call the row/access encoding label encoding
as it performs better for label operators, and similarly the column/access encoding is called object encoding.

The encoding of S using the structure of Golynski et al. [11] uses t (lg σ + o(lg σ)) bits (summed over all chunks).
The encodings of y-fast tries and P vectors use O(t + n) bits in total (summed over all chunks), and the bit vector X
also uses O(t + n) bits.

Now consider the case where σ does not divide n. We can pad the last chunk with extra columns so that it has
the same size as other chunks. There is no extra space for such padding in the case where we use the row-major
encoding. For the column-major encoding, in the bit vector P , we do not store the last σ − (n mod σ) 1-bits
corresponding to the empty columns, but instead we just store the number of such columns, and use this number
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when performing rank/select operations on P . The extra space for such padding is O(lg σ), hence the total space
requirement is t

(
lg σ + o(lg σ)

)
bits for each encoding. �

This encoding is reasonably close to the information-theoretic lower bound when σ ≤ n, which is a reasonable
assumption in the case of web search engines, where the number of web-pages indexed (objects) is much larger than
the number of keywords indexed. There are some other applications where it might not be the case though: for instance
in a typical HTML document, where each word of a paragraph can be indexed and where the tree structure is poor,
the number of nodes (objects) can be smaller than the number of keywords indexed (labels). If this is the case, we can
split our matrix into matrices of size n×n in the first step. Hence, we can show the following corollary:

Corollary 3.2. Consider a binary relation on [σ ] × [n] of cardinality t, and let μ = min{n, σ }. We can encode it
using t (lg μ+ o(lg μ)) bits in order to support the desired operators in the run-times shown below:

label encoding object encoding
label rank(α, x) O(lg lg μ) O(lg lg μ lg lg lg μ)

label select(α, r) O(1) O(lg lg μ)

label nb(α) O(1) O(1)

object rank(x, α) O(lg lg μ lg lg lg μ) O(lg lg μ)

object select(x, r) O(lg lg μ) O(1)

object nb(x) O(1) O(1)

table access(α, x) O(lg lg μ) O(lg lg μ)

In the rest of the paper, to simplify notation we assume that the number of labels is smaller than the number of
objects (σ ≤ n). The space used by our encoding, t (lg σ + o(lg σ)), is almost optimal (i.e. equal to the information-
theoretical minimum plus a lower order term) under the assumption that the average number of labels associated with
an object is small, that is t/n = σ o(1).

3.2. Labeled and multi-labeled trees

Given a labeled tree on n nodes with labels from the alphabet [σ ], we define the following operators for the preorder
traversal of the tree, where α is a label from [σ ] and x is a node from [n]:
• labeltree desc(α, x), the first α-descendant of x , or∞ if there is none;
• labeltree nbdesc(α, x), the number of α-descendants of x ;
• labeltree anc(α, x), the node closest to the root among the α-ancestors of x , or∞ if there is none;
• labeltree succ(α, x), the first α-node after x in preorder, or∞ if there is none;

The three operators labeltree desc, labeltree nbdesc, and labeltree anc were previously defined and
supported by Geary et al. [10]. We introduce the operator labeltree succ for our application.

The structure proposed by Geary et al. [10] partitions the tree into smaller trees, and supports both
the navigation operators and the label-based operators in constant time. However, the structure requires
2n+n

(
lg σ+O(σ lg lg lg n/ lg lg n)

)
bits, and this amount could substantially exceed the information-theoretic lower

bound of 2n−o(n)+n lg σ when σ is large.
Our data structure is inspired by the work of Ferragina et al. [9]. Their idea is to encode the structure of the tree

and the labels separately to support a different set of operators. We use their idea to support the operators described
by Geary et al. [10] instead, using a space close to the information-theoretic minimum space.

Theorem 3.3. Consider a labeled tree of n nodes associated with labels from [σ ]. There is an encoding using
n
(
lg σ+o(lg σ)

)
bits that supports the tree navigation operators in constant time, and the operators labeltree anc,

labeltree desc, labeltree nbdesc and labeltree succ in O(lg lg σ) time.

Proof. We represent the tree structure using an encoding supporting the operators tree isanc(x, y) and
tree lastdesc(x), and the operators rank and select on the preorder traversal of the tree (e.g. the encoding defined by
Geary et al. [10], Jansson et al. [14] or Munro and Raman [16] combined with the results from Munro and Rao [17]). It
uses 2n+o(n) bits and supports the tree navigation operators in constant time. In order to support the labeltree anc



Author's personal copy

292 J. Barbay et al. / Theoretical Computer Science 387 (2007) 284–297

a−

a+

c− a+
c−

c+ b− a+

Preorder trace:
a−, a+, c−, a+, c−, c+, b−, a+.

Fig. 1. Extended labels in a labeled tree. The first c-ancestor of the b-node x (in bold) corresponds to the last occurrence of c− (underlined) in
preorder before x .

home

Music

Classical

· · ·
Pop Jazz

· · ·
Pop Rock

· · ·

Video

Rock Concerts

· · ·
Jazz

· · ·
Previews

· · ·
Fig. 2. A simple example of file system.

operator, we extend the labeling scheme by one bit (i.e. to an alphabet of size 2σ ), using n additional bits in the
encoding. Formally, any node x originally labeled α is now labeled

• α− if x has no ancestor labeled α;
• α+ if x has at least one ancestor labeled α.

See Fig. 1 for an example. The sequence of extended labels in preorder is encoded using the representation
of Golynski et al. [11, Theorem 3.2], which uses n(lg(2σ) + o(lg(2σ))) = n(lg σ + o(lg σ)) bits and supports
on the extended alphabet the operators string access and string rank in O(lg lg σ) time, and the operator
string select in constant time. The total encoding size is 2n + o(n) + n(lg σ + o(lg σ)) = n

(
lg σ + o(lg σ)

)
bits.

The operator labeltree anc(α, x) is supported by finding the last node y before x labeled α− in preorder
traversal, which takes time O(lg lg σ), and checking whether y is an ancestor of x , which takes constant time.

The operator labeltree desc(α, x) is similarly supported by finding the first node y labeled α− or α+ in preorder
traversal after x , which takes time O(lg lg σ), and checking whether y is a descendant of x , which takes constant time.

As the descendants of the node x are all consecutive in the preorder traversal of the tree, the operator
labeltree nbdesc(α, x) returns the number of occurrences of the label α (i.e., the sum of the number of occurrences
of both α− and α+) in the string Labels between the positions corresponding to the first and last descendants of x .

The operator labeltree succ(α, x) is supported in time O(lg lg σ): it corresponds to two pairs of calls to
operators string rank and string select to find first the first node labeled α− or α+ after x in preorder. �

Note that the space used by our data structure, n
(
lg σ+o(lg σ)

)
, is asymptotically equal to the information-theoretic

lower bound of 2n−o(n)+n lg σ bits for storing a labeled tree on n nodes with labels from [σ ].
XML documents and file systems can be seen as tree-structured documents, but the labeled tree model described

in the previous section is too restrictive to represent them, as one or more labels could be associated with each leaf in
an XML document, or with each internal node (folder) and leaf (file) in a file system. Fig. 2 shows an example of a
file system storing music and video files.

Definition 3.4. A multi-labeled tree is an ordinal tree on n nodes associated with labels from [σ ], and a set of t pairs
from [n] × [σ ].

We extend the operators described on labeled trees to multi-labeled trees: structure-based navigation operators and
label-based operators, as in Theorem 3.3.
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{0}

{1}

{2}
· · ·

{3,4}
· · ·

{3,5}
· · ·

{6}

{5,7}
· · ·

{4}
· · ·

{8}
· · ·

0=home, 1=Music, 2=Classical,
3=Pop, 4=Jazz, 5=Rock, 6=Video,
7=Concerts, 8=Previews.

Fig. 3. The multi-labeled tree corresponding to the file system of Fig. 2. The keywords are replaced by simple label identifiers, and several ones
can be assigned to each node.

· · · · · · · · · · · · · · · · · ·

0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1
0 1 2 3 4 3 5 6 5 7 4 8

Fig. 4. Fragments (separated by vertical bars) from the encoding of the multi-labeled tree of Fig. 3. Each label of a node x is aligned with the
corresponding zero in the unary encoding of the number of labels associated to x .

Corollary 3.5. Consider a multi-labeled tree on n nodes associated with labels from [σ ] in t pairs with t ≥ max{n, σ }.
There is an encoding that uses t

(
lg σ + o(lg σ)

)
bits of space and supports the operators of Theorem 3.3, with the

same asymptotic run-time complexities.

Proof. We use essentially the same encoding as in Theorem 3.3, except that we encode a binary relation (instead of
a string) using Theorem 3.1, so that the operators string rank and string select are replaced by the operators
label rank and label select. �

Fig. 3 shows the representation of the file system shown in Fig. 2 as a multi-labeled tree, where the text associated
with each node is replaced by numbers from the set [σ ]. Fig. 4 shows the succinct encoding of this multi-labeled tree:
the structure of the ordinal tree, the string representing the labels in preorder, and a binary string where ones separate
sequences of zeroes encoding the number of labels associated to a node. As in Section 3.1, the space used by our
structure is only optimal under the assumption that t/n = σ o(1), i.e. that on average each node is associated with a
small number of labels.

4. Algorithms

4.1. Efficient postings lists

As noted in Section 2.2, several algorithms have been proposed for computing the answer to conjunctive queries
on a binary relation through the intersection of postings lists, and their complexity is expressed as a function of a
difficulty measure of the instance. We consider the difficulty measure defined by Barbay and Kenyon [2], based on
the definition of a certificate of the answer to a conjunctive query. Our implementation of binary relations, described
in Section 3.1, allows us to search faster in the list of references associated with an object, and hence improves the
performance of Barbay and Kenyon’s algorithm:

Theorem 4.1. Consider a set of objects [n] and a set of labels [σ ], associated in t pairs from [n] × [σ ], and a
conjunctive query Q composed of k labels from [σ ]. There is a deterministic algorithm that answers Q in time
O(δk lg lg σ), where δ is the alternation of Q, a measure of difficulty defined by Barbay and Kenyon [2].

Proof. Barbay and Kenyon [2, Definition 2.5] defined the partition-certificate of an instance as a partition such that
each interval has an empty intersection with at least one of the sets. They measure the difficulty of an instance through
its “alternation”, the minimal size of a partition-certificate of it [2, Definition 3.1]. The alternation is closely related to
the non-deterministic complexity of the instance, the smallest number of operations required to certify the answer to
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Music→ A1 0 7 9 11 14 16 → 0 7 9 11 14 16
Jazz → A4 1 3 5 8 10 12 → 1 3 5 8 10 12
Rock → A5 2 4 6 13 15 17 → 2 4 6 13 15 17

Fig. 5. An example of how a conjunctive query composed of three keywords corresponds to the intersection of the three corresponding sets. The
alternation of the instance is δ = 4, the number of intervals of a partition certificate where each interval has an empty intersection with at least one
of the sets. Barbay and Kenyon’s algorithm performs 7≤δk=12 searches (for the numbers 0, 1, 2, 7, 8, 13, 14).

the query: on instances where the answer is empty, the alternation is exactly one plus the non-deterministic complexity
(see Fig. 5 for an example). Barbay and Kenyon proposed an algorithm for the conjunctive query that uses O(δk)

searches [2, Proof of Theorem 3.4], where k is the number of terms in the conjunctive query and δ is the alternation
of the query.

We introduce an extra object∞, which matches all labels and is a successor to all objects.
The algorithm is as follows:
(1) x ← 0; α← first label of Q;
(2) If x = ∞, exit;
(3) If k labels are matched, output x ,

set x to the next object matching α, and go to (2);
Otherwise, set α to the next label from Q, in cyclic order;

(4) If x matches α, go to (3);
Otherwise, set x to the next object matching α, and go to (2).

The search for the next object matching a label α (lines (3) and (4)) is supported using the operators label rank
and label select. The test of line (4) is supported using the operator table access. As all operators are supported
in time O(lg lg σ), the complexity of the algorithm is O(δk). �

Note that performing O(δk) searches is within a constant factor of optimality, as any randomized algorithm
performs δ(k− 1)/2 searches on some instance in the comparison model [2]. Any algorithm which performs searches
in several postings lists can benefit from our data structure (e.g., the algorithms SmallAdaptive and SvS studied by
Demaine et al. [7] and later by Barbay et al. [3], the deterministic and randomized algorithms proposed by Barbay
and Kenyon [2], and the algorithm introduced by Baeza-Yates [1]). The only algorithms which do not directly benefit
from our data structures are algorithms which control the search for elements at the level of the comparisons, such as
the algorithm Adaptive proposed by Demaine et al. [6].

4.2. File system search

We suggest a file system index which associates several keywords with each folder or file (e.g., in the filename
final_soda.tex, the words final and soda and the extension tex, or some of the words contained in the file): we
represent it as a multi-labeled tree. We introduce a new type of query to search in labeled and multi-labeled trees, that
corresponds to one of the most natural search queries that one can perform in a file-system.

Definition 4.2. Given a multi-labeled tree and a set Q of k labels, the answer to an path-subset query is the set of
nodes x such that:

(1) the rooted path to x contains nodes matching all the labels from Q; and,
(2) this path contains no node satisfying (1) other than x .

Such queries are motivated by the search in file systems, where the result corresponds to folders or files whose path
“matches” the set of keywords. Condition (2) ensures the succinctness of the answer, as the subtrees corresponding to
the answer are disjoint. For instance, the answer to the query “Rock Music” would be the root of the third subtree of
the file system of Fig. 2, and the answer to the query “Rock” would be the root of the third and fourth subtrees.

As for conjunctive queries, the worst case analysis is not sufficient to differentiate the algorithms; hence we define
a measure of difficulty on instances.
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Definition 4.3. Consider a multi-labeled tree and a set Q of k labels. A partition-certificate is a partition (Ii )i∈[δ] of
size δ on the set of nodes [n], such that for any i ∈ [δ], either

• the common rooted path of all nodes of Ii matches the k labels of the query; or
• there is a label α such that no node of Ii has an ancestor matching α.

We call δ the alternation of Q on this multi-labeled tree.

Using techniques similar to those used for the intersection problem, we prove the following result:

Theorem 4.4. Consider a multi-labeled tree of n nodes associated with labels from [σ ] in t pairs. Given a path-subset
query Q composed of k labels, there is an algorithm answering it which performs O(δk) operator calls, and which
takes time O(δk lg lg σ), where δ is the alternation of Q on this multi-labeled tree.

Proof. If we consider the nodes in preorder, and introduce an extra node∞ that matches all labels and is a successor
to all nodes (i.e.∞ is appended at the end of the preorder sequence), our algorithm proceeds as follows:

(1) x ← 0; α← first label of Q;
(2) If x = ∞, exit;
(3) If k labels are matched, output x ,

set it to the next node matching α (in preorder)
which is not a descendant of x ,5 and go to (2);
Otherwise, set α to the next label from Q in cyclic order;

(4) If x has an ancestor labeled α, go to (3);
(5) If x has a descendant labeled α,

set it to the first such descendant (in preorder), and go to (3);
Otherwise, set x to the next node matching α (in preorder), and go to (2).

The search for an ancestor or a descendant labeled α is supported by the operators labeltree anc and
labeltree desc, and the next node matching α in preorder is obtained through the operator labeltree succ (see
Section 3.2).

This algorithm cycles through the labels of Q, so that x refers to the node with smallest rank in preorder of the
current potential match. The preorder rank of successive nodes pointed to by x is strictly increasing at each update,
so that at any time, all preorder predecessors of x have been considered and have been output if adequate. Given a
partition-certificate (Ii )i≤δ of size δ, we divide the execution of the algorithm in δ phases, so that the algorithm is in
phase i if the node considered x is in Ii . As the algorithm considers the labels of Q in cyclic order, it performs at most
k iterations of the loop in each phase, before it has eliminated at least all the nodes of the interval Ii .

When the preorder rank of x reaches its final value, all nodes have been considered (hence the correctness), and
the algorithm has performed at most O(δk) operator calls. As each operator call costs time O(lg lg σ), the algorithm
performs O(δk) searches in time O(δk lg lg σ) to solve the query. �

Unless the operators defined in Section 3.1 can be supported more efficiently, we prove that this result is optimal
for deterministic algorithms, in the worst case (depending on the algorithm) as well as on average on a distribution
independent of the algorithm (which is a much stronger result, leading to Theorem 4.6).

Lemma 4.5. Consider any deterministic algorithm Alg answering path-subset queries, and δ ≥ 1, k ≥ 2, n ≥ 2δk+1,
and σ ≥ 2k+1. There is a probability distribution D on labeled trees with O(n) nodes and O(σ ) labels, and a path-
subset query composed of k labels of alternation at most O(δ) on any labeled tree from D, such that Alg performs
Ω(δk) operator calls on average to solve instances from D.

Proof. We first define a distribution D1 proving the result in the case where δ = 1, and we draw a random labeled
tree from D with the desired properties by combining δ labeled trees randomly drawn from D1.

Define a “double branch” tree as one consisting of a root with two children, each of which has a single chain of
k − 1 descendants. Hence the tree has 2k + 1 nodes, two of which are leaves at depth k. Let the tree P be the double

5 This is easily supported as any encoding of ordinal tree supports the size of the subtree rooted at node x .
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a2k+1
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Fig. 6. The double branch trees P with a single match (on the left),
and Ni without any match (on the right).

a2k+1

a1

...

ak+i

...

ak

ak+1

...

ai

...

a2k

· · · a1

...

ak+ j

...

ak

ak+1

...

a j

...

a2k

Fig. 7. A general tree, composed of δ double branch trees joined by
the root, drawn randomly from {P, N1, . . . , Nk }.

branch tree with root labeled a2k+1 such that the nodes of one branch are labeled a1, . . . , ak , and the nodes of the other
branch are labeled ak+1, . . . , a2k , both from top to leaf. Define for any i ∈ {1, . . . , k} the labeled tree Ni by switching
the labels in P of the two nodes at depth i , as illustrated in Fig. 6. The trees P, N1, . . . , Nk are very similar: to prove
or disprove the existence of a match of query {a1, . . . , ak} any deterministic algorithm, given only the operators of the
succinct encoding, has to perform k operator calls in the worst case. We define D1 to be the uniform distribution on
trees P, N1, . . . , Nk .

Any deterministic algorithm accessing the tree only through the three operators labeltree anc, labeltree desc
or labeltree nbdesc will perform on average more than k/2 operator calls before being able to decide if the tree
has a match or not, hence the result for δ = 1.

Draw a tree from distribution D by picking independently δ trees from D1, and joining them at the root, as described
in Fig. 7. The tree formed has 2δk + 1 ≤ n nodes labeled from an alphabet of size 2k+1 ≤ σ , and 2δ operator calls
are sufficient to check which nodes match the query {a1, . . . , ak}, if any. As each double branch forming the tree has
the same number of α-nodes for any label α, the operations performed in one particular double branch gives no clue
about the presence of a match in another double branch, hence the lower bound of δk/2 operator calls on average, and
the desired result. �

Now we use the Yao–von Neumann principle [18,20,22] to prove a lower bound on the complexity of any
randomized algorithm:

Theorem 4.6. Consider any randomized algorithm RandAlg answering path-subset queries, and δ ≥ 1, n ≥ 2δk+1,
k ≥ 2, and σ ≥ 2k+1. There is a labeled tree of O(n) nodes in association with O(σ ) labels, and a path-subset query
composed of k labels of alternation at most O(δ), such that RandAlg performs on average Ω(δk) operator calls to
answer the query.

Proof. Lemma 4.5 gives a distribution on which any deterministic algorithm performs poorly on average. The Yao–
von Neumann principle permits the deduction from this distribution of a lower bound on the worst case complexity of
randomized algorithms. �

The proof is similar to its counterpart on the intersection problem [2]. In particular, Theorems 4.4 and 4.6 show
that a deterministic algorithm performs as well as any randomized algorithm for path-subset queries, in term of the
number of operator calls. Note that, since labeled trees form a subset of multi-labeled trees, the lower bounds hold for
multi-labeled trees as well.

5. Conclusion

In this paper, we consider data structures for binary relations, labeled trees and multi-labeled trees, and adaptive
algorithms on these data structures. We propose various encodings which support the basic operators, and we use
these operators to solve efficiently conjunctive queries on binary relations, and path-subset queries on labeled and
multi-labeled trees. These results extend the results from Golynski et al. [11] on strings on large alphabets, and from
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Barbay and Kenyon [2] on the intersection problem, and can be applied to other intersection algorithms as well. They
can be further extended to support other operators on binary relations.

The representation defined by Golynski et al. [11] allows us to efficiently extend succinct encodings for unlabeled
trees to the labeled case, and our representation of binary relations allows us to extend them further to multi-labeled
cases. It would be interesting to apply similar techniques to other structures, such as graphs, and to extend them to
multidimensional relations.

The relation between algorithms for conjunctive queries and for path-subset queries in labeled trees is interesting:
the intersection problem has been largely studied, and applying this work to labeled or multi-labeled trees opens many
perspectives. In particular, path-subset queries are fairly simple, but the technique can also be applied for more general
pattern matching problems.
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[7] E.D. Demaine, A. López-Ortiz, J.I. Munro, Experiments on adaptive set intersections for text retrieval systems, in: Proceedings of the 3rd

Workshop on Algorithm Engineering and Experiments, in: Lecture Notes in Computer Science, vol. 2153, Springer, 2001, pp. 91–104.
[8] V. Estivill-Castro, D. Wood, A survey of adaptive sorting algorithms, ACM Computing Surveys 24 (4) (1992) 441–476.
[9] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Structuring labeled trees for optimal succinctness, and beyond, in: Proceedings of the

46th IEEE Symposium on Foundations of Computer Science, 2005, pp. 184–196.
[10] R.F. Geary, R. Raman, V. Raman, Succinct ordinal trees with level-ancestor queries, in: Proceedings of the 15th Annual ACM-SIAM

Symposium on Discrete Algorithms, 2004, pp. 1–10.
[11] A. Golynski, J.I. Munro, S.S. Rao, Rank/select operations on large alphabets: A tool for text indexing, in: Proceedings of the 17th Annual

ACM-SIAM Symposium on Discrete Algorithms, 2006, pp. 368–373.
[12] R. Grossi, A. Gupta, J.S. Vitter, High-order entropy-compressed text indexes, in: Proceedings of the 14th Annual ACM-SIAM Symposium

on Discrete Algorithms, 2003, pp. 841–850.
[13] G. Jacobson, Space-efficient static trees and graphs, in: Proceedings of the 30th Annual Symposium on Foundations of Computer Science,

1989, pp. 549–554.
[14] W.-K.S. Jesper Jansson, Kunihiko Sadakane, Ultra-succinct representation of ordered trees, in: Proceedings of the 18th annual ACM-SIAM

Symposium on Discrete Algorithms, 2007.
[15] D.G. Kirkpatrick, R. Seidel, The ultimate planar convex hull algorithm? SIAM Journal on Computing 15 (1) (1986) 287–299.
[16] J.I. Munro, V. Raman, Succinct representation of balanced parentheses and static trees, SIAM Journal on Computing 31 (3) (2001) 762–776.
[17] J.I. Munro, S.S. Rao, Succinct representations of functions, in: 31st International Colloquium on Automata, Languages and Programming,

in: Lecture Notes in Computer Science, Springer, 2004, pp. 1006–1015.
[18] J.V. Neumann, O. Morgenstern, Theory of Games and Economic Behavior, first ed., Princeton University Press, 1944.
[19] R. Raman, V. Raman, S.S. Rao, Succinct indexable dictionaries with applications to encoding k-ary trees and multisets, in: Proceedings of the

13th Annual ACM-SIAM Symposium on Discrete algorithms, 2002, pp. 233–242.
[20] M. Sion, On general minimax theorems, Pacific Journal of Mathematics 8 (1958) 171–176.
[21] D.E. Willard, Log-logarithmic worst-case range queries are possible in space Θ(N), Information Processing Letters 17 (2) (1983) 81–84.
[22] A.C. Yao, Probabilistic computations: Toward a unified measure of complexity, in: Proceedings of the 18th IEEE Symposium on Foundations

of Computer Science, 1977, pp. 222–227.


