
Optimality of

Randomized Algorithms

for the Intersection Problem

Jérémy Barbay

Department of Computer Science, University of British Columbia,
201-2366 Main Mall, Vancouver, B.C. V6T 1Z4 CANADA

jeremy@cs.ubc.ca

Abstract. The ”Intersection of sorted arrays” problem has applications
in indexed search engines such as Google. Previous works propose
and compare deterministic algorithms for this problem, and offer lower
bounds on the randomized complexity in different models (cost model,
alternation model).
We refine the alternation model into the redundancy model to prove that
randomized algorithms perform better than deterministic ones on the
intersection problem. We present a randomized and simplified version of
a previous algorithm, optimal in this model.
Keywords: randomized algorithm, intersection of sorted arrays.

1 Introduction

We consider search engines where queries are composed of several
keywords, each one being associated with a sorted array of references to
entries in a database. The answer to a conjunctive query is the intersection
of the sorted arrays corresponding to each keyword. Most search engines
implement these queries. The algorithms are in the comparison model,
where comparisons are the only operations permitted on references.

The intersection problem has been studied before [?,?,?], but the
lower bounds apply to randomized algorithms, when some deterministic
algorithms are optimal. Does it mean that no randomized algorithms can
do better than a deterministic one on the intersection problem ?

In this paper we present a new analysis of the intersection problem,
called the redundancy analysis, more precise and which permits to prove
that for the intersection problem, randomized algorithms perform better
than deterministic algorithms in term of the number of comparisons.
The redundancy analysis also makes more natural assumptions on the
instances: the worst case in the alternation analysis is such that an
element considered by the algorithm is matched by almost all of the

2

keywords, while in the redundancy analysis the maximum number of
keywords matching such an element is parametrized by the measure of
difficulty.

We define formally the intersection problem and the redundancy
model in Section 2. We give in Section 3 a randomized algorithm
inspired by the small adaptive algorithm, and give its complexity in
the redundancy model, for which we prove it is optimal in Section 4.
We answer the question of the utility of randomized algorithm for the
intersection problem in Section 5: no deterministic algorithm is optimal
in the redundancy model. We list in Section 6 several points on which we
will try to extend this work.

2 Definitions

In the search engines we consider, queries are composed of several
keywords, and each keyword is associated to a sorted array of references.
The references can be, for instance, addresses of web pages, but the only
important thing is that there is a total order on them, i.e. all unequal
pair of references can be ordered. To study the problem of intersection,
we hence consider any set of arrays on a totally ordered space to form an
instance [?]. To perform any complexity analysis on such instances, we
need to define a measure representing the size of the instance. We define
for this the signature of an instance.

Definition 1 (Instance and Signature). We consider U to be a totally
ordered space. An instance is composed of k sorted arrays A1, . . . , Ak of
positive sizes n1, . . . , nk and composed of elements from U .

The signature of such an instance is (k, n1, . . . , nk). An instance is “of
signature at most” (k, n1, . . . , nk) if it can be completed by adding arrays
and elements to form an instance of signature exactly (k, n1, . . . , nk).

Example 1. Consider the instance of Figure 1, where the ordered space
is the set of positive integers: it has signature (7, 1, 4, 4, 4, 4, 4, 4)

Definition 2 (Intersection). The Intersection of an instance is the set
A1 ∩ . . . ∩ Ak composed of the elements that are present in k distinct
arrays.

Example 2. The intersection A ∩ B ∩ . . . ∩G of the instance of Figure 1
is empty as no element is present in more than 4 arrays.

3

A = 9

B = 1 2 9 11
C = 3 9 12 13
D = 9 14 15 16
E = 4 10 17 18
F = 5 6 7 10

G = 8 10 19 20

A : 9
B : 1 2 9 11
C : 3 9 12 13
D : 9 14 15 16
E : 4 10 17 18
F : 5 6 7 10
G : 8 10 19 20

Fig. 1. An instance of the intersection problem: on the left is the array representation
of the instance, on the right is a representation which expresses better the structure of
the instance, where the abscissa of elements are equal to their value.

Any algorithm (even non-deterministic) computing the intersection
must certify the correctness of the output: first, it must certify that all
the elements of the output are indeed elements of the k arrays; second,
it must certify that no element of the intersection has been omitted
by exhibiting some proof that there can be no other elements in the
intersection than those output. We define the partition-certificate as a
proof of the intersection.

Definition 3 (Partition-Certificate). A partition-certificate is a
partition (Ij)j≤δ of U into intervals such that any singleton {x}
corresponds to an element x of ∩iAi, and each other interval I has an
empty intersection I ∩Ai with at least one array Ai.

Imagine a function which indicates for each element x ∈ U the name
of an array not containing x if x is not in the intersection, and “all”
if x is in the intersection. The minimal number of times such a function
alternates names, for x scanning U in increasing order, is also the minimal
size of a partition-certificate of the instance (minus one), which is called
alternation.

Definition 4 (Alternation). The alternation δ(A1, . . . , Ak) of an
instance (A1, . . . , Ak) is the minimal number of intervals forming a
partition-certificate of this instance.

Example 3. The alternation of the instance in Figure 1 is δ =
3, as we can see on the right representation that the partition
(−∞, 9), [9, 10), [10,+∞) is a partition-certificate of size 3, and that none
can be smaller.

The alternation measure was used as a measure of the difficulty of
the instance [?], as it is the non-deterministic complexity of the instance,

4

and as there is a lower bound increasing with δ on the complexity of any
randomized algorithm. By definition of the partition-certificate:

– for each singleton {x} of the partition, any algorithm must find the
position of x in all arrays Ai, which takes k searches;

– for each interval Ij of the partition, any algorithm must find an array,
or a set of arrays, such that the intersection of Ij with this array, or
with the intersection of those arrays, is empty.

The cost for finding such a set of arrays can vary and depends on the
choices performed by the algorithm. In general it requires less searches
if there are many possible answers. To take this into account, for each
interval Ij of the partition-certificate we will count the number rj of
arrays whose intersection with Ij is empty. The smaller is rj , the harder
is the instance: 1/rj measures the contribution of this interval to the
difficulty of the instance.

Example 4. Consider for instance the interval [10, 11) in the instance of
Figure 1: rj = 4. A random algorithm choosing an array uniformly has
probability rj/k to find an array which do not intersect [10, 11), and will
do so on average before k/rj trials, even if it doesn’t memorize which
array it tried before. k being fixed, 1/rj measures the difficulty of proving
that no element of [10, 11) is in the intersection of the instance.

We name the sum of those contributions the redundancy of the instance,
and it forms our new measure of difficulty:

Definition 5 (Redundancy). Let A1, . . . , Ak be k sorted arrays, and
let (Ij)j≤δ be a partition-certificate for this instance.

– The redundancy ρ(I) of an interval or singleton I is defined as equal
to 1 if I is a singleton, and equal to 1/#{i, Ai ∩ I = ∅} otherwise.

– The redundancy ρ((Ij)j≤δ) of a partition-certificate (Ij)j≤δ is the sum
∑

j ρ(Ij) of the redundancies of the intervals composing it.
– The redundancy ρ ((Ai)i≤ k) of an instance of the intersection problem

is the minimal redundancy of a partition-certificate of the instance,
min{ρ ((Ij)j≤δ) , ∀(Ij)j≤δ}.

Note that the redundancy is always well defined and finite: if I is
not a singleton then by definition there is at least one array Ai whose
intersection with I is empty, and #{i, Ai ∩ I = ∅} > 0.

Example 5. The partition-certificate (−∞, 9), [9, 10), [10, 11), [11,+∞)
has redundancy at most 1

2
+1

3
+1

4
+1

2
, and no other partition-certificate

has a smaller redundancy, hence our instance has redundancy 7

6
.

5

The redundancy analysis permits to measure the difficulty of the
instance in a finer way than with the alternation: for fixed k, n1, . . . , nk, δ,
several instances of signature (k, n1, . . . , nk) and alternation δ may present
different difficulties for any algorithm, and different redundancies.

Example 6. In the instance from Figure 1 the only way to prove that the
intersection of those arrays is empty, is to compute the intersection of one
of the arrays from {A,B,C,D} with one of the arrays from {E,F,G}.
For simplicity, and without loss of generality, we suppose the algorithm
searches to intersect A with another array in {B,C,D,E, F,G}, and we
focus for this example on the number of unbounded searches performed,
instead of the number of comparisons: the randomized algorithm looking
for the element of A in an array from {B,C,D,E, F,G} chosen at random
performs on average only 2 searches in the first instance, as the probability
to find an array whose intersection is empty with A is then 1

2
.

On the other hand, consider the instance of a subtle variant of the
instance of Figure 1, where the element 9 would be present in all the arrays
but one, for instance E (only two elements needs to change, F [4] and G[2]
which were equal to 10 and are now equal to 9). As the two instances
have the same signature and alternation, the alternation analysis yields
the same lower bound for both instances. But the randomized algorithm
described above performs now on average k/2 searches, as opposed to 2
searches on the original instance. This difference of performance is not
expressed by a difference of alternation, but is expressed by a difference
of redundancy: the new instance has a redundancy of 1

2
+1+1

2
= 2 larger

than the redundancy 7

6
of the original instance1.

3 Randomized algorithm

The algorithm we propose here is a randomized and simplified version
of the small adaptive algorithm [?]. It uses the unbounded search

algorithm, which looks for an element x in a sorted array A of unknown
size, starting at position init, with complexity 2⌈log2(p−init)⌉, where p
is the insertion position of the element in the array. It returns a value
p such that A[p − 1]<x≤A[p]. This algorithm has already been studied
before, it can be implemented using the doubling search and binary search
algorithms [?,?,?,?], or directly to improve the complexity by a constant
factor [?].

Given t∈{1, . . . , k}, and k non-empty sorted sets A1, . . . , Ak of sizes
n1, . . . , nk, the rand intersection algorithm (algorithm 1) computes

1 This is just a particular case given as an example, see Section 5 for the general proof.

6

the intersection I=A1∩ . . .∩Ak. For simplicity, we assume that all arrays
contain the element −∞ at position 0 and the element +∞ at position
ni + 1.

The algorithm is composed of two nested loops. The outer loop
iterates through potential elements of the intersection in variable m and
in increasing order, and the inner loop checks for each value of m if it is
in the intersection.

In each pass of the inner loop, the algorithm searches for m in one
array As which potentially contains it. The invariant of the inner loop is
that, at the start of each pass and for each array Ai, pi denotes the first
potential position for m in Ai: Ai[pi − 1] < m. The variables #YES and
#NO count how many arrays are known to contain m, and are updated
depending on the result of each search.

A new value for m is chosen every time we enter the outer loop, at
which time the current subproblem is to compute the intersection on the
sub-arrays Ai[pi, . . . , ni] for all values of i. Any first element Ai[pi] of a
sub-array could be a candidate, but a better candidate is one which is
larger than the last value of m: the algorithm chooses As[ps], which is by
definition larger than m. Then only one array As is known to contain m,
hence #YES← 1, and no array is known not to contain it, hence #NO← 0.
The algorithm terminates when all the values of the current array have
been considered, and m has taken the last value +∞.

Algorithm 1 Rand Intersection (A1, . . . , Ak)
Given k non-empty sorted sets A1, . . . , Ak of sizes n1, . . . , nk, the algorithm computes
in variable I the Intersection A1 ∩ . . . ∩ Ak. Note that the only random instruction is
the choice of the array in the inner loop.

for all i do pi ← 1 end for

I ← ∅; s← 1
repeat

m← As[ps]
#NO← 0; #YES← 1;
while #YES < k and #NO = 0 do

Let As be a random array s.t. As[ps] 6= m.
ps ← Unbounded Search(m, As, ps)
if Ai[pi] 6= m then #NO← 1 else #YES← YES + 1 end if

end while

if #YES = k then I ← I ∪ {m} end if

for all i such that Ai[pi] = m do pi ← pi + 1 end for

until m = +∞
return T

7

Theorem 1. Algorithm rand intersection (algorithm 1) performs
on average O(ρ

∑

log(ni/ρ)) comparisons on an instance of signature
(k, n1, . . . , nk) and of redundancy ρ.

Proof. Let (Ij)j≤δ be a partition-certificate of minimal redundancy ρ.
Each comparison performed by the algorithm is said to be performed in
phase j if m ∈ Ij for some interval Ij of the partition. Let Cj

i be the
number of binary searches performed by the algorithm during phase j in
array Ai, let Ci =

∑

j Cj
i be the number of binary searches performed by

the algorithm in array Ai over the whole execution, and let (rj)j≤δ be
such that rj is equal to 1 if I is a singleton, and to #{i, Ai ∩ Ij = ∅}
otherwise.

Let’s consider a fixed phase j ∈ {1, . . . , δ}: if the phase is positive (if
m ∈ I) then Cj

i = 1∀i = 1, . . . , k. Remark that in this case 1/rj is also

equal to 1, so that Cj
i = 1/rj . If the phase is negative (if m /∈ I), Cj

i is a
random variable.

– If Ai ∩ Ij = ∅ then Cj
i ∈ {0, 1} as the algorithm will terminate the

phase whenever searching in Ai. The probability to do such a search
is Pr{Cj

i = 1|Ai ∩ Ij = ∅} = 1

rj
, so the average number of searches

is E(Cj
i |Ai ∩ Ij = ∅) = 1 ∗ Pr{Cj

i = 1|Ai ∩ Ij = ∅} = 1

rj
.

– If Ai ∩ Ij 6= ∅ then at each new search, either Cj
i is incremented with

probability 1

k−1
, because the search occurred in Ai; or Cj

i is fixed in a

final way with probability
rj

k−1
, because an array of empty intersection

with I was searched; or neither incremented nor fixed, with probability
1−

1+rj

k−1
, in the other cases. This system is equivalent to a system where

Cj
i is incremented with probability 1

1+rj
and fixed with probability

rj

1+rj
. From this we can deduce that Cj

i is incremented on average
1+rj

rj
− 1 = 1

rj
times before it is fixed.

So the algorithm performs on average E(Ci) =
∑

j
1

rj
= ρ binary searches

in array Ai.

Let gl
i,j be the increment of pi due to the lth unbounded search in

array Ai during phase j. Notice that
∑

j,l g
l
i,j ≤ ni. The algorithm

performs 2 log(gl
i,j + 1) comparisons during the lth search of phase j in

array Ai. So it performs 2
∑

j,l log(gl
i,l +1) comparisons between m and an

element of array Ai during the whole execution. Because of the concavity

of the function log(x + 1), this is smaller than 2Ci log(
∑

j,l
gl

i,j

Ci
+ 1), and

8

because of the preceding remark
(

∑

j,l g
l
i,j≤ni

)

, this is still smaller than

2Ci log(ni

Ci
+ 1).

The functions fi(x)=2x log(ni

x+1) are concave for x≤ni, so
E(fi(Ci))≤fi(E(Ci)). As the average complexity of the algorithm in array
Ai is E(f(Ci)), and as E(Ci) = ρ, on average the algorithm performs less
than 2ρ log(ni

ρ + 1) comparisons between m and an element in array Ai.
Summing over i we get the final result, which is O(ρ

∑

i log ni

ρ). ⊓⊔

4 Randomized Complexity Lower Bound

We prove now that no randomized algorithm can do asymptotically
better. The proof is quite similar to the lower bound of the alternation
model [?], and differs mostly in lemma 1, which must be adapted to
the redundancy and whose lower bound is improved by a constant
multiplicative factor.

In Lemma 1 we prove a lower bound on average on a distribution
of instances of redundancy at most ρ = 4 and of output size at most 1.
We use this result in Lemma 2 to define a distribution on instances of
redundancy at most ρ ∈ {4, 4n1} by combining p = o(ρ) sub-instances.
In Lemma 3 we prove that any instance of signature (k, n1, . . . , nk) has
redundancy ρ at most 2n1 + 1, so that the result of lemma 2 holds for
any ρ ≥ 4. Finally applying the Yao-von Neumann principle [?,?,?] in
Theorem 2 this gives us a lower bound of Ω(ρ

∑k
i=2 log(ni/ρ)) on the

complexity of any randomized algorithm for the Intersection problem.

Lemma 1. For any k ≥ 2, and 0 < n1 ≤ . . . ≤ nk, there is
a distribution on instances of the Intersection problem with signature
at most (k, n1, . . . , nk), and redundancy at most 4, such that any
deterministic algorithm performs at least 1

4

∑k
i=2 log ni+

∑k
i=2

1

2ni+1
−k+2

comparisons on average.

Proof. Let C be the total number of comparisons performed by the
algorithm, and for each array Ai note Fi = log2(2ni+1), and F =

∑k
i=2 Fi.

Let’s draw an index w ∈ {2, . . . , k} equal to i with probability Fi

F , and
(k− 1) positions (pi)i∈{2,...,k} such that ∀ i each pi is chosen uniformly at
random in {1, . . . , ni}. Let P and N be two instances such that in both
P and N , for any 1<i<j≤k, a∈A1, b, c∈Ai and d, e∈Aj then b<Ai[pi]<c
and d<Aj[pj]<e imply b<d<a<c<e (see Figure 2); in P , Aw[pw]=A1[1];
in N Aw[pw]>A1[1]; and such that the elements at position pi in all other
arrays than Aw are equal to A1[1].

9

Aw

N
b d e

a A1

Ak

P
b d

a
e

Fig. 2. Distribution on (P, N): elements are represented by a dot of abscissa their
value, full large dots correspond to the element at position pi in each array Ai.

Let x = A1[1] be the first element of the first array. Note x-
comparisons the comparisons between any element and x. Because of
the special relative positions of the elements, a comparison between two
elements b and d in any arrays doesn’t yield more information than two
comparisons between x and b and between x and d: the relative positions
to x of elements b and d permit to deduce their order. Hence any algorithm
performing C comparisons between arbitrary elements can be expressed
as an algorithm performing no more than 2C x-comparisons, and any
lower bound L on the complexity of algorithms using only x-comparisons
is a L/2 lower bound on the complexity of algorithm using comparisons
between arbitrary elements.

The redundancy of such instances is no more than 4: the interval
(−∞, A1[1]) is sufficient to certificate that no element smaller than x
is in the intersection, and stand for a redundancy of at most 1; the
interval (A1[n1],+∞,) is sufficient to certificate that no element larger
than A1[n1] is in the intersection, and stands for a redundancy of at most
1; the interval [A1[1], A1[n1]] is sufficient in N to complete the partition-
certificate, and stands for a redundancy of at most 1; the singleton {x} and
the interval (A1[1], A1[n1]] are sufficient in P to complete the partition-
certificate, and stands for a redundancy of at most 1+ 1

k−1
.

The only difference between instances P and N is the relative position
of element Aw[pw] to the other elements composing the instance, as
described in Figure 2. Any algorithm computing the intersection of P
has to find the (k − 1) positions {p2, . . . , pk}. Any algorithm computing
the intersection of N has to find w and the afferent position pw. Any
algorithm distinguishing between P and N has to find pw: we will prove

10

that it needs on average almost F
2

= 1

2

∑k
i=2 log2(2ni + 1) comparisons to

do so.
Let A be a deterministic algorithm using only x-comparisons to

compute the intersection. As the algorithm A has not distinguished
between P and N till it found w, let Xi denote the number of x-
comparisons performed by A in array Ai for both P or N . Let Yi denote
the number of x-comparisons performed by A in array Ai for N ; and
let ξi be the indicator variable which equals 1 exactly if pi has been
determined by A on instance P . The number of comparisons performed
by A is C =

∑k
i=2 Xi. Restricting ourselves to arrays in which the position

pi has been determined, we can write C ≥
∑k

i=2 Xiξi =
∑k

i=2 Yiξi.
Let’s consider E(Yiξi): the expectancy can be decomposed as

a sum of probabilities E(Yiξi)=
∑

h Pr{Yiξi≥h}, and in particular
E(Yiξi)≥

∑Fi

h=1
Pr{Yiξi≥h}. Those terms can be decomposed using the

property Pr{a∨b} ≤ Pr{a}+ Pr{b}:

Pr{Yiξi ≥ h} = Pr{Yi ≥ h ∧ ξi = 1}

= 1− Pr{Yi < h ∨ ξi = 0}

≥ 1− Pr{Yi < h} − Pr{ξi = 0}

= Pr{ξi = 1} − Pr{Yi < h} (1)

The probability Pr{Yi < h} is bounded by the usual decision
tree lower bound: if we consider the binary x-comparisons performed
by algorithm A in set Ai, there are at most 2h leaves at depth less
than h. Since the insertion position of x in Ai is uniformly chosen,
these leaves are equiprobable and have total probability at most
Pr{Yi < h} ≤ 2h

2ni+1
= 2h−Fi . Those terms for h ∈ {1, . . . , Fi}

form a geometric sequence whose sum is equal to 2(1 − 2−Fi), so
E(Yiξi) ≥ Fi Pr{ξi = 1} − 2(1 − 2−Fi). Then

E(C) ≥
k
∑

i=2

E(Yiξi) ≥
k
∑

i=2

Fi Pr{ξi = 1} −
k
∑

i=2

2(1 − 2−Fi)

≥
k
∑

i=2

Fi Pr{ξi = 1}+ 2
k
∑

i=2

2−Fi − 2(k − 2). (2)

Let’s fix p = (p2, . . . , pk). There are only k− 1 possible choices for w.
Algorithm A can only differentiate between P and N when it finds w. Let
σ denote the order in which these instances are dealt with by A for p fixed.
Then ξi = 1 if and only if σi ≤ σw, and so Pr{ξi = 1|p} =

∑

j:σj≥σi
Fj/F .

11

Summing over p, and then over i, we get an expression of the first
term in Equation (2):

Pr{ξi = 1} =
∑

p

Pr{ξi = 1|p}Pr{p} =
∑

p

∑

j:σj≥σi

Fj

F
Pr{p}

k
∑

i=2

Fi Pr{ξi = 1} =
∑

p

k
∑

i=2

∑

j:σj≥σi

FiFj

F
Pr{p} =

∑

p

Pr{p}
k
∑

i=2

∑

j:σj≥σi

FiFj

F
.

In the sum, each term “FiFj” appears exactly once, and

(

∑

i

Fi

)2

= 2
∑

i

∑

i≤j

FiFj −
∑

i

Fi
2,

hence
k
∑

i=2

∑

j:σj≥σi

FiFj =
1

2

(

k
∑

i=2

Fi

)2

+
k
∑

i=2

Fi
2

 ,

which is independent of p. Then we can conclude:

k
∑

i=2

Fi Pr{ξi = 1} =
1

2

1

F

(

k
∑

i=2

Fi

)2

+
k
∑

i=2

Fi
2

∑

p

Pr{p} =
1

2

k
∑

i=2

Fi.

Plugging this into Equation (2), we obtain a lower bound of 1

2

∑k
i=2 Fi +

2
∑k

i=2 2−Fi − 2(k−2), which is 1

2

∑k
i=2 log2(2ni+1) + 2

∑k
i=2

1

2ni+1
−

2(k−2) on the average number of x-comparisons E(C) performed by any
deterministic algorithm restricted to x-comparisons. This in turn implies
a lower bound of 1

4

∑k
i=2 log2(2ni+1)+

∑k
i=2

1

2ni+1
−(k−2) on the average

number of comparisons performed by any deterministic algorithm, hence
the result. ⊓⊔

Lemma 2. For any k ≥ 2, 0 < n1 ≤ . . . ≤ nk and ρ ∈ {4, . . . , 4n1},
there is a distribution on instances of the Intersection problem of
signature at most (k, n1, . . . , nk), and redundancy at most ρ, such that
any deterministic algorithm performs on average Ω(ρ

∑k
i=1 log(ni/ρ))

comparisons.

Proof. Let’s draw p = ⌊ρ/4⌋ pairs (Pj ,Nj)j∈{1,...,p} of sub-instances of
signature k, ⌊n1/p⌋, . . . , ⌊nk/p⌋) from the distribution of lemma 1. As
ρ ≤ 4n1, p ≤ n1 and ⌊n1/p⌋ > 0 hence the sizes of all the arrays are
positive. Let’s choose uniformly at random each sub-instance Ij between

12

the positive sub-instance Pj and the negative sub-instance Nj, and form
a larger instance I by unifying the arrays of same index from each sub-
instance, such that the elements from two different sub-instances never
interleave, as in Figure 3

N1 P2 NÆ

Fig. 3. p elementary instances unified to form a single large instance.

This defines a distribution on instances of redundancy at most 4p so
less than ρ, and of signature at most (k, n1, . . . , nk). Solving this instance
implies to solve all the p sub-instances. Lemma 1 gives a lower bound of
1

4

∑k
i=2 log(2ni/p + 1) +

∑k
i=2

1

2ni+1
− k+2 comparisons on average for

each of the p sub problems, hence a lower bound of p
4

∑k
i=2 log(2ni/p +

1) + p(
∑k

i=2
1

2ni/p+1
− k+2), which is Ω(ρ

∑k
i=1 log(ni/ρ)). ⊓⊔

Lemma 3. For any k ≥ 2, 0 < n1 ≤ . . . ≤ nk, any instance of signature
(k, n1, . . . , nk) has redundancy ρ at most 2n1 + 1.

Proof. First observe that there is always a partition-certificate of size
2n1 + 1. Then that the redundancy of any partition-certificate is by
definition smaller than the size of the partition. Hence the result. ⊓⊔

Theorem 2. For any k ≥ 2, 0 < n1 ≤ . . . ≤ nk and ρ ∈ {4, . . . , 4n1},
the complexity of any randomized algorithm for the Intersection problem
on instances of signature at most (k, n1, . . . , nk), and redundancy at most
ρ is Ω(ρ

∑k
i=1 log(ni/ρ)).

Proof. This a simple application of lemma 2, lemma 3 and of the Yao-von
Neumann principle [?,?,?]:

– lemma 2 gives a distribution for ρ ∈ {4, . . . , 4n1} on instances of
redundancy at most ρ,

13

– and lemma 3 proves that there are no instances of redundancy more
than 2n1 + 1, hence the result of lemma 2 holds for any ρ ≥ 4.

– Then the Yao-von Neumann principle permits to deduce from
this distribution a lower bound on the complexity of randomized
algorithms. ⊓⊔

This analysis is much finer than the previous lower bound presented
in [?], where the additive term in −k was ignored, although it makes the
lower bound trivially negative for large values of the difficulty δ. Here
the additive term is suppressed for mini ni ≥ 128, and the multiplicative
factor between the lower bound and the upper bound is reduced to 16
instead of 64. This technique can be applied to the alternation analysis of
the intersection with the same result. Note also that a multiplicative factor
of 2 in the gap comes from the unbounded searches in the algorithm and
can be reduced using a more complicated algorithm for the unbounded
search [?].

5 Comparisons with the alternation model

The redundancy model is strictly finer than the alternation model: some
algorithms, optimal for the alternation model, are not optimal anymore
in the redundancy model (theorem 3), and any algorithm optimal in
the redundancy model is optimal in the alternation model (theorem 4).
So the rand intersection algorithm is theoretically better than its
deterministic variant, and the redundancy model permits a better analysis
than the alternation model.

Theorem 3. Any deterministic algorithm performs Ω(kρ
∑

i log(ni/kρ))
comparisons in the worst case over all instances of signature at most
(k, n1, . . . , nk) and redundancy at most ρ.

Proof. The proof uses the same decomposition than the proof of
theorem 2, but uses an adversary argument to obtain a deterministic
lower bound. Build δ = kρ

3
sub-instances of signature (k, ⌊n1

δ ⌋, . . . , ⌊
nk

δ ⌋),
redundancy at most 3, such that x = A1[1] is present in half of the other
arrays, as in Figure 4.

On each sub-instance an adversary can force any deterministic
algorithm to perform a search in each of the arrays containing x, and in a
single array which does not contain x. Then the deterministic algorithm
performs 1

2

∑k
i=2 log ni

δ comparisons. In total over all sub-instances, the

adversary can force any deterministic algorithm to perform δ
2

∑k
i=2 log ni

δ

comparisons, i.e. kρ
4

∑k
i=2 log ni

kρ , which is Ω(kρ
∑k

i=2 log ni

kρ). ⊓⊔

14

�2 � 2k �3 = 1�1 = 1

Fig. 4. Element x is present
in half of the arrays of the
sub-instance.

�1 = 1

Fig. 5. The adversary performs several strategies in
parallel, one for each sub-instance.

As x log(n/x) is an increasing function of x, kρ
∑

i log(ni/kρ) >
ρ
∑

i log(ni/ρ) and no deterministic algorithm is optimal in the
redundancy model.

Theorem 4. Any algorithm optimal in the redundancy model is optimal
in the alternation model.

Proof. By definition of the redundancy ρ and of the alternation δ of
an instance, δ

k ≤ ρ ≤ δ. So if an algorithm performs O(ρ
∑

log ni

ρ)
comparisons, it also performs O(δ

∑

log ni

δ) comparisons. Hence the result
as this is the lower bound in the alternation model. ⊓⊔

This proves also that the measure of difficulty of Demaine, López-
Ortiz and Munro [?] is not comparable with the measure of redundancy,
as it is not comparable with the measure of alternation [?, Section 2.3].
This means that the two measures are complementary, without being
redundant in any way, as it was for the alternation. All those measures
describe the difficulty of the instance:

– the alternation describes the number of key blocs of consecutive
elements in the instance;

– the cost describes the repartition of the size of those blocs;
– the redundancy describes the difficulty to find each bloc.

But only the cost and the alternation matter, because the alternation
analysis is reduced to the redundancy analysis.

6 Perspectives

The t-threshold set and opt-threshold set problems [?] are natural
generalizations of the intersection problem, which could be useful in

15

indexed search engines. The redundancy seems to be important in the
complexity of these problems as well, but we failed to define the proper
measure there. Once the proper definition of a certificate and of the
difficulty measure is found, the results of this paper should be generalized
to the t-threshold set and opt-threshold set problems.

Deterministic algorithms for the intersection have been studied on
practical data [?]. The performance of the randomized versions of those
algorithms, in terms of the number of comparisons and in terms of
running time, will be studied. We expect for instance the average
number of comparisons to decrease, as the randomized algorithm is more
independent from the structure of the instance than the deterministic
one.

Acknowledgments: This work was done at UBC, Vancouver, Canada,
during a post-doc internship founded by the “Institut National de
Recherche en Informatique et Automatisme” (INRIA) of France, under
the mentor-ship of Joël Friedman. The redundancy analysis is a
development of joint work with Claire Kenyon on the alternation analysis.
The author wishes to thank all these people.

