
Deterministic Algorithm for the t-Threshold Set

Problem

Jérémy Barbay1 and Claire Kenyon2

1 Department of Computer Science,
University of British Columbia,

201-2366 Main Mall, Vancouver, B.C.
V6T 1Z4 Canada

2 Laboratoire d’Informatique (LIX),
École Polytechnique,

91128 Palaiseau Cedex - France

Abstract. Given k sorted arrays, the t-Threshold problem, which is
motivated by indexed search engines, consists of finding the elements
which are present in at least t of the arrays. We present a new deterministic
algorithm for it and prove that, asymptotically in the sizes of the arrays,
it is optimal in the alternation model used to study adaptive algorithms.
We define the Opt-Threshold problem as finding the smallest non empty
t-threshold set, which is equivalent to find the largest t such that the
t-threshold set is non empty, and propose a naive algorithm to solve it.
Keywords: adaptive algorithm, t-threshold-set, opt-threshold set.

1 Introduction

We consider search engines where queries are composed of k keywords, and
where each keyword is associated to a sorted array of references to entries in
some database. The answer to a t-threshold query is the set of references which
appear in at least t of the k arrays [3]. The answer to an opt-threshold query is
the non-empty set of references maximizing the number of arrays they appears
in. The algorithms studied are in the comparison model, where comparisons are
the only operations permitted on references.

The analysis of the complexity of those problems in the worst case, when only
the number of arrays k and their sizes n1, . . . , nk are fixed, is trivial and does
not permit to distinguish between most algorithms. We propose a finer analysis

using a difficulty measure δ on the instances: we analyze the complexity of the
problem in the worst case among instances of same number of arrays, size of
arrays, and difficulty. This type of analysis was already performed on adaptive
algorithms for the union problem [6], intersection problem [3, 6], several sorting
problems [5, 8, 11], and for the computation of the convex hull [9].

The t-threshold problem has been studied before, as a generalization of the
intersection problem, but the algorithm was complicated and of complexity
O(tδ log k log

∑
i ni), which is not optimal because of the log k factor, and because

when the arrays are of very different sizes the complexity increases more quickly



2

than the lower bound [3]. Moreover this type of query is a parametrized relaxation
of the intersection, and is not quite practical for general purpose search engines.

To answer those problems, in section 2, we give a simpler and better deterministic
algorithm for t-Threshold, with time complexity O(δ

∑k

i=1
log(ni/δ+1)+δk log(k−

t + 1)), which is, asymptotically in the sizes of the arrays, optimal for t ≥ k/2
(no lower bound is known for t < k/2). We also discuss the notion of the opt-

threshold set of an instance, defined as the smallest non-empty threshold set, or
identically as the non empty t-threshold set with maximal t. This would permit
opt-threshold queries, which seem more practical than conjunctive or even t-
threshold queries for a search engine. Finally in section 3, we present some
perspectives for the domain, and especially address the issue of the practical
testing of those algorithms.

2 t-Threshold

Let U be a totally ordered space. Let −∞ and +∞ be such that all elements of
U are strictly larger than −∞ and strictly smaller than +∞.

Definition 1 (Instance, Signature, t-Threshold Set [3, definition 4.1]).
An instance consists of k sorted arrays A1, . . . , Ak of sizes n1, . . . , nk, whose

elements come from U . Its signature is (k, n1, . . . , nk). An instance has signature

at most (k, n1, . . . , nk) if it has signature (k′, n′
1
, . . . , n′

k′) with k′ ≤ k and n′
i ≤ ni

for all i ≤ k′. The output of the t-Threshold problem is the set Tt(A1, . . . , Ak)
containing exactly the elements present in at least t arrays.

Note that the 1-threshold set is the union of the arrays and that the k-threshold
set is their intersection.

Example 1. For instance the following set of arrays forms an instance of signature
(4, 5, 7, 6, 5) where the first number corresponds to the number of arrays, and
the following numbers correspond to the sizes of those arrays. The 1-threshold
set is the union of all the arrays; the 2-threshold set is {3, 4, 5, 7, 10, 11}; the
3-threshold set is {5}; and the 4-threshold set is the intersection and is empty.

A = 3 4 5 6 7
B = 5 6 7 10 11 12 13
C = 0 1 2 10 11 14
D = 3 4 5 8 9

2.1 Algorithm

The algorithm that we propose here for the t-threshold set uses an unbounded

search algorithm, which looks for an element x in a sorted array A of unknown
size, starting at position init. It returns a value p such that A[p − 1]<x≤A[p],
called the insertion point of x in A. This algorithm has already been studied
before, it can be implemented using the doubling search and binary search
algorithms [1, 3, 6, 7, 10], and is then of complexity 2⌈log

2
(p−init)⌉, and can be



3

implemented directly [4] to improve the complexity by a constant factor of less
than 2.

In [3, algorithm 3], we gave an algorithm to compute the t-threshold set which
performed unbounded searches in parallel in all arrays. Its complexity was close
to the lower bound in the worst case for n =

∑
i ni and k fixed, but not in the

worst case for an arbitrary signature (k, n1, . . . , nk). Here, we give a different
algorithm which performs unbounded searches one at a time, whose complexity
is better for an arbitrary signature (k, n1, . . . , nk) fixed.

Given t ∈ {1, . . . , k}, and k non-empty sorted sets A1, . . . , Ak of sizes n1, . . . , nk,
algorithm 1 computes the t-threshold set T = Tt(A1, . . . , Ak). For simplicity, we
assume that all arrays contain the element −∞ at position 0 and the element
+∞ at position ni + 1.

The algorithm has two nested loops. The outer loop goes through potential
elements of T (in variable m) in increasing order. Given a candidate element m,
for each array i, the variable containi ∈ {MAYBE, YES, NO} expresses the current
knowledge of the algorithm regarding the question: “does m belong to Ai?”.
To answer the question “does m belong to T ?”, the algorithm looks for m in
arrays marked MAYBE until either t arrays are marked YES, in which case we can
conclude that m ∈ T , or k − t + 1 arrays are marked NO, in which case we can
conclude that m /∈ T . In each pass in the inner loop the algorithms searches for
m in one array As which potentially contains m.

Invariant: at the start of the inner loop, for every i, pi denotes the first
potential position for m in Ai, i.e. it is known that Ai[pi − 1] < m. To decide
if m is present in an array As, the algorithm effects an unbounded search for
m from the position ps. The position returned is the insertion position of m:
in particular all elements before this position are smaller than m, and so pi is
updated to this position, thus maintaining the invariant.

The algorithm updates m each time it enters the outer loop, at which point
the goal is to compute t-threshold on the sets Ai[pi . . . ni]. It would seem natural
to take the next candidate m as mini Ai[pi], but one can do better than that to
gain efficiency: observe that if m is in T , then any set of k − t + 1 arrays must
contain at least one copy of m; hence it is enough to define m as mini∈H Ai[pi],
where H is any set of arrays of size k−t+1. A heap data structure is appropriate
for H , as it permits to maintain mini∈H Ai[pi] with a minimum of comparisons1.

Once m is defined, the arrays whose index are not in the heap, which potentially
contain m, are marked MAYBE, the arrays in the heap whose first element is equal
to m are marked YES and removed from the heap, and the arrays still left in the
heap, which cannot contain m, are marked NO.

Example 2. On the following set of arrays for instance, if t = 3 and m = 5, when
the algorithm found it in B and D, looked for it but didn’t find it in C, and will

1 See remark 1 page 7 for a comment on the use of an array instead of a heap.



4

look for it in A, the internal state looks like this:

MAYBE A = 3 4 5 6 7
YES B = 5 6 7 10 11 12 13
NO C = 6 0 6 1 6 2 10 11 14

→ YES D = 6 3 6 4 5 8 9

pA = 1
pB = 1
pC = 4
pD = 3

The arrow indicates the array whose marking has just been updated, the first
column gives the markings and the last column the positions.

After finding m = 5 in A the algorithm will get out from the inner loop
deciding that 5 is in the 3-threshold set. It will then increment pA, pB and pD,
and will choose another value for m:

– it will complete the heap to 2 indexes (here with D hence H = {C, D}),
– will set m to the smallest first element of those arrays (here m=D4 = 8),
– will mark arrays out of the heap with MAYBE (here A and B),
– will mark D with YES and take it out from the heap,
– and finally will mark C with NO.

→ MAYBE A = 6 3 6 4 6 5 6 7
→ MAYBE B = 6 5 6 7 10 11 12 13
→ NO C = 6 0 6 1 6 2 10 11 14
→ YES D = 6 3 6 4 6 5 8 9

pA = 4
pB = 2
pC = 4
pD = 4

Algorithm 1 Threshold Set(t, A1, . . . , Ak)

Given k, t ∈ {1, . . . , k}, and k sorted sets A1, . . . , Ak, all of which contain +∞, the
algorithm computes the t-threshold set T = Tt(A1, . . . , Ak).

for all i do pi ← 1 end for

T ← ∅; H ← ∅; s← 1
repeat

Complete H so that it contains k − t + 1 indices of arrays.
m← min{Ai[pi] s.t. i ∈ H}
for all i 6∈ H do containi ← MAYBE end for

for all i ∈ H s.t. Ai[pi] = m do containi ← YES; remove i from H end for

for all i ∈ H s.t. Ai[pi] 6= m do containi ← NO end for

while #YES < t and #NO < k − t + 1 do

Let As be the next array marked MAYBE in the cyclic order.
ps ← Unbounded Search(m, As, ps)
if As[ps]6=m then contains ← NO else contains ← YES end if

end while

if #YES ≥ t then T ← T ∪ {m} end if

for all i such that containi = YES do pi ← pi + 1 end for

until m = +∞
return T



5

2.2 Analysis

Any instance can be decomposed into blocks of consecutive elements, in order
to put in perspective its structure and capture some aspect of its difficulty.
We present here one way to do it with the t-partition certificate. This permits
to analyze the complexity of the algorithm (Theorem 1), and to prove that,
asymptotically in the sizes of the arrays, no other algorithm can perform better
on instances of similar structures (see the lower bound in [3], improved in [1,
chap. 4]).

Definition 2 (t-Partition-Certificate). A t-partition-certificate is a partition

of U into intervals such that each singleton interval is an element of Tt, and all

other intervals have an empty intersection with at least k − t + 1 arrays.

The non-deterministic complexity is the minimal number of comparisons
needed by a non-deterministic algorithm to check the result of the instance. It is a
weak lower bound on the complexity of a randomized or deterministic algorithm.
For t = k, the t-threshold set is exactly the intersection, and the minimal size of a
t-partition-certificate is exactly the non-deterministic complexity of the instance
plus one [3], which forms a natural measure of difficulty.

Imagine a function which indicates, for each element x ∈ U , either the indices
of t arrays containing x (if x is in the t-threshold set) or the indices of k − t + 1
arrays not containing x (if x is not in the t-threshold set). For each element
several answers are acceptable, but elements in the same interval of a partition-
certificate of the instance will have common answers. The minimal number of
times such a function alternates answers, for x scanning U in increasing order, is
also the minimal size of a partition-certificate of the instance (minus one), which
is called t-alternation.

Definition 3 (t-Alternation δt). The t-alternation δt(A1, . . . , Ak) of an instance

(A1, . . . , Ak) is the minimal number of intervals composing a t-partition-certificate

of this instance.

For general values of t the non-deterministic complexity nd does not correspond
exactly to the minimum size δ of a t-partition certificate, but the values are still
related:

– To any comparison-based proof, one can associate a t-partition-certificate,
and the size of this partition-certificate is at most the size of the proof plus
one, hence δ − 1 ≤ nd;

– conversely, from any t-partition-certificate, one can deduce a comparison-
based proof whose length (number of comparisons) is at most (k − t + 1)
times the t-alternation minus 1, hence nd ≤ (k − t + 1)(delta − 1).

Example 3. The partition-certificates are easier to see if we represent each array
by a line where elements of value x are drawn at abscissa x:

A = 3 4 5 6 7
B = 5 6 7 10 11 12 13
C = 0 1 2 10 11 14
D = 3 4 5 8 9



6

For instance, the 4-threshold set of the last instance (A, B, C, D) is empty,
and the 3-threshold set is T3(A, B, C, D) = {5}:

– the partition { (−∞, 3), [3, 10), [10, +∞) } is a 4-partition-certificate of minimal
size for this instance, hence its 4-alternation is δ4(A, B, C, D) = 3;

– the partition { (−∞, 3), [3, 5), {5}, (5, 8), [8, 10), [10, +∞) } is a 3-partition-
certificate of minimal size for this instance, hence the 3-alternation of this
instance is δ3(A, B, C, D)=6, and its 3-threshold set is T3(A, B, C, D)={5}.

Note that a t-partition certificate of minimal size can be generated by a greedy
algorithm, but that it is not needed in an efficient algorithm to compute the
t-threshold set. Algorithm 1 and its analysis improve the previous upper bound
O(δt log k log

∑
i ni) [3] for the t-threshold set computational complexity. This

is partly due to the algorithm, which performs one unbounded search at a time
instead of performing several in parallel; and partly due to a better analysis.

Theorem 1. Algorithm 1 performs O(δ
∑

i log(ni/δ+1) + δk log(k − t + 1))
comparisons on an instance of signature (k, n1, . . . , nk) and t-alternation δ.

This upper bound has to be compared to the lower bound Ω(δ
∑k

i=2
log ni/δ)

(see [3, Corollary 3.1] improved in [1, chap. 4]), valid when t ≥ k/2. The ratio is

then of 1+k log(k− t+1)/
∑k

i=2
log ni/δ. This is equal to 1 if t = k, and smaller

than 2 in most cases, in particular as long as ∀ini ≥ δ(k− t +1). Otherwise it is
O(log(k − t + 1)), which is reasonably small for queries to search engines on the
web, where k is the number of keywords input by the user.

Proof. Consider an instance (A1, . . . , Ak) of signature (k, n1, . . . , nk) and of t-
alternation δ. Let (Ij)1≤ j≤δ be a corresponding t-partition-certificate. We call
search comparisons the comparisons performed during an unbounded search, and
heap comparisons the other comparisons.

During the execution of algorithm 1, the sequence of values taken by m is
strictly increasing. For j = 1, . . . , δ we say that a comparison is performed during
phase j if m ∈ Ij when the comparison is performed.

For each phase j = 1, . . . , δ, by definition either Ij is a singleton whose
element is present in at least t arrays or there is at least k − t + 1 arrays which
do not intersect Ij . As the algorithm searches the arrays in a fixed order, it
performs at most one search in each array before to update m to a value not
in Ij , and move to the next phase. Hence in each phase at most one search is
performed for each array.

For each phase j = 1, . . . , δ and each array Ai, let gi
j be the increment of

pi between the instants before and after the unbounded search during phase
j in array Ai. The algorithm performs 2 log2(g

i
j + 1) search comparisons in

array Ai during phase j, and a total of 2
∑

j log2(g
i
j + 1) during the execution

of the algorithm. This is smaller than 2δ log2(
∑

j gi
j/δ+1) by concavity of the

function log2(x + 1) . These gi
j elements are “jumped” by the algorithm and

will not be compared anymore: so
∑

j gi
j≤ni and the algorithm performs less

than 2δ log
2
(ni/δ + 1) search comparisons in array Ai. Summing over all arrays



7

gives the upper bound 2δ
∑

i log
2
(ni/δ +1) of the number of search comparisons

performed by the algorithm.

The heap H contains at most k− t+1 elements, so each action on H costs at
most log2(k−t+1) comparisons. During a positive phase (when m ∈ Tt) there is
only one iteration of the outer loop, hence a maximum of k − t + 1 additions, of
total cost at most (k−t+1) log2(k−t+1), accounting for 2(k−t+1) log2(k−t+1)
comparisons for additions and removals.

During a negative phase, there can be several iterations of the outer loop,
each such that #NO = k − t + 1. Let’s note #H the number of indexes in H
during an iteration of the outer loop: it is the value of #NO before it enters
the inner loop. At the next iteration of the main loop the algorithm must add
k − t + 1 − #H indexes to complement the heap, which is exactly the number
of negative unbounded searches it performed to obtain #NO = k − t + 1. As the
algorithm performs at most k − 1 unbounded searches per phase, the number of
addition to the heap during such a phase is at most k−1, of total cost including
removals at most 2(k− 1) log2(k − t + 1). Hence the algorithm performs in total
less than 2δ(k − 1) log

2
(k − t + 1) heap comparisons.

The total number of search and heap comparisons performed by the algorithm
is smaller than 2δ

∑
i log2(ni/δ + 1) + 2δ(k − 1) log2(k − t + 1), which is in

O(δ
∑

i log(ni/δ + 1) + δ(k − 1) log(k − t + 1)). ⊓⊔

Remark 1. Note that the use of an array instead of a heap for H would permit to
save comparisons in many cases, in particular in positive phases where computing
the min would cost only k − t comparisons. But during a negative phase, there
can be up to k−1 iterations of the external loop, each with only one unbounded
search but also one min computation. In this case an array costs (k−1)(k−t+1)
comparisons while the heap costs only 2(k − 1) log2(k − t + 1). Hence the choice
of a heap to implement H .

2.3 From t-Threshold to Opt-Threshold

The t-threshold set is a relaxation of the intersection: it is less constrained as t
is getting smaller. By definition, the sets are then increasing and Tk ⊂ . . . ⊂ T1.
For conjunctive queries whose corresponding intersection is empty, the (k − 1)-
threshold set would be a more informative answer. The same reasoning can be
applied to any t-threshold query for t > 1: if the answer to the query is empty
then the (t − 1)-threshold query answer is more informative.

We define the opt-threshold set as the smallest non empty threshold set. It is
always defined, as the 1-threshold set is never empty because it is the union of the
arrays, whose sizes are required to be positive. The multiplicity of the instance
is simply the value of t for which the opt-threshold set is the t-threshold set.

Definition 4 (Opt-Threshold Set). The multiplicity opt(A1, . . . , Ak) of an

instance is the maximum number of arrays with non-empty intersection. The

Opt-Threshold Set of an instance of multiplicity t is the sorted array Tt(A1, .., Ak).



8

The opt-threshold set is the most adequate answer to a simple query composed
of k words on an indexed search engine. When some elements of the database
match all the words of the query then it corresponds to an intersection, otherwise
it corresponds to the set of elements maximizing the number of words matched.

Example 4. The multiplicity of example 1 is opt(A, B, C, D) = 3, and the opt-
threshold set is T3 = {5} (see example 3 for the proof).

A naive algorithm to solve this problem would be to use algorithm 1 to
compute iteratively the t-threshold set for t decreasing from k to 2 till a non-
empty threshold set is computed. This is better than performing a binary search
or a doubling search on the optimal value of t, as the t-alternation can vary
widely from one value of t to the next, and hence the complexity of algorithm 1.

Proposition 1. The naive algorithm performs O(δ(k − t + 1)
∑

i log(ni/δ+1))
comparisons on an instance of signature (k, n1, . . . , nk), multiplicity t and t-
alternation δ.

A more sophisticated algorithm would compute each t-partition certificate
recursively from a t+1-partition certificate, till obtaining a non-empty threshold
set, but this saves only a constant factor in the worst case complexity: such an
algorithm can still be forced to search k − t + 1 times in the same array for
elements of the same interval of a partition certificate.

The algorithm is optimal if t = k. Otherwise its complexity is at a factor of
O(k − t + 1) of the lower bound, which can be considered small for queries to
search engines on the web.

3 Perspectives

An obvious perspective concerns the opt-threshold set problem: is the naive
algorithm optimal ? Is the t-alternation for an optimal value of t an adequate
measure of difficulty for this problem ? We thought for a while that there was an
algorithm solving this problem with the same complexity than for the t-threshold
set, but were proved wrong: the problem is still open...

The worst instances used in the lower bounds [3] are pathological: δt elements
are in a number of arrays maximizing the number of comparisons needed to find
it (k−1 for the intersection, and t−1 in general for the t-threshold set). A measure
taking into account the multiplicity of each element would be more precise. For
the intersection the optimal algorithm has to be randomized: for instance if an
element is present in exactly half of the arrays, a randomized algorithm will look
for it in 2 arrays on average before concluding, while a deterministic algorithm
will look for it in k/2 arrays [2]. Those results do not apply to the t-threshold
directly, whose analysis needs a more sophisticated generalization of the measure
of difficulty.

Jason Hartline suggested an interesting extension of the t-threshold and opt-
threshold problems, in which a weight is associated to each array, and a score is
defined for each reference by summing the weights of the arrays containing it. The



9

problems consist then in returning references scoring above the threshold t, or
the maximum score attained by a reference. It is easy to extend the algorithms to
solve those new problems, and extending their analysis and lower bounds seems
feasible.

More complex queries can be defined by combining t-threshold functions.
We recursively define a concept as a t-threshold or an opt-threshold function on
concepts or keywords. We define in turn a concept query by a concept, and we
define the answer to such a query as the set of references matching this concept.
Preliminary work shows that the lower bounds and algorithms studied on the
t-threshold set problem can be generalized to those more complex queries.

Testing algorithms for the intersection is feasible on data from any actual
search engine (see [7]). On the other hand, testing accurately algorithms for
the t-threshold set or for opt-threshold set won’t be so easy. With usual search
engines which perform only intersections, users restrict their queries to a small
number of keywords, in order to limit the risk to obtain an empty answer. A
realistic test would require the implementation of a search engine using an opt-
threshold set algorithm, and real testing by users.

Acknowledgements: Thanks to the anonymous reviewers for helping to point out
a mistake concerning the opt-threshold set problem. Jérémy Barbay wishes also
to thank the “Institut National de Recherche en Informatique et Automatisme”
of France for funding his postdoctoral position, and Joël Friedman for inviting
him at UBC.

References

1. J. Barbay. Analyse fine: bornes infrieures et algorithmes de calculs d’intersection
pour moteurs de recherche. PhD thesis, Universit Paris-Sud, Laboratoire de
Recherche en Informatique, Septembre 2002.

2. J. Barbay. Optimality of randomized algorithms for the intersection problem. In
2nd Symposium on Stochastic Algorithms, Foundations and applications. LNCS,
Springer-Verlag, 2003.

3. J. Barbay and C. Kenyon. Adaptive intersection and t-threshold problems. In
Proceedings of the 13th ACM-SIAM Symposium On Discrete Algorithms (SODA),
pages 390–399. ACM-SIAM, ACM, January 2002.

4. J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded
searching. Information processing letters, 5(3):82–87, 1976.

5. C. Cool and D. Kim. Best sorting algorithm for nearly sorted lists. Communication
of ACM, 23:620–624, 1980.

6. E. D. Demaine, A. Lpez-Ortiz, and J. I. Munro. Adaptive set intersections, unions,
and differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 743–752, 2000.

7. E. D. Demaine, A. Lpez-Ortiz, and J. I. Munro. Experiments on adaptive set
intersections for text retrieval systems. In Proceedings of the 3rd Workshop on
Algorithm Engineering and Experiments, Lecture Notes in Computer Science, pages
5–6, Washington DC, January 2001.

8. V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys, 1992. 24(4):441–476.



10

9. D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM
J. Comput., 1986. 15(1):287–299.

10. K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, chapter
4.2 Nearly Optimal Binary Search Tree, pages 184–185. Springer-Verlag, 1984.

11. O. Petersson and A. Moffat. A framework for adaptive sorting. Discrete Applied
Mathematics, 59:153–179, 1995.


