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Abstract This dynamics results in a remarkably rich and interest-

We propose a discrete variant of the Bak-Sneppen moti§] behavior, even in one dimension; the parameters describ
for self-organized criticality. In this process, a configion INg the system (s.a. aging) typically are not Gaussian but
is an n-bit word, and at each step one chooses a rand&How power laws. The system organizes itself into a highly
bit of minimum value (usually a zero) and replaces it arfprrelated state where:
its two neighbors by independent Bernoulli variables with

e most species have reached a fitness above a certain
parameterp. We prove bounds on the average number of

: ; S : threshold,
ones in the stationary distribution and present experiatent
results. ¢ but chain reactions, called avalanches, produce large,
_ non-equilibrium fluctuations in the configuration of fit-
1 Introduction ness values.

1.1 Background How does one model rare catastrophic . . .
events such as avalanches, volcanic eruptions, and ex though the Bak-Sneppen model is extremely simple, it

tions of species? Self-organizing criticality is a name e:orﬂas nqt ye_t been_ so!ved in spite of numerous analytical and
mon to such models. It refers to the tendency of sIowIQymer'Cal investigations [16, 8, 2, 11, 15, 12, 4, 13, 14]. In

driven dissipative systems with many degrees of freedom¢ dimension a real space renormalization group approach
evolve intermittently in terms of bursts spanning all ssalp W8S taken [11, 15], but mathematically rigorous results are

to system size. These systems traverse “rugged IandscaﬁEE’IaCk'ng' .
in the space of configurations in search of their optimal con- Inspired by such self-organized models, Boett_ch_er
figuration, with extremely slow relaxation dynamics. a_md PerCl_Js_ [5] proposed a new ge_neral-purpose ppnmlza-
One of the paradigms of self-organizing criticality i§On heuristic, “extremal optimization”, a competitor of
the Bak-Sneppen model for coevolutionary avalanches Pgfradigms such as genetic algorithms [9] and simulated an-
different species in an ecology [1]. Different species ffealing [10]. Extremal optimization heuristics transfaire
the same eco-system are related through, for instance, f68ff€nt suboptimal solution by focusing on its extremely
chains, and co-evolve: the mutation or extinction of ofjidesirable comppnents and randomly pert_urb_atlng them
species affects the species which are related to it. TH&her than “oreeding” better components, which is thestr
evolution is guided by Darwinian principles, with mutatioffdy Of genetic algorithms). Such heuristics are inherently
or extinction of the least fit species. This translates ingt'JffICUIt to ana_lyzg but expenm_ental_ly seem promising (see
the following clean mathematical model. The current statel [0 @ application to graph bisection).

of the Bak-Sneppen model is completely defined sy : -
“fitness” numbersf; arranged on &-dimensional lattice of 1.2 Our modd and results Motivated by the difficulty

sizen (here each vertekrepresents a species, the lattice i @nalyzing rigorously even the one-dimensional version

the eco-system, and the edges represent relations betvidA€ Bak-Sneppen model, in this paper we analyze a still
species). The rules of its dynamics are very simple: A{nPler model proposed by R. Kenyomith discrete fitness
every time step the smallest of the numbgtsand its values. In this model, each species has fithess 0 or 1, and

2d nearest neighbors are replaced with new uncorrelaf@f New fitness is drawn from the Bernoulli distribution
random numbers drawn from some fixed distribution, usualiih Parametep. Since there are typically several least fit
the uniform distribution i0, 1] (this represents a mutatiorPP€C1€S: the_ process then repeatedly chooses_ a species for
of the least fit species and coevolution of related species)Mutation uniformly at random among the least fit species.
This paper only studies the one-dimensional case,

whose state is simply am-bit word zpxi...z,_1 €
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{0,1}". Assume that the process is initially in an arbitrary — z; + ;41 + ... + #i450)/101.

state: At each step a randam= 0 is chosen if there is one . : : '
(or a randomz; = 1 otherwise), andr; and its neighbors Many open questions remain on this model. One first

2i_, andz;4, are erased and replaced by new independgﬁf‘l would be proving that there is a phase transition, i.e.

Bernoullivariables. We assume toroidal boundariesgi&s that for S”l?”p thek_spemetsh_do ROt ?rl: athteve ftl_tness L t.We
left neighbor isz,, _; andz,,_,’s right neighbor iszo. are currently working on this. Another interesting queastio

We focus on the number of ones in the stationagpmd be relating the model rigorously_t_o the clas_sical Bak-
distribution as a function gf. The result of simulations is neppen model: for example, is Fhe critical valug @i our
plotted on figure 1. Here = 1000, and for each value of model related to the threshold fitness of the Bak-Sneppen
from 1,/100 to 100,100, we take the result of 100 runs of th&"del ?

process (computing the expectation and standard deviation _ .

of (#£1)’s/n), where each run performg)® steps, starting 2 Behavior when pislarge

from the state in which every variable equals 1. We plot the The main result of this section is the following theorem,
average proportion of ones with an error-bar of radius owdich says that whemp is large enough, the ones invade
standard deviation. Looking at this data, one can make gwerything and there are no avalanches.

following observations:

THEOREM2.1. Assumep > p = K/3 — 1/3 —
e There is a critical valuep, < 1 beyond which 2/3K with K = (17 +3/33)/3 (sop ~ 0.5436890125...).
the zeroes do not survive,.e. p. = Then as goes to infinity, the expected number of zeroes in

inf{p|lim, o F(#1)'s/n = 1}. If p > p., then the stationary distributionis bounded above by a constant.

in the stationary distribution there are— o(n) ones. ) ) ]
From our simulation, it appears that < p. < .4. In Proof. The proof uses a potential function argument. Define

Theorem 2.1, we prove that < .5436890125.... This the diameterD, of the process at time as the minimum
Theorem and its proof are presented in Section 2. Size of an “interval” containing all the zeroes of the cutren
distribution: in other wordsD; = n — max{j | 3i,2; =

o If the process picked arandom, the expected fractionz;y1 = ... = z;4;1 = 1}, where again all indices
of ones would asymptotically equal Picking a least are modulorn. Note that/),, if it is greater than 1, can
fit species has a drastic effect on the stationary districrease by at most 1 at each step. Assume that the process
bution, even whep is quite small. In fact, it appearschooses the rightmost zero 6f; (the leftmost zero case is
that for everyp € (0, 1), the average proportion of onesymmetrical).
is always significantly greater than In fact, in The-

orem 3.1, we prove that in the stationary distribution * If2< Dy < n—1then:

the_re are at Ieast/_(l + 2/3_p) —o(n) ones on average. 1 withpr. (1—p)

This lower bound_ is expenm_entglly tight fprsmall, as _ 0 withpr. p(1—p)
can be seen on figure 2, which is just a close-up of fig- Diyr — Dy < —1 withpr. p*(1—p)
ure 1 and also plots the functidri(1 + 2/3p): we see —2  withpr. »

that forp < .05, the experimental data almost agrees
with the lower bound. The proof of the lower bound is  where the transitions considered are (in ordéx) —
presented in Section 3. * %0, %01 — %01, %01 — 011, and*01 — 111.

e Some complex, high-variance phenomenon occurs ine If D; = 1 or0thenD;; < 3.
the middle range op, between.35 and .4. We per-
formed additional experiments in tht range: figure 3 .
shows snapshots of tF:we configuration at gevera?l points p), angl_equals at mogst— 1 with the complementary
in time, for a single run of the process. In this simula- probabilityl — (1 - p)*.
tion,p = .365 andn = 1000. We plot the proportion of |f the process chooses a zero which is not rightmost or
ones as a function of time, starting from the state wheggtmost of D, , thenD, ;1 < D,. Let Z, denote the number
every variable equals 1. We see that the proportiongfzeroes at time. Then the process chooses the rightmost or

e If D, = nthenD,, stillequals: with probability(1—

ones varies widely, betwed0% and70% or so. leftmost zero ofD, with probability2/Z;. SinceZ; < D,
We take snapshots of the configuration the first time thé always have

proportion of ones reache®)%, 80%, and 70%. To 2 < 2 <1

visualize the configuration at those instants, we plot for Dy = 2y —

each0 < i < n the average value of the fithessagf Aside from these constraints, we have no control dierso
and of its 100 closest neighbds;_s0 + ...+ x;—1 + in order to prove an upper bound for the diameter we will
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take the worst case afi and analyze instead the followingrhenM is ergodic with stationary distribution satisfying

Markov chain X, with state spacg0,1,...,n}. Assume =(s) < C’e~% forall s € N, whereC’ andJ are positive
X; = i and lete; be defined later. constants.
o If2<i<n-—1then Thus the stationary distribution df; is exponentially

decreasing:Pr(Y = i) < Ac’ wherec is some constant
less than 1. From Lemma 2.1, the stationary probability of
X must thus havér(X = i) < Aic® and the expectation
of X is at mosty_, Ai?¢’, a bounded quantity. Hence
E(D;) = O(1), and there are on average— O(1) ones

0 in the stationary distribution. This ends the proof of the

1 withpr. (1—pay

0  withpr. p(l—-pla;+ (1 — )
-1 withpr. p*(1 - p)oy
—2  withpr. piq;

Xip1—Xy =

e If ¢ = 0 or 1 thenX,;, = 3 with probability«,; and

with probability1 — a;. Theorem.
o If i = nthen 3 A lower bound tothe number of ones
. n withpr. (1 —p)3a; + (1 — a;) Even whenp is small, the fact th_at thfa process always
X1 =0 021 with pr. (1 —(1—p)?)ay chooses ar; = 0 as the center of its window is already

sufficient to bias the number of ones and make it significantly

Observe thatim; £(X;) > lim; E(D;) as long as the larger tharpn (see figure 2).

holding probabilities(«;)o<i<, are defined to maximize o

lim, E(X;) subject to the constraiatf/i < a; < 1. THEORE_M 3.1. As_n goes_to _|nf|r_1|ty,_ the expected number
of ones in the stationary distribution is greater than or afu

LEMMA 2.1. Let M be a Markov chain 040, 1,...n}and to:

let M’ be the Markov chain on the same state space whose 3pn/2 (V)

transitions from: are: with probability «; take one step 1+ 3p/2 "

according to.M, and with probabilityl — «; stay in state

i. Let(r;) denote the stationary distribution gf(. Then the Proof. Let O be the number of ones arif] the number of

stationary distributior{x;) of M’ is: zeroes at time. Let O{”) be the number of ones whose
immediate right neighbor is a zero, aﬁ)cﬂ” be the number
772'/042' . . . . i
= = of ones whose immediate left neighbor is a zero. Then:
Zj T/
. O(l) O(")
The proof is straightforward and ommitted. E(O¢41 — O history up toi) —-— T3

Let M denote the maximum value tfn, E(X,). From > —% +3p
the above Lemma, clearly/ is reached fof«;) satisfying:
a; = 2/ifori > [M] ande; = 1fori < [M]. Itonly  where the inequality follows fror@"’ < 0;, 0" < Oy,
remains to analyze the Markov chain thus defined. andZ; = n—0,. Thus, ifwe letA. = (3p—c)n/(24+3p—¢)
Since this would entail doing some boring calculationgnd X, = A, — O,, we have that at each stéf changes by
instead we study the Markov chalry which is the same at most 3, and
as X, except that all holding probabilities; are equal
to 1 inY;. For that very simple chain, a straightforward F'(X,., — X, |history up totime, X; > 0) < —e < 0.
computation yieldsF(Yi41 — Y22 < ¥V < n—1) =
1—p—p?—p® andE (Y41 —Y;|Y; = n) = —1x(1—(1—p)?). Now, we use the following version of the Optional Stopping
Both of these are negative as long@as< p = K/3 — theorem adapted from [6]:
1/3 — 2/3K with K = (17 4 3/33)/3. We now apply

the following Lemma, adapted from [7]: THEOREM 3.2. If Ty < T are stopping times ant,;, (v )

is a supermartingale whose absolute value converges in
LEMMA 2.2. Let M be an irreducible, aperiodic Markovexpectation to some finite value, thetr, > EYr.
chain with state spac#/, andp;;: be the transition proba-

bility from s to s in M, so that Lett, be atime whenX,, > 0. Define the random stopping
time 7' as the first time whenXy < 0 after¢,. The
3C, Vs, s |s—s'| > C = pss =0 random variableZ, = X, + €(t — to) is a supermartingale

[17] up to timeT, i.e. E(Z:y1|historyuptot) < Z;. By

the Optional Stopping theorenk(Zr) < Z,, or in other
S e s.t. Z Pest % (5 —8) < —¢ Vs > S. Words,eE(T—tq) < X;,. Takingty = 0 yields thatX; first

becomes negative aftér(T) < A./c steps on average.

and
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To examine subsequent excursionsgfin the positive
domain, let{, be any time at whicb?(tg >0 andth_l < 0.
We then have (T — 1) < Xy < 3, so thatl’ — ¢ < 3/¢

and the excursions of, in the positive domain have average

duration at mos8/¢. SinceX; varies by at most 3 at each
step, for every > 1 we have

Pr{X; > i} < Pr{X; in excursion of duration> [2i/3]}.
Then

E(Xy)

IN

Z Pr{X; > i}

i>1

2> Pr{X, in excursion of duration> i}
i>1

2E(length of excursion

6/e.

IN

<
Translating this into our original random variable, we afta

(3p—e)n
(24 3p—¢)

6

€

E(O:) >

Lettinge = 1/+/n yields the Theorem.

We leave open the following tantalizing conjecture.

CONJECTUREL. There exispy > 0 and a constant < 1
such that forp < pg, in the stationary distribution the
expected number of ones is at mast
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Figure 1: Experimental study of the asymptotic proportibomes of the discrete Bak-Sneppen process as a functipn of
Observe the large variance in the middle rangg.ofleren = 1000, T = 10%, we take the average @f)0 runs, and the
error bar has radius equal to one standard deviation.

Discrete Bak Sneppen model: 1000 variables, 1000000 steps, 100 runs
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Figure 2: Experimental study of the asymptotic number opprdon of the discrete Bak-Sneppen process as a function of
p in the range wherg is small. Observe that the lower bound is tightfot. .05.



SpecificStudy of LocalDensity: 1000 variables, p=0.365
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Figure 3: Study of a single run of the process:;or 1000 andp = .365. On the first line the evolution of the proportion of
ones in function of time. Observe that the system returrisgieally to the all-one state. On the second line, the snaiss
of the first time the system attains a proportion of one$0§%,80% and70%. On these snapshots thecoordinate ranges
from O ton, and for eachi we plot the average fithess ef and of its neighbors at distance less tharn the configuration.



