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Abstract

We propose a discrete variant of the Bak-Sneppen model
for self-organized criticality. In this process, a configuration
is an n-bit word, and at each step one chooses a random
bit of minimum value (usually a zero) and replaces it and
its two neighbors by independent Bernoulli variables with
parameterp. We prove bounds on the average number of
ones in the stationary distribution and present experimental
results.

1 Introduction

1.1 Background How does one model rare catastrophic
events such as avalanches, volcanic eruptions, and extinc-
tions of species? Self-organizing criticality is a name com-
mon to such models. It refers to the tendency of slowly-
driven dissipative systems with many degrees of freedom to
evolve intermittently in terms of bursts spanning all scales up
to system size. These systems traverse “rugged landscapes”
in the space of configurations in search of their optimal con-
figuration, with extremely slow relaxation dynamics.

One of the paradigms of self-organizing criticality is
the Bak-Sneppen model for coevolutionary avalanches of
different species in an ecology [1]. Different species in
the same eco-system are related through, for instance, food
chains, and co-evolve: the mutation or extinction of one
species affects the species which are related to it. The
evolution is guided by Darwinian principles, with mutation
or extinction of the least fit species. This translates into
the following clean mathematical model. The current state
of the Bak-Sneppen model is completely defined bynd
“fitness” numbersfi arranged on ad-dimensional lattice of
sizen (here each vertexi represents a species, the lattice is
the eco-system, and the edges represent relations between
species). The rules of its dynamics are very simple: At
every time step the smallest of the numbersfi and its2d nearest neighbors are replaced with new uncorrelated
random numbers drawn from some fixed distribution,usually
the uniform distribution in[0; 1] (this represents a mutation
of the least fit species and coevolution of related species).
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This dynamics results in a remarkably rich and interest-
ing behavior, even in one dimension; the parameters describ-
ing the system (s.a. aging) typically are not Gaussian but
follow power laws. The system organizes itself into a highly
correlated state where:� most species have reached a fitness above a certain

threshold,� but chain reactions, called avalanches, produce large,
non-equilibrium fluctuations in the configuration of fit-
ness values.

Although the Bak-Sneppen model is extremely simple, it
has not yet been solved in spite of numerous analytical and
numerical investigations [16, 8, 2, 11, 15, 12, 4, 13, 14]. In
one dimension a real space renormalization group approach
was taken [11, 15], but mathematically rigorous results are
still lacking.

Inspired by such self-organized models, Boettcher
and Percus [5] proposed a new general-purpose optimiza-
tion heuristic, “extremal optimization”, a competitor of
paradigms such as genetic algorithms [9] and simulated an-
nealing [10]. Extremal optimization heuristics transformthe
current suboptimal solution by focusing on its extremely
undesirable components and randomly perturbating them
(rather than “breeding” better components, which is the strat-
egy of genetic algorithms). Such heuristics are inherently
difficult to analyze but experimentally seem promising (see
[3] for an application to graph bisection).

1.2 Our model and results Motivated by the difficulty
of analyzing rigorously even the one-dimensional version
of the Bak-Sneppen model, in this paper we analyze a still
simpler model proposed by R. Kenyon1 with discrete fitness
values. In this model, each species has fitness 0 or 1, and
each new fitness is drawn from the Bernoulli distribution
with parameterp. Since there are typically several least fit
species, the process then repeatedly chooses a species for
mutation uniformly at random among the least fit species.

This paper only studies the one-dimensional case,
whose state is simply ann-bit word x0x1 : : :xn�1 2

1Personal communication.
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f0; 1gn. Assume that the process is initially in an arbitrary
state: At each step a randomxi = 0 is chosen if there is one
(or a randomxi = 1 otherwise), andxi and its neighborsxi�1 andxi+1 are erased and replaced by new independent
Bernoulli variables. We assume toroidal boundaries, i.e.x0’s
left neighbor isxn�1 andxn�1’s right neighbor isx0.

We focus on the number of ones in the stationary
distribution as a function ofp. The result of simulations is
plotted on figure 1. Heren = 1000, and for each value ofp
from1=100 to100=100, we take the result of 100 runs of the
process (computing the expectation and standard deviation
of (#1)0s=n), where each run performs106 steps, starting
from the state in which every variable equals 1. We plot the
average proportion of ones with an error-bar of radius one
standard deviation. Looking at this data, one can make the
following observations:� There is a critical valuepc < 1 beyond which

the zeroes do not survive,i.e. pc =inffpj limn!1E(#1)0s=n = 1g. If p > pc, then
in the stationary distribution there aren � o(n) ones.
From our simulation, it appears that:3 < pc < :4. In
Theorem 2.1, we prove thatpc � :5436890125:::. This
Theorem and its proof are presented in Section 2.� If the process picked a randomxi, the expected fraction
of ones would asymptotically equalp. Picking a least
fit species has a drastic effect on the stationary distri-
bution, even whenp is quite small. In fact, it appears
that for everyp 2 (0; 1), the average proportion of ones
is always significantly greater thanp. In fact, in The-
orem 3.1, we prove that in the stationary distribution
there are at leastn=(1+ 2=3p)� o(n) ones on average.
This lower bound is experimentally tight forp small, as
can be seen on figure 2, which is just a close-up of fig-
ure 1 and also plots the function1=(1 + 2=3p): we see
that forp < :05, the experimental data almost agrees
with the lower bound. The proof of the lower bound is
presented in Section 3.� Some complex, high-variance phenomenon occurs in
the middle range ofp, between:35 and :4. We per-
formed additional experiments in tht range: figure 3
shows snapshots of the configuration at several points
in time, for a single run of the process. In this simula-
tion,p = :365 andn = 1000. We plot the proportion of
ones as a function of time, starting from the state where
every variable equals 1. We see that the proportion of
ones varies widely, between100% and70% or so.

We take snapshots of the configuration the first time the
proportion of ones reaches90%, 80%, and70%. To
visualize the configuration at those instants, we plot for
each0 < i < n the average value of the fitness ofxi
and of its 100 closest neighbors(xi�50+ : : :+ xi�1 +

xi + xi+1 + : : :+ xi+50)=101.

Many open questions remain on this model. One first
goal would be proving that there is a phase transition, i.e.
that for smallp the species do not all achieve fitness 1: we
are currently working on this. Another interesting question
would be relating the model rigorously to the classical Bak-
Sneppen model: for example, is the critical value ofp in our
model related to the threshold fitness of the Bak-Sneppen
model ?

2 Behavior when p is large

The main result of this section is the following theorem,
which says that whenp is large enough, the ones invade
everything and there are no avalanches.

THEOREM 2.1. Assumep > � = K=3 � 1=3 �2=3K withK = (17+3p33)1=3 (so� � 0:5436890125:::).
Then asn goes to infinity, the expected number of zeroes in
the stationary distribution is bounded above by a constant.

Proof. The proof uses a potential function argument. Define
the diameterDt of the process at timet as the minimum
size of an “interval” containing all the zeroes of the current
distribution: in other words,Dt = n � maxfj j 9i; xi =xi+1 = : : : = xi+j�1 = 1g, where again all indices
are modulon. Note thatDt, if it is greater than 1, can
increase by at most 1 at each step. Assume that the process
chooses the rightmost zero ofDt (the leftmost zero case is
symmetrical).� If 2 � Dt � n� 1 then:Dt+1 �Dt � 8>><>>: 1 with pr. (1� p)0 with pr. p(1� p)�1 with pr. p2(1� p)�2 with pr. p3

where the transitions considered are (in order)�01 !� � 0; �01! �01; �01! 011, and�01! 111.� If Dt = 1 or 0 thenDt+1 � 3.� If Dt = n thenDt+1 still equalsn with probability(1�p)3, and equals at mostn � 1 with the complementary
probability1� (1� p)3.

If the process chooses a zero which is not rightmost or
leftmost ofDt, thenDt+1 � Dt. LetZt denote the number
of zeroes at timet. Then the process chooses the rightmost or
leftmost zero ofDt with probability2=Zt. SinceZt � Dt,
we always have 2Dt � 2Zt � 1:
Aside from these constraints, we have no control overZt, so
in order to prove an upper bound for the diameter we will
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take the worst case onZt and analyze instead the following
Markov chainXt with state spacef0; 1; : : :; ng. AssumeXt = i and let�i be defined later.� If 2 � i � n� 1 thenXt+1�Xt = 8>><>>: 1 with pr. (1 � p)�i0 with pr. p(1� p)�i + (1� �i)�1 with pr. p2(1� p)�i�2 with pr. p3�i� If i = 0 or 1 thenXt+1 = 3 with probability�i and 0

with probability1� �i.� If i = n thenXt+1 = � n with pr. (1� p)3�i + (1� �i)n� 1 with pr. (1� (1� p)3)�i
Observe thatlimtE(Xt) � limtE(Dt) as long as the

holding probabilities(�i)0�i�n are defined to maximizelimtE(Xt) subject to the constraint2=i � �i � 1.

LEMMA 2.1. LetM be a Markov chain onf0; 1; : : :ng and
let M0 be the Markov chain on the same state space whose
transitions fromi are: with probability�i take one step
according toM, and with probability1 � �i stay in statei. Let(�i) denote the stationary distribution ofM. Then the
stationary distribution(�0i) ofM0 is:�0i = �i=�iPj �j=�j :
The proof is straightforward and ommitted.

LetM denote the maximum value oflimtE(Xt). From
the above Lemma, clearlyM is reached for(�i) satisfying:�i = 2=i for i > dMe and�i = 1 for i � dMe. It only
remains to analyze the Markov chain thus defined.

Since this would entail doing some boring calculations,
instead we study the Markov chainYt which is the same
as Xt, except that all holding probabilities�i are equal
to 1 in Yt. For that very simple chain, a straightforward
computation yieldsE(Yt+1 � Ytj2 � Yt � n � 1) =1�p�p2�p3 andE(Yt+1�YtjYt = n) = �1�(1�(1�p)3).
Both of these are negative as long asp < � = K=3 �1=3 � 2=3K with K = (17 + 3p33)1=3. We now apply
the following Lemma, adapted from [7]:

LEMMA 2.2. Let M be an irreducible, aperiodic Markov
chain with state spaceN , andpss0 be the transition proba-
bility from s to s0 inM, so that9C; 8s; s0 js� s0j > C ) pss0 = 0
and 9S; " s.t.

Xs02N pss0 � (s0 � s) < �" 8s > S:

ThenM is ergodic with stationary distribution� satisfying�(s) < C 0e��s for all s 2 N , whereC 0 and� are positive
constants.

Thus the stationary distribution ofYt is exponentially
decreasing:Pr(Y = i) � Aci wherec is some constant
less than 1. From Lemma 2.1, the stationary probability ofX must thus havePr(X = i) � Aici and the expectation
of X is at most

PiAi2ci, a bounded quantity. HenceE(Dt) = O(1), and there are on averagen � O(1) ones
in the stationary distribution. This ends the proof of the
Theorem.

3 A lower bound to the number of ones

Even whenp is small, the fact that the process always
chooses anxi = 0 as the center of its window is already
sufficient to bias the number of ones and make it significantly
larger thanpn (see figure 2).

THEOREM 3.1. As n goes to infinity, the expected number
of ones in the stationary distribution is greater than or equal
to: 3pn=21 + 3p=2 � O(pn):
Proof. Let Ot be the number of ones andZt the number of
zeroes at timet. Let O(r)t be the number of ones whose
immediate right neighbor is a zero, andO(l)t be the number
of ones whose immediate left neighbor is a zero. Then:E(Ot+1 � Otj history up tot) = �O(l)tZt � O(r)tZt + 3p� � 2Otn�Ot + 3p
, where the inequality follows fromO(l)t � Ot, O(r)t � Ot,
andZt = n�Ot. Thus, if we letA� = (3p��)n=(2+3p��)
andXt = A� �Ot, we have that at each stepXt changes by
at most 3, andE(Xt+1 �Xtjhistory up to timet;Xt � 0) � �� < 0:
Now, we use the following version of the Optional Stopping
theorem adapted from [6]:

THEOREM 3.2. If T0 � T are stopping times andYmin(N;n)
is a supermartingale whose absolute value converges in
expectation to some finite value, thenEYT0 � EYT .

Let t0 be a time whenXt0 > 0. Define the random stopping
time T as the first time whenXT � 0 after t0. The
random variableZt = Xt + �(t � t0) is a supermartingale
[17] up to timeT , i.e. E(Zt+1jhistory up tot) � Zt. By
the Optional Stopping theorem,E(ZT ) � Zt0 , or in other
words,�E(T � t0) � Xt0 . Takingt0 = 0 yields thatXt first
becomes negative afterE(T ) � A�=� steps on average.
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To examine subsequent excursions ofXt in the positive
domain, lett00 be any time at whichXt00 > 0 andXt00�1 � 0.
We then have�(T � t00) � Xt00 � 3, so thatT � t00 � 3=�
and the excursions ofXt in the positive domain have average
duration at most3=�. SinceXt varies by at most 3 at each
step, for everyi > 1 we havePrfXt � ig � PrfXt in excursion of duration� d2i=3eg:
ThenE(Xt) � Xi�1 PrfXt � ig� 2Xi�1 PrfXt in excursion of duration� ig= 2E(length of excursion)� 6=�:
Translating this into our original random variable, we obtain:E(Ot) � (3p� �)n(2 + 3p� �) � 6� :
Letting� = 1=pn yields the Theorem.

We leave open the following tantalizing conjecture.

CONJECTURE1. There existp0 > 0 and a constantc < 1
such that forp < p0, in the stationary distribution the
expected number of ones is at mostcn.

Acknowledgments:We would like to thank Richard Kenyon
for suggesting the model and Anna Karlin and Dana Randall
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Figure 1: Experimental study of the asymptotic proportion of ones of the discrete Bak-Sneppen process as a function ofp.
Observe the large variance in the middle range ofp. Heren = 1000, T = 106, we take the average of100 runs, and the
error bar has radius equal to one standard deviation.
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Figure 2: Experimental study of the asymptotic number of proportion of the discrete Bak-Sneppen process as a function ofp in the range wherep is small. Observe that the lower bound is tight forp < :05.
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Figure 3: Study of a single run of the process forn = 1000 andp = :365. On the first line the evolution of the proportion of
ones in function of time. Observe that the system returns periodically to the all-one state. On the second line, the snapshots
of the first time the system attains a proportion of ones of90%,80% and70%. On these snapshots thex-coordinate ranges
from 0 ton, and for eachi we plot the average fitness ofxi and of its neighbors at distance less than50 in the configuration.
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