Shape Matching for 3D Retrieval and Recognition

Ivan Sipiran and Benjamin Bustos

PRISMA Research Group
Department of Computer Science
University of Chile

SIBGRAPI 2013 Tutorial, Arequipa - Perú, August 5, 2013
Outline

1. Introduction
2. Applications
3. Preliminaries
4. Techniques
 - Generic Shape Retrieval
 - Shape recognition
 - Non-rigid Shape Retrieval
5. Shape Retrieval Contests
6. Final remarks
3D collections

Construido en el siglo XX, el Château de Cotignac es un edificio de estilo "brique et pierre" característico del norte de Francia. El edificio es una muestra de la arquitectura de ese período, y ha sido objeto de varios estudios y reconstrucciones.

Ivan Sipiran and Benjamin Bustos
Shape Matching for 3D Retrieval and Recognition
3D collections
3D applications
3D as media

- The same problem as other media
 - Representation
 - Storage
 - Analysis
 - Processing
- Content-based matching or ...
The problem with matching

Non-rigid matching

Partial matching
Craniofacial research

- 3D features to detect anomalies (Atmosukarto et al. 2010)
3D protein retrieval and classification

- Searching for similar structures (Paquet and Viktor, 2008)
3D retrieval for museums

- 3D retrieval for navigation (Goodall et al. 2004)
Human ear recognition in 3D

- 3D features to represent an ear (Chen and Bhanu, 2009)
CAD/CAM

- Manufacturing and production (You and Tsai, 2010)
Archeology

- Matching for reconstruction (Huang et al. 2006)
3D video sequences

- Characterize a motion (Huang et al., 2010)
3D face recognition

- Gesture-invariant representation (Bronstein et al. 2005)
3D Representations

- Triangular meshes (in this tutorial)
- Volumes
- Point cloud
Outline

1. Introduction
2. Applications
3. Preliminaries
4. Techniques
 - Generic Shape Retrieval
 - Shape recognition
 - Non-rigid Shape Retrieval
5. Shape Retrieval Contests
6. Final remarks
The global approach

- Transform a 3D object into a numeric/symbolic representation
 - Feature vectors
 - Graphs
- Compare two objects through their representations
The global approach

- Feature vector approach has been extensively studied
 - Scalability

Feature extraction

3D model

high dimensional feature vector

insert

ϵ-search

NN-search

high dimensional index structure
Depth-buffer descriptor

- Image-based descriptor (Vranic 2004)
 - Pose normalization
 - Depth-buffer construction
 - Fourier transformations
 - Selection of coefficients
Depth-buffer descriptor

- Pose normalization - Typical procedure
 - Translate the center of mass to the origin of the coordinate system
 - Rotate according to the largest spread
 - Scale to common size
Pose normalization - Continuous PCA

Let $f : T \rightarrow M$ be a function on the set of triangles T in \mathbb{R}^3.
Let us define an operator for the function f on the set T,

$$l_f(T_i) = \int \int_{v \in T_i} f(v) ds$$

$$= 2S_i \int_0^1 d\alpha \int_0^{1-\alpha} f(\alpha p_{A_i} + \beta p_{B_i} + (1 - \alpha - \beta)p_{C_i}) d\beta$$

In addition

$$l_f(I) = \sum_{i=1}^{m} l_f(T_i) = \int \int_{v \in I} f(v) ds$$
Depth-buffer descriptor

- Pose normalization - Continuous PCA
 - When \(f(v) = 1 \), \(l_f(I) \) is the surface area.
 - When \(f(v) = v \), \(l_f(I) = m_I \) is the center of mass.
 - When \(f(v) = (v - m_I)(v - m_I)^T \), \(l_f(I) \) evaluates to the covariance matrix

\[
C_I = \frac{1}{S} \int \int_{v \text{ in } I} (v - m_I)(v - m_I)^T ds
\]
\[
= \frac{1}{12S} \sum_{i=1}^{m} (f(p_{A_i}) + f(p_{B_i}) + f(p_{C_i}) + 9f(g_i))S_i
\]
Depth-buffer descriptor

- Pose normalization
 - With the continuous covariance matrix C_i, PCA can be applied as usual
Depth-buffer descriptor

- **Construction**
 - Project the object into the faces of a bounding rectangle

![Depth-buffer descriptor diagram](image)
Depth-buffer descriptor

- Fourier transformation

\[\hat{f}_{pq} = \frac{1}{\sqrt{MN}} \sum_{a=0}^{M-1} \sum_{b=0}^{N-1} f_{ab} \exp(-j2\pi(pa/M + qb/N)) \]
Depth-buffer descriptor

- Selection of coefficients
 - As depth-buffers are real, coefficient possesses the symmetry property.
 - Select coefficients whose indices satisfy

\[|p - N/2| + |q - N/2| \leq k \leq N/2 \]

for some natural number \(k \)
PANORAMA descriptor

- Image-based descriptor (Papadakis et al. 2009)
 - Pose normalization (Continuous PCA)
 - Cylindrical projection
 - Fourier and Wavelet transformations
PANORAMA descriptor

- Cylindrical projection
PANORAMA descriptor

- Fourier coefficients
- Haar and Coiflet wavelets (features computed on sub-images of the DWT)
 - Mean
 \[
 \mu = \frac{1}{N \times M} \sum_{i=1}^{N} \sum_{j=1}^{M} I(x, y)
 \]
 - Standard deviation
 \[
 \sigma = \sqrt{\frac{1}{N \times M} \sum_{i=1}^{N} \sum_{j=1}^{M} (I(x, y) - \mu)^2}
 \]
PANORAMA descriptor

- Fourier coefficients
- Haar and Coiflet wavelets (features computed on sub-images of the DWT)
 - Skewness

\[
\beta = \frac{1}{N \times M} \sum_{i=1}^{N} \sum_{j=1}^{M} (I(x, y) - \mu)^3 \quad \frac{\sigma^3}{\sigma^3}
\]
Other approaches

- Ray-based feature vector (Vranic 2004)
Other approaches

- 3D harmonics (Funkhouser et al. 2003)
Other approaches

- **SHREC 2009 Generic Shape Retrieval: Competition with 20+ algorithms (Godil et al. 2009)**

<table>
<thead>
<tr>
<th>PARTICIPANT</th>
<th>METHOD</th>
<th>NN</th>
<th>FT</th>
<th>ST</th>
<th>E</th>
<th>DCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akgül</td>
<td>DBFc8</td>
<td>0.825</td>
<td>0.433</td>
<td>0.550</td>
<td>0.383</td>
<td>0.748</td>
</tr>
<tr>
<td>(sect. 5.6)</td>
<td>DBFc10</td>
<td>0.825</td>
<td>0.443</td>
<td>0.574</td>
<td>0.398</td>
<td>0.757</td>
</tr>
<tr>
<td></td>
<td>DBFc12</td>
<td>0.813</td>
<td>0.449</td>
<td>0.578</td>
<td>0.406</td>
<td>0.759</td>
</tr>
<tr>
<td>Bustos</td>
<td>DSR_segment</td>
<td>0.863</td>
<td>0.561</td>
<td>0.696</td>
<td>0.49</td>
<td>0.825</td>
</tr>
<tr>
<td>(sect. 5.5)</td>
<td>DSR_nosegment</td>
<td>0.85</td>
<td>0.546</td>
<td>0.691</td>
<td>0.479</td>
<td>0.819</td>
</tr>
<tr>
<td>Entropy_123_6_segment</td>
<td>0.838</td>
<td>0.526</td>
<td>0.663</td>
<td>0.464</td>
<td>0.803</td>
<td></td>
</tr>
<tr>
<td>Entropy_6789_6_segment</td>
<td>0.838</td>
<td>0.528</td>
<td>0.668</td>
<td>0.467</td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>W1_segment</td>
<td>0.838</td>
<td>0.528</td>
<td>0.666</td>
<td>0.466</td>
<td>0.806</td>
<td></td>
</tr>
<tr>
<td>Chaouch (sect. 5.1)</td>
<td>MDLA</td>
<td>0.963</td>
<td>0.730</td>
<td>0.848</td>
<td>0.602</td>
<td>0.917</td>
</tr>
<tr>
<td>Daras</td>
<td>3D_shape_impact</td>
<td>0.8</td>
<td>0.447</td>
<td>0.567</td>
<td>0.396</td>
<td>0.749</td>
</tr>
<tr>
<td>(sect. 5.3)</td>
<td>Compact_multiview</td>
<td>0.8</td>
<td>0.49</td>
<td>0.626</td>
<td>0.437</td>
<td>0.771</td>
</tr>
<tr>
<td>Lian</td>
<td>SHD+GSMD</td>
<td>0.875</td>
<td>0.558</td>
<td>0.69</td>
<td>0.487</td>
<td>0.83</td>
</tr>
<tr>
<td>(sect. 5.2)</td>
<td>RECT+SHD+GSMD</td>
<td>0.925</td>
<td>0.633</td>
<td>0.778</td>
<td>0.542</td>
<td>0.875</td>
</tr>
<tr>
<td></td>
<td>RECT+SHD+GSMD+MR</td>
<td>0.925</td>
<td>0.724</td>
<td>0.844</td>
<td>0.595</td>
<td>0.904</td>
</tr>
<tr>
<td>Napoléon</td>
<td>Run1</td>
<td>0.900</td>
<td>0.522</td>
<td>0.665</td>
<td>0.459</td>
<td>0.814</td>
</tr>
<tr>
<td>(sect. 5.4)</td>
<td>Run2</td>
<td>0.950</td>
<td>0.615</td>
<td>0.701</td>
<td>0.502</td>
<td>0.864</td>
</tr>
<tr>
<td></td>
<td>Run3</td>
<td>0.950</td>
<td>0.639</td>
<td>0.771</td>
<td>0.540</td>
<td>0.882</td>
</tr>
<tr>
<td></td>
<td>Run4</td>
<td>0.900</td>
<td>0.550</td>
<td>0.662</td>
<td>0.465</td>
<td>0.826</td>
</tr>
<tr>
<td></td>
<td>Run5</td>
<td>0.887</td>
<td>0.570</td>
<td>0.709</td>
<td>0.497</td>
<td>0.838</td>
</tr>
</tbody>
</table>
Global + Local approach

- Trying to take advantage of the local information in shapes (Sipiran et al. 2013)
Global + Local approach

- We need discriminative and robust partitions
- Local features-based approach
Data-aware 3D partitioning

- Step 1: Detection of keypoints
 - Harris 3D algorithm (Sipiran and Bustos, 2011)
Data-aware 3D partitioning

- Harris 3D algorithm
- Pipeline

Compute local neighborhoods → Fit quadratic surface → Calculate Harris response → Interest points selection
Harris algorithm

Extension of the well-known method for images

Harris algorithm

Autocorrelation function

\[e(x, y) = \sum_{x_i, y_i} W(x_i, y_i)[l(x_i + \triangle x, y_i + \triangle y) - l(x_i, y_i)]^2 \]

where \(l(., .) \) denotes the image function and \((x_i, y_i)\) are the points in the Gaussian function \(W \) centered on \((x, y)\), which defines the neighborhood area in analysis.
Harris 3D algorithm

Using a Taylor expansion

\[e(x, y) = \vec{S} \left[\sum_{x_i, y_i} W \cdot I_x^2 \quad \sum_{x_i, y_i} W \cdot I_x \cdot I_y \quad \sum_{x_i, y_i} W \cdot I_y^2 \right] \vec{S}^T \]

\[= \vec{S} E(x, y) \vec{S}^T \]

where \(\vec{S} = [\triangle x \ \triangle y] \) is a shift vector, \(I_x \) and \(I_y \) denote the partial derivatives in \(x \) and \(y \), and along with \(W \) are evaluated in \((x_i, y_i)\) points.
Harris algorithm
Data-aware 3D partitioning

- Harris 3D algorithm
 - Extension for 3D meshes in not trivial due to the lack of a regular neighborhood topology.
 - How to compute a neighborhood around a vertex?
 - Adaptive neighborhood
Data-aware 3D partitioning

- Harris 3D algorithm
 - Good choice: neighborhood dependent of the local structure

\[\text{ring}_k(v) = \{ w \in V' \text{ such that } |\text{shortest}_\text{path}(v, w)| = k \} \]

\[d_{\text{ring}}(v, \text{ring}_k(v)) = \max_{w \in \text{ring}_k(v)} \| v - w \|_2 \]

\[\text{radius}_v = \{ k \in \mathbb{N} \text{ such that } d_{\text{ring}}(v, \text{ring}_k(v)) \geq \delta \text{ and } d_{\text{ring}}(v, \text{ring}_{k-1}(v)) < \delta \} \]
Data-aware 3D partitioning

- Harris 3D algorithm
 - Translate the neighborhood, \(v_i \) should be the origin
 - PCA to normalize the spread of the points. Optimally, points are well distributed in plane XY.
 - Fit a quadratic surface

\[
z = f(x, y) = \frac{p_1}{2}x^2 + p_2xy + \frac{p_3}{2}y^2 + p_4x + p_5y + p_6
\]

- Function \(f(x, y) \) is similar to an image
Harris 3D algorithm

In order to deal with local changes: smoothing

\[A = \frac{1}{2\sigma^4\pi} \int_{\mathbb{R}^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \cdot \left(\frac{\partial f(x, y)}{\partial x} \right)^2 \, dx\,dy \]

\[B = \frac{1}{2\sigma^4\pi} \int_{\mathbb{R}^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \cdot \left(\frac{\partial f(x, y)}{\partial y} \right)^2 \, dx\,dy \]

\[C = \frac{1}{2\sigma^4\pi} \int_{\mathbb{R}^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \cdot \left(\frac{\partial f(x, y)}{\partial x} \right) \left(\frac{\partial f(x, y)}{\partial y} \right) \, dx\,dy \]
Data-aware 3D partitioning

- Harris 3D algorithm
 - Evaluate the integrals to obtain the terms

\[
A = \frac{p_4^2}{\sigma^2} + p_1^2 + p_2^2
\]

\[
B = \frac{p_5^2}{\sigma^2} + p_2^2 + p_3^2
\]

\[
C = \frac{p_4 p_5}{\sigma^2} + p_1 p_2 + p_2 p_3
\]
Data-aware 3D partitioning

- Harris 3D algorithm
 - The autocorrelation matrix is then
 \[
 E = \begin{pmatrix}
 A & C \\
 C & B
 \end{pmatrix}
 \]
 - Now we can evaluate the Harris operator for each vertex in the mesh, as usual.
 - To detect keypoints, we can select, for instance, the top 1% vertices with the highest response.
Data-aware 3D partitioning

- Harris 3D algorithm
 - Saliency plot
Demo 1: Harris keypoints
Data-aware 3D partitioning

- Step 1: Detection of keypoints
 - Meshes with bad triangulation
 - Control of resolution to improve triangulations (Johnson and Hebert, 1998)
Data-aware 3D partitioning

- Step 1: Detection of keypoints
 - Algorithm controls the edge lengths
Step 2: Adaptive clustering of keypoints in Euclidean space
- Near points: same clustering
- Far points: different cluster
Adaptive clustering in \mathbb{R}^n

- **Input:** $P \in \mathbb{R}^n$, inter-cluster threshold R, intra-cluster threshold S, minimum number of elements N
 - For each $p \in P$, if p belongs to some existing cluster C_i, insert p into C_i
 - If p does not belong to any cluster, create a new cluster
 - For each cluster C_i, if $|C_i| < N$, then remove cluster, update centroid otherwise.
 - Repeat until satisfying some stop criterion
Step 3: Partitioning and description

- Extract the patch enclosed by a sphere containing a cluster
- We use a kd-tree to efficiently search vertices in the enclosing sphere
- An object is represented as

\[S_O = \{(s_O, P_O) | s_O \in \mathbb{R}^n \text{ and } P_O = \{p^1_O, p^2_O, \ldots, p^m_O\}, p^i_O \in \mathbb{R}^n \} \]

where \(s_O \) is a global descriptor of the entire shape, and \(p^i_O \) is a global descriptor for a part.
Data-aware 3D partitioning

- Matching
 - Given two objects O and Q, with their representations

 $S_O = \{(s_O, P_O) | s_O \in \mathbb{R}^n \text{ and } P_O = \{p^1_O, p^2_O, \ldots, p^m_O\}, p^i_O \in \mathbb{R}^n\}$

 $S_Q = \{(s_Q, P_Q) | s_Q \in \mathbb{R}^n \text{ and } P_Q = \{p^1_Q, p^2_Q, \ldots, p^k_Q\}, p^i_Q \in \mathbb{R}^n\}$

 - The distance is a linear combination

 $d(S_O, S_Q) = \mu \|s_O - s_Q\| + (1 - \mu)d(P_O, P_Q)$

 - How to evaluate $d(P_O, P_Q)$ if it involves a many-to-many matching?
Data-aware 3D partitioning

Matching

O

Q
Data-aware 3D partitioning

Matching

i

O

j

Q
Data-aware 3D partitioning

Matching

O

i

j

Q
Data-aware 3D partitioning

Matching

\[x(i, j) \]
Data-aware 3D partitioning

- The correspondence can be formulated as a binary variable
 \[x(i, j) = \begin{cases} 1, & \text{if } p^i_O \text{ matches } p^j_Q \\ 0, & \text{otherwise.} \end{cases} \]

- The problem is to find the best \(x \)
 \[f(x) = \sum_{i,j} \| p^i_O - p^j_Q \|_2 \cdot x(i, j) \]

- The optimum can be used to formulate a distance
 \[d(P_O, P_Q) = \frac{f(x^*)}{\min(|P_O|, |P_Q|)} \]
Matching is solved with integer programming.

\[\min C^T x \quad \text{such that} \begin{cases} Ax \leq b \\ A_{eq} x = b_{eq} \\ x \text{ is binary} \end{cases} \]

where \(C(i, j) = \| p^i_O - p^j_Q \|_2. \)
Data-aware 3D partitioning

- Linear approach is not geometrically consistent
- Let us introduce a geometric constraint for parts
Data-aware 3D partitioning

Matching

\[x(i, j) \]
Data-aware 3D partitioning

Matching

\[x(i, j) \]
Data-aware 3D partitioning

- Matching

\[x(i', j') \]

\[x(i, j) \]
Data-aware 3D partitioning

Matching

\[x(i', j') \]

\[x(i, j) \]
Data-aware 3D partitioning

- Matching

\[x(i', j') \]

\[x(i, j) \]
Data-aware 3D partitioning

- Quadratic programming

\[
f(x) = \alpha \sum_{i,j,i',j'} |d^O_S(i, i') - d^Q_S(j, j')| x(i, j)x(i', j') + \\
\beta \sum_{i,j} \|p^i_O - p^j_Q\|_2 \cdot x(i, j)
\]

- Now, we consider the inter-distance between parts
Matching is solved with quadratic integer programming

\[
\min_x \frac{1}{2} x^T D x + C^T x \quad \text{such that} \quad \begin{cases}
Ax \leq b \\
A_{eq} x = b_{eq} \\
x \text{ is binary}
\end{cases}
\]

where \(D(\{i, j\}, \{i', j'\}) = |d_S^O(i, i') - d_S^O(j, j')| \).
Data-aware 3D partitioning

- Class-by-class

![Graph showing MAP for various categories]
Data-aware 3D partitioning

- Class-by-class

![Graph showing MAP for different categories]
Data-aware 3D partitioning

- High variability inside classes
- Difficult problem for representations
Outline

1. Introduction
2. Applications
3. Preliminaries
4. Techniques
 - Generic Shape Retrieval
 - Shape recognition
 - Non-rigid Shape Retrieval
5. Shape Retrieval Contests
6. Final remarks
Spin images

- Robust local descriptor (Johnson 1997)
- It is based on how points are distributed on a surface
Spin images

- A local basis is constructed from
 - An oriented point p
 - The normal n
 - The tangent plane P through p and perpendicular to n
Spin images

- Any point q can be represented in this basis

$$S_O : \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

$$S_O(q) \rightarrow (\alpha, \beta) = (\sqrt{\|q - p\|^2 - (\vec{n} \cdot (q - p))^2}, \vec{n} \cdot (q - p))$$

- The coordinate of q in the spin image is computed from (α, β)
Spin images

- Computing positions

\[i = \left\lfloor \frac{W \times \text{bin} - \beta}{\text{bin}} \right\rfloor \]

\[j = \left\lceil \frac{\alpha}{\text{bin}} \right\rceil \]
Spin images

- Accumulation is performed using bilinear weights

\[
l(i, j) = l(i, j) + (1 - a)(1 - b)
\]

\[
l(i, j + 1) = l(i, j + 1) + (1 - a)b
\]

\[
l(i + 1, j) = l(i + 1, j) + a(1 - b)
\]

\[
l(i + 1, j + 1) = l(i + 1, j + 1) + ab
\] (1)

where

\[
a = \frac{\alpha}{bin} - j
\]

\[
b = \frac{W*bin}{2} - \frac{\beta}{bin} - i
\] (2)
Spin images

(a)

(b)

Spin images are a technique used in shape recognition. They represent a 3D shape as a 2D image, allowing for easier comparison and analysis. The images show a bird model in its original form and its spin image representation.
Demo 2: Spin images
Spin images

Matching

- Given two spin images with N bins, we compute the cross-correlation

$$R(P, Q) = \frac{N \sum p_i q_i - \sum p_i \sum q_i}{\sqrt{(N \sum p_i^2 - (\sum p_i)^2)(N \sum q_i^2 - (\sum q_i)^2)}}$$

- Similarity takes into account the variance to avoid the dependency of cross-correlation to the overlap

$$C(P, Q) = (\text{atanh}(R(P, Q)))^2 - \lambda \left(\frac{1}{N - 3}\right)$$
Spin images

\(C(P, Q) \) has a high value if two spin images are highly correlated and a large number of pixels overlap.
Spin images

Matching

- For each shape, a number of random spin images are computed and stored.
- Given a spin image, the matching method computes the similarity to every stored spin images.
- We only need to determine a set with the highest values (extreme outliers of the similarity histogram)
Spin images

Set of candidates

Similarity Measure Histogram

- Outlier threshold
- Outliers (4)
- Median
- f_s
- $3f_s$
Spin images

- Filtering of correspondences
 - Correspondences with similarity less than the half of the maximum similarity
 - Given two correspondences \(C_1 = (s_1, m_1) \) and \(C_2 = (s_2, m_2) \), the geometric consistency is defined as

\[
d_{gc}(C_1, C_2) = 2 \frac{\| S_{m_2}(m_1) - S_{s_2}(s_1) \|}{\| S_{m_2}(m_1) + S_{s_2}(s_1) \|}
\]

\[
D_{gc}(C_1, C_2) = \max(d_{gc}(C_1, C_2), d_{gc}(C_2, C_1))
\]

where \(S_O(p) \) denotes the spin map function of point \(p \) using the local basis of point \(O \).
Spin images

- Filtering of correspondences
 - Geometric consistency involves position and normals.
 - D_{gc} is small if C_1 and C_2 are geometrically consistent.
 - Discard correspondences which are not consistent with at least a quarter of the complete list of correspondences.
Spin images

- Final step: searching a transformation
 - A group measure is defined

\[
w_{gc}(C_1, C_2) = \frac{d_{gc}(C_1, C_2)}{1 - \exp\left(-\left(\|S_{m2}(m_1)\| + \|S_{s2}(s_1)\|\right)/2\right)}
\]

\[
W_{gc}(C_1, C_2) = \max(w_{gc}(C_1, C_2), w_{gc}(C_2, C_1))
\]

- And a measure between a correspondence \(C\) and a group \(\{C_1, C_2, \ldots, C_n\}\)

\[
W_{gc}(C, \{C_1, C_2, \ldots, C_n\}) = \max_i(W_{gc}(C, C_i))
\]
Algorithm to generate groups

- For each correspondence $C_i \in L$, initialize a group $G_i = \{C_i\}$
- Find a correspondence $C_j \in L - G_i$, such that $W_{gc}(C_j, G_i)$ is minimum. If $W_{gc}(C_j, G_i) < T_{gc}$ then update $G_i = G_i \cup \{C_j\}$. T_{gc} is set between zero and one. If T_{gc} is small, only geometrically consistent correspondences remains. A commonly used value is 0.25.
- Continue until no more correspondences can be added.
The grouping algorithm generates n groups

For each group of correspondences $\{(m_i, s_i)\}$ a rigid transformation T is calculated by minimizing the following error using least squares method

$$E_T = \min_T \sum ||s_i - T(m_i)||^2$$

where $T(m_i) = R(m_i) + t$, R and t are the rotation matrix and the translation vector, representing the rotation and position of the viewpoint s_i in the coordinate system of m_i.
Spin images

A final step could involve an Iterative Closest Point algorithm for refinement.
Outline

1. Introduction
2. Applications
3. Preliminaries
4. Techniques
 - Generic Shape Retrieval
 - Shape recognition
 - Non-rigid Shape Retrieval
5. Shape Retrieval Contests
6. Final remarks
Non-rigid shapes

- Models with non-rigid transformations
- Several approaches
 - Canonical embedding
 - Spectral theory (Tutorial 4: Spectral geometry methods in shape analysis at 15:00)
Canonical embedding

- Find a canonical pose for models and compare them as in global matching (Elad and Kimmel 2003)
- Goal: "Unroll" the object
- Approach: Multi-dimensional scaling
Canonical embedding

- **MDS**
 - Given a shape \((X, d_X)\) where \(d_X\) is the geodesic distance

\[f : (X, d_X) \rightarrow (\mathbb{R}^m, d_{\mathbb{R}^m}) \]

- Map \(f\) converts points on the surface onto points in some Euclidean space
- Hard to find an exact \(f\).
- In matching: as non-rigid shapes preserve geodesic distances, the embedding should be similar.
Canonical embedding

- **MDS**
 - Find a minimum-distortion embedding

 \[f = \arg \min_{f:X \rightarrow \mathbb{R}^m} \sum_{i > j} |d_R^m(f(x_i), f(x_j)) - d_X(x_i, x_j)|^2 \]

- The SMACOF algorithm is a gradient descent. It does not guarantee a global minimum
Demo 3: Canonical embedding
Heat diffusion on \mathbb{R}^n is governed by the heat equation

$$\left(\Delta + \frac{\partial}{\partial t}\right) u(x; t) = 0; u(x; 0) = u_0(x)$$

under some boundary condition.

- $u(x; t)$ is the heat distribution at point x at time t.
- $u_0(x)$ is the initial heat distribution.
- Δ is the Laplacian.
For a surface X, function u is defined on points of X, and the heat diffusion equation is

$$\left(\Delta_X + \frac{\partial}{\partial t} \right) u(x; t) = 0; u(x; 0) = u_0(x)$$

- Δ_X is the Laplace-Beltrami operator
The Laplacian eigenvalue problem (the Helmholtz equation)

\[\Delta \chi \phi = -\lambda \phi \]

where \(\lambda \) is an eigenvalue of the Laplacian, and \(\phi \) is its corresponding eigenfunction. Eigenfunctions are related to the Fourier basis functions.
Introduction to Spectral Analysis

The Laplace-Beltrami operator Δ_X has a discrete set of eigenvalues and eigenvectors.

$$\Delta_X \phi = \lambda \phi$$

where $0 = \lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$

- $\lambda_0 = 0$ and ϕ_0 constant if X has a boundary.
- Orthogonal eigenvectors

$$\phi_i \cdot \phi_j = \int_X \phi_i \phi_j = 0, \, i \neq j$$
Introduction to Spectral Analysis

- Laplace-Beltrami operator Δ_X is invariant to isometric transformations
- Eigenvalues and eigenvectors are also invariant (Reuter 2006)

Reuter proposed to represent a non-rigid shape with a small set of eigenvalues: ShapeDNA
Demo 2: ShapeDNA
Represent a 3D model as a quantized vector of spectral descriptors (Bronstein et al. 2010)

The fundamental solution of heat equation is the heat kernel, represented as

$$K_t(x, y) = \sum_{i=0}^{\infty} \exp(-\lambda_i t) \vec{v}_i(x) \vec{v}_i(y)$$

where λ_i and \vec{v}_i are the eigenvalues and eigenvectors of the Laplace-Beltrami operator, respectively.
A representation for a point can be obtained (Sun et al. 2009)

\[K_t(x, x) = \sum_{i=0}^{\infty} \exp(-\lambda_i t) \vec{v}_i(x)^2 \]

Using values for \(t \), we can get a descriptor which is called Heat Kernel Signature

\[p(x) = (p_1(x), \ldots, p_n(x)) \]

\[p_i(x) = c(x) K_{\alpha^{i-1}t_0}(x, x) \]
Shape Google

- Heat Kernel Signatures (Bustos and Sipiran, 2012)
Heat kernel signatures are sensitive to scale.
A scale-invariant variant has been proposed (Bronstein and Kokkinos, 2010).
- It uses discrete derivatives and Fourier coefficients for removing the scale dependency of HKS.
Shape Google

Procedure
- Compute a descriptor for each vertex in a mesh
- Given the entire collection of descriptors, perform a k-means clustering to find a dictionary
- Quantize the descriptors of a shape using the dictionary
Shape Google

- Process
Apply k-means clustering to find a dictionary
\[
M = \{m_1, m_2, \ldots, m_k\}
\]
For each point \(x\) on a mesh with its descriptor \(p(x)\), the feature distribution
\[
\theta(x) = (\theta_1(x), \ldots, \theta_k(x))^T
\]
is a vector with elements
\[
\theta_i(x) = c(x) \exp \left(\frac{-\|p(x) - m_i\|_2}{2\sigma^2} \right)
\]
The Bag of Feature of a shape S is

$$f(S) = \sum_{x \in S} \theta(x)$$

The distance between two shapes S and T is

$$d(S, T) = \|f(S) - f(T)\|$$
Spatial information is lost during the quantization process
Consider pairs of descriptors with a weighting factor

\[F(S) = \sum_{x \in S} \sum_{y \in S} \theta(x)\theta^T(y)K_t(x, y) \]

\(F(S) \) is a matrix.
Unlike bag of features, this approach is local for defining the signatures.

Signature Quadratic Form Distance (Beecks et al. 2010)

- Final representation only depends on the object information.
- It is possible to measure the distance between objects with representations of different sizes.
SQFD for Retrieval

- Object is represented as a set of features
 \[F = \{ f_i \} \]

- Let us suppose the existence of a local partitioning
 \[F : C_1, \ldots, C_n \]

- The signature is defined as
 \[S^P = \{(c_i^P, w_i^P), i = 1, \ldots, n\} \]

 where \(c_i^P = \frac{\sum_{f \in C_i} f}{|C_i|} \) and \(w_i^P = \frac{|C_i|}{K} \) represent the centroid of the \(i \)-th cluster and a weight, respectively.
SQFD for Retrieval

- Given two signatures

\[S^P = \{(c^P_i, w^P_i), i = 1, \ldots, n\} \]

\[S^Q = \{(c^Q_j, w^Q_j), j = 1, \ldots, m\} \]

- SQFD is defined as

\[SQFD_{fs}(S^P, S^Q) = \sqrt{(w^P - w^Q) \cdot A_{fs} \cdot (w^P - w^Q)^T} \]
SQFD for retrieval

- $A_{f_S} \in \mathbb{R}^{(n+m) \times (n+m)}$ is the similarity matrix defined as

$$a_{ij} = \begin{cases}
 f_S(c_i^P, c_j^P) & \text{if } i \leq n \text{ and } j \leq m \\
 f_S(c_{i-n}^Q, c_j^P) & \text{if } i > n \text{ and } j \leq m \\
 f_S(c_i^P, c_{j-n}^Q) & \text{if } i \leq n \text{ and } j > m \\
 f_S(c_{i-n}^Q, c_{j-n}^Q) & \text{if } i > n \text{ and } j > m
\end{cases}$$

- The similarity function f_S can be
 - Minus: $f_-(c_i, c_j) = -d(c_i, c_j)$
 - Gaussian: $f_g(c_i, c_j) = \exp(-\alpha d^2(c_i, c_j))$
 - Heuristic: $f_h(c_i, c_j) = \frac{1}{\alpha + d(c_i, c_j)}$
SQFD for Retrieval

- Three approaches for computing the signatures in 3D meshes
 - All descriptors of an object
 - Descriptors of keypoints
 - Geodesic clusters
- Adaptive clustering for computing the local partitioning
- We use the Heat Kernel Signatures as descriptors
SQFD for Retrieval

- All vertices

\[FS(S) = \left\{ \frac{hks(v_i)}{\|hks(v_i)\|} \mid v_i \in S, i = 1, \ldots, n \right\} \]
Demo 5: Signatures with all vertices
SQFD for Retrieval

- Descriptors of keypoints

\[FS_{IP}(P) = \left\{ \frac{hks(v)}{\|hks(v)\|} \mid v \in IP(P) \right\} \]
Demo 6: Signatures with keypoints
SQFD for Retrieval

- Geodesic clusters
 - Compute the MDS of the keypoints in \mathbb{R}^2
 - Perform an adaptive clustering
 - One signature for each geodesic cluster
SQFD for Retrieval

- Examples of geodesic clusters

Ivan Sipiran and Benjamin Bustos
Shape Matching for 3D Retrieval and Recognition
Demo 7: Signatures with geodesic clusters
To evaluate this approach, we built a dataset with 5604 models.
SQFD for Retrieval

- SQFD is indexable with metric access methods
- We used pivot tables to avoid the linear scan
SQFD for Retrieval

- SQFD is indexable with metric access methods
- We used pivot tables to avoid the linear scan

<table>
<thead>
<tr>
<th>Method</th>
<th>Query time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShapeDNA</td>
<td>0.01</td>
</tr>
<tr>
<td>Shape Google</td>
<td>0.1330</td>
</tr>
<tr>
<td>Total</td>
<td>0.9479</td>
</tr>
<tr>
<td>Keypoint</td>
<td>0.0252</td>
</tr>
<tr>
<td>Cluster</td>
<td>1.1842</td>
</tr>
</tbody>
</table>
Other approaches

- A recent comparison evaluated state-of-the-art methods (Lian et al. 2013)
Shape Retrieval Contests (SHREC)

- Competitions started in 2006
- To date: 40+ tracks presented
- Each track has a dataset and evaluation tools
- Good initiative to evaluate algorithms and make comparisons with the state of the art
SHREC Examples

- **CAD models (2008)**
 - Using the ESB benchmark

<table>
<thead>
<tr>
<th>Stats for all run files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Average Precision (relevant)</td>
</tr>
<tr>
<td>Rank</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Normalized Cumulated Gain @5</th>
<th>Mean Normalized Cumulated Gain @10</th>
<th>Mean Normalized Cumulated Gain @25</th>
<th>Mean Normalized Cumulated Gain @50</th>
<th>Mean Normalized Cumulated Gain @100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank</td>
<td>RunFile</td>
<td>Value</td>
<td>Rank</td>
<td>RunFile</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>U_Yama_A Run 1</td>
<td>0.7911105</td>
<td>1</td>
<td>U_Yama_A Run 1</td>
</tr>
<tr>
<td>2</td>
<td>U_Yama_B Run 1</td>
<td>0.6577777</td>
<td>2</td>
<td>U_Yama_B Run 1</td>
</tr>
<tr>
<td>3</td>
<td>TNepolean Run 2</td>
<td>0.5555556</td>
<td>3</td>
<td>TNepolean Run 2</td>
</tr>
<tr>
<td>4</td>
<td>TNepolean Run 1</td>
<td>0.52</td>
<td>4</td>
<td>TNepolean Run 1</td>
</tr>
<tr>
<td>5</td>
<td>Asim Run 1</td>
<td>0.49777776</td>
<td>5</td>
<td>Asim Run 1</td>
</tr>
<tr>
<td>6</td>
<td>X_Li Run 1</td>
<td>0.48888896</td>
<td>6</td>
<td>X_Li Run 1</td>
</tr>
</tbody>
</table>

Available in: https://engineering.purdue.edu/PRECISE/shrec08

Ivan Sipiran and Benjamin Bustos

Shape Matching for 3D Retrieval and Recognition
SHREC Examples

- Generic shape retrieval (2009)2
 - 720 objects organized in 40 classes, 22 algorithms evaluated

2http://www.itl.nist.gov/iad/vug/sharp/benchmark/shrecGeneric/
SHREC Examples

- Feature detection and description (2010)3
 - Three shapes, 9 transformations in 5 levels of strength.
 - Goal: measure the repeatability of local features

SHREC Examples

- Face scans (2010)
 - Training set: 60 models
 - Test set: 650 scans

SHREC Examples

- Non-rigid retrieval (2011)\(^5\)
 - 600 objects with non-rigid transformations

SHREC Examples

- Sketch-based 3D models retrieval (2012) ⁶
 - 400 3D models, 250 hand-drawn sketches

⁶Available in: http://www.itl.nist.gov/iad/vug/sharp/contest/2012/SBR/
SHREC Examples

- Large-scale partial shape retrieval (2013)
 - 360 models, 7200 partial queries

Available in: http://dataset.dcc.uchile.cl/
Retrieval of Objects Captured with Low-Cost Depth-Sensing Cameras (2013) \(^8\)
- 192 models captured with Kinect

\(^8\)Available in: http://3dorus.ist.utl.pt/research/BeKi/index.html
Final remarks

- Good balance of theory and practice in solutions
- Current methods will be useful tools for supporting the emergence of massive 3D data
- There is still room for improvements (efficiency, scalability, robustness)
Future trends

- Not-so-local features
- How to deal with missing data? For instance, due to occlusions
- Representations: point clouds
Demo’s shapes belongs to the TOSCA dataset (A. Bronstein and M. Bronstein and R. Kimmel, 2008)

Slides and matlab codes will be available soon on http://users.dcc.uchile.cl/ isipiran/
Thank You!
Questions please