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3D as media

The same problem as other media
Representation
Storage
Analysis
Processing

Content-based matching or ...
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The problem with matching

Non-rigid matching

Partial matching
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Craniofacial research

3D features to detect anomalies (Atmosukarto et al. 2010)
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3D protein retrieval and classification

Searching for similar structures (Paquet and Viktor, 2008)
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3D retrieval for museums

3D retrieval for navigation (Goodall et al. 2004)
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Human ear recognition in 3D

3D features to represent an ear (Chen and Bhanu, 2009)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

CAD/CAM

Manufacturing and production (You and Tsai, 2010)
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Archeology

Matching for reconstruction (Huang et al. 2006)
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3D video sequences

Characterize a motion (Huang et al., 2010)
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3D face recognition

Gesture-invariant representation (Bronstein et al. 2005)
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3D Representations

Triangular meshes (in this tutorial)
Volumes
Point cloud
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The global approach

Transform a 3D object into a numeric/symbolic
representation

Feature vectors
Graphs

Compare two objects through their representations
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The global approach

Feature vector approach has been extensively studied
Scalability
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Depth-buffer descriptor

Image-based descriptor (Vranic 2004)
Pose normalization
Depth-buffer construction
Fourier transformations
Selection of coefficients
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Depth-buffer descriptor

Pose normalization - Typical procedure
Translate the center of mass to the origin of the coordinate
system
Rotate according to the largest spread
Scale to common size
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Depth-buffer descriptor

Pose normalization - Continuous PCA
Let f : T→M be a function on the set of triangles T in R3.
Let us define an operator for the function f on the set T,

lf (Ti ) =

∫ ∫
v∈Ti

f (v)ds

= 2Si

∫ 1

0
dα
∫ 1−α

0
f (αpAi + βpBi + (1− α− β)pCi )dβ

In addition

lf (I) =
m∑

i=1

lf (Ti ) =

∫ ∫
v∈I

f (v)ds
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Depth-buffer descriptor

Pose normalization - Continuous PCA
When f (v) = 1, lf (I) is the surface area.
When f (v) = v , lf (I) = mI is the center of mass.
When f (v) = (v −mI)(v −mI)

T , lf (I) evaluates to the
covariance matrix

CI =
1
S

∫ ∫
v inI

(v −mI)(v −mI)
T ds

=
1

12S

m∑
i=1

(f (pAi ) + f (pBi ) + f (pCi ) + 9f (gi ))Si
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Depth-buffer descriptor

Pose normalization
With the continuous covariance matrix CI , PCA can be
applied as usual
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Depth-buffer descriptor

Construction
Project the object into the faces of a bounding rectangle
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Depth-buffer descriptor

Fourier transformation

f̂pq =
1√
MN

M−1∑
a=0

N−1∑
b=0

fabexp(−j2π(pa/M + qb/N))
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Depth-buffer descriptor

Selection of coefficients
As depth-buffers are real, coefficient posses the symmetry
property.
Select coefficients whose indices satisfy

|p − N/2|+ |q − N/2| ≤ k ≤ N/2

for some natural number k
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PANORAMA descriptor

Image-based descriptor (Papadakis et al. 2009)
Pose normalization (Continuous PCA)
Cylindrical projection
Fourier and Wavelet transformations

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

PANORAMA descriptor

Cylindrical projection
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PANORAMA descriptor

Fourier coefficients
Haar and Coiflet wavelets (features computed on
sub-images of the DWT)

Mean

µ =
1

N ×M

N∑
i=1

M∑
j=1

I(x , y)

Standard deviation

σ =

√√√√ 1
N ×M

N∑
i=1

M∑
j=1

(I(x , y)− µ)2
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PANORAMA descriptor

Fourier coefficients
Haar and Coiflet wavelets (features computed on
sub-images of the DWT)

Skewness

β =
1

N×M

∑N
i=1
∑M

j=1(I(x , y)− µ)3

σ3
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Other approaches

Ray-based feature vector (Vranic 2004)
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Other approaches

3D harmonics (Funkhouser et al. 2003)
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Other approaches

SHREC 2009 Generic Shape Retrieval: Competition with
20+ algorithms (Godil et al. 2009)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Global + Local approach

Trying to take advantage of the local information in shapes
(Sipiran et al. 2013)
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Global + Local approach

We need discriminative and robust partitions
Local features-based approach
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Data-aware 3D partitioning

Step 1: Detection of keypoints
Harris 3D algorithm (Sipiran and Bustos, 2011)
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Harris 3D algorithm
Pipeline
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Data-aware 3D partitioning

Harris algorithm
Extension of the well-known method for images
Harris algorithm

Autocorrelation function

e(x , y) =
∑
xi ,yi

W (xi , yi )[I(xi +4x , yi +4y)− I(xi , yi )]2

where I(., .) denotes the image function and (xi , yi ) are the
points in the Gaussian function W centered on (x , y), which
defines the neighborhood area in analysis.
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Harris 3D algorithm
Using a Taylor expansion

e(x , y) = ~S
[ ∑

xi ,yi
W .I2

x
∑

xi ,yi
W .Ix .Iy∑

xi ,yi
W .Ix .Iy

∑
xi ,yi

W .I2
y

]
~ST

= ~SE(x , y)~ST

where ~S = [4x 4y ] is a shift vector, Ix and Iy denote the
partial derivatives in x and y , and along with W are
evaluated in (xi , yi ) points.
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Data-aware 3D partitioning

Harris 3D algorithm
Extension for 3D meshes in not trivial due to the lack of a
regular neighborhood topology.
How to compute a neighborhood around a vertex?

Adaptive neighborhood

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Data-aware 3D partitioning

Harris 3D algorithm
Good choice: neighborhood dependent of the local
structure

ringk (v) = {w ∈ V ′ such that |shortest_path(v ,w)| = k}

dring(v , ringk (v)) = maxw∈ringk (v)‖v − w‖2

radiusv = {k ∈ N such that dring(v , ringk (v)) ≥ δ and
dring(v , ringk−1(v)) < δ}
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Data-aware 3D partitioning

Harris 3D algorithm
Translate the neighborhood, vi should be the origin
PCA to normalize the spread of the points. Optimally, points
are well distributed in plane XY.
Fit a quadratic surface

z = f (x , y) =
p1

2
x2 + p2xy +

p3

2
y2 + p4x + p5y + p6

Function f (x , y) is similar to an image
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Harris 3D algorithm
In order to deal with local changes: smoothing

A =
1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f (x , y)

∂x

)2

dxdy

B =
1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f (x , y)

∂y

)2

dxdy

C =
1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f (x , y)

∂x

)(
∂f (x , y)

∂y

)
dxdy
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Harris 3D algorithm
Evaluate the integrals to obtain the terms

A =
p2

4
σ2 + p2

1 + p2
2

B =
p2

5

σ2 + p2
2 + p2

3

C =
p4p5

σ2 + p1p2 + p2p3
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Harris 3D algorithm
The autocorrelation matrix is then

E =

(
A C
C B

)
Now we can evaluate the Harris operator for each vertex in
the mesh, as usual.
To detect keypoints, we can select, for instance, the top 1%
vertices with the highest response.
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Harris 3D algorithm
Saliency plot
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Demo 1: Harris keypoints
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Data-aware 3D partitioning

Step 1: Detection of keypoints
Meshes with bad triangulation
Control of resolution to improve triangulations (Johnson
and Hebert, 1998)
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Step 1: Detection of keypoints
Algorithm controls the edge lengths
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Step 2: Adaptive clustering of keypoints in Euclidean
space

Near points: same clustering
Far points: different cluster
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Adaptive clustering in Rn

Input: P ∈ Rn, inter-cluster threshold R, intra-cluster
threshold S, minimum number of elements N

For each p ∈ P, if p belongs to some existing cluster Ci ,
insert p into Ci
If p does not belong to any cluster, create a new cluster
For each cluster Ci , if |Ci | < N, then remove cluster, update
centroid otherwise.
Repeat until satisfying some stop criterion
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Step 3: Partitioning and description
Extract the patch enclosed by a sphere containing a cluster
We use a kd-tree to efficiently search vertices in the
enclosing sphere
An object is represented as

SO = {(sO ,PO)|sO ∈ Rn and PO = {p1
O ,p

2
O , . . . ,p

m
O},pi

O ∈ Rn}

where sO is a global descriptor of the entire shape, and pi
O

is a global descriptor for a part.
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Matching
Given two objects O and Q, with their representations

SO = {(sO ,PO)|sO ∈ Rn and PO = {p1
O ,p

2
O , . . . ,p

m
O},pi

O ∈ Rn}

SQ = {(sQ ,PQ)|sQ ∈ Rn and PQ = {p1
Q ,p

2
Q , . . . ,p

k
Q},pi

Q ∈ Rn}

The distance is a linear combination

d(SO ,SQ) = µ‖sO − sQ‖+ (1− µ)d(PO ,PQ)

How to evaluate d(PO ,PQ) if it involves a many-to-many
matching?
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The correspondence can be formulated as a binary
variable

x(i , j) =

{
1, if pi

O matches pj
Q

0 otherwise.

The problem is to find the best x

f (x) =
∑
i,j

‖pi
O − pj

Q‖2.x(i , j)

The optimum can be used to formulate a distance

d(PO,PQ) =
f (x∗)

min(|PO|, |PQ|)
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Matching is solved with integer programming

min
x

CT x such that


Ax ≤ b
Aeqx = beq

x is binary

where C(i , j) = ‖pi
O − pj

Q‖2.
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Linear approach is not geometrically consistent
Let us introduce a geometric constraint for parts
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Quadratic programming

f (x) =α
∑

i,j,i ′,j ′
|dO

S (i , i ′)− dQ
S (j , j ′)|x(i , j)x(i ′, j ′)+

β
∑
i,j

‖pi
O − pj

Q‖2.x(i , j)

Now, we consider the inter-distance between parts
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Matching is solved with quadratic integer programming

min
x

1
2

xT Dx + CT x such that


Ax ≤ b
Aeqx = beq

x is binary

where D({i , j}, {i ′, j ′}) = |dO
S (i , i ′)− dQ

S (j , j ′)|.
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Data-aware 3D partitioning

High variability inside classes
Difficult problem for representations
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Spin images

Robust local descriptor (Johnson 1997)
It is based on how points are distributed on a surface
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Spin images

A local basis is constructed from
An oriented point p
The normal n
The tangent plane P through p and perpendicular to n
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Spin images

Any point q can be represented in this basis

SO : R3 → R2

SO(q)→ (α, β) = (
√
‖q − p‖2 − (~n · (q − p))2, ~n · (q − p))

The coordinate of q in the spin image is computed from
(α, β)
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Spin images

Computing positions

i =

⌊
W∗bin

2 − β
bin

⌋

j =
⌊ α

bin

⌋
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Spin images

Accumulation is performed using bilinear weights

I(i , j) = I(i , j) + (1− a)(1− b)

I(i , j + 1) = I(i , j + 1) + (1− a)b

I(i + 1, j) = I(i + 1, j) + a(1− b)

I(i + 1, j + 1) = I(i + 1, j + 1) + ab (1)

where
a =

α

bin
− j

b =
W∗bin

2 − β
bin

− i (2)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Spin images

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Demo 2: Spin images
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Spin images

Matching
Given two spin images with N bins, we compute the
cross-correlation

R(P,Q) =
N
∑

piqi −
∑

pi
∑

qi√
(N
∑

p2
i − (

∑
pi )2)(N

∑
q2

i − (
∑

qi )2)

Similarity takes into account the variance to avoid the
dependency of cross-correlation to the overlap

C(P,Q) = (atanh(R(P,Q)))2 − λ
(

1
N − 3

)
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Spin images

C(P,Q) has a high value if two spin images are highly
correlated and a large number of pixels overlap.
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Spin images

Matching
For each shape, a number of random spin images are
computed and stored.
Given a spin image, the matching method computes the
similarity to every stored spin images.
We only need to determine a set with the highest values
(extreme outliers of the similarity histogram)
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Spin images

Set of candidates
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Spin images

Filtering of correspondences
Correspondences with similarity less than the half of the
maximum similarity
Given two correspondences C1 = (s1,m1) and
C2 = (s2,m2), the geometric consistency is defined as

dgc(C1,C2) = 2
‖Sm2 (m1)− Ss2 (s1)‖
‖Sm2 (m1) + Ss2 (s1)‖

Dgc(C1,C2) = max(dgc(C1,C2),dgc(C2,C1))

where SO(p) denotes the spin map function of point p using
the local basis of point O.
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Spin images

Filtering of correspondences
Geometric consistency involves position and normals.
Dgc is small if C1 and C2 are geometrically consistent.
Discard correspondences which are not consistent with at
least a quarter of the complete list of correspondences.
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Spin images

Final step: searching a transformation
A group measure is defined

wgc(C1,C2) =
dgc(C1,C2)

1− exp(−(‖Sm2 (m1)‖+ ‖Ss2 (s1)‖)/2)

Wgc(C1,C2) = max(wgc(C1,C2),wgc(C2,C1))

And a measure between a correspondence C and a group
{C1,C2, . . . ,Cn}

Wgc(C, {C1,C2, . . . ,Cn}) = maxi (Wgc(C,Ci ))
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Spin images

Algorithm to generate groups
For each correspondence Ci ∈ L, initialize a group
Gi = {Ci}
Find a correspondence Cj ∈ L−Gi , such that Wgc(Cj ,Gi)
is minimum. If Wgc(Cj ,Gi) < Tgc then update
Gi = Gi ∪ {Cj}. Tgc is set between zero and one. If Tgc is
small, only geometrically consistent correspondences
remains. A commonly used value is 0.25.
Continue until no more correspondences can be added.
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Spin images

The grouping algorithm generates n groups
For each group of correspondences {(mi , si)} a rigid
transformation T is calculated by minimizing the following
error using least squares method

ET = min
T

∑
‖si − T (mi)‖2

where T (mi) = R(mi) + t , R and t are the rotation matrix
and the translation vector, representing the rotation and
position of the viewpoint si in the coordinate system of mi .
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Spin images

A final step could involve an Iterative Closest Point algorithm for
refinement.
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Non-rigid shapes

Models with non-rigid transformations
Several approaches

Canonical embedding
Spectral theory (Tutorial 4: Spectral geometry methods in
shape analysis at 15:00)
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Canonical embedding

Find a canonical pose for models and compare them as in
global matching (Elad and Kimmel 2003)
Goal: "Unroll" the object
Approach: Multi-dimensional scaling
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Canonical embedding

MDS
Given a shape (X ,dX ) where dX is the geodesic distance

f : (X ,dX )→ (Rm,dRm )

Map f converts points on the surface onto points in some
Euclidean space
Hard to find an exact f .
In matching: as non-rigid shapes preserve geodesic
distances, the embedding should be similar.
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Canonical embedding

MDS
Find a minimum-distortion embedding

f = arg min
f :X→Rm

∑
i>j

|dRm (f (xi ), f (xj ))− dX (xi , xj )|2

The SMACOF algorithm is a gradient descent. It does not
guarantee a global minimum
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Demo 3: Canonical embedding
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Introduction to Spectral Analysis

Heat diffusion on Rn is governed by the heat equation(
∆ +

∂

∂t

)
u(x ; t) = 0; u(x ; 0) = u0(x)

under some boundary condition.
u(x ; t) is the heat distribution at point x at time t .
u0(x) is the initial heat distribution
∆ is the Laplacian
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Introduction to Spectral Analysis

For a surface X , function u is defined on points of X , and the
heat diffusion equation is(

∆X +
∂

∂t

)
u(x ; t) = 0; u(x ; 0) = u0(x)

∆X is the Laplace-Beltrami operator
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Introduction to Spectral Analysis

The Laplacian eigenvalue problem (the Helmholtz equation)

∆Xφ = −λφ

where λ is an eigenvalue of the Laplacian, and φ is its
corresponding eigenfunction.
Eigenfunctions are related to the Fourier basis functions.

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Introduction to Spectral Analysis

The Laplace-Beltrami operator ∆X has a discrete set of
eigenvalues and eigenvectors.

∆Xφ = λφ

where 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . .
λ0 = 0 and φ0 constant if X has a boundary.
Orthogonal eigenvectors

φi .φj =

∫
X
φiφj = 0, i 6= j
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Introduction to Spectral Analysis

Laplace-Beltrami operator ∆X is invariant to isometric
transformations
Eigenvalues and eigenvectors are also invariant (Reuter
2006)

Reuter proposed to represent a non-rigid shape with a small
set of eigenvalues: ShapeDNA
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Demo 2: ShapeDNA

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Shape Google

Represent a 3D model as a quantized vector of spectral
descriptors (Bronstein et al. 2010)
The fundamental solution of heat equation is the heat
kernel, represented as

Kt (x , y) =
∞∑

i=0

exp(−λi t)~vi(x)~vi(y)

where λi and ~vi are the eigenvalues and eigenvectors of
the Laplace-Beltrami operator, respectively.
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Shape Google

A representation for a point can be obtained (Sun et al.
2009)

Kt (x , x) =
∞∑

i=0

exp(−λi t)~vi(x)2

Using values for t , we can get a descriptor which is called
Heat Kernel Signature

p(x) = (p1(x), . . . ,pn(x))

pi(x) = c(x)Kαi−1t0(x , x)
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Shape Google

Heat Kernel Signatures (Bustos and Sipiran, 2012)
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Shape Google

Heat kernel signatures are sensitive to scale
A scale-invariant variant has been proposed (Bronstein
and Kokkinos, 2010)

It uses discrete derivatives and Fourier coefficients for
removing the scale dependency of HKS
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Shape Google

Procedure
Compute a descriptor for each vertex in a mesh
Given the entire collection of descriptors, perform a
k-means clustering to find a dictionary
Quantize the descriptors of a shape using the dictionary
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Shape Google

Process
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Shape Google

Apply k-means clustering to find a dictionary
M = {m1,m2, . . . ,mk}
For each point x on a mesh with its descriptor p(x), the
feature distribution

θ(x) = (θ1(x), . . . , θk (x))T

is a vector with elements

θi(x) = c(x) exp
(
−‖p(x)−mi‖2

2σ2

)
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Shape Google

The Bag of Feature of a shape S is

f (S) =
∑
x∈S

θ(x)

The distance between two shapes S and T is

d(S,T ) = ‖f (S)− f (T )‖

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Shape Google

Spatial information is lost during the quantization process
Consider pairs of descriptors with a weighting factor

F (S) =
∑
x∈S

∑
y∈S

θ(x)θT (y)Kt (x , y)

F (S) is a matrix.
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Signature Quadratic Form Distance for Retrieval

Unlike bag of features, this approach is local for defining
the signatures
Signature Quadratic Form Distance (Beecks et al. 2010)

Final representation only depends on the object information
It is possible to measure the distance between objects with
representations of different sizes.
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SQFD for Retrieval

Object is represented as a set of features

F = {fi}

Let us suppose the existence of a local partitioning

F : C1, . . . ,Cn

The signature is defined as

SP = {(cP
i ,w

P
i ), i = 1, . . . ,n}

where cP
i =

∑
f∈Ci

f
|Ci | and wP

i = |Ci |
K represent the centroid of

i-th cluster and a weight, respectively.
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SQFD for Retrieval

Given two signatures

SP = {(cP
i ,w

P
i ), i = 1, . . . ,n}

SQ = {(cQ
j ,w

Q
j ), j = 1, . . . ,m}

SQFD is defined as

SQFDfS (SP ,SQ) =
√

(wP | − wQ) · AfS · (wP | − wQ)T
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SQFD for retrieval

AfS ∈ R(n+m)×(n+m) is the similarity matrix defined as

aij =


fS(cP

i , c
P
j ) if i ≤ n and j ≤ m

fS(cQ
i−n, c

P
j ) if i > n and j ≤ m

fS(cP
i , c

Q
j−n) if i ≤ n and j > m

fS(cQ
i−n, c

Q
j−n) if i > n and j > m

The similarity function fS can be
Minus: f_(ci , cj ) = −d(ci , cj )
Gaussian: fg(ci , cj ) = exp(−αd2(ci , cj ))
Heuristic: fh(ci , cj ) = 1

α+d(ci ,cj )
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SQFD for Retrieval

Three approaches for computing the signatures in 3D
meshes

All descriptors of an objects
Descriptors of keypoints
Geodesic clusters

Adaptive clustering for computing the local partitioning
We use the Heat Kernel Signatures as descriptors
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SQFD for Retrieval

All vertices

FS(S) =

{
hks(vi)

‖hks(vi)‖
|vi ∈ S, i = 1, . . . ,n

}
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Demo 5: Signatures with all vertices
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SQFD for Retrieval

Descriptors of keypoints

FSIP(P) =

{
hks(v)

‖hks(v)‖
|v ∈ IP(P)

}
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Demo 6: Signatures with keypoints
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SQFD for Retrieval

Geodesic clusters
Compute the MDS of the keypoints in R2

Perform an adaptive clustering
One signature for each geodesic cluster
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SQFD for Retrieval

Examples of geodesic clusters
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Demo 7: Signatures with geodesic clusters
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SQFD for Retrieval

To evaluate this approach, we built a dataset with 5604
models
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SQFD for Retrieval

SQFD is indexable with metric access methods
We used pivot tables to avoid the linear scan
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SQFD for Retrieval

SQFD is indexable with metric access methods
We used pivot tables to avoid the linear scan
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Other approaches

A recent comparison evaluated state-of-the-art methods
(Lian et al. 2013)
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Shape Retrieval Contests (SHREC)

Competitions started in 2006
To date: 40+ tracks presented
Each track has a dataset and evaluation tools
Good initiative to evaluate algorithms and make
comparisons with the state of the art
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SHREC Examples

CAD models (2008)1

Using the ESB benchmark

1Available in: https://engineering.purdue.edu/PRECISE/shrec08
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SHREC Examples

Generic shape retrieval (2009)2

720 objects organized in 40 classes, 22 algorithms
evaluated

2http://www.itl.nist.gov/iad/vug/sharp/benchmark/shrecGeneric/
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SHREC Examples

Feature detection and description (2010)3

Three shapes, 9 transformations in 5 levels of strength.
Goal: measure the repeatability of local features

3Available in: http://tosca.cs.technion.ac.il/book/shrec_feat2010.html
Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Introduction
Applications

Preliminaries
Techniques

Shape Retrieval Contests
Final remarks

SHREC Examples

Face scans (2010) 4

Training set: 60 models
Test set: 650 scans

4Available in: http://give-lab.cs.uu.nl/SHREC/shrec2011/faces/index.php
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Non-rigid retrieval (2011) 5

600 objects with non-rigid transformations

5Available in: http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/
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Sketch-based 3D models retrieval (2012) 6

400 3D models, 250 hand-drawn sketches

6Available in: http://www.itl.nist.gov/iad/vug/sharp/contest/2012/SBR/
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SHREC Examples

Large-scale partial shape retrieval (2013) 7

360 models, 7200 partial queries

7Available in: http://dataset.dcc.uchile.cl/
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SHREC Examples

Retrieval of Objects Captured with Low-Cost
Depth-Sensing Cameras (2013) 8

192 models captured with Kinect

8Available in:http://3dorus.ist.utl.pt/research/BeKi/index.html
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Final remarks

Good balance of theory and practice in solutions
Current methods will be useful tools for supporting the
emergence of massive 3D data
There is still room for improvements (efficiency, scalability,
robustness)
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Future trends

Not-so-local features
How to deal with missing data? For instance, due to
occlusions
Representations: point clouds
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Tutorial material

Demo’s shapes belongs to the TOSCA dataset (A.
Bronstein and M. Bronstein and R. Kimmel, 2008)
Slides and matlab codes will be available soon on
http://users.dcc.uchile.cl/ isipiran/
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Thank You

Thank You!
Questions please
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