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Introduction

3D applications
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Introduction

3D as media

@ The same problem as other media
e Representation
e Storage
o Analysis
e Processing
@ Content-based matching or ...
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Introduction

The problem with matching

Non-rigid matching

Partial matching
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Applications

Craniofacial research

@ 3D features to detect anomalies (Atmosukarto et al. 2010)
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Applications

3D protein retrieval and classification

@ Searching for similar structures (Paquet and Viktor, 2008)
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Applications

3D retrieval for museums

@ 3D retrieval for navigation (Goodall et al. 2004)
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Applications

Human ear recognition in 3D

@ 3D features to represent an ear (Chen and Bhanu, 2009)
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Applications

CAD/CAM

@ Manufacturing and production (You and Tsai, 2010)
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Applications

Archeology

@ Matching for reconstruction (Huang et al. 2006)
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Applications

3D video sequences

@ Characterize a motion (Huang et al., 2010)




Applications

3D face recognition

@ Gesture-invariant representation (Bronstein et al. 2005)
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Preliminaries

3D Representations

@ Triangular meshes (in this tutorial)
@ Volumes
@ Point cloud
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e Techniques
@ Generic Shape Retrieval
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The global approach

@ Transform a 3D object into a numeric/symbolic
representation

o Feature vectors
o Graphs

@ Compare two objects through their representations

Object Numeric Descriptor
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The global approach

@ Feature vector approach has been extensively studied
o Scalability

feature extraction insert

high dimensional high dimensional
feature vector index structure

3D model
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Depth-buffer descriptor

@ Image-based descriptor (Vranic 2004)
@ Pose normalization
e Depth-buffer construction
o Fourier transformations
@ Selection of coefficients

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Generic Shape Retrieval
Shape recognition
Non-rigid Shape Retrieval

Techniques

Depth-buffer descriptor

@ Pose normalization - Typical procedure
e Translate the center of mass to the origin of the coordinate
system
e Rotate according to the largest spread
e Scale to common size
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Depth-buffer descriptor

@ Pose normalization - Continuous PCA

e Let f: T — M be a function on the set of triangles T in R3.
o Let us define an operator for the function f on the set T,

W(T) = //T f(v)ds
1 1—a
~25, [ da [ fapa + e+ (1—a—Apc)ds

e In addition
/,(/):;/,(T,)://VEIf(v)ds
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Depth-buffer descriptor

@ Pose normalization - Continuous PCA

e When f(v) =1, I¢(/) is the surface area.

e When f(v) = v, (/) = m, is the center of mass.

e When f(v) = (v — m))(v — m))T, I(/) evaluates to the
covariance matrix

(v—m)(v—m)Tds
I S//vml I I)

Z (Pa) + f(Ps,) + f(Pc) + 9f(91)) Si
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Depth-buffer descriptor

@ Pose normalization

@ With the continuous covariance matrix C;, PCA can be
applied as usual
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Depth-buffer descriptor

@ Construction
e Project the object into the faces of a bounding rectangle

T+ r— y+ y— z+ z—
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Depth-buffer descriptor

@ Fourier transformation
M—1 N—1

ha= = > faexp(~j2n(pa/M + gb/N))

qu = TN
MN a=0 b=0

y(g:z z:gby zg—-,‘: ,‘:——%wz
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Depth-buffer descriptor

@ Selection of coefficients
o As depth-buffers are real, coefficient posses the symmetry
property.
o Select coefficients whose indices satisfy
Ip—N/2|+|q - N/2| < k < N/2

for some natural number k
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PANORAMA descriptor

@ Image-based descriptor (Papadakis et al. 2009)

e Pose normalization (Continuous PCA)
e Cylindrical projection
e Fourier and Wavelet transformations
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PANORAMA descriptor

@ Cylindrical projection
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PANORAMA descriptor

@ Fourier coefficients

@ Haar and Coiflet wavelets (features computed on
sub-images of the DWT)

e Mean

]
“:NxMZ, I(x,y)

i=1 j=

—_

e Standard deviation
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PANORAMA descriptor

@ Fourier coefficients

@ Haar and Coiflet wavelets (features computed on
sub-images of the DWT)

e Skewness
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Other approaches

@ Ray-based feature vector (Vranic 2004)

L%

original 42 harmonics 82 harmonics 122 harmonics
> ; ; % % - i :
2(u) sample 167 harmonics 207 harmonics 4% harmonics
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Other approaches

@ 3D harmonics (Funkhouser et al. 2003)
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Other approaches

@ SHREC 2009 Generic Shape Retrieval: Competition with
20+ algorithms (Godil et al. 2009)

PARTICIPANT METHOD NN FT ST E DCG
Akgil DBFc8 0825 [0.433 (o550  [0.383  [0.748
(sect. 5.6) DBFc10 0.825 0.443 0.574 0.398 0.757
DBFc12 0813  [0.449 (0578 o406 [0.759
Bustos DSR_segment 0.863 0.561 0.696 0.49 0.825
(sect. 5.5) DSR_nesegment 0.85 0546 |0.691  [0.479  [0.819

Entropy_123_6_segment |0.838 0.526 0.663 0.464 0.803
Entropy_6789_6_segment [0.838  [0.528  [0.668  |0.467  |0.805

W1_segment 0838  [0.528 [0.666 0466  |0.806
Chaouch (sect. 5.1)[MDLA 0963 [0730 [0.848  [0.602  [0.017
Daras 3D_shape_impact 0.8 0447 [0.567  [0.396  |0.749
(sect. 5.3) Compact_multiview 0.8 0.49 0.626 [0.437  [0.771
Compound_SID_CMVD _ [0.875  |0.558  |0.69 0487 |0.83
Furuya BF-SIFT 0.850 [0.483 [0.624 [0.433  [0.777
(sect. 5.6) MR-SPRH-UDR 0875 [0550 (0703 o491 [o.824
Lian SHD+GSMD 0875 (0597 [0.733  |0.514  |0.85
(sect. 5.2) RECT+SHD+GSMD 0.925 0.633 0.778 0.542 0.875
RECT+SHD+GSMD+MR 0.925 0.724 0.844 0.595 0.904
Napeléen Runl og00 [0522  [o.665 [0.4se  [0.814
(sect. 5.4) Run2 0.950 0.615 0.701 0.502 0.864
Run3 ogso  [0638 (0771 o540 [o.s2
Rund 0.900 0.550 0.662 0.465 0.826

Run>
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Global + Local approach

@ Trying to take advantage of the local information in shapes
(Sipiran et al. 2013)

}_' \ I Xt

)L Kﬁ\ ’.\ g J.( \\ «© "’/

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Generic Shape Retrieval
Shape recognition

Techniques Non-rigid Shape Retrieval

Global + Local approach

@ We need discriminative and robust partitions
@ Local features-based approach
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Data-aware 3D partitioning

@ Step 1: Detection of keypoints
e Harris 3D algorithm (Sipiran and Bustos, 2011)
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Data-aware 3D partitioning

@ Harris 3D algorithm
o Pipeline

Compute local
neighborhoods

Fit quadratic
surface

{ Calculate Harris

response

[n(el‘e.!sl points |
selection
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Data-aware 3D partitioning

@ Harris algorithm
e Extension of the well-known method for images
e Harris algorithm
@ Autocorrelation function
e(x,y) =Y W, y)ll(xi + X, yi + Ay) = 1(xi, yi)I?
Xi,Yi
where (., .) denotes the image function and (x;, y;) are the
points in the Gaussian function W centered on (x, y), which
defines the neighborhood area in analysis.
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Data-aware 3D partitioning

@ Harris 3D algorithm
e Using a Taylor expansion

SIS ZX;"}’/‘ W'l’% EX:‘,Y/ W'IX‘I.V QT
e(XJ/) =S thyi W~/x~/y ZX{,J/; W/}% S
= SE(x.y)S"

where S = [Ax Ay] is a shift vector, I, and /, denote the
partial derivatives in x and y, and along with W are
evaluated in (x;, y;) points.
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@ Harris algorithm
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Data-aware 3D partitioning

@ Harris 3D algorithm
o Extension for 3D meshes in not trivial due to the lack of a

regular neighborhood topology.
e How to compute a neighborhood around a vertex?
@ Adaptive neighborhood
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Data-aware 3D partitioning

@ Harris 3D algorithm

e Good choice: neighborhood dependent of the local
structure

ringk(v) = {w € V' such that |shortest_path(v,w)| = k}

drl'ng(V7 ringk(v)) = maxweringk(v)”‘/ — w2
radius, = {k € N such that ding(Vv, ringx(v)) > § and
Qring(V, ringk—1(v)) < 0}
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Data-aware 3D partitioning

@ Harris 3D algorithm
e Translate the neighborhood, v; should be the origin
e PCA to normalize the spread of the points. Optimally, points
are well distributed in plane XY.
e Fit a quadratic surface

p

z=H(x.y) = 52 + paxy + P

?}’2 + P4X + Psy + Ps

e Function f(x, y) is similar to an image
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Data-aware 3D partitioning

@ Harris 3D algorithm
e In order to deal with local changes: smoothing

1 202 [ 9f(x,y)\?
= — o2 — 77
A 204 /Rz e = ( ox > dxdy

1 2t [ 9f(x,y)\?
= — 2
B 7 /2 e 22 . ( Y dxdy

1 =2 (Of(X,Y) of(x,y)
C_2047r/Rze - ( X )( ay ) XY
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Data-aware 3D partitioning

@ Harris 3D algorithm
e Evaluate the integrals to obtain the terms
AP

2 2
- 0_2 +p1 +p2

B—p—§+p2+ 3
=2 > + P3

C=%§+mm+mm
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Data-aware 3D partitioning

@ Harris 3D algorithm
@ The autocorrelation matrix is then

(2 )

e Now we can evaluate the Harris operator for each vertex in

the mesh, as usual.
e To detect keypoints, we can select, for instance, the top 1%
vertices with the highest response.
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Data-aware 3D partitioning

@ Harris 3D algorithm
e Saliency plot
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Demo 1: Harris keypoints
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Data-aware 3D partitioning

@ Step 1: Detection of keypoints
e Meshes with bad triangulation

e Control of resolution to improve triangulations (Johnson
and Hebert, 1998)

15000
12500

10000

Amount
2
2

025 a5 0,75 1 125 15
Edge langth
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Data-aware 3D partitioning

@ Step 1: Detection of keypoints
e Algorithm controls the edge lengths

4200
3600
3000

2400

Amount

1800
1200 -
| A
0 M
0,015 0,03 0,045 0,06 0,015 0,09 0,106
Edge length
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Data-aware 3D partitioning

@ Step 2: Adaptive clustering of keypoints in Euclidean
space
e Near points: same clustering
e Far points: different cluster
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Adaptive clustering in R”

@ Input: P € R”, inter-cluster threshold R, intra-cluster
threshold S, minimum number of elements N

e For each p € P, if p belongs to some existing cluster C;,
insert p into G;

e If p does not belong to any cluster, create a new cluster

e For each cluster C;, if |C;| < N, then remove cluster, update
centroid otherwise.

o Repeat until satisfying some stop criterion
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Data-aware 3D partitioning

@ Step 3: Partitioning and description

e Extract the patch enclosed by a sphere containing a cluster

e We use a kd-tree to efficiently search vertices in the
enclosing sphere

@ An object is represented as

So = {(S0, Po)|so € R" and Po = {p5, p3, - ... PS}. Po € R"}

where sg is a global descriptor of the entire shape, and pj,
is a global descriptor for a part.
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Data-aware 3D partitioning

@ Matching
e Given two objects O and Q, with their representations

So = {(so, Po)|Iso € R" and Po = {pt, Pp, - - -, PG} Po € R"}

So = {(sa, Po)|sq € R"and Pg = {ph, p3, ..., P&}, ph € R"}
@ The distance is a linear combination

d(So, Sq) = ullso — sall + (1 — p)d(Po, Pqa)

e How to evaluate d(Pp, Pg) if it involves a many-to-many
matching?

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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@ Matching
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Data-aware 3D partitioning

@ Matching
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Data-aware 3D partitioning

@ Matching
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Data-aware 3D partitioning

@ Matching
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Data-aware 3D partitioning

@ The correspondence can be formulated as a binary
variable

x(i.j) = 1, if p,; matches p’b
=0 otherwise.

@ The problem is to find the best x
f(x) = > IPb — Plllz-x(i.J)
i

@ The optimum can be used to formulate a distance

_ f(x*)
~ min(|Pol, [Pal)

d(P07 PQ)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Data-aware 3D partitioning

@ Matching is solved with integer programming

Ax<b
(AT
me C'x suchthat { Aggx = beq
X is binary

where C(i,j) = [ o — Pyllz.
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Data-aware 3D partitioning

@ Linear approach is not geometrically consistent
@ Let us introduce a geometric constraint for parts

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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@ Matching
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Data-aware 3D partitioning

@ Matching
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Data-aware 3D partitioning

@ Matching
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@ Matching
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Data-aware 3D partitioning

@ Matching
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Data-aware 3D partitioning

@ Quadratic programming
f(x) =a Y [0S0, 1) = d§ (/)X )x(T',])+
i,j,i’,]‘l

B> 1P — Plla-x(7. )

i?j

@ Now, we consider the inter-distance between parts

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Generic Shape Retrieval
Shape recognition

Techniques Non-rigid Shape Retrieval

Data-aware 3D partitioning

@ Matching is solved with quadratic integer programming

] Ax<b
min -x" Dx + C"x such that { Aggx = beg
x 2
X is binary

where D({i,j}, {7, }) = |08(i. ) — dS(. )]
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Data-aware 3D partitioning

@ High variability inside classes
@ Difficult problem for representations
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Outline

e Techniques

@ Shape recognition
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Spin images

@ Robust local descriptor (Johnson 1997)
@ Itis based on how points are distributed on a surface

2.D points spin-image

B

¥

2-D points spin-image

p

2.0 points spin-image

B B

¥
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Spin images

@ Alocal basis is constructed from
e An oriented point p
e The normal n
e The tangent plane P through p and perpendicular to n

P

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

@ Any point g can be represented in this basis

So:R3—R?

So(a) = (. 8) = (/g - plIz — (A~ (g - p))2. - (q - p))
@ The coordinate of g in the spin image is computed from

(a, B)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

@ Computing positions
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Spin images

@ Accumulation is performed using bilinear weights

I(i.j) = 1(i,j) + (1 — a)(1 — b)
I(i,j+1)=1(i,j+1)+(1—ab
I(i+1,7)=1(i+1,j)+a(l —b)
Ii+1,j+1)=I1(i+1,j+1)+ab (1)
where o
bin
b:W%;ﬂ—i 2)
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Spin images
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Demo 2: Spin images
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Spin images

@ Matching

e Given two spin images with N bins, we compute the
cross-correlation

R(P,Q) = N> pigi—> pi> i
VNS 22— (Zp)DINE ¢ — (X g)?)

e Similarity takes into account the variance to avoid the
dependency of cross-correlation to the overlap

C(P, Q) = (atanh(R(P, Q)))*> — X (1\11—3)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

C(P, Q) has a high value if two spin images are highly
correlated and a large number of pixels overlap.

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

@ Matching
e For each shape, a number of random spin images are
computed and stored.
e Given a spin image, the matching method computes the
similarity to every stored spin images.
o We only need to determine a set with the highest values
(extreme outliers of the similarity histogram)
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Set of candidates

Similarity Measure Histogram

300
200 -
[ outlier )
threshold
100 - \ -
outliers (4)
L - fi— _ |
g s
meedian
|
0.7 B 7 )

similarity measure
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Spin images

@ Filtering of correspondences
e Correspondences with similarity less than the half of the
maximum similarity
e Given two correspondences Cy = (s1,my) and
C> = (s2, M), the geometric consistency is defined as

[Smy (M) = Ss, (1)l
[Sm, (M) + Ss, (1)l

Dgc(Ch C2) = max(dgc(c1 ) CZ); dgc(027 C1 ))

where Sp(p) denotes the spin map function of point p using
the local basis of point O.

dgc(C1, Cz) = 2

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

@ Filtering of correspondences
e Geometric consistency involves position and normals.
@ Dy is small if Cy and C, are geometrically consistent.
e Discard correspondences which are not consistent with at
least a quarter of the complete list of correspondences.

iran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

@ Final step: searching a transformation
e A group measure is defined

B dgc(ch C2)
Wge(C1, C2) = 1 — exp(—(||Smy (m1)|| + ||Ss,(51)11)/2)

Wgc(Ch CZ) = maX(Wgc(Ch 02)7 Wgc(C27 C1))

e And a measure between a correspondence C and a group
{Cy,Cs,...,Ch}

Wye(C,{C1, Co, ..., Cp}) = max;(Wy(C, Ci))

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

Algorithm to generate groups

@ For each correspondence C; € L, initialize a group
Gi = {Ci}

@ Find a correspondence C; € L — G, such that Wyc(C;, G;)
is minimum. If Wyc(Cj, Gi) < T4 then update
Gi = G; U {Gj}. Ty is set between zero and one. If Ty is
small, only geometrically consistent correspondences
remains. A commonly used value is 0.25.

@ Continue until no more correspondences can be added.

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Spin images

@ The grouping algorithm generates n groups

@ For each group of correspondences {(mj, s;)} a rigid
transformation T is calculated by minimizing the following
error using least squares method

Er = min > llsi = T(my)|?

where T(m;) = R(m;) + t, R and t are the rotation matrix
and the translation vector, representing the rotation and
position of the viewpoint s; in the coordinate system of m;.
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Spin images
A final step could involve an lterative Closest Point algorithm for
refinement.

Scene Intensity Image Recognition Result
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Outline

e Techniques

@ Non-rigid Shape Retrieval
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Non-rigid shapes

@ Models with non-rigid transformations
@ Several approaches

e Canonical embedding
e Spectral theory (Tutorial 4: Spectral geometry methods in
shape analysis at 15:00)
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Canonical embedding

@ Find a canonical pose for models and compare them as in
global matching (Elad and Kimmel 2003)

@ Goal: "Unroll" the object

@ Approach: Multi-dimensional scaling

T A

(a) Original Il\(!dd\

*\)\

(b) Results of Least Square MDS
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Canonical embedding

@ MDS
e Given a shape (X, dx) where dx is the geodesic distance

f 1 (X, dx) = (R™, dam)

e Map f converts points on the surface onto points in some
Euclidean space

e Hard to find an exact f.

e In matching: as non-rigid shapes preserve geodesic
distances, the embedding should be similar.

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Canonical embedding

e MDS
e Find a minimum-distortion embedding

f=argmin} _ [den(f(x), 7)) — dx(%;, X))

e The SMACOF algorithm is a gradient descent. It does not
guarantee a global minimum
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Demo 3: Canonical embedding
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Introduction to Spectral Analysis

Heat diffusion on R" is governed by the heat equation

(A + 86t> u(x; t) = 0; u(x;0) = up(x)

under some boundary condition.
@ u(x;t) is the heat distribution at point x at time .
@ up(x) is the initial heat distribution
@ A isthe Laplacian

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Introduction to Spectral Analysis

For a surface X, function u is defined on points of X, and the
heat diffusion equation is

(AX + g;) u(x;t) =0; u(x;0) = up(x)

@ Ay is the Laplace-Beltrami operator

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Introduction to Spectral Analysis

The Laplacian eigenvalue problem (the Helmholtz equation)

Axp = —Ap

where ) is an eigenvalue of the Laplacian, and ¢ is its
corresponding eigenfunction.
Eigenfunctions are related to the Fourier basis functions.
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Introduction to Spectral Analysis

The Laplace-Beltrami operator Ax has a discrete set of
eigenvalues and eigenvectors.

Axp = A

Where0:)\o§>\1 S)\gg
@ )y = 0 and ¢ constant if X has a boundary.
@ Orthogonal eigenvectors

bi-9; = /X¢i¢j =0,i#]j

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Introduction to Spectral Analysis

@ Laplace-Beltrami operator Ay is invariant to isometric
transformations

@ Eigenvalues and eigenvectors are also invariant (Reuter
2006)

Reuter proposed to represent a non-rigid shape with a small
set of eigenvalues: ShapeDNA
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Demo 2: ShapeDNA
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Shape Google

@ Represent a 3D model as a quantized vector of spectral
descriptors (Bronstein et al. 2010)

@ The fundamental solution of heat equation is the heat
kernel, represented as

Ki(x,y) = exp(—=\it)Vi(x)Vi(y)
i=0

where )\; and V; are the eigenvalues and eigenvectors of
the Laplace-Beltrami operator, respectively.
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Shape Google

@ A representation for a point can be obtained (Sun et al.
2009)

Ki(x, x) = iexp(—A,-t)V,-(X)2
i=0

@ Using values for t, we can get a descriptor which is called
Heat Kernel Signature

p(x) = (P1(X), -, Pn(x))

pi(x) = c(X)Kqi-14, (X, X)

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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Shape Google

@ Heat Kernel Signatures (Bustos and Sipiran, 2012)
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Shape Google

@ Heat kernel signatures are sensitive to scale

@ A scale-invariant variant has been proposed (Bronstein
and Kokkinos, 2010)

@ It uses discrete derivatives and Fourier coefficients for
removing the scale dependency of HKS
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Shape Google

@ Procedure

e Compute a descriptor for each vertex in a mesh

e Given the entire collection of descriptors, perform a
k-means clustering to find a dictionary

e Quantize the descriptors of a shape using the dictionary

iran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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@ Process

@ ®) © @
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Shape Google

@ Apply k-means clustering to find a dictionary
M = {m1,m2,...,mk}

@ For each point x on a mesh with its descriptor p(x), the
feature distribution

0(x) = (01(x),...,0k(x))"

is a vector with elements

000 = oy exp 12 e

202

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition



Generic Shape Retrieval
Shape recognition

Techniques Non-rigid Shape Retrieval

Shape Google

@ The Bag of Feature of a shape S'is

f(S) =) 6(x)

xeS

@ The distance between two shapes Sand T is

d(S,T) = [[f(S) = [(T)]l
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Shape Google

@ Spatial information is lost during the quantization process
@ Consider pairs of descriptors with a weighting factor

F(S) =YY 0(x)0 (y)Ki(x, )

xeSyeS

@ F(S) is a matrix.
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Signature Quadratic Form Distance for Retrieval

@ Unlike bag of features, this approach is local for defining
the signatures
@ Signature Quadratic Form Distance (Beecks et al. 2010)

e Final representation only depends on the object information
e It is possible to measure the distance between objects with
representations of different sizes.
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SQFD for Retrieval

@ Object is represented as a set of features
F={f}
@ Let us suppose the existence of a local partitioning
F:Cy,...,Cp
@ The signature is defined as
SP={(cl,wh),i=1,....n}
Zrec |

where cP [ and W represent the centroid of
i-th cluster and a weight, respechvely

Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition
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SQFD for Retrieval

@ Given two signatures
SP={(cF,wh),i=1,....n}

CRE {(c W Qj=1,....m
@ SQFD is defined as

SQFDy(SP. 89) = \/(wP| - wQ) - Ay, - (wP| — wO)T
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SQFD for retrieval

@ Ay, € R(mmx(n+m) ig the similarity matrix defined as

fs(cf, cf) ifi<nandj<m
o fs(c,Qn,cP) if i>nandj<m
") fs(eP,e® ) ifi<nandj>m
fs(c,on,co) ifi>nandj>m

@ The similarity function fs can be
e Minus: f (¢, ¢)) = —d(ci, ¢j)
e Gaussian: fy(ci, ¢j) = exp(—ad?(ci, ¢j))

e Heuristic: fy(cj, ¢j) = m
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SQFD for Retrieval

@ Three approaches for computing the signatures in 3D
meshes

o All descriptors of an objects
e Descriptors of keypoints
e Geodesic clusters

@ Adaptive clustering for computing the local partitioning
@ We use the Heat Kernel Signatures as descriptors
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SQFD for Retrieval

@ All vertices
FS(S): hks( )

v~€S,i—1,...,n}
ks
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Demo 5: Signatures with all vertices
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SQFD for Retrieval

@ Descriptors of keypoints

e v
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Demo 6: Signatures with keypoints
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SQFD for Retrieval

@ Geodesic clusters
e Compute the MDS of the keypoints in R?
e Perform an adaptive clustering
e One signature for each geodesic cluster
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SQFD for Retrieval

@ Examples of geodesic clusters
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Demo 7: Signatures with geodesic clusters
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SQFD for Retrieval

@ To evaluate this approach, we built a dataset with 5604
models

Precision

05 - - - - . -
04 - - - - -

0.3 - Shape Google —&— R i
ShapeDNA
Our approach Tk

0.2
0 0.2 0.4 0.6 0.8 1

Recall
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SQFD for Retrieval

@ SQFD is indexable with metric access methods
@ We used pivot tables to avoid the linear scan

# 1 1
i, P P
AN

18 Logrroriin

speedup

A -
L

Lmax —a— [ g N o—4—o—¢

R R LT L
R
0,%:%0,%0:%0,% %2 % % 6000 %% 0% D Y,

S
Q
Q
Q
Q
o L
0 :
o
o
oF

alpha
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SQFD for Retrieval

@ SQFD is indexable with metric access methods
@ We used pivot tables to avoid the linear scan

Method Query time
ShapeDNA 0.01
Shape Google 0.1330
Total 0.9479
Keypoint 0.0252
Cluster 1.1842
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Other approaches

@ A recent comparison evaluated state-of-the-art methods
(Lian et al. 2013)
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Shape Retrieval Contests

Shape Retrieval Contests (SHREC)

@ Competitions started in 2006
@ To date: 40+ tracks presented
@ Each track has a dataset and evaluation tools

@ Good initiative to evaluate algorithms and make
comparisons with the state of the art
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@ CAD models (2008)'
e Using the ESB benchmark

Stats for all run files

[Mean Average Precision(relevant) ]| [Mean First Tier(relevant) [Mean Second Tier(relevant) [Mean Dynamic Average Recall
[Rank[Runfile __[value _fRank[Runile __[value JfRank[Runfile __[Valie _JfRankRunfile __[vale |

[t J[u_yama_ARun 1[0.79965734]|[1__|[U_Yama_A Run 1|78.166664%| |1 [U_Yama_A Run 1]39.739418%]|[1__| 0.7943641
2 |[U_Yama B Run 1][0.47644576|| 2 |[U_Yama B Run 1]44.262406%||[2__|[U_Yama_B Run 1|[27.32075% ||[2__|[U_Yama_B Run 1[0.5675939
[ |[TNepolean Run 2 [[0.4330686 || [3__|[TNepolean Run 2 [41.62454% || [3__[TNepolean Run 2 [26.433836%)| [3__|[TNepolean Run 2 0.50698064
4 |[TNepolean Run 1 |[0.39915675]|[4__|[TNepolean Run 1 [38.54358% 4 |[TNepolean Run 1 |[24.579538% | [4__|[TNepolean Run 1 0.47764158
F JAsmRun1 0.35762513)|[5 |[Asim Run 1 [32.961426%)|[5__|[Asim Run 1 [21.038076% | [5_|[Asim Run 1 044011145
b |XLiRun1 0327912876 |X_LiRun1 [1.491108%]| 6 [[X_LiRun1 J[19.132729%|[6  |[X_LiRun 1 [0.42887306

[Mean Normalized Cumulated
(Gain @5

[Mean Normalized Cumulated Gain
Renranrie Ve[l rananrie Ve [ anrie [vabe [ remranrie e |

Vlean Normalized Cumulated Gain|

Mean Normalized Cumulated Gain|
@1

Mean Normalized Cumulated Gain)
@2:

B

U Yama A | [{ |U_Yama_A Run] | [Runfile___[Value
1 [vame A ogouon |l |U-YemeA R o pagzaza |y |U-Yama A Runlo gg6773 ‘ -YemaA R o 6316563 m_
Lo ama_A Ruh flo g7145066|
[U_Yama B . U_Yama_B Run [U_Yama_B Run [U_Yama_B Run | _
Yama | 65777 —Yama_B Run o 5119970, Yama | —Yama 5
> |run e |2 2 DSMQGWHHZ 1 75586469 | 3 FPNepolean Run 2 [0.67413066)
N e e e T e T ‘ ‘3 NepleanRan |, 07757 B [TNepolean Run 1][0.6478456 |
s [u-yama_BRun 0.5¢1537s7‘
[\ [TNepolean Run [ o, o [TNepolean Run o oo Iy [TNepotean Rum o oo [[ls [Tepotean Rum oo eoc It It
L ! L & [f_ JAsmRunt 05727366 |
5 JAsmRuni (04577776 5 |AsmRunl 04206437 ||[5_[AsimRunl (0409007 |5 [AsimRun1 _[04520872 (g [x Lirun1 Jjnsoaccei
6 X LiRuni |o.moo008]|[f X LiRuni |039493632)|[6 X LiRuni [03634691 ||[6_|X_LiRuni _|0.4077099)

'Available in: https://engineering.purdue.edu/PRECISE/shrec08
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@ Generic shape retrieval (2009)?
@ 720 objects organized in 40 classes, 22 algorithms

XY f
Vo> 19
? Ylm
& e
yﬁ.«@ﬁ@

2http://www.itl.nist.gov/iad/vug/sharp/benchmark/shrecGeneric/
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SHREC Examples

@ Feature detection and description (2010)3

e Three shapes, 9 transformations in 5 levels of strength.
o Goal: measure the repeatability of local features

£ o :’Q;\

e (
N NS @R R R
NARRRNRRRR
48 4 VA i !/ } s g A i A 'y
null isometry topology sampling localscale scale holes microholes noise shotnoise

SAvailable in: http://tosca.cs.technion.ac.il/book/shrec_feat2010.html
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@ Face scans (2010) 4

e Training set: 60 models
o Test set: 650 scans

“Available in: http://give-lab.cs.uu.nl/SHREC/shrec2011/faces/index-php
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@ Non-rigid retrieval (2011) °
e 600 objects with non-rigid transformations

X oge R %= 4
z 9 4 =2 D
X e & =+ Iz
® ¥ ¥ o ¥k
¥ % €1 e ¥

SAvailable in: http://www.itl.nist.gov/iad/vug/sharp/contest/201 1/NonRigid
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@ Sketch-based 3D models retrieval (2012) ©
@ 400 3D models, 250 hand-drawn sketches

8Available in: http://www.itl.nist.gov/iad/vug/sharp/contest/2012/SBR/
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@ Large-scale partial shape retrieval (2013) 7
@ 360 models, 7200 partial queries

7 Available in: http://dataset.dcc.uchile.cl/
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Shape Retrieval Contests

SHREC Examples

@ Retrieval of Objects Captured with Low-Cost
Depth-Sensing Cameras (2013) 8
e 192 models captured with Kinect

8Available in:http://3dorus.ist.utl.pt/research/BeKi/index.htmi
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Final remarks

Final remarks

@ Good balance of theory and practice in solutions

@ Current methods will be useful tools for supporting the
emergence of massive 3D data

@ There is still room for improvements (efficiency, scalability,
robustness)
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Final remarks

Future trends

@ Not-so-local features

@ How to deal with missing data? For instance, due to
occlusions

@ Representations: point clouds
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Final remarks

Tutorial material

@ Demo’s shapes belongs to the TOSCA dataset (A.
Bronstein and M. Bronstein and R. Kimmel, 2008)

@ Slides and matlab codes will be available soon on
http://users.dcc.uchile.cl/ isipiran/
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Final remarks

Thank You

Thank You!
Questions please
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