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Abstract

Local Features for Shape Matching and Retrieval

by Ivan Sipiran

Three-dimensional shapes are useful to represent real objects in the digital world. Their

use encompasses a wealth of applications in diverse fields such as medicine, engineering,

security, and so on. Recently, the introduction of cheap scanning devices has increased

the interest for this kind of information, generating a large amount of models available

in several sources. It is therefore imperative to provide effective and efficient algorithms

for processing and analyzing 3D data.

The evaluation of similarity of 3D shapes is a basic and important task which can be

useful for high-level processes such as retrieval and recognition. These processes need

attention as 3D repositories are constantly growing and it is increasingly necessary to

provide content-based searches. Moreover, the comparison of 3D models is a challenging

task due to the difficulty of adequately represent a shape for a proper comparison.

In this thesis, we address the problem of shape matching and retrieval. We propose

new representations for 3D shapes based on the ability of detecting robust local fea-

tures on meshes. In this way, our work is first focused on the effective and efficient

detection of keypoints in 3D shapes. Then, we provide effective shape representations

to tackle problems such as generic shape retrieval, non-rigid shape retrieval, and shape

matching. For shape retrieval, we develop representations based on groups of keypoints.

These representations allow us to take advantage of the representational power of lo-

cal features while reducing the amount of information needed for the representation.

For shape matching, we develop a hierarchical representation which contains a recursive

decomposition of a 3D shape in regions and keypoints. This representation is useful

to decrease the localization error of correspondences in non-rigid shapes while reducing

considerably the processing time.

Our experiments show that our methods to detect local structures in meshes are robust

to several transformations. In addition, we present a comprehensive evaluation of our

representations for generic shape retrieval, non-rigid shape retrieval and shape matching.

From our results, it is possible to conclude that the use of local features can enhance the

process of assessing the similarity between 3D shapes. And moreover, our representations

may help to improve both the effectiveness and efficiency of 3D shape retrieval and

matching.



Contents

Abstract i

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 7

2.1 Local Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Keypoint Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Component Detection . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Shape Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Generic Shape Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Non-rigid Shape Retrieval . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Shape Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Background 19

3.1 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 DESIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1.1 Depth-buffer . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1.2 Silhouettes . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1.3 Ray-based harmonics . . . . . . . . . . . . . . . . . . . . 23

3.1.2 PANORAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Heat Kernel Signatures . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 Wave Kernel Signatures . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 SHREC 2010 Feature Detection and Description Benchmark . . . 28

3.2.2 SHREC 2009 Generic Shape Retrieval . . . . . . . . . . . . . . . . 29

3.2.3 Large-scale Non-rigid Shape Retrieval Dataset . . . . . . . . . . . 29

3.2.4 Shape Matching Benchmark . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Metric Spaces and Metric Indexing . . . . . . . . . . . . . . . . . . 29

3.3.2 Signature Quadratic Form Distance . . . . . . . . . . . . . . . . . 33

ii



Contents iii

4 Local Structures on 3D Shapes 35

4.1 Harris 3D: Interest Points Detection on Meshes . . . . . . . . . . . . . . . 36

4.1.1 Interest Points Detection . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1.1 Robust Harris Operator on 3D Meshes . . . . . . . . . . 39

4.1.1.2 Evaluation of Integrals . . . . . . . . . . . . . . . . . . . 42

4.1.1.3 Adaptive Neighborhood Size . . . . . . . . . . . . . . . . 45

4.1.1.4 Selecting Interest Points . . . . . . . . . . . . . . . . . . . 46

4.1.2 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . 47

4.1.2.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . 48

4.1.2.2 Analysis of parameter values . . . . . . . . . . . . . . . . 49

Spatial neighborhoods. . . . . . . . . . . . . . . . . . . . . . 49

Adaptive neighborhoods. . . . . . . . . . . . . . . . . . . . . 51

Ring neighborhoods. . . . . . . . . . . . . . . . . . . . . . . 52

Parameter K . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Interest point selection . . . . . . . . . . . . . . . . . . . . . 54

4.1.2.3 Comparison with other methods . . . . . . . . . . . . . . 55

4.2 Key-Components: Regions of Interest on Meshes . . . . . . . . . . . . . . 58

4.2.1 Clustering in the Geodesic Space . . . . . . . . . . . . . . . . . . . 61

4.2.2 Key-component Extraction . . . . . . . . . . . . . . . . . . . . . . 64

4.2.3 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . 67

4.2.3.1 Evaluation Criterion . . . . . . . . . . . . . . . . . . . . . 67

4.2.3.2 Effect of Key Ingredients . . . . . . . . . . . . . . . . . . 67

4.2.3.3 Comparison with other methods . . . . . . . . . . . . . . 72

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Data-aware Partitioning for Generic Shape Retrieval 78

5.1 Data-aware 3D Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 Control of mesh resolution . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Clusters of Interest Points . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.3 Partitioning and Description . . . . . . . . . . . . . . . . . . . . . 83

5.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . 84

5.2.1.1 Numerical Aspects . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Integer Quadratic Programming . . . . . . . . . . . . . . . . . . . 86

5.2.2.1 Numerical Aspects . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . . . . 87

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 The role of partition matching . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.4 Class-by-class Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.5 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.6 Results with PANORAMA . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Non-Rigid Shape Retrieval 101

6.1 Finding Signatures for 3D Shapes . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Feature signatures on all vertices . . . . . . . . . . . . . . . . . . . 102



Contents iv

6.1.2 Feature signatures on keypoints . . . . . . . . . . . . . . . . . . . . 103

6.1.3 Feature signatures on clusters of keypoints . . . . . . . . . . . . . . 105

6.2 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . . . . 106

6.2.1 Effectiveness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Indexability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.3 Efficiency Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.4 Comparison with the State of the Art . . . . . . . . . . . . . . . . 113

6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Shape Matching 117

7.1 The Decomposition Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Hierarchical Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2.1 Matching of Internal Nodes . . . . . . . . . . . . . . . . . . . . . . 124

7.2.2 Matching of Leaf Nodes . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Experimental Evaluation and Discussion . . . . . . . . . . . . . . . . . . . 126

7.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 SHREC’2010 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.2.1 Evaluation Criterion . . . . . . . . . . . . . . . . . . . . . 127

7.3.2.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . 127

7.3.2.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . 128

7.3.3 Shape Matching Benchmark . . . . . . . . . . . . . . . . . . . . . . 129

7.3.3.1 Evaluation Criterion . . . . . . . . . . . . . . . . . . . . . 129

7.3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Conclusions 133

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1.1 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.1.2 Scalability and Efficiency . . . . . . . . . . . . . . . . . . . . . . . 135

8.1.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Auxiliary Integrals for Harris 3D 136

A.0.4 Evaluation of integral
∫∞
0 e−x

2/2σ2
dx . . . . . . . . . . . . . . . . . 136

A.0.5 Evaluation of integral
∫∞
0 e−x

2/2σ2 · x2 · dx . . . . . . . . . . . . . . 138

A.0.6 Evaluation of integral
∫∞
0 e−x

2/2σ2 · x3 · dx . . . . . . . . . . . . . . 138

Bibliography 139



List of Figures

3.1 Depth-buffer renderings. The top row shows the depth buffers of the 3D
model. The bottom row shows their coefficient magnitudes of the 2D
Fourier transform. Figure taken from [BKS+06]. . . . . . . . . . . . . . . 22

3.2 Heat kernel signatures calculated on two isometric shapes. At top, signa-
tures in corresponding points look very similar. At bottom, signatures in
different points on the mesh differ. . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Null shape and its transformations. Figure taken from [BBB+10]. . . . . . 28

4.1 This figure shows the steps we propose to detect interest points in 3D
meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Point v and its neighbor rings. Firstly, V1(v) is composed by vertices
connected by strong edges. Secondly, V2(v) is composed by vertices up
to those connected by dashed edges. Finally, Vk(v) is composed by all
vertices until those connected by pointed edges. . . . . . . . . . . . . . . . 40

4.3 Harris 3D operator plotted as a saliency value for each vertex. Note how
the high values are present in discriminative regions of the meshes. See
in color for better visualization. . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Selection options. (A) Armadillo model. (B) Selected points with highest
Harris response. (C) Selected points by clustering. . . . . . . . . . . . . . 48

4.5 (a)Repeatability values obtained by selecting spatial neighborhoods. The
radii of the ball was chosen as a fraction of the diagonal of the bounding
box of the object. Results show average repeatability for the range [0.01,
0.1] for the radii. (b)Average repeatability for spatial neighborhoods with
radii 0.02 and 0.03, respectively. The comparison was done by levels of
transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Average repeatability for adaptive neighborhoods with several δ values. . 51

4.7 Average repeatability with ring neighborhoods sizes taken from the range
[1, 10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Effect of varying K in average repeatability. . . . . . . . . . . . . . . . . . 54

4.9 Effect of reducing the number of interest points in average repeatability. . 55

4.10 Shapes with interest points. Interest points are represented with small
red balls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.11 Key-components detected on 3D meshes using our method. . . . . . . . . 60

4.12 The process to detect key-components. First, Harris 3D keypoints are
detected on a shape. Second, a clustering in the geodesic space is per-
formed to find concentrations of keypoints. Finally, each geodesic cluster
generates a region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 Left: Shape with keypoints. Right: Multi-dimensional scaling of the
keypoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



List of Figures vi

4.14 Left: Shape with cluster of keypoints. Right: multi-dimensional scaling
of the keypoints. Points represented as crosses do not belong to any cluster. 64

4.15 Key-components detected on shapes with several transformations. From
left to right: null shape, isometry, microholes, local scale, noise, topology,
holes, sampling, and shot-noise. Color are arbitrary. . . . . . . . . . . . . 66

4.16 This plot shows the average repeatability at overlap 0.8 for different
parameter configurations. Columns represent region sizes: large (left),
medium (middle), and small (right). Rows represent the minimum num-
ber of keypoints allowed in a cluster: N = 10 (top), N = 20 (middle), and
N = 30 (bottom). Each block contains the repeatability for five different
number of keypoints: three fixed configurations (100, 200, and 300 ) and
two depending on the number of vertices (1% and 1.5%). Each block has
the same scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.17 Overlap vs. Repeatability plot for the KC-1 variant. . . . . . . . . . . . . 69

4.18 Overlap vs. Repeatability plot for the KC-2 variant. . . . . . . . . . . . . 71

4.19 Overlap vs. Repeatability plot for the KC-3 variant. . . . . . . . . . . . . 72

4.20 The three stages of the MSER key-components detection. At left, com-
ponents detected with the approach of Litman et al. At middle, HKS
keypoints detected. At right, final MSER key-components detected. . . . 74

4.21 MSER key-components detected on shapes with several transformations.
From left to right: null shape, isometry, microholes, local scale, noise,
topology, holes, sampling, and shot-noise. Colors are arbitrary. . . . . . . 74

4.22 Overlap vs. Repeatability for the MSER key-component method. . . . . . 75

5.1 Two globally dissimilar chairs. Note that the chair at right is taller than
the left one. Nevertheless, it is possible to find similarities between their
parts, which can be exploited to improve the similarity measure between
the two objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Effect of mesh resolution: Shape with bad triangulation (a) and its poorly
distributed edge length histogram (b). Shape processed with the mesh
resolution algorithm (c) and its improved edge length histogram. . . . . . 82

5.3 Three examples of partitions obtained with our method using the param-
eter configuration used in Sec. 5.3.2. . . . . . . . . . . . . . . . . . . . . . 83

5.4 Recall - Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Mean average precision (MAP) and sensitivity analysis on our Linear
Programming Matching approach. (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5.
Plot were scaled to best visualization. . . . . . . . . . . . . . . . . . . . . 92

5.6 Nearest neighbor (NN) and sensitivity analysis on our Linear Program-
ming Matching approach (LPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5.
Plot were scaled to best visualization. . . . . . . . . . . . . . . . . . . . . 92

5.7 First tier (FT) and sensitivity analysis on our Linear Programming Match-
ing approach (LPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were
scaled to best visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Second tier (ST) and sensitivity analysis on our Linear Programming
Matching approach (LPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot
were scaled to best visualization. . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Mean average precision (MAP) and sensitivity analysis on our Quadratic
Programming Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c)
δ = 1.5. Plot were scaled to best visualization. . . . . . . . . . . . . . . . 94



List of Figures vii

5.10 Nearest neighbor (NN) and sensitivity analysis on our Quadratic Pro-
gramming Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c)
δ = 1.5. Plot were scaled to best visualization. . . . . . . . . . . . . . . . 94

5.11 First tier (FT) and sensitivity analysis on our Quadratic Programming
Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot
were scaled to best visualization. . . . . . . . . . . . . . . . . . . . . . . . 94

5.12 Second tier (ST) and sensitivity analysis on our Quadratic Programming
Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot
were scaled to best visualization. . . . . . . . . . . . . . . . . . . . . . . . 95

5.13 Mean average precision for each class in the SHREC’09 dataset. Plots
were scaled for better visualization. . . . . . . . . . . . . . . . . . . . . . . 96

5.14 Samples of class Chair. Note the high variability of parts amongst shapes. 96

6.1 Colors represent the clusters using the HKS descriptors of the entire
shape. The clusters are consistent despite the non-rigid transformations.
Note: the colors are arbitrary and they are only used to show the resulting
clusters in a shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Local features in our approach: (a) Harris 3D keypoints, (b) clusters of
keypoints based on their HKS, (c) keypoints within region of interest. . . 105

6.3 Clusters of keypoints detected on several 3D shapes. . . . . . . . . . . . . 106

6.4 Mean average precision for our variant Total. (A) Gaussian similarity
function. (B) Heuristic similarity function. . . . . . . . . . . . . . . . . . . 107

6.5 Mean average precision for our variant Keypoint. (A) Gaussian similarity
function. (B) Heuristic similarity function. . . . . . . . . . . . . . . . . . . 108

6.6 Mean average precision for our variant Cluster. (A) Gaussian similarity
function. (B) Heuristic similarity function. . . . . . . . . . . . . . . . . . . 108

6.7 Intrinsic dimensionality for our variant Total. (A) Gaussian similarity
function. (B) Heuristic similarity function. . . . . . . . . . . . . . . . . . . 110

6.8 Intrinsic dimensionality for our variant Keypoint. (A) Gaussian similarity
function. (B) Heuristic similarity function. . . . . . . . . . . . . . . . . . . 110

6.9 Intrinsic dimensionality for our variant Cluster. (A) Gaussian similarity
function. (B) Heuristic similarity function. . . . . . . . . . . . . . . . . . . 111

6.10 Speedup for our variant Total with respect to linear scan. (A) Gaussian
similarity function. (B) Heuristic similarity function. . . . . . . . . . . . . 112

6.11 Speedup for our variant Keypoint with respect to linear scan. (A) Gaus-
sian similarity function. (B) Heuristic similarity function. . . . . . . . . . 112

6.12 Speedup for our variant Cluster with respect to linear scan. (A) Gaussian
similarity function. (B) Heuristic similarity function. . . . . . . . . . . . . 113

6.13 Comparison of precision-recall curves for our method and methods from
the state of the art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 A decomposition tree of a human shape. The root node contains the
original mesh and its related data. The first decomposition generates five
regions. The last level contains smaller regions from the head. . . . . . . . 120



List of Figures viii

7.2 Representation of the matching process. The initial call toMatching(T, S)
(level 0) tries to find correspondences between nodes the internal in level
1. In the figure, the correspondences {(T1, S3), (T2, S2), (T3, S1)} were
found. Each pair generates a recursive call to the matching algorithm.
The correspondence (T1, S3) causes a matching between internal nodes.
In contrast, correspondences (T2, S2) and (T3, S1) drive to a matching of
internal nodes. Note that T3 is not a leaf node. However it contains the
enough information to be considered as a leaf node, and therefore it can
be matched to S1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Correspondences found with our approach. Left: # correspondences =
66, geodesic error = 2.83, matching time = 0.12 sec. Middle: # corre-
spondences = 58, geodesic error = 2.62, matching time = 0.08 sec. Right:
# correspondences = 75, geodesic error = 3.51, matching time = 0.12 sec. 125

7.4 Correspondences found in presence of perturbations. Left: shotnoise,
strength level 4 (# correspondences = 59, geodesic error = 5.23, matching
time = 0.08 sec.). Right: noise, strength level 5 (# correspondences =
49, geodesic error = 5.42, matching time = 0.03 sec.). . . . . . . . . . . . 128

7.5 Performance of our method and state-of-the-art methods. This plot shows
the percentage of correspondences within the prescribed distance to the
ground-truth correspondence. (A) Using the unique ground-truth. (B)
Using symmetric flips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Tables

4.1 Repeatability of our method using spatial neighborhood with fraction = 0.03.

Average number of detected points: 303. . . . . . . . . . . . . . . . . . . . . . 50

4.2 Repeatability of our method using adaptive neighborhoods with δ = 0.01. Av-

erage number of detected points: 303. . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Repeatability of our algorithm using one ring neighborhood. Average number of

detected points: 303. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Repeatability of our algorithm using combination of values with the best effec-

tiveness. Average number of detected points: 303. . . . . . . . . . . . . . . . . 55

4.5 Repeatability of HKS1 feature detection algorithm. Average number of detected

points: 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Repeatability of HKS2 feature detection algorithm. Average number of detected

points: 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7 Repeatability of HKS3 feature detection algorithm. Average number of detected

points: 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 Repeatability of SP algorithm. Average number of detected points: 409. . . . . 58

4.9 Methods with the best performance by transformations and strengths. HKS -

Heat Kernel local maximum. H3D - Harris 3D. . . . . . . . . . . . . . . . . . 59

4.10 Average overlap values for variant KC-1. . . . . . . . . . . . . . . . . . . . 70

4.11 Average overlap values for variant KC-2. . . . . . . . . . . . . . . . . . . . 71

4.12 Average overlap values for variant KC-3. . . . . . . . . . . . . . . . . . . . 72

4.13 Comparison of the three evaluated variants: KC-1, KC-2, and KC-3. . . . 73

4.14 Average overlap values for the MSER key-components approach. . . . . . 74

5.1 MAP values for different values of µ (values are in [0,100] scale) . . . . . . 89

5.2 Correlation matrix between eight variables: Number of partitions (NP),
number of vertices (NV), MAP for GM (GM), MAP for LPM (LPM),
MAP for QPM (QPM), MAP gain for LPM over GM (G1), MAP gain
for QPM over GM (G2), and MAP gain for QPM over LPM (G3). . . . . 98

5.3 Matrix of p-values for the correlation between eight variables: Number of
partitions (NP), number of vertices (NV), MAP for GM (GM), MAP for
LPM (LPM), MAP for QPM (QPM), MAP gain for LPM over GM (G1),
MAP gain for QPM over GM (G2), and MAP gain for QPM over LPM
(G3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Results for different values of µ in LPM using PANORAMA (values are
in [0,100] scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Best MAP’s for each variant along with their parameter choices. . . . . . 109

6.2 Average number of feature signature and required times for computing
the feature signatures and querying. . . . . . . . . . . . . . . . . . . . . . 113

ix



List of Tables x

6.3 Comparison of our method with the state of the art. . . . . . . . . . . . . 114

6.4 Query time for each compared method. . . . . . . . . . . . . . . . . . . . 115

7.1 Average geodesic error of correspondences with respect to the strength level. . . 128

7.2 Average geodesic error per transformation and per level. Average number of

correspondences: 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Averaged maximal per map geodesic errors and percentage of perfect matches

for each method in our comparison. . . . . . . . . . . . . . . . . . . . . . . . 132



List of Algorithms

3.1 Pivot-based Range Query . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Pivot-based k-NN Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Sparse Spatial Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Interest Points Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Adaptive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Key-component Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 GenerateTree(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Matching(T ,P ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xi



Chapter 1

Introduction

Three-dimensional shapes are a suitable representation for real objects in several situ-

ations. For example, they are used in fields such as medicine, engineering, archeology,

and so on. In recent years, we have witnessed increasing interest in computer graphics

and computer vision communities for 3D shape retrieval and matching. As a result,

a number of techniques and approaches have been proposed for shape representation,

object and feature description, feature selection, and matching algorithms. It is also

important to note the number of applications that have emerged, such as:

• Geometric 3D comparison for shoe industry [NK01].

• 3D hippocampi retrieval [Kei99].

• Classification of pollen in 3D volume data sets [RBS02].

• 3D retrieval for museums [GLM+04].

• Human ear recognition in 3D [CB07].

• 3D face recognition [KPT+09, DBSS08, BBK05, PKT07].

• 3D object classification for craniofacial research [AWHS10].

• 3D protein retrieval and classification [YCCO05, PV07, PV08].

• CAD/CAM [YT09].

• Archeology [HFG+06].

• 3D video sequences [HHS10].

1
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More recently, with the introduction of cheap 3D devices, the availability of 3D informa-

tion in real applications has considerably increased. One of the most crucial problems

is how to assess the similarity between two 3D shapes. This problem is challenging

because the only available information is the shape. Therefore, it is necessary to pro-

pose approaches to find suitable representations for 3D data in order to do an effective

comparison.

In this thesis, we address the problem of shape matching and retrieval. Our approach

is entirely based on the detection of robust local features. Our premise states that local

features convey enough information to characterize a shape, and at the same time it

allows us to tackle several problems such as shape perturbations and non-rigid transfor-

mations. Furthermore, the use of local features increase the amount of information, so

it is also important to propose efficient solutions to the overall problem.

Our work is based on two key aspects. First, the cornerstone of our research work

is the robust and efficient detection of keypoints on meshes. Indeed, we propose the

Harris 3D method [SB11] which has proven to be effective in presence of many shape

perturbations and transformations [BBB+10, BBB+11]. Second, our approaches for

matching and retrieval are based on organizing keypoints in high-level structures. We

propose two strategies for organizing keypoints: grouping and hierarchies.

The former is based on the observation that Harris 3D keypoints have a similar distri-

bution on the surface of similar shapes. For this reason, we propose to group keypoints

according to several criteria depending on the application:

• Detection of coarser-level local structures. We propose to perform a geodesic

clustering of keypoints in order to find regions with a high agglomeration. We call

key-components to the detected regions [SB12, SB13b]. Interestingly, the key-

components exhibit a high overlap in presence of transformations.

• Data-aware partitioning. We propose to perform a spatial clustering of key-

points in generic shapes. As a result, we can extract mesh partitions and use

them to represent a shape [SBS13]. These representation are used to evaluate

the similarity of two shapes through an optimization approach. The data-aware

partitioning has been useful to improve the effectiveness of generic shape retrieval.

• Discriminative signatures for non-rigid shapes. We propose to use the local

features to construct signatures for non-rigid shapes [SB]. These signatures allow

us to reduce the amount of information, without compromising the representa-

tional power of the features. Our signatures, in combination with the Signature

Quadratic Form Distance, improve the effectiveness and efficiency of non-rigid

shape retrieval in a large-scale scenario.
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The latter strategy is based on the ability of decomposing a shape into robust regions. We

propose a new representation for non-rigid shapes: the decomposition tree [SB13a]. This

structure maintains a hierarchy of local structures where the root node is the entire shape

and the leaf nodes contains keypoints. The tree structure allows us to guide the matching

process by levels, generating correspondences hypotheses and reducing the search space

early in the process. In fact, we propose a hierarchical matching algorithm which takes

advantage of the tree structure to perform an efficient search of correspondences in

non-rigid shapes.

In this thesis, we present a careful description of our proposals to tackle the problem of

shape matching and retrieval. In addition, we validate our ideas with a comprehensive

experimentation in every aspect of our approaches.

1.1 Thesis Outline

This thesis is organized as follows:

• Chapter 2 presents the related work of our research. The presentation of the litera-

ture is divided taking into account the three major topics of this work. Section 2.1

is devoted to present the state of the art in local features detection. Section 2.2

describes the previous works in shape retrieval. Also, we provide a detailed descrip-

tion of methods for generic shape retrieval and non-rigid shape retrieval. Finally,

Section 2.3 presents a description of previous approaches for shape matching.

• Chapter 3 describes the background of our work. This chapter is mainly focused on

the introduction of basic concepts which are important to fully understand the rest

of the thesis and make it self-contained. Section 3.1 is dedicated to the detailed

presentation of state-of-the-art descriptors, which will be used in several parts of

the thesis. Section 3.2 describes the datasets used for evaluating our methods.

Finally, Section 3.3 presents the background on indexing which will be useful for

improving the efficiency of a retrieval system.

• Chapter 4 concentrates on our proposals for effective and efficient detection of lo-

cal structures on 3D shapes. We present two approaches to detect local features

in different scales. Section 4.1 describes the Harris 3D algorithm to detect key-

points on 3D meshes. Our experiments show that our algorithm is robust against

strong transformations such as noise and holes. More interestingly, the detected

keypoints exhibit a distinctive distribution on shapes of the same class, so they

are useful for detecting local structures in a coarser level. Section 4.2 presents our
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approach to detect repeatable components on 3D meshes: the key-components.

Our experiments show that our key-components exhibit a high overlap in presence

of transformations. In both cases, our proposals outperform the state of the art.

• Chapter 5 focuses on the effective use of local features in generic shape retrieval.

In this chapter, we propose a data-aware partitioning algorithm to decompose a

shape into parts. The partitioning algorithm is guided by the spatial concentration

of keypoints which allow us to divide an object in a data-driven manner. Subse-

quently, we formulate the problem of assessing the similarity between two shapes

as a optimization problem. Our experiments show that our partitioning scheme

has a positive impact in the retrieval performance.

• Chapter 6 presents a new approach for characterizing a non-rigid shape from its

local information. In this chapter, we propose three approaches to compute signa-

tures to represent a shape. The combination of these signatures with the Signature

Quadratic Form Distance allows us to make contributions in the effectiveness and

the efficiency of a retrieval system. Our results show that our approach outper-

forms the state of the art in large-scale non-rigid shape retrieval.

• Chapter 7 addresses the problem of shape matching. We propose a new represen-

tation for non-rigid shapes called the decomposition tree. This structure contains a

hierarchical decomposition of a shape where the keypoints are stored in the lowest

level of the hierarchy. Thus, we propose a hierarchical matching algorithm to com-

pute a correspondence set between two shapes represented by their decomposition

trees. Our results show that our representation is robust and efficient. Our match-

ing algorithm improves the state of the art in two important aspects: it reduces

the localization error of correspondences and it considerably reduces the matching

time.

• Chapter 8 draws the conclusions of our research work and delineates the future

research directions.

1.2 Thesis Publications

The ideas presented in this thesis have been published in the following papers and related

publications:
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Book Chapters

• [BS12] This book chapter contains an extensive description of the state of the art

of shape matching and provides examples of well-established techniques and new

approaches for shape retrieval and recognition. In this chapter, we describe open

problems and future trends, which were useful to formulate the ideas of this thesis.

Journals

• [SB11] This paper presents the Harris 3D algorithm to detect interest points on

meshes. The article presents a detailed description of our method. In addition,

we deeply explore the effect of the algorithm parameters in the performance us-

ing the repeatability of keypoints as evaluation criterion. The method and the

experimentation of this research are presented in Sec. 4.1.

• [SB13b] This is a journal version of our workshop article about the detection of

the salient regions. This article deeply explores the impact of distinctiveness and

size in the definition of regions of interest. In this thesis, the content of the journal

article can be seen in Sec. 4.2.

• [SBS13] This paper describes our data-aware partitioning algorithm for generic

shape retrieval. In this article, we propose to decompose a shape according to

spatial groups of keypoints. Also, we propose to use a optimization formulation

to assess the similarity between two shapes. Our experiments show that our new

representation can enhance the retrieval of shapes. This method is presented in

Chapter 5.

• [LGB+13] This paper is an extension of a joint report presented in the Shape

Retrieval Contest (SHREC’2011). This paper present a rigorous comparison of

methods for non-rigid shape retrieval. In this article, we use a very preliminary

approach to tackle the problem of non-rigid shape retrieval using local features.

Conference Proceedings

• [SB10] This paper presents a preliminary study of the Harris 3D method, which

was extended in the journal article [SB11].

• [BBB+10] This paper contains a joint report with evaluations of algorithm for local

features detection in the context of the Shape Retrieval Contests (SHREC). In this

article, our Harris 3D method is evaluated along with state-of-the-art techniques.
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In this thesis, part of these evaluations are useful to compare Harris 3D with

related works in Sec. 4.1.

• [BBB+11] This paper also contains a joint report (SHREC) which evaluates local

feature detection methods. The dataset used in this report is different to that

presented in [BBB+10].

• [LGB+11] This paper is a joint report (SHREC) containing the evaluation of non-

rigid shape retrieval methods. In this paper, we present a preliminary study about

the use of local features for non-rigid shape retrieval.

• [Sip11] This paper describes our thesis proposal. The article contains our general

ideas about how to address the problems in our research work. The paper re-

ceived the Best Paper Award in the Doctoral Symposium of the ACM Multimedia

Conference 2011.

• [SB12] This paper delineates a method to detect salient regions on 3D meshes

based on the distribution of keypoints. This article presents a preliminary study,

which has been complemented in a journal article under review [SB13b]. In this

thesis, the method to detect salient regions and a complete experimentation are

presented in Sec. 4.2.

• [BBB+12] This paper is a joint report (SHREC) in the context of retrieval of

abstract shapes. This article present our first experience in the use of the Signature

Quadratic Form Distance for shape retrieval.

• [SB13a] This paper presents a new hierarchical representation for non-rigid shapes

and a hierarchical matching algorithm to compute point correspondences. The

work presented in this paper is the basis of the Chapter 7 in this thesis.

Unpublished Works

• [SB] This manuscript describes our approach for non-rigid shape retrieval using

the Signature Quadratic Form Distance. In this paper, we propose new character-

izations of shapes through signatures extracted from local features. The content

and experimentation of this work are presented in Chapter 6.



Chapter 2

Literature Review

This chapter is devoted to present the related work of our research. We divide the

presentation of the literature according to the three major subjects of this thesis: local

features (Sec. 2.1), shape retrieval ( 2.2) and shape matching ( 2.3).

2.1 Local Features

2.1.1 Keypoint Detection

The interest point detection topic emerged in the computer vision community with the

aim of reducing the amount of information used in high-level vision tasks. A pioneer-

ing work was presented by Harris and Stephens [HS88], which was the basis for many

later works. For readers interested on interest points detectors on images, we recom-

mend the evaluation paper presented by Schmid et al. [SMB00], which contains detailed

descriptions and performance evaluation of several proposed methods.

For 3D meshes, several approaches have been proposed, most of which have tried

to extend the detectors proposed for images. After the SIFT method proposed by

Lowe [Low04], a number of extensions have been presented which use Difference-of-

Gaussians(DoG) as interest point detector. Castellani et al. [CCFM08] applied the DoG

detector over vertices in scale-space obtained with successive decimations of the original

shape. Vertices with high response in its DoG operator are selected as interest points.

In the same way, Zou et al. [ZHDQ08] proposed to build a geodesic scale-space, and

subsequently to apply DoG detector on that space for detecting interest points on a sur-

face. Also, Zaharescu et al. [ZBVH09] assumed that the vertices of an 3D object have

associated information such as curvature or photometric properties. Defining a discrete

7
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Difference-of-Gaussians operator, the authors applied this operator on the function de-

fined by the associated information over a manifold. This approach showed good results

in matching of 3D models sequences.

On the other hand, the geometric diffusion theory can be used for detecting interest

points on surfaces. The diffusion process reveals interesting characteristics from the

intrinsic geometry of a surface which can be exploited to detect outstanding structures.

As a 3D surface property related to the diffusion process on a manifold, the Laplace-

Beltrami operator has been also used to detect interest points. Hu and Hua [HH09]

defined the geometric energy of a vertex as function of the eigenvalues and eigenvectors

of the Laplace-Beltrami spectrum of a given object. Vertices where the energy is a

maximum are considered as interest points. In addition, the energy provides the scale

where the selected vertices are interesting. The selected interest points were used in a

matching task with promising results. On the other hand, Sun et al. [SOG09] defined

the Heat Kernel Signature as a temporal domain restriction of the Heat Kernel on a

manifold, which is related to the Laplace-Beltrami spectrum. In 3D meshes, each vertex

has an associated signature. A vertex is selected as interest point, when for large time

values, its signature has a maximum with respect to the neighbor vertices.

Similarly, Zou et al. [ZHL+09] proposed to build a scale space of the surface geometry

via the surface Ricci flow which satisfies a set of desired properties for a multi-scale

representation. The authors applied the Ricci flow over a metric of the surface based on

edge lengths. The scale space is represented as a matrix with curvature values calculated

from the set of diffused metrics. Then, the Laplacian of a vertex is computed using the

cotangent schema using the curvature as associated values. A vertex is considered as

an interest point if it is an extreme of the Laplacian in the 1-ring neighborhood and

neighboring scales.

Also, curvature-based methods have been proposed. Gelfand et al. [GMGP05] described

an interest point detector based on a new descriptor called the integral volume descriptor.

For each vertex, the amount of volume in the intersection of a ball centered in the vertex

and the 3D object describes an interesting local measure. The authors showed that this

quantity is closely related to the curvature in the vertex. Vertices with uncommon

integral values are selected as interest points. Also using curvature in vertices, Ho

and Gibbins [HG09] suggested a measure called the curvedness measure in order to

describe the geometric information in a vertex. The curvedness is calculated from the

principal curvatures of a vertex. This measure can be calculated in different scales by

selecting different neighborhood sizes which are used to fit quadratic patches over which

curvatures are computed. Vertices with extremal values in its curvedness, with respect

to neighboring points and scales, are selected as interest points.
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Differently, Liu et al. [LZQ06] proposed a Monte-Carlo strategy to select a random set

of points on a surface with each point having the same probability to be chosen. These

points were used in partial shape retrieval. The assumption behind this proposal is

that the vertices of a shape are samples of the original surface and the tasks that use

them can be affected by shape tessellations. Similarly, Shilane and Funkhouser [SF06]

considered random points on a 3D surface, selecting only those points that contribute

to improve the retrieval performance. With a training phase, it was possible to assign

a predicted distinction value to each selected point in the 3D collection and thus, using

that values to assign new ones to points of a new shape.

As another approach, the mesh saliency defined by Lee [LVJ05] has proven to be a

robust feature to many 3D applications. The process to compute the mesh saliency of

a 3D object begins calculating a Gaussian-weighted average of the mean curvature on

a surface. Each vertex in an object is thus associated to the difference of such average

in different scales, which is the saliency of that vertex. Vertex with the highest saliency

can be considered as interest points.

Conformal parameterization has also been used to propose interest points detectors.

Methods based on conformal parameterization [HLD+08, NN07] transform a 3D surface

into a 2D parameterization that can be seen as an image. A 3D to 2D mapping is said

to be conformal if angles are preserved. Once an image is computed, interest points can

be detected on it, and subsequently these are mapped back to the 3D domain.

Finally, Mian et al. [MBO09] related the repeatability of keypoints (extracted from

partial views of an object) with a quality measure based upon principal curvatures.

More recently, Creusot et al. [CPA13] proposed a machine learning approach for the

detection of keypoint on 3D face scans.

Also, several efforts have been done to evaluate the performance of interest point de-

tection methods in different aspects such as repeatability [BBB+10, TSD13, BBB+11]

and localization error with respect to human landmarks [DCG12]. Similarly, Yu et

al. [YWC13] evaluated the performance of volumetric 3D interest point detectors.

2.1.2 Component Detection

Mesh decomposition is an important analysis tool with applications in computer vision

and graphics. The idea is to partition a given mesh in components or regions which can

be used in applications. Although there are a lot of approaches for mesh segmentation,

we are interested in those methods driven by local features. For a comprehensive study

about mesh segmentation techniques, we recommend the survey by Shamir [Sha08].
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One of the earliest techniques for feature-driven mesh decomposition was presented

by Mortara et al. [MPS+03]. This method decomposes a triangular mesh based on a

characterization of a vertex using its local curvature. It analyzes the evolution of the

curve formed by the intersection of the mesh with a set of spheres with increasing radii.

The number of connected components of the curve and the local properties (curvature

and length ratio) define a classification for each vertex, which is used to group vertices

with similar features. Differently, Huang et al. [HWAG09] proposed to decompose a

shape based on a modal analysis. Taking the eigen-decomposition of the Hessian of an

energy function defined on the mesh, it is possible to define the set of typical deformations

of a mesh. Therefore, this method is able to estimate the parts that tend to be rigid

and subsequently segment them.

Local features have also been used for mesh segmentation. Agathos et al. [APPS09]

propose a mesh segmentation method based on interest points. Given a mesh, the

algorithm computes a protrusion function for each vertex, which is defined as the sum of

geodesic distances to all vertex on the mesh. Thus, a vertex is selected as interest point

if the value of its protrusion function is greater than the mean of geodesic distances

between each pair of vertices. The interest points are grouped in order to avoid regions

with many interest points. Each interest point is used as seed for computing the mesh

segments. Similarly, Katz et al. [KLT05] computed a 3D embedding for a shape and

subsequently, the convex hull of the embedding was calculated. The vertices of the

convex hull were considered as keypoints, over which the method computed a set of core

components.

Also, Gal and Cohen-Or [GCO06] proposed to represent a 3D object as a set of salient ge-

ometric features. Their scheme entirely relies on curvature information over the shape’s

surface. This method starts by computing the curvature on a set of sampled points.

Next, points are sorted according to their curvature values. The algorithm takes points

with high curvature and performs a grouping of neighbor points until a good quadratic

fitting surface can be found that approximates better the neighborhood. Subsequently,

a region-growing algorithm clusters the mesh by adding points to the initial segments

according to an empirical measure which involves area, curvature and similarity. The

final clusters are called salient geometric features which are used in shape matching.

On the other hand, Hu and Hua [HH09] proposed to find keypoints using the eigen-

decomposition of the Laplace-Beltrami operator of a shape. Each keypoint has a scale

which is used to define a local patch, so a mesh is represented as a set of local patches

product of the keypoint-based decomposition. After describing each local patch with

its Laplace-Beltrami spectrum, they are used in a matching algorithm. On the other

hand, Toldo et al. [TCF09] applied a segmentation based on local properties of the mesh,
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specifically a shape index computed from the principal curvature values. Each segment

is described with a histogram of local properties. Finally, a bag of features approach

is used for describe the entire shape in order to be used in shape retrieval. Differently,

Shapira et al. [SSS+10] performed a hierarchical segmentation using a shape diameter

function (SDF). Subsequently, each segment is described using several local features

such as a normalized histogram of SDF, shape distribution signatures and conformal

geometry signatures. The signatures were used in matching and retrieval.

More recently, the decomposition of meshes from spectral functions defined on the sur-

face has been introduced. The idea of these techniques is to take advantage of intrinsic

information to define a function on vertices, edges or faces. Subsequently, the defined

function is used by a grouping algorithm which provides a segmentation. For instance,

the Heat Mapping approach [FSKR11] defines a vertex signature which can be inter-

preted as the average temperature on the surface by applying heat on a vertex. Then, a

segmentation process using the k-means algorithm is driven from points with the highest

value of heat affinity. Similarly, the Center-Shift method [SFR12] proposes the evalua-

tion of the biharmonic kernel in a point as a vertex function. Next, the algorithm finds a

set of termination points which are vertices with maximal weighted mean of the defined

function evaluated in local neighborhoods. Finally, a segment refinement is applied to

provide the final segmentation.

Likewise, Skraba et al. [SOCL10] proposed to assign to each vertex its heat kernel sig-

nature evaluated in a fixed time. With these values, the technique applies a persistence-

based clustering. This clustering considers to track regions associated with local maxima

of the function. On the other hand, Aubry et al. [ASC11b] computed a n-dimensional

function for each vertex. Each vertex was represented by its wave kernel signature.

Next, every descriptor from a training set of shapes is collected in a large n-dimensional

point cloud. This points are clustered by a Gaussian mixture algorithm where points

in the same cluster correspond to the same mesh segment. This clusters are used for

assigning a label to each vertex of a new shape.

In the same direction, the extension of methods from image processing and computer

vision has been studied. For instance, Digne et al. [DMAMS10] extend the maximally

stable extremal regions (MSER) to shape decomposition. The method used the concept

of vertex-weighted component trees applied to meshes. To accomplish this goal, it

was necessary to use the mean curvature as function defined over the mesh. Similarly,

Litman et al. [LBB11] also used the MSER framework to detect stable components on

meshes. The authors proposed an approach based on diffusion geometry. The algorithm

considers the shape as a graph and associates weights to vertices and edges according to

the evaluation of a local property (the heat kernel) between vertices and edges. A very
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interesting work that also uses concepts from image processing is the Variational Mesh

Decomposition [ZZWC12]. It is based on the well-studied Mumford-Shah functional

which is common in image segmentation literature. This technique proposes a convex

version of the functional which is applied on a face-based multichannel function on the

surface. The function is defined from the eigenvectors of a Laplacian matrix defined on

dihedral angles for edges.

2.2 Shape Retrieval

2.2.1 Generic Shape Retrieval

The interest in 3D model retrieval has resulted in a large amount of proposed techniques

to overcome the problem. One of the most studied approaches is to convert a 3D model

into a more convenient representation for comparison, for example feature vectors. Then,

the comparison can be done by defining a distance between those representations. For

generic shape retrieval, this approach has received attention due to the efficiency of

computing distances between vectors. In this section, we provide a brief description

of the state of the art related to descriptors for generic shape retrieval and possible

combinations to improve the performance. For a comprehensive study, surveys by Bustos

et al. [BKS+05] and, Tangelder and Veltkamp [TV08] are an excellent resource.

Classic methods for 3D shape retrieval can be classified in three groups: view-based,

histogram-based, and transform-based. This classification is based on how a feature is

extracted from the shape. View-based methods transform a 3D shape into a set of 2D

views and subsequently we can apply image techniques to describe the obtained views.

For example, the Depth Buffer method [Vra04] computes six views corresponding to the

six faces of the bounding cube of an object. Each view stores the projected distances

from the object to the projection plane. Then, each view is represented by Fourier

coefficients and the final vector is the concatenation of the six obtained views. Another

example is the PANORAMA descriptor [PPTP09], which computes three views taken

from the lateral faces of cylinders oriented according with the coordinate axes. Similar

to the Depth Buffer, each lateral face encodes the distance from the object to the face.

Then, Fourier and Wavelets coefficients are extracted from each view, which form the

final descriptor.

Histogram-based methods summarize shape properties in order to use them as features.

For instance, Shape Distributions [OFCD02] is a method that computes several geomet-

ric properties (distances between pairs of surface points, angles between three random

surface points, etc). The method consists of sampling a large amount of points on the
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shape surface and subsequently measuring some property. Each value obtained for the

chosen property is accumulated in a histogram. Thus, the histogram represents an ap-

proximation of the distribution of the property and it is expected to be distinctive for

each object.

Transform-based methods consist of converting the geometric information by using some

mathematical transformation prior to the feature extraction. The goal of applying a

transformation is to enhance some information which is not evident in the Euclidean

space. In particular, in 3D model retrieval, there is an interest for spherical harmonics

to extract features from shapes. Vranic proposed the ray-based descriptor [Vra04] by

using a spherical function which is able to capture the behavior of the rays starting in

the origin and the intersections with the shape. Similarly, Kazhdan et al. [KFR03] used

spherical harmonics frequencies along with the Gaussian Euclidean Distance Transform

in a volume representation of a shape.

An interesting and new approach is the combination of different descriptors to improve

the performance of individual descriptors. The basic idea is that different descriptors

could extract complementary features and their combination could lead to improvements.

Bustos et al. [BKS+04] proposed to dynamically combine several descriptors using a

weighting scheme dependent on the query. Similarly, Vranic [Vra05] proposed to combine

three descriptors: Silhouette, Ray-based and Depth-Buffer. This combination (which

was called DESIRE) improved the performance of the individual descriptors. On the

other hand, Papadakis et al. [PPT+08] suggested combining 2D and 3D features to

improve the performance of retrieval. As a 2D feature, the authors proposed to use

the Depth Buffer method and as 3D feature, they proposed to use spherical harmonics

transform for spherical functions obtained from the shape.

The aforementioned combination methods consist of somehow combining two or more

description methods. However, these techniques still rely on the global shape for the

calculation of each descriptor. Recent approaches have considered the combination of

global information and part-based information. Li and Johan [LJ10] used global an

local radial distances to describe a shape. First, the method computes a radial distance

descriptor by uniformly dividing the surface of a sphere containing the object. The

division considers bins at different angle intervals and the average distance of each bin

to the object is stored on it. Second, the local component of the method consists of

uniformly dividing the bounding cube of the object into N × N × N cells. For each

vertex on the shape, the method computes the minimum distance to the cell centers

and the distance is assigned to the vertex. Finally, thirteen views are extracted using

the assigned distances as RGB values. The distance between two shapes with this

representation is measured pair-wise between global and local descriptions.
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Also, Bustos et al. [BSW+11] proposed a simple partitioning scheme in order to combine

it with global descriptors. Given a shape, the method computes a global descriptor for

it. Next, the shape is divided in eight parts according to the eight octants obtained

with the coordinate axes in the 3D Euclidean space. Finally, the method computes

a descriptor for each part. To measure the distance of global-partial representations,

the authors evaluated several weighting schemata where adaptive weighting showed the

best performances. Similarly, Schreck et al. [SSW+12] also took the octant partition

as a basis. Nevertheless, this new technique considered the matching of the parts as a

bipartite graph matching problem. In addition, the authors tested the use of different

numbers of parts. Interestingly, it was shown that not using all parts (6 or 7 depending

on the dataset) outperformed the retrieval performance.

Regarding the use of local features to decompose a 3D shape, several approaches have

been proposed for non-rigid and partial shape retrieval. Toldo et al. [TCF09] proposed

to apply a spectral clustering to decompose a mesh into regions. Each region was

further described with information such as the shape index, radial geodesic distances

and normal directions. The final representation was obtained using a multi-level bag-

of-features approach. On the other hand, Shapira et al. [SSS+10] presented a technique

for describing mesh segments. The segmentation is hierarchically performed using SDF

histograms [SSCO08]. Next, contextual information is used in order to improve the

matching between parts. A bipartite graph is used to measure the context-aware distance

between two objects. In addition, mesh decomposition is recently being used as an

alternative to 3D shape matching and retrieval.

A new interesting trend is the exploration of new similarity criteria. In the previously

discussed works, the similarity was guided by the visual aspect. However, functionality

and part compatibility are also being considered for performing similarity search. Kim

et al. [KLM+12] explored the application of fuzzy correspondences to associate a given

region of interest with shapes in a large collections. Also, the use of template-based

matching [KLM+13, OLGM11] have proven to be effective in the exploration of large

collections of 3D shapes. Moreover, the use of functionality as similarity criterion has

allowed the introduction of methods for the example-based synthesis of new shapes from

large collections [ZCOM13].

2.2.2 Non-rigid Shape Retrieval

In general, existing methods for non-rigid 3D shape retrieval can be roughly classi-

fied into algorithms employing local features, topological structures, isometry-invariant



Chapter 2. Basic Concepts and Literature Review 15

global geometric properties, direct shape matching, or canonical forms. The first so-

lution is to measure the dissimilarity between two models based on their local fea-

tures that are insensitive to isometric transformations. For instance, the well-known

Spin Images [Joh97] was utilized in [LZQ06], where they described a 3D object as a

word histogram by the vector quantization of all local features (Spin Images) extracted

on the surface. Ovsjanikov et al. [OBGB09] made use of the Heat Kernel Signature

(HKS) [SOG09], which is based on the properties of the heat diffusion process on a 3D

shape, and designed a spatially-sensitive bag-of-features approach to retrieve non-rigid

models in large databases. Ohbuchi et al. [OOFB08] proposed a view-based method

using salient local features (SIFT [Low04]). They represented a whole object as a his-

togram by using bag-of-features for 2D salient local descriptors extracted from a set

of depth-buffer views captured uniformly around the object. More recently, Wang et

al. [WLZ10] presented Intrinsic Spin Images (ISIs) by generalizing the traditional Spin

Images from 3D space to N- dimensional intrinsic shape space, in which their ISIs shape

descriptors are calculated on MDS embedding representations of original 3D surfaces.

The second solution is to use topological structures to compare deformable 3D objects.

For example, Hilaga et al. [HSKK01] developed the Topology Matching technique to

compute the similarity between two models via the shape matching of their Multireso-

lutional Reeb Graphs (MRGs), while Sundar et al. [SSGD03] compared 3D objects by

applying graph matching techniques to match their skeletons. Better retrieval perfor-

mance can be obtained [TL07] by using topological and geometric features together.

For the third category, isometric-invariant global geometric properties (e.g., geodesic

distance) are utilized for non-rigid 3D shape retrieval. Reuter et al. [RWP05] suggested

using the models Laplace-Beltrami spectra, while Jain and Zhang [JZ07] proposed to

use eigenvalues of the geodesic distance matrix of a 3D object to generate 3D shape

descriptors that are isometry-invariant. Also, Mahmoudi and Sapiro [MS09] designed

six such signatures based on the distributions of intrinsic distances including diffusion

distance, geodesic distance, a curvature weighted distance, etc.

Many investigations have also been made trying to measure the exact dissimilarity be-

tween non-rigid 3D models. For instance, Mémoli and Sapiro [MS05] introduced a

theoretical framework to directly compare non-rigid 3D shapes based on the Gromov-

Hausdorff (GH) distance. Since calculating the exact value of the GH distance is compu-

tationally expensive, Mémoli [Mém07] proposed to approximate the GH distance by solv-

ing a mass transportation problem, which is a quadratic optimization problem with lin-

ear constraints. Bronstein et al. [BBK06a] formulated a Generalized Multi-dimensional

Scaling method as an optimization approach for local minimization of the GH-type em-

bedding distortion between two triangular meshes. Apparently, an ideal and complete
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solution for the comparison of two non-rigid shapes is to match them directly. However,

due to its high computational complexity, direct shape matching is impractical for real

shape retrieval systems that require instant responses.

The utilization of canonical forms is also a promising solution for non-rigid 3D shape

retrieval. Indeed, with canonical forms, any shape searching algorithm can be applied

for the retrieval of non-rigid models. As we know, excellent performance, in term of

both accuracy and efficiency, has been achieved for rigid 3D shape retrieval. Obviously,

if it is possible to construct canonical forms with well-preserved features, the problem

of non-rigid 3D shape retrieval could be well resolved. The idea of generating canonical

forms in 3D domain was initially proposed in [EK03], where the authors introduced

an invariant representation for isometric surfaces by applying MDS embedding to map

the original surface to a small dimensional Euclidean space in which geodesic distances

can be approximated by Euclidean ones. In [EK03], three MDS techniques were dis-

cussed and compared to construct such 3D canonical forms. To verify the effectiveness

of their canonical forms, they [EK03] computed a moment-based shape descriptor from

embedded surfaces and carried out a simple experiment for object classification. More

recently, Lian et al. [LGSZ10] presented a framework for non-rigid 3D shape retrieval

based on the combination of Least Square MDS embedding and a visual similarity based

approach. Thanks to the utilization of canonical forms, superior performance was ob-

tained in [LGSZ10] compared to other existing methods. Also, Lian et al. [LGX13]

proposed a feature-preserved 3D canonical transformation. This method ensures pose

normalization of a non-rigid object while preserving the features of the parts of the

model. The embedding was subsequently used for retrieval.

A recent comparison of state-of-the-art techniques for non-rigid shape retrieval can be

found in [LGB+13].

2.3 Shape Matching

The problem of shape matching considers the searching of reliable correspondences be-

tween two shapes. The most common representation for these correspondences is a set of

pairs of points. Going back in the literature, maybe the first reference to shape matching

is in the registration of sensed data [CM91]. The registration requires to automatically

align two rigid shapes. The Iterative Closest Point (ICP) algorithm [BM92] is an effec-

tive method to the registration of two models. In addition, many efficient variants have

been evaluated [RL01] and it is probably the de facto method for performing alignment

and registration tasks. However, the ICP-like methods search for a rigid alignment which

can be characterized with six parameters. In the case of non-rigid transformations, it
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is not possible such characterization and therefore we need to address the problem in a

different way.

The matching problem for non-rigid shapes can be formulated as a minimum-distortion

problem. Given two near-isometric shapes, the goal is to find a correspondence set that

minimizes the distortion between the two shapes. Generally, this problem is stated as

an optimization problem where solutions arise from the need to resolve this problem

effectively and efficiently. A comprehensive survey on shape correspondences and their

application domains can be found in [vKZHCO11].

Bronstein et al. [BBK06b] proposed to match two shapes by embedding one into another.

Shapes were treated as metric spaces using the geodesic distance as metric. They used a

generalization of the multi-dimensional scaling method to find the minimum-distortion

embedding between two metric spaces. On the other hand, a Möbius voting approach

was used by Lipman and Funkhouser [LF09]. A conformal flattening was applied to

shapes, where it was possible to apply a Möbius transform for triplets of points. The

deformation energy caused by the triplets in the rest of the points of the mesh allows us

to compute a vote for each couple of correspondences. The pairs with high votes were

considered as reliable correspondences. Also, Kim et al. [KLF11] proposed to generate

a set of conformal maps and subsequently associate confidence ans consistency weights

to each map. Then, the authors proposed to find the best blending from the candidate

set in order to compute a final correspondence set.

Many methods solve the problem iteratively through a process of correspondence re-

finement. Ovsjanikov et al. [OMMG10] exploited the use of heat kernel maps to find a

unique reliable correspondence. Subsequently, an iterative method propagates the cor-

respondence set according to a kernel map optimization method. Also, a RANSAC-like

method to find correspondences was proposed in [TBW+09]. The algorithm operates

over a set of hypothesis from an initial set computed from keypoints. Similarly, Tevs

et al. [TBW+11] presented a probabilistic approach to plan the iterative searching of

correspondences. Huang et al. [HAWG08] proposed to find correspondences in context

of non-rigid registration. Their method alternate between finding and registering the

correspondence set.

Greedy approaches to tackle the optimization problem have been also considered. Zhang

et al. [ZSCO+08] selected keypoints using a geodesic approach. Then, the search of cor-

respondences was guided by a best-first algorithm that models the quality of the corre-

spondence set with a geodesic distortion. On the other hand, Zaharescu et al. [ZBVH09]

proposed a method which resembles the matching of correspondences in images. Adap-

tations of DoG and HoG were used for selecting and describing keypoints on the mesh
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surface. Next, a simple matching algorithm that takes the best match between de-

scriptors was presented. Also, Sahillioğlu and Yemez [SY10] stated the correspondence

problem as a graph problem. They proposed to find an initial matching over a bipartite

graph, and subsequently a greedy approach was responsible of adding and refining new

correspondences.

A common approach is to state the problem of finding correspondences as an integer

program. Dubrovina and Kimmel [DK10] suggested to describe a mesh point using the

eigenfunctions of the Laplace-Beltrami operator. The matching algorithm was stated as

a quadratic integer program which consider a distortion function to optimize. On the

other hand, Wang et al. [WBBP12] stated the problem as a optimization problem involv-

ing a linear term (similarity between local descriptors) and a quadratic term (geometry

consistency). The solution was devised with a graph-matching algorithm. More recently,

Rodolà et al. [RBA+12] formulated the minimum-distortion problem with a quadratic

optimization function. The solution was obtained with a game-theoretic strategy and a

merging algorithm to get the final correspondence set. Similarly, Rodolà et al. [RTH+13]

used elastic net constraint to enhance their game-theoretic approach. The solution to the

matching problem was expressed as the sparse solution of a quadratic assignment prob-

lem with norm-based constraints. Zeng et al. [ZWW+10] devised a high-order matching

algorithm based on the Möbius transform to populate the correspondences from an ini-

tial set. They derived a dual-decomposition of the original problem to obtain an integer

linear problem.

Although the most common representation of a matching is a set of point-wise corre-

spondences, a recent effort has been done to find a more flexible representation: the

functional maps [OBCS+12]. This representation is a generalization of point-wise maps

which relates functions spaces instead of points. In addition, this theory takes advan-

tage of the Laplace-Beltrami bases for computing reliable correspondences in non-rigid

shapes. The advantage of this method is that the matching procedure can be cast as a

high-dimensional alignment between the bases of two shapes. Also, the inference of a

map is a linear procedure which can be solved efficiently. Based on the functional map

representation, Kovnatsky et al. [KBB+13] formulated a method to compute point-wise

correspondences using common approximate eigenbases from multiple shapes. Also,

Pokrass et al. [PBB+13] used the functional representation of correspondences to model

the correspondence problem as a permuted sparse coding method.
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Background

In this chapter, we provide descriptions for the descriptors and datasets used through-

out the thesis. More specifically, the presented descriptors are: DESIRE (Sec. 3.1.1),

PANORAMA (Sec. 3.1.2), Heat Kernel Signatures (Sec. 3.1.3), and Wave Kernel Sig-

natures (Sec. 3.1.4). Furthermore, the used dataset are: SHREC 2010 Robust Feature

Detection and Description (Sec. 3.2.1), and the SHREC 2009 Generic Shape Retrieval

(Sec. 3.2.2).

3.1 Descriptors

3.1.1 DESIRE

This is a composite descriptor formed by the combination of three global descriptors:

depth-buffer, silhouettes, and spherical harmonics over ray-based functions [Vra05].

Each descriptor is computed independently and subsequently they are concatenated

to form the final DESIRE descriptor for a shape. We now present each individual de-

scriptor.

3.1.1.1 Depth-buffer

The depth-buffer descriptor [Vra04] is an image-based descriptor. It computes 2D pro-

jections of the 3D model, and then computes its feature vector from the obtained pro-

jections. This descriptor considers not only the silhouette of each projection of the 3D

model, but also considers the depth information (distance from the clipping plane, where

the projection starts, to the 3D model).

19
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The first step of the depth-buffer descriptor computes 2D projections of the 3D model.

To accomplish this, the model must be first normalized in pose (by means of PCA

analysis, for example), as this descriptor is not inherently invariant to rotations or

scaling. Then, the model must be enclosed in a bounding cube. Each face of this cube

is divided into n × n cells (with initial value 0), which will be used to compute the

depth-buffers for each 2D projection. Finally, the 3D model is orthogonally projected

to the face of the bounding cube. The value associated to each cell is the normalized

orthogonal distance (a value in [0, 1]) between the face of the bounding cube and the

closest point (orthogonally) in the 3D model.

Formally, let w be the width of the bounding cube. If a point p belongs to the surface

of the 3D model, its closest orthogonal cell in the face of the bounding cube is c, and p

is the closest point in the mesh to c, the associated value of c is

value(c) =
w − δ(c, p)

w
, (3.1)

where δ(c, p) is the distance from c to p.

This method works well if the 3D model does not contain a significant number of outliers.

Otherwise, the faces of the bounding cube may be too far to the actual surface of the

3D model (it will only be close to the few outliers). This will produce that the values

of almost all cells in a face of the bounding cube will be similar, except for the outliers,

thus affecting the computation of the descriptor.

To avoid this problem, Vranic [Vra04] suggests using a canonical cube that does not

necessarily enclose the 3D model. The canonical cube is defined by a parameter t > 0,

such that the vertices of this cube correspond to (x, y, z)|x, y, z ∈ {−t, t}. The part of the

3D model that lies outside the canonical cube is not used for computing the descriptor,

thus any outlier point will be effectively ignored.

The values associated to the cells on each face of the bounding box could be directly used

as the attributes for the feature vector. This feature vector would have a dimensionality

of 6n2. However, such a descriptor may lead to poor retrieval effectiveness [Vra04].

Instead, the depth-buffer descriptor transforms the values in the spatial domain to the

frequency space. Then, it selects some of the obtained coefficients to form the final

descriptor.

The depth-buffer descriptor computes the 2D discrete Fourier transform for each of

the depth-buffers. Briefly, the 2D discrete Fourier transform of a sequence of two-

dimensional complex number of equal length (n in our case) is defined as
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F (u, v) =
1

n

n−1∑
x=0

n−1∑
y=0

f(x, y)e−2πi(xu+yv)/n (3.2)

where f(x, y), 0 ≤ x, y ≤ n− 1 is the value of the cell defined by the tuple (x, y). With

this definition, it is easy to recover the original values f(x, y):

f(x, y) =
1

n

n−1∑
u=0

n−1∑
v=0

F (u, v)e2πi(xu+yv)/n. (3.3)

The presented formula for F (u, v) takes O(n4) time (O(n2) operations must be applied

for each cell of the n× n grid), and it must be computed for each face of the bounding

cube, thus it is computationally expensive. However, if n is a power of two, the Fast

Fourier Transform can be applied to speed the computation of the coefficients, reducing

the time complexity to O(n2 log n).

Before computing the Fourier coefficients, the value f(0, 0) is aligned with the cell

(n/2, n/2). In this way, the computed low frequency Fourier coefficients correspond

to those located in the middle of the resultant image (pixels with values F (u, v)). As

the input of the 2D discrete Fourier transform are real values, the obtained coefficients

satisfy a symmetry property:

F (u, v) = F (u, v), (u+ u′) mod n = (v + v′) mod n = 0, (3.4)

where F (u, v) is the complex conjugate of F (u′, v′).

After computing the Fourier coefficients, the final depth-buffer descriptor is formed as

follows. First, one needs to set a parameter value k ∈ N (k < n/2). Then, a set of values

p and q are computed, such that they hold the inequality

|p− n/2|+ |q − n/2| ≤ k ≤ n/2. (3.5)

The absolute values of the coefficients F (p, q) corresponds to the attributes of the final

feature vector. It follows that the number of considered coefficients is k2 + k+ 1. As we

must repeat this process for each face of the bounding cube, the final dimensionality of

the descriptor is 6(k2 + k + 1). In this thesis, we use n = 256 and k = 5, which gives a

descriptor of dimension 186.

Figure 3.1 shows the depth buffer renderings for a 3D model of a car. The first row

of images shows the depth buffers of the 3D model. Darker pixels indicate that the
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distance between the view plane and the object is smaller than at brighter pixels. The

second row shows coefficient magnitudes of the 2D Fourier transform of the six images.

Figure 3.1: Depth-buffer renderings. The top row shows the depth buffers of the 3D
model. The bottom row shows their coefficient magnitudes of the 2D Fourier transform.

Figure taken from [BKS+06].

3.1.1.2 Silhouettes

The silhouette-based descriptor [Vra04] is also an image-based descriptor. At some ex-

tent, the process to obtain the descriptor is similar to the depth-buffer processing. More

specifically, the model needs to be normalized in pose before computing the silhouettes.

Also, the method is based on the computation of orthogonal projections, but in this case

only three projections are used (according to the three hyper-planes formed for the three

principal axes). Unlike the depth-buffer projections, this method computes orthogonal

projections for each hyper-plane, where each pixel in the resulting n × n image is an

attribute of presence of the object in a certain view.

The next step is finding the outer contour. A pixel cij belongs to the contour if cij = 0

(a shape pixel) and at least one of its 4-neighbors belong to the background. The result

is a list of pixels that identifies the outer contour C:

C = {ci0j0 , . . . , ciL−1jL−1} (3.6)

where L = |C|.

Note that the number of points in C could not be constant from object to object, so

it is necessary to select a subset K with a fixed number of points. Authors originally

proposed to use a sampling in polar coordinates. That is, each contour point cp = (ip, jp)

has a polar representation ℘(cp) = (ρ(cp), γ(cp)) with ρ(cp) ≥ 0 and −π ≤ γ(cp) ≤ π

such that cp = (ip, jp) = O+ρ(cp)(cos γ(cp), sin γ(cp)), where O = (n/2, n/2). Therefore,

the point ki ∈ K is determined by

si =
amax
n

(cp −O) | ρ(cp) = max Ψi | Ψi =

{
ρ(cq)|γ(cq) ≈

2iπ

K

}
(3.7)
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where 0 ≤ i ≤ |K| − 1, amax is the maximum absolute value for x, y, or z coordinates

from the 3D object, and n is the resolution for the silhouette image.

Subsequently, the set K can be seen as a sequence. Let f be a function applied to each

element in the sequence such that fi = f(si), the discrete Fourier transform of function

f is given by

f̂p =
1√
K

K−1∑
i=0

fie
−j 2π

K
i·p, p = 0, . . . ,K − 1, (3.8)

where j is the imaginary unit and f̂p ∈ C are Fourier coefficients. In addition, the

functions f is defined as

fi = ρi. (3.9)

The absolute values for the first k coefficient of each silhouette is used as the final

descriptor. Therefore, the final descriptor contains 3k values. In this thesis, we use

N = 256 and k = 50.

3.1.1.3 Ray-based harmonics

The idea behind this descriptor is to represent a 3D object with a function on a

sphere [Vra04]. It is expected that the function on the sphere characterizes the ge-

ometry of the object. Let S2 be a sphere of radius 1 with the center at the origin. Let

us define the function r

r :S2 → [0,+∞)

r(~u) = max{r ≥ 0|r~u ∈ I
⋃
{O}}

(3.10)

where I is the surface of the input 3D object, and ~u ∈ S2 is a point in the sphere and

whose direction can be represented by a normal vector. The function r(~u) stores the

maximum distance from the origin to some point in the 3D object in the direction ~u.

The original method consists of sampling 4B2 points on the sphere (i.e. 4B2 unit vectors)

and perform the Spherical Fast Fourier Transform to obtain B2 complex coefficients. The

final descriptor is computed from the absolute values of some Fourier coefficients. In

the case of real-valued functions (such as r), the Fourier coefficients has a pyramidal
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structure because of the symmetry. Then, the idea is to select only some coefficients.

Vranic deduced that using k rows from that structure, the final number of coefficient is

k(k + 1)/2. In this thesis, we use B = 128 and k = 16.

3.1.2 PANORAMA

PANORAMA [PPTP09] is an image-based descriptor, similar to the Depth Buffer de-

scriptor. Hence the first step is to perform a pose normalization of the 3D object. In

order to enrich the final descriptor, two methods are jointly used to normalize for ro-

tation: CPCA [Vra04] and NPCA [PPPT07]. That is, each 3D object is normalized

using both methods, and subsequently each normalized object is processed to obtain a

descriptor. The final distance takes into account this fact to combine both descriptions.

The main idea is to project a 3D model onto the lateral face of a cylinder. The original

method suggests the use of one cylinder for each principal axis, giving three projections

for each object. To obtain a panoramic view, a 3D model is projected to the lateral face

of a cylinder of radius R and height H = 2R, where R = 3× dmean, and where dmean is

the mean distance of the model’s surface from the centroid.

The next step is to discretize the lateral surface of the cylinder to obtain a set of points

s(γ, y), where γ ∈ [0, 2π] and y ∈ [0, H]. The sampling rate are 2B and B, respectively

for γ and y (in this thesis, we use the value recommended by authors B = 64). The

value γ parameterizes the angle in the plane perpendicular to the cylinder, and the value

y parameterizes the height. Each point s(γ, y) will be associated to two values regarding

the position of the object and the orientation of the object.

Given a point s(γ, y), the position of the object is obtained by tracing a ray from the

central point of the cross-section in the height y using the direction γ. The position value

associated to the point s(γ, y) is the furthest distance of a surface point intersected by

the ray. In the same way, the orientation value for s(γ, y) is | cos(∠(~γ, ~N))|m, where ~N is

the normal of the face intersected by the ray, in the same way as before. The mth power

helps to enhance the contrast of the produced view. Note that in total, this process

delivers six panoramic views due to the three axis, with two panoramic views for each

one.

The description of the panoramic views is obtained through the Discrete Fourier Trans-

form and the Discrete Wavelet Transform. For each panoramic view, a set of Fourier

coefficients are obtained, similar to the application of DFT in the Depth-Buffer descrip-

tor. In addition, given a projection s(γu, yv), the Discrete Wavelet Transform is applied

as follows
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W γ(j0,m, n) =
1√
2B
·
2B−1∑
u=0

B−1∑
v=0

s(γu, yv) · γj0,m,n(u, v), (3.11)

Wψ(j,m, n) =
1√
2B
·
2B−1∑
u=0

B−1∑
v=0

s(γu, yv) · ψj,m,n(u, v), (3.12)

where m ∈ [0, 2B − 1], n ∈ [0, B − 1], j ≥ j0 is the scale of the multi-level DWT, j0

is the starting scale and γj0,m,n(u, v), ψj,m,n(u, v) is the scaling and wavelet functions,

respectively. The original proposal suggested to use the Haar and Coiflet filter as basis

functions. Next, the mean, standard deviation and skewness are computed for aggre-

gating the coefficient information. In total, the length of the DWT descriptor for a

panoramic view is 18× log2B + 6. The final DWT descriptor for an object is obtained

by concatenating the six descriptors obtained from the different views.

Finally, the descriptor for an object is composed by the Fourier descriptor and the

Wavelet descriptor. To compute the distance between two objects, the Manhattan dis-

tance is used for the Fourier descriptor and the Canberra distance for the Wavelet

descriptor.

3.1.3 Heat Kernel Signatures

The heat diffusion process over a compact manifold S, possibly with boundary, is gov-

erned by the heat equation

∆Su(x, t) = −∂u(x, t)

∂t
(3.13)

where ∆S is the Laplace-Beltrami operator of S and u(., t) is the heat distribution over

S in time t.

The fundamental solution of the heat equation is Kt(x, y) called the heat kernel. This

represents a solution with a point heat source in x and can be considered as the amount

of heat transferred from x to y at time t supposing that the heat source is x. For compact

manifolds, the heat kernel can be expressed using the eigenvalues and eigenvectors of

the Laplace-Beltrami operator as follows:

Kt(x, y) =
∞∑
i=0

e−λit~vi(x)~vi(y) (3.14)

where λi is the i-th eigenvalue and ~vi(·) is the i-th eigenvector’s entry corresponding to

a given point.



Chapter 3. Background 26

Figure 3.2: Heat kernel signatures calculated on two isometric shapes. At top, sig-
natures in corresponding points look very similar. At bottom, signatures in different

points on the mesh differ.

Sun et al. [SOG09] formally proved that the heat kernel is isometric invariant, informa-

tive(enough, redundant information exists), multi-scale, and stable against perturbations

on the surface (it is worth noting that Gebald et al. [GBAL09] also introduced the heat

kernel signature as a independent result). In addition, restricting the heat kernel to the

temporal domain and fixing the spatial variables, we can obtain a representation for

each point on the manifold:

Kt(x, x) =

∞∑
i=0

e−λit~vi(x)2 (3.15)

In Fig. 3.2, we show heat kernel signatures for two isometric shapes. Given a shape

S, we need to calculate the heat kernel signature for point on S. In practice, the heat

kernel signature of a point x ∈ S is a n-dimensional descriptor vector with each bin

corresponding to some value of t:

HKS(x) = (Kt1(x, x), . . . ,Ktn(x, x)) (3.16)

In the experiments of this thesis, we use n = 100, with t1 = 4ln10/λ300 and t100 =

4ln10/λ2. The rest of time values are sampled in the logarithmic scale in the interval

[t1, tn]. In addition, to calculate the discrete Laplace-Beltrami operator, we used the

cotangent scheme proposed by Meyer et al. [MDSB03]. Also, for this thesis we used the

original implementation of HKS1.

1Available in http://www.geomtop.org/software/hks.html.
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3.1.4 Wave Kernel Signatures

Unlike the Heat Kernel Signatures which are based on the heat equation, the Wave

Kernel Signatures [ASC11a] are based on the Schrödinger equation

∂ψ

∂t
(x, t) = −i∆ψ(x, t), (3.17)

where ψ(x, t) represents the wave function which governs the evolution of a quantum

particle on a surface. If the Laplace spectrum of the shape has no repeated values, the

wave function is given by

ψE(x, t) =
∞∑
k=0

eiλktφk(x)fE(λk) (3.18)

The probability to measure the particle at a point x is |ψE(x, t)|2. The Wave Kernel

Signature of a point x is then the average probability for infinite times. That is

WKS(E, x) = lim
T→∞

1

T

∫ T

0
|ψE(x, t)|2 (3.19)

Since the functions eiλkt are orthogonal for the L2 norm, we have

WKS(E, x) =
∞∑
k=0

φk(x)2fE(λk)
2 (3.20)

In the discrete setting, the first step is to compute the Laplace-Beltrami operator for a

mesh and their associated eigenvalues and eigenvectors. Subsequently, the Wave Kernel

Signature for a point x is defined as a n-dimensional descriptor as follows

WKS(x) = (WKS(e1, x), . . . ,WKS(en, x)), (3.21)

where WKS(ei, x) is evaluated as follows:

WKS(ei, x) =

∑N
k=1 φ

2
k(x)e

−(ei−log λk)
2

2σ2∑N
k=1 e

−(ei−log λk)
2

2σ2

. (3.22)

In addition, in this thesis, we use n = 100, e1 = log(λ1) and e100 = log(λ300). Also,

the remaining values are computed uniformly with an increment of δ = (e100 − e1)/100.
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Figure 3.3: Null shape and its transformations. Figure taken from [BBB+10].

Finally, the variance σ is set to 6δ. In addition, we use the original implementation of

WKS2.

3.2 Datasets

3.2.1 SHREC 2010 Feature Detection and Description Benchmark

This dataset aims at evaluating the effectiveness of feature detection and description [BBB+10].

This dataset is composed of triangular meshes with approximately 10,000 - 50,000 ver-

tices.

The collection consists of three basic shapes (null shapes) from which a set of transforma-

tions have been applied. For each null shape, nine transformations were used: isometry

(non-rigid transformation), topology, big holes and micro holes, local and global scaling,

additive Gaussian noise, shot noise, and down-sampling (less than 20% of the original

points). Figure 3.3 shows a null shape and its transformed versions.

Each transformation is performed in five versions. In all transformations, except isom-

etry and scale, each version represents a strength level, so high levels correspond with

stronger transformations. The scales used in scaling transformation were 0.5, 0.875,

1.25, 1.625, and 2. For the isometry transformation, each version reflects a non-rigid

transformation of the null shape. Therefore, each null shape has 45 transformed shapes

and there are 138 shapes in the whole collection.

In addition, for each transformed shape Y in the dataset, there is a groundtruth with

dense point correspondences to its corresponding null shape X. The groundtruth is

given in the form of pair of points C0(X,Y ) = {(y′k, xk)}
|Y |
k=1 (and same way, C0(Y,X)).

This information allows us to evaluate several aspects of local features: repeatability,

region overlap, and correspondence localization. In this thesis, we use this dataset for

local structure detection (Chapter 4) and non-rigid shape correspondences (Chapter 7).

The methodologies to evaluate these tasks are defined when needed.

2Available in http://vision.in.tum.de/members/aubry/publications.
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3.2.2 SHREC 2009 Generic Shape Retrieval

The goal of this dataset is to evaluate generic shape retrieval algorithms [GDA+09]. This

dataset contains 720 shapes organized in 40 classes with 18 shapes per class. In this

thesis, we use this dataset for an application of local features in generic shape retrieval

(Chapter 5).

3.2.3 Large-scale Non-rigid Shape Retrieval Dataset

In chapter 6, we are interested in evaluating the effectiveness and efficiency of our shape

retrieval approach. So far, most of the datasets have had a limited size, in which is not

possible to properly evaluate the efficiency. Therefore, we built a new dataset contain-

ing 5604 models. We used the Sumner dataset [SP04] and the TOSCA dataset [BBK08]

(which contain non-rigid shapes) as basis. Then, we collected a large set of unclassi-

fied shapes from different datasets such as the Princeton Shape Benchmark [SF06], the

Konstanz benchmark [BKS+05], the National Taiwan University benchmark [CTSO03].

For the experiments regarding retrieval performances, only models of the Sumner and

TOSCA dataset were used as queries. All models were normalized to have unit surface

area.

3.2.4 Shape Matching Benchmark

Kim et al. [KLF11] built a dataset for the evaluation of shape matching algorithms. This

benchmark collects shapes from three different datasets: TOSCA [BBK08], SCAPE [ASP+04],

and the Watertight dataset [GBP07]. The benchmark provides a dense ground-truth

map which makes possible to evaluate a given correspondence set. In this thesis, we use

only the TOSCA part of this dataset since this part contain shapes with distinguishable

features. The other parts of the benchmark contain shapes with poor features.

3.3 Indexing

3.3.1 Metric Spaces and Metric Indexing

A metric space is an ordered pair (U, d), where U is a set and d : U × U → R+ is a

distance function that holds the following properties:

• Symmetry : ∀x, y ∈ U, d(x, y) = d(y, x)
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• Reflexivity : ∀x ∈ U, d(x, x) = 0

• Strict positiveness: ∀x, y ∈ U, x 6= y ⇒ d(x, y) > 0

• Triangle inequality : ∀x, y, z ∈ U, d(x, z) ≤ d(x, y) + d(y, z)

A multimedia database can be considered as a metric space, where the distance d allows

us to quantify the dissimilarity between objects. Moreover, it is necessary to formu-

late searching strategies in order to answer similarity queries. Let X ⊂ U be a set of

multimedia objects. There are two typical similarity queries:

• Range query. A range query (q, r), q ∈ U, r ∈ R+, is defined as

(q, r) = {x ∈ X, d(x, q) ≤ r}.

• k nearest neighbors queries (k-NN ). It reports the k objects from S closer to q.

The most naive procedure to perform a similarity query is a linear scan. That is com-

puting the distance between the query q and every object in the database. Subsequently,

objects are sorted according to the distance and the final result can be computed. Nev-

ertheless, if we assume that the distance d is expensive, linear scan will be slow. Many

researches have paid attention to this problem and several proposals have focused in the

use of metric access methods (MAMs). A MAM is composed of an index structure and

algorithms to perform efficient similarity queries. The cornerstone of these methods is

the triangle inequality, which help us to filter out objects during the search, avoiding

to compute the whole set of distances as in a linear scan. A survey of metric access

methods can be found in [CNBYM01].

Pivot-based Indexing

The pivot-based indexing is one of the simplest approach to reduce the search complex-

ity [MOV94]. This technique consists of selecting a set of t pivot objects from the col-

lection. The index is composed by a table of pre-computed distances between the pivots

and each object in the collection. Thus, a range query (q, r) works as follows: using the

triangle inequality it follows for any x ∈ X and 1 ≤ i ≤ t that d(q, x) ≥ |d(pi, x)−d(pi, q)|.
Therefore, the objects u of interest should satisfy d(q, u) ≤ r, so one can exclude objects

that satisfy |d(pi, u)− d(pi, q)| > r for some pivot pi, discarding the direct evaluation of

d(q, u). The algorithm 3.1 shows in detail the algorithm for range queries.

First, the algorithm computes the distances between the query object x and the pivots

pi (lines 1-3). Second, every object in the collection is evaluated, however the pivot
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Algorithm 3.1 Pivot-based Range Query

Require: Collection of objects U
Require: Query x ∈ X
Require: Search radius r ∈ R+

Require: Set of pivots T with size t = |T |
Require: Index table δ
Ensure: Set of objects C

1: for i ← 1 to t do
2: dp(i)← d(pi, x)
3: end for

4: C ← ∅
5: for i ← 1 to |U| do
6: flag ← false
7: for j ← 1 to t do
8: if |dp(j)− δ(i, j)| > r then
9: flag ← true

10: break
11: end if
12: end for
13: if notflag then
14: if d(ui, x) ≤ r then
15: C ← C ∪ {ui}
16: end if
17: end if
18: end for
19: Return C

exclusion criterion is first evaluated. The algorithm checks if some pivot helps to discard

the ui object (lines 7-12). If it is not possible to discard the object, the algorithm

computes the real distance to verify if the range is satisfied (lines 13-17).

The problem with a range query is that many times it is difficult to find a meaningful

range radius for a certain collection. A possible solution is to implement a nearest

neighbor search, which does not depend on the search radius. In retrieval systems, the

k-NN algorithm is commonly used for similarity search. An adaptation of the range

query algorithm can be used for k-NN search. Algorithm 3.2 shows the algorithm we

use in this thesis.

It is worth noting that the k-NN algorithm is a query search with an adaptive radius

mindist, which can be adjusted in each iteration. The priority queue allows us to

maintain the k-nearest neighbors at every iteration. Finally, the queue stores the final

set of nearest neighbors at the end of the algorithm.
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Algorithm 3.2 Pivot-based k-NN Query

Require: Collection of objects U
Require: Query x ∈ X
Require: Number of neighbors k
Require: Set of pivots T with size t = |T |
Require: Index table δ
Ensure: Set of objects C

1: for i ← 1 to t do
2: dp(i)← d(pi, x)
3: end for

4: Let Q a priority queue which stores the k-nearest neighbors sorted by distance
5: Q← Q ∪ T
6: Let mindist the greatest distance stored in Q
7: for i← 1 to |U| do
8: if ui is not pivot then
9: flag ← false

10: for j ← 1 to t do
11: if |dp(j)− δ(i, j)| > mindist then
12: flag ← true
13: break
14: end if
15: end for
16: if notflag then
17: if d(ui, x) ≤ mindist then
18: Q← Q ∪ {ui}
19: Update mindist
20: end if
21: end if
22: end if
23: end for
24: Return C ← Q

Selecting pivots

An important part of the pivot-based approach is the selection of pivots from the collec-

tion. Here we describe a simple technique called SSS [PB07] (Sparse Spatial Selection).

The algorithm is simple and it is shown in Algorithm 3.3.

The algorithm selects the first object as pivot, and subsequently selects objects far

enough from the current set of pivots. The criterion of separability (line 4) ensures that

pivots are far from each other. This choice is because is well known that close pivots

are not good for the exclusion criterion.
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Algorithm 3.3 Sparse Spatial Selection

Require: Collection of objects U
Require: Real number α
Ensure: Set of pivots P

1: Let M be the maximum distance between objects in U

2: P ← {u1}
3: for all ui ∈ U do
4: if ∀p ∈ P , d(ui, p) ≥ α×M then
5: P ← P ∪ ui
6: end if
7: end for
8: Return P

3.3.2 Signature Quadratic Form Distance

Beecks et al. [BUS10] recently introduced the Signature Quadratic Form Distance as

a flexible measure for comparing multimedia objects. An interesting advantage of this

distance is that an object can be represented with multiple features. In addition, the

comparison between two sets of features does not require to have the same number of

features in each set.

An object P is represented by a feature set F = {fi}, where fi ∈ FS. FS is a feature

space of arbitrary dimension. In addition, let us suppose that F has length K. Fur-

thermore, we need to suppose the existence of a local clustering of F : C1, . . . , Cn. The

feature signature SP is defined as a set of tuples FS ×R+ as follows

SP = {(cPi , wPi ), i = 1, . . . , n} (3.23)

where cPi =

∑
f∈Ci

f

|Ci| and wPi = |Ci|
K represent the centroid of i-th cluster and a weight,

respectively. Note that the size of SP depends on the local partitioning and it is variable

from object to object. Therefore, each feature signature will have a different number of

features according to clustering process.

Given two feature signatures SP = {(cPi , wPi ), i = 1, . . . , n} and SQ = {(cQj , w
Q
j ), j =

1, . . . ,m} and a similarity function fS : FS × FS → R, the Signature Quadratic Form

Distance between SP and SQ is defined as

SQFDfS (SP , SQ) =
√

(wP | − wQ) ·AfS · (wP | − wQ)T (3.24)

where the notation (wA|wB) denotes the concatenation of weight vectors. In addition,

AfS ∈ R(n+m)×(n+m) is the similarity matrix defined as
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aij =



fS(cPi , c
P
j ) if i ≤ n and j ≤ m

fS(cQi−n, c
P
j ) if i > n and j ≤ m

fS(cPi , c
Q
j−n) if i ≤ n and j > m

fS(cQi−n, c
Q
j−n) if i > n and j > m

(3.25)

Clearly, the matrix AS contains the intra-dependence and inter-dependence information

from the signatures of both objects. Moreover, the SQFD considers the weights involved

in these dependences. Roughly speaking, the weights indicate the importance of each

element in the feature signature. Originally, Beecks et al. proposed to use one of the

following similarity functions based on a ground dissimilarity function d(for instance

d = L2):

• Minus: f (ci, cj) = −d(ci, cj)

• Gaussian: fg(ci, cj) = exp(−αd2(ci, cj))

• Heuristic: fh(ci, cj) = 1
α+d(ci,cj)
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Local Structures on 3D Shapes

There are situations where a global representation of a shape could be not suitable

in the context of matching and retrieval. For example, let imagine us a 3D object

with a non-rigid transformation or maybe an object with missing parts. Clearly in

these situations, the assessment of similarity can not rely in global representations since

objects may change dramatically in the global sense. Hence, it is necessary to address

the representation problem in a more adequate way.

In this chapter, we study alternative representations for 3D shapes based on local struc-

tures. The idea is to detect relevant information from a shape in a more local sense

and at different levels of granularity. The granularity is associated with the size of the

structure, for instance points in finer levels and regions in coarser levels. The goal is

to use the local information to represent a shape as a collection of structures, which

characterize that information. Later, we show that the local information can be used to

complement global representations or be used independently in matching and retrieval

tasks. Furthermore, our results allow us to support our premise that local structures

convey valuable information to represent a 3D shape.

We propose two types of local structures, which are related to the granularity level:

keypoints (at finer levels) and regions of interest (at coarser levels).

A keypoint is a point on the shape’s surface with a feature that distinguish it from

others in its neighborhood. The characterization of a point depends on the application

domain, so it is necessary to define a suitable criterion. Here we consider the level of

protrusion as a feature for detecting keypoints. Thus, we propose an efficient algorithm

to characterize each vertex on a mesh and subsequently decide which vertices are key-

points. Our method is an adaptation of the Harris method to detect interest points in

images. This adaptation is not trivial due to the topology-free nature of 3D shapes. In

35
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addition, we need to face to transformations which are not usual in images (for instance:

topology changes, tessellations, holes, etc). We show that our Harris 3D algorithm de-

tects repeatable keypoints and it is robust against several transformations. Moreover,

our method is able to detect repeatable features in presence of severe transformations,

which makes it a good alternative for real-world applications.

On the other hand, a region of interest is a distinctive patch of a mesh. To illustrate this

idea, let imagine us a human shape, which may contain distinctive regions such as face,

hands and feet. More specifically, we define a region of interest as a patch where there

are a lot of distinctive keypoints. We propose an algorithm to detect key-components

guided by our results on keypoint detection. A key-component is a shape’s region that

contains a high density of keypoints. In other words, we use the structures at a finer

level to find structures at a coarser level. Interestingly, the key-components detected

with our method also exhibit a high repeatability against transformations.

This chapter is organized as follows. Section 4.1 presents the Harris 3D algorithm

to detect keypoints on meshes. In addition, we conduct a comprehensive evaluation

in order to show the effectiveness of our method and the robustness against several

transformations. Section 4.2 describes our method to detect key-components. We also

carry out an exhaustive evaluation to measure the repeatability of the key-components

in presence of transformations. All experiments of this chapter were performed on the

SHREC’2010 robust feature detection and description benchmark. Finally, Section 4.3

is devoted to discuss our reflections about the detection of local structures.

4.1 Harris 3D: Interest Points Detection on Meshes

The interest point detection on 3D data is a challenging problem for several reasons.

First, there is no consensus about the definition of an interest point. A commonly used

definition (that we use in this thesis) relates the measure of interest with the level of pro-

trusion of outstanding local structures. So, vertices on smooth or nearly planar sections

of a surface will have low interest, as opposite to vertices in regions with uncommon local

structure. For instance, in a human-shaped model, an interest point detector should se-

lect vertices on the face, hands, and feet. Second, the topology in 3D meshes is arbitrary.

That is, a vertex can have an arbitrary number of neighboring vertices. This makes the

tasks of selecting a local neighborhood around a vertex harder. In addition, this draw-

back causes that different tessellations can represent the same locality and therefore, an

interest point detector should be able to deal with that. Third, without a well-defined

topological structure for meshes, the extent of a locality in which a vertex is an interest

point is unknown or difficult to compute. Finally, there is no additional information
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other than the position of vertices and the connectivity information among them. This

fact complicates the process because the level of interest needs to be measured using the

available information, which also depends of the topology of the mesh.

In a different scenario, interest point detectors for images have reached an acceptable

effectiveness. The reason is that image structure is well-defined and interest points

correspond with pixels that represent interesting structures in the scene captured in

the image. In that sense, several methods have been proposed for detecting interest

points taking into account different scales and transformations. As a result, the range of

applications in computer vision that makes use of interest points detection has increased

considerably in recent times such as image matching [Low04], image stitching [BL07],

and human activity recognition [Lap05, LP07], just to name a few.

However, despite the success of these techniques in the image domain, trying to adapt

them to 3D meshes is not a trivial task. Firstly, the adaptation is not direct because 3D

meshes structure is very different from images. Secondly, the transformations required

to be robust in 3D domains (isometry, topology, change of tessellations, downsampling,

etc.) are also different.

In this section, we present an effective and efficient extension of the Harris operator for

3D meshes. We chose the Harris operator for several reasons. First, the computation

of the operator is an efficient and simple task. This is an important issue if we want

use the interest point detection as a preliminary stage of subsequent process such as

shape matching, registration or object recognition. Second, Harris-based methods have

been effectively used in a number of applications and they have a high effectiveness as

reported in the evaluation reports [SMB00, Mik04]. Finally, an interesting evidence has

been found recently, which greatly favors the Harris interest point detection method.

Loog and Lauze [LL10] recently showed an important connection between the Harris

operator and the computational visual attention model of visual perception. Roughly

speaking, their model proved that interest points detected by the Harris method have low

probability of appearing in other locations in the same image. These reasons encouraged

us to investigate an effective extension of the Harris operator for 3D meshes, trying to

comply with the robustness to the transformations in 3D domain.

Our method is outlined in Fig. 4.1. Given a 3D mesh, not necessarily manifold, the

main process is performed in a vertex-wise manner. The overall process consists of four

steps. Firstly, our algorithm determines a local neighborhood around a vertex. The sub-

sequent tasks are performed over this local neighborhood. Secondly, the neighborhood

is processed so that it is prepared for a fitting step. We try to fit a quadratic surface to

the set of points. This surface is a good representation of the locality and we consider it

as an local image. Thirdly, we propose to calculate derivatives using a smoothing over
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Figure 4.1: This figure shows the steps we propose to detect interest points in 3D
meshes.

the surface. We can use these derivatives for computing the Harris response for each

vertex. Finally, our method selects the final set of interest points.

4.1.1 Interest Points Detection

Harris and Stephens [HS88] proposed an interest points detector for images. Their

method is a popular technique due to its strong invariance to rotation, scale, illumi-

nation variation, and image noise [SMB00]. The Harris detector is based on the local

autocorrelation function of a signal, which measures the local changes of the signal with

patches shifted by a small amount in different directions. The local autocorrelation is

defined as:

e(x, y) =
∑
xi,yi

W (xi, yi)[I(xi +4x, yi +4y)− I(xi, yi)]
2 (4.1)

where I(., .) denotes the image function and (xi, yi) are the points in the Gaussian

function W centered on (x, y), which defines the neighborhood area in analysis.

Using a Taylor expansion truncated to the first order terms to approximate the shifted

image, we obtain:

e(x, y) = ~S

[ ∑
xi,yi

W.I2x
∑

xi,yi
W.Ix.Iy∑

xi,yi
W.Ix.Iy

∑
xi,yi

W.I2y

]
~ST

= ~SE(x, y)~ST

(4.2)

where ~S = [4x 4y] is a shift vector, Ix and Iy denote the partial derivatives in x and

y, and along with W are evaluated in (xi, yi) points.
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Harris and Stephens proposed to analyze the eigenvalues of matrix E, which contains

enough local information related to the neighborhood structure. In addition, to avoid

the expensive eigenvalue calculation, they proposed to assign to each pixel in the image

the following value:

h(x, y) = det(E)− k(tr(E))2 (4.3)

with k constant.

The Harris operator has been used in many applications in image processing and com-

puter vision by its simplicity and efficiency. However, the problem with 3D data is that

the topology is arbitrary and it is not clear how to calculate the derivatives. To cope

this problem, Glomb [Glo09] suggested some approaches. We take this work as a basis

for proposing a robust interest points detector on 3D meshes.

4.1.1.1 Robust Harris Operator on 3D Meshes

Given a vertex of a 3D object, we are interested in calculating the Harris operator value

associated with that point. A 3D object is represented as a set of vertices V and a set

of faces F with adjacency information between these entities. In addition, our method

is not restricted to manifold meshes.

Let v be the analyzed vertex and Vk(v) the neighborhood considering k rings around v.

More formally, let us consider an object as a graph G(V ′, E′), where V ′ = V and E′ is

the set of edges obtained from the adjacency information of the object. Given a point

v ∈ V ′, Vk(v) is defined as

Vk(v) = {w ∈ V ′ such that |shortest path(v, w)| ≤ k}. (4.4)

Figure 4.2 shows vertex v (black circle), the first ring around v (path formed by green

circles), the second ring (path formed by blue circles), and k-th ring (path formed by

yellow circles). All these vertices correspond to the neighborhood Vk(v). The method

to calculate k will be explained later in this section.

We calculate the centroid of Vk(v) and translate the set of points so the centroid is in

the origin of the 3D coordinate system. Then, we compute the best fitting plane to the

translated points. To do so, we apply Principal Component Analysis to the set of points

and we choose the eigenvector with the lowest associated eigenvalue as the normal of

the fitting plane. In our opinion, applying PCA is a better choice than the least square



Chapter 4. Local Structures on 3D Shapes 40

Figure 4.2: Point v and its neighbor rings. Firstly, V1(v) is composed by vertices con-
nected by strong edges. Secondly, V2(v) is composed by vertices up to those connected
by dashed edges. Finally, Vk(v) is composed by all vertices until those connected by

pointed edges.

fitting because the assumption z = f(x, y) does not have a good behavior when the data

do not exhibit such functional characteristic.

The set of points is rotated so that the normal of the fitting plane is the z-axis. As we

choose the less principal component as normal, the points exhibit a good spread in the

XY-plane after rotation and therefore we can only work in XY-plane to calculate the

derivatives. As final step before calculating derivatives, we translate the set of points

so that the point v is in the origin of the XY-plane. This step will facilitate the further

analysis.

To calculate derivatives, we fit a quadratic surface to the set of transformed points.

Using least square method, we find a paraboloid of the form:

z = f(x, y) =
p1
2
x2 + p2xy +

p3
2
y2 + p4x+ p5y + p6. (4.5)

We chose a quadratic surface with only six terms because it represents a paraboloid.

That is, it is the best choice if we need a function of two variables with quadratic

terms. Adding more terms implies that it is possible to fit a more complex surface.

However, more complex surfaces do not have well-defined derivatives in certain points of

the domain. In addition, we needed a simple expression in order to apply the derivatives.

As we are interested in derivatives in the point v, one could directly evaluate the deriva-

tives of f(x, y) in the point (0, 0), i.e.:

fx =
∂f(x, y)

∂x

∣∣∣∣
x=0

(4.6)
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fy =
∂f(x, y)

∂y

∣∣∣∣
y=0

(4.7)

The above expressions should be a good estimate of derivatives. However, these can

be influenced by noise. Instead, we propose to apply a Gaussian function as proposed

originally by Harris and Stephens [HS88]. However, a difficulty arises because in the

original expression the derivatives are discrete functions and our derivatives are contin-

uous functions. To address this problem, we propose to apply the integration of the

derivatives with a continuous Gaussian function as follows:

A =
1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f(x, y)

∂x

)2

dxdy (4.8)

B =
1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f(x, y)

∂y

)2

dxdy (4.9)

C =
1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f(x, y)

∂x

)(
∂f(x, y)

∂y

)
dxdy (4.10)

where σ is a constant, which defines the support of the Gaussian function and the factor

1/2σ4π is a normalization value.

Using calculus, we can reduce the expressions to

A =
p24
σ2

+ p21 + p22 (4.11)

B =
p25
σ2

+ p22 + p23 (4.12)

C =
p4p5
σ2

+ p1p2 + p2p3 (4.13)

Finally, we can formulate the matrix E associated with the point v using the previously

calculated values:

E =

(
A C

C B

)
(4.14)

The Harris operator value in the point v is calculated as in Eq. 4.3. This operator can

also be seen as a saliency value associated to each vertex in the mesh. It is expected

that higher values of the operator correspond to outstanding vertices on the mesh. To
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Figure 4.3: Harris 3D operator plotted as a saliency value for each vertex. Note how
the high values are present in discriminative regions of the meshes. See in color for

better visualization.

exemplify this point, see Fig. 4.3 where the Harris operator is plotted on the surface of

some objects. Note the concentration of high operator values in distinctive regions of

the meshes.

4.1.1.2 Evaluation of Integrals

In this section, we provide a detailed evaluation of the integrals for computing values

A, B, and C. Note that in the Equations 4.8, 4.9 and 4.10, the integrals are evaluated

regarding the derivatives of f(x, y) (Eq. 4.5). Hence, we first calculate the derivatives:

∂f(x, y)

∂x
= p1x+ p2y + p4

∂f(x, y)

∂y
= p2x+ p3y + p5

(4.15)

Now we calculate the products of derivatives:

(
∂f(x, y)

∂x

)2

= p21x
2 + 2p1p2xy + 2p1p4x+ p22y

2 + 2p2p4y + p24 (4.16)

(
∂f(x, y)

∂y

)2

= p22x
2 + 2p2p3xy + 2p2p5x+ p23y

2 + 2p3p5y + p25 (4.17)

(
∂f(x, y)

∂x

)(
∂f(x, y)

∂y

)
=p1p2x

2 + (p1p3 + p22)xy + (p1p5 + p2p4)x

+ p2p3y
2 + (p2p5 + p3p4)y + p4p5

(4.18)
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Note that the terms x2, xy, y2, x, and y are always involved in the products. Therefore,

we will only show the evaluation of integral 4.8. Evaluations for 4.9 and 4.10 can be

evaluated similarly.

Using the linearity property of integrals, the evaluation of integral 4.8 can be reduced

to simpler integrals as follows (we omit the normalization value here to facilitate the

evaluation, and we consider it back for the final result):

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f(x, y)

∂x

)2

dxdy =p21

∫
R2

e−(x
2+y2)/2σ2 · x2 · dxdy+

2p1p2

∫
R2

e−(x
2+y2)/2σ2 · xy · dxdy+

2p1p4

∫
R2

e−(x
2+y2)/2σ2 · x · dxdy+

p22

∫
R2

e−(x
2+y2)/2σ2 · y2 · dxdy+

2p2p4

∫
R2

e−(x
2+y2)/2σ2 · y · dxdy+

p24

∫
R2

e−(x
2+y2)/2σ2

dxdy

(4.19)

1. Evaluating p21
∫
R2 e

−(x2+y2)/2σ2 · x2 · dxdy
We make a change to polar coordinates to evaluate this integral. We replace

r2 = x2 + y2, x = r cos θ, y = r sin θ and dxdy = rdrdθ. This changes gives us

p21

∫
R2

e−(x
2+y2)/2σ2 · x2 · dxdy = p21

∫ 2π

0

∫ ∞
0

e−r
2/2σ2 · r3 · cos2 θdrdθ

= p21

∫ 2π

0

(∫ ∞
0

e−r
2/2σ2 · r3dr

)
cos2 θdθ

(4.20)

The integral in parentheses is evaluated in Appendix A.0.6, hence we replace its

value
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p21

∫
R2

e−(x
2+y2)/2σ2 · x2 · dxdy = p21

∫ 2π

0
2σ4 cos2 θdθ

= 2σ4p21

∫ 2π

0
cos2 θdθ

= σ4p21

∫ 2π

0
(cos 2θ + 1)dθ

= σ4p21

(
θ +

1

2
sin 2θ

)∣∣∣∣2π
0

= 2σ4πp21

(4.21)

The integral involving the term y2 in Eq. 4.19 can be evaluated in a similar way.

2. Evaluating 2p1p2
∫
R2 e

−(x2+y2)/2σ2 · xy · dxdy
Similar to the previous integral, we make a change to polar coordinates

2p1p2

∫
R2

e−(x
2+y2)/2σ2 · xy · dxdy = 2p1p2

∫ 2π

0

∫ ∞
0

e−r
2/2σ2 · r3 · cos θ · sin θdrdθ

= 2p1p2

∫ 2π

0

(∫ ∞
0

e−r
2/2σ2 · r3dr

)
cos θ · sin θdθ

(4.22)

The integral in parentheses is evaluated in Appendix A.0.6, hence we replace its

value

2p1p2

∫
R2

e−(x
2+y2)/2σ2 · xy · dxdy = 4p1p2σ

4

∫ 2π

0
cos θ sin θdθ

= 4p1p2σ
4

(
1

2
sin2 θ

)∣∣∣∣2π
0

= 0

(4.23)

3. Evaluating 2p1p4
∫
R2 e

−(x2+y2)/2σ2 · x · dxdy
In polar coordinates, the integral yields

2p1p4

∫
R2

e−(x
2+y2)/2σ2 · x · dxdy = 2p1p4

∫ 2π

0

∫ ∞
0

e−r
2/2σ2 · r2 · cos θdrdθ

= 2p1p4

∫ 2π

0

(∫ ∞
0

e−r
2/2σ2 · r2dr

)
cos θdθ

(4.24)
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The integral in parentheses is evaluated in Appendix A.0.5, hence we replace its

value

2p1p4

∫
R2

e−(x
2+y2)/2σ2 · x · dxdy = 2p1p4

∫ 2π

0

σ3
√

2π

2
· cos θdθ

= 2p1p4

(
σ3
√

2π

2

)∫ 2π

0
cos θdθ

= 2p1p4

(
σ3
√

2π

2

)
(sin θ)|2π0

= 0

(4.25)

The integral involving the term y in Eq. 4.19 can be evaluated in a similar way.

4. Evaluating p24
∫
R2 e

−(x2+y2)/2σ2
dxdy

This integral is evaluated in Appendix A.0.4, and the final result is

∫ ∞
0

e−x/2σ
2 · x · dx = 2σ2πp24 (4.26)

Finally, summing up the resulting evaluations, we obtain

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f(x, y)

∂x

)2

dxdy = 2σ4πp21 + 2σ4πp22 + 2σ2πp24 (4.27)

and applying the normalization value, the final result is obtained

1

2σ4π

∫
R2

e
−(x2+y2)

2σ2 .

(
∂f(x, y)

∂x

)2

dxdy = p21 + p22 +
p24
σ2
. (4.28)

4.1.1.3 Adaptive Neighborhood Size

Several approaches can be considered to select the number of rings around a point as

neighborhood. If the object tessellation is uniform, i.e., almost all triangles in the object

have the same size, we can use a constant number of rings to all points, or use the

points contained in a ball of radius r and centered in point v. However, in irregular and

complex meshes, these methods do not approximate a neighborhood adequately.

To tackle this problem, we propose an adaptive technique. Our method selects a different

neighborhood size depending on the tessellation around a point. We consider an object
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as a graph, similar to the definition of Eq. 4.4. Given a point v ∈ V ′, a k-ring around v

is the set of points where the length of the shortest path to v is k:

ringk(v) = {w ∈ V ′ such that |shortest path(v, w)| = k} (4.29)

The distance from a point v to the ringk(v) is defined as

dring(v, ringk(v)) = maxw∈ringk(v)‖v − w‖2 (4.30)

Finally, we define the neighborhood size of a point v as

radiusv = {k ∈ N such that dring(v, ringk(v)) ≥ δ and dring(v, ringk−1(v)) < δ}
(4.31)

where δ is a fraction of the diagonal of the object bounding rectangle.

It is important to note that the proposed method always finds a neighborhood to a

point, even with complex and irregular tessellations around that point.

In addition, as we provide an approximate extent to each neighborhood, we can use this

information to consistently apply the Gaussian function when calculating the Harris

response. The extent of the Gaussian is controlled by the parameter σ, which is defined

for each vertex as follows

σv =
δ

radiusv
(4.32)

Therefore, each point has a different support for the applied Gaussian when calculating

its operator value and it is consistent with the neighborhood size as well.

4.1.1.4 Selecting Interest Points

With each vertex associated with its Harris operator value, we propose two ways to

select the interest points of a given object. Firstly, we preserve the vertices which are

local maximum. To do so, we select a vertex v which holds the following condition:

h(v) > h(w),∀w ∈ ring1(v) (4.33)

Secondly, we propose two approaches to select the final set of interest points.
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• Select the points with the highest Harris response. We can pick a constant

fraction of interest points depending on the application. In this proposal, we obtain

the points with higher saliency and therefore, some portions of the object do not

have interest points.

• Representatives of Interest Points Clusters. This approach can be used

when we want a good distribution of interest points in the object surface. This

proposal consists of two steps. First, we sort the pre-selected interest points ac-

cording to their Harris operator value in decreasing order. Second, we apply Al-

gorithm 4.1 to cluster the sorted points and select the final set of interest points.

The selection algorithm keep a list of chosen points Q which is initially empty.

The algorithm scans the set of candidate keypoints according with their highest

Harris response. When it finds a new candidate in an area not covered by previous

chosen points, the method selects the point and insert it in Q.

Algorithm 4.1 Interest Points Clustering

Require: Set P of pre-selected interest points in decreasing order of Harris operator
value

Ensure: Final set of interest points

1: Let Q be a set of points
2: Q← ∅
3: for i ← 1 to |P | do
4: if minj∈[1,|Q|]‖Pi −Qj‖2 > ρ then
5: Q← Q ∪ {Pi}
6: end if
7: end for
8: Return Q

The value of ρ can be considered as a fraction of the diagonal of the object bounding

rectangle and it has effect in the number of returned interest points.

Figure 4.4 shows the result of the two options to select interest points.

4.1.2 Experimental Evaluation and Discussion

In this section, we show the experimental results of our implementation of the Harris

3D method using a standard benchmark. The presentation of results is divided in two

parts. First, we experiment with several aspects and parameters of our method. The

objective is to investigate the effect of the parameters on the repeatability of interest

points. Second, we compare our method with methods in the state of the art, namely the

Heat Kernel Signatures proposed by Sun et al. [SOG09] and the Salient Points detection
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(a) (b) (c)

Figure 4.4: Selection options. (A) Armadillo model. (B) Selected points with highest
Harris response. (C) Selected points by clustering.

method proposed by Castellani et al. [CCFM08]. Furthermore, we use the SHREC 2010

dataset (Sec. 3.2.1) for our experiments.

4.1.2.1 Evaluation Methodology

An interest point detection method returns a set of detected points F (Y ) = {yk}k for

each shape Y (typically, |F (Y )| � |Y |). The performance is measured by comparing

the interest points computed for transformed shapes and the corresponding null shape.

The quality of the interest points detection was measured using the repeatability cri-

terion. Assuming for each transformed shape Y in the data set the ground-truth

dense correspondence to the null shape X to be given in the form of pairs of points

C0(X,Y ) = {(y′k, xk)}
|Y |
k=1 (and same way, C0(Y,X)), an interest point yk ∈ F (Y ) is

said to be repeatable if a geodesic ball of radius R around the corresponding point x′k :

(x′k, yk) ∈ C0(X,Y ) contains an interest point xj ∈ F (X). The subset Fr(Y ) ⊆ F (Y ) of

repeatable interest points is given by

FR,X(Y ) = {yk ∈ F (Y ) : F (X) ∩BR(x′k) 6= ∅,

(x′k, yk) ∈ C0(X,Y )},
(4.34)

where BR(x′k) = {x ∈ X : geod(x, x′k) ≤ R} and geod denotes the geodesic distance

function in X. The repeatability rep(Y,X) of F (Y ) in X is defined as the percentage

of interest points from F (Y ) that are repeatable,

rep(Y,X) =
|FR,X(Y )|
|F (Y )|

. (4.35)
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For a transformed shape Y and the corresponding null shape X, the overall feature

interest points detection quality was measured as (rep(Y,X) + rep(X,Y ))/2. The value

of R = 5 was used in the benchmark. This radius constitutes approximately 1% of the

shapes diameter. Interest points without ground-truth correspondence (e.g. in regions

in the null shape corresponding to holes in the transformed shape) were ignored.

4.1.2.2 Analysis of parameter values

In this section, we present the experimental results of our method. We experimented

with several aspects and investigated the effect of the parameters on the repeatability

of our proposal. Specifically, we evaluated the following aspects:

• The type and size of local neighborhood. We tested three options: spatial

neighborhood, adaptive neighborhood and ring neighborhood. We are interested

in evaluating the effectiveness of each option.

• The parameter K. We tested with different values for this parameter in order

to investigate its effect in the calculation of Harris response.

• The type of interest point selection method.. We only evaluated the method

that selects the points with higher response. We intended to figure out the effect

of the number of selected interest points in the effectiveness of our algorithm.

It is important to point out that, for all experiments we used a basic configuration

of parameters and only the analyzed parameter was changed. Our basic configuration

consisted of adaptive local neighborhood with δ = 0.01, K = 0.04, and selection of 1%

of the number of vertices with higher Harris response as final interest points set. All

graphs presented in our results were adequately scaled for a better visualization.

Spatial neighborhoods. Our first experiment consisted in evaluating the repeata-

bility of our method when local neighborhoods were determined as the set of vertices

lying inside of a ball centered in the analyzed vertex. We varied the radius of the ball

and calculated the average repeatability for all transformations and for all levels. The

radii were taken as fraction of the diagonal of the bounding box of the object. It is

important to mention that when we use spatial neighborhoods, the σv parameter is set

to the quarter of the spatial radius. Figure 4.5a shows the results of this experiment.

We varied the fraction of the diagonal in the range [0.01, 0.1]1. The highest values of

repeatability were obtained for 0.02 and 0.03. In order to find the best value, we plot

1In practice, values below 0.01 represent a very small neighborhood. This does not guarantee to find
a surrounding point set for the subsequent computation.
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Figure 4.5: (a)Repeatability values obtained by selecting spatial neighborhoods. The
radii of the ball was chosen as a fraction of the diagonal of the bounding box of
the object. Results show average repeatability for the range [0.01, 0.1] for the radii.
(b)Average repeatability for spatial neighborhoods with radii 0.02 and 0.03, respec-

tively. The comparison was done by levels of transformation.

the repeatability curves for these values with respect to the level of transformation (see

Fig. 4.5b). Both curves are very similar, with a slight advantage for fraction = 0.03.

There are two important issues that we should remark. First, the average repeatability

decreases with large neighborhoods. This is because large neighborhoods cannot be

well fitted by a quadratic surface, and therefore the calculation of derivatives and the

Harris response are not robust. Second, as it can be seen in Fig. 4.5b, repeatability

always decreases with stronger levels of transformations (except in those where the level

does not represent the strength of the transformation). Nevertheless, this behavior was

expected.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 75.77 79.89 78.01 79.45 79.85

Topology 76.25 76.39 76.21 76.19 76.18

Holes 75.56 75.52 75.36 75.34 74.98

Micro holes 76.19 76.17 76.10 75.98 75.92

Scale 82.58 80.01 77.38 74.79 72.29

Local scale 74.33 72.49 69.34 65.46 62.66

Sampling 73.21 71.06 69.35 66.75 59.51

Noise 73.81 73.14 71.78 69.94 67.48

Shot noise 76.32 76.36 76.04 76.09 75.90

Average 76.00 75.67 74.40 73.33 71.64

Table 4.1: Repeatability of our method using spatial neighborhood with fraction =
0.03. Average number of detected points: 303.

Table 4.1 shows the repeatability for each transformation and each level for fraction =

0.03. Although there are transformations where, on average, the repeatability is greater
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than 75% (for example, isometry, topology, holes, micro holes, scale and shot noise),

spatial neighborhoods have some problems. On the one hand, vertices belonging to a

spatial neighborhood do not necessarily belong to the same local surface around the

analyzed vertex. Moreover, the set of vertices could not belong to the same connected

component. Having neighborhoods with vertices not belonging to the local surface, the

fitting task is not robust, damaging the overall process and therefore the effectiveness.

On the other hand, spatial neighborhoods do not ensure a good balance around the

analyzed vertex, which is a problem if the models have poor triangulations.

Adaptive neighborhoods. Our second experiment consisted in varying the param-

eter δ with the adaptive local neighborhood approach. Figure 4.6 shows the average

repeatability obtained in this experiment. Table 4.2 shows all values of repeatability

obtained by the best configuration (δ = 0.01). We tested values smaller than 0.01 for δ;

however, the improvement was not significant.
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Figure 4.6: Average repeatability for adaptive neighborhoods with several δ values.

Similarly to the spatial neighborhoods, the average repeatability decreases as the ex-

tent of the neighborhoods increases. Large neighborhoods cause an inadequate fitting,

affecting the effectiveness of the method. Results show an improvement of more than

15% in almost all entries with respect to those obtained by spatial neighborhoods. This

percentage represents approximately 45 repeatable interest points detected in difference,

compared to the spatial neighborhood effectiveness. However, although the results im-

prove significantly, there is still visible a rapid fall in the repeatability values for noise

transformation, even below those obtained by spatial neighborhoods.

From Table 4.2 we can note some interesting issues. On the one hand, from the trans-

formations where the level represents strength, some of them present only a slight fall
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 93.59 95.14 94.43 95.05 95.18

Topology 93.48 93.43 93.25 93.16 93.15

Holes 92.08 92.04 91.60 91.25 90.67

Micro holes 93.59 93.59 93.56 93.55 93.51

Scale 94.29 93.80 93.42 93.04 92.60

Local scale 93.49 92.89 91.27 88.81 86.55

Sampling 92.23 90.40 87.83 84.52 77.98

Noise 92.33 81.83 72.51 66.75 63.44

Shot noise 93.54 92.60 91.27 89.93 88.20

Average 93.18 91.75 89.90 88.45 86.81

Table 4.2: Repeatability of our method using adaptive neighborhoods with δ = 0.01.
Average number of detected points: 303.

of average repeatability between the minimum and maximum levels: topology (0.33%),

holes (1.41%) and micro holes (0.08%). On the other hand, from stronger level, the

worst performance is obtained by sampling and noise transformations.

The behavior with the sampling transformation is expected because our method relies

on selecting a fraction of the number of vertices as interest points. So the number of

interest points detected in level 1 is much larger than in level 5. Clearly, the number of

repeatable interest points in this transformation cannot be larger than the number of

interest points in high levels. Therefore, the repeatability decreases considerably with

downsampling. Also, with respect to the noise, the level of distortion of the meshes in

stronger levels of this transformation is high, causing a considerable deformation in the

shapes.. Surely, local neighborhoods are affected considerably and the process of fitting

is not robust. We argue that the decrement with respect to spatial neighborhoods is due

to the use of the connectivity when collecting the rings around the analyzed vertex. As

the noise is applied in the direction of the normal of each vertex, the same parameter δ in

different levels of transformations can determine neighborhoods of considerable different

sizes. Obviously, for the reasons explained before, the repeatability of our method is

affected.

Ring neighborhoods. The third experiment evaluated the repeatability with differ-

ent numbers of rings selected as neighborhood. It is important to mention that when we

use a ring neighborhood, the σv parameter is set to a quarter of the maximum graph dis-

tance between v and a boundary vertex. Figure 4.7 shows the result for this experiment.

Table 4.3 shows all repeatability values.
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Figure 4.7: Average repeatability with ring neighborhoods sizes taken from the range
[1, 10].

From Fig. 4.7, we can observe the same effect on the size of the neighborhood. With

larger neighborhoods, average repeatability begins to decrease systematically. The in-

teresting thing about this experiment is to note that a very small neighborhood gave

the best results. One reason could be that, with small neighborhoods, the fitting step is

robust and thus, derivatives are well calculated. Nevertheless, small neighborhoods are

unstable in presence of noise or another distortion transformation. Still, repeatability

values for stronger levels of noise improve up to 13% with respect to spatial neighbor-

hoods and up to 15% with respect to adaptive neighborhoods.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 95.86 96.74 96.51 96.78 96.79

Topology 95.92 95.92 95.84 95.75 95.70

Holes 93.60 93.77 93.74 93.83 93.48

Micro holes 95.86 95.86 95.88 95.89 95.93

Scale 96.76 96.54 96.24 95.93 95.39

Local scale 95.92 94.97 93.49 91.35 89.01

Sampling 94.69 93.55 92.19 89.05 80.26

Noise 92.97 92.07 90.82 89.71 88.54

Shot noise 95.99 95.57 94.90 93.62 92.41

Average 95.28 95.00 94.40 93.55 91.95

Table 4.3: Repeatability of our algorithm using one ring neighborhood. Average
number of detected points: 303.

Parameter K The parameter K is used in Eq. 4.3 to calculate the Harris response

for a given vertex. This parameter needs to be tuned experimentally. We varied the

parameter in the range [0.04, 0.1] and tested the average repeatability. Figure 4.8 shows



Chapter 4. Local Structures on 3D Shapes 54

the results. In our implementation, the best result was for K = 0.07. However, the im-

provement was not significant with respect to our default value K = 0.04 (approximately

0.34%, representing almost 2 repeatable interest points of difference).
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Figure 4.8: Effect of varying K in average repeatability.

Interest point selection In Section 4.1.1.4, we proposed two options for the final

selection of interest points. The clustering approach is interesting from the point of view

of applications requiring points well distributed over the whole surface. Nevertheless, as

the process is based on grouping vertices with high responses, this step is not necessarily

robust according to the repeatability criterion. Therefore, we did not consider this

approach in our evaluation.

On the other hand, selection of vertices with higher response is interesting because the

number of selected vertices is an important issue in applications. For example, in shape

matching, we might be interested in only a few points, as the efficiency of matching is

closely related to the number of points to be matched. So, we evaluated the effect of

reducing the number of selected vertices.

Our method selects a fraction of the number of vertices as interest points, so the smaller

is the fraction, the fewer interest points are selected. We varied the fraction in the range

[0.001, 0.01]. Figure 4.9 shows our results.

Clearly, the average repeatability increases as the number of interest points is increased.

This trend is maintained for values of fractions larger than 0.01. An important aspect to

note is that by reducing the number of interest points in half, with respect to the value

of fraction 0.01, the average repeatability decreases approximately in 6.34%. This is an

advantage because if we need to apply subsequent processes, we can opt for reducing the
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Figure 4.9: Effect of reducing the number of interest points in average repeatability.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 96.01 96.73 96.26 96.60 96.62

Topology 96.01 95.97 95.82 95.73 95.71

Holes 94.62 94.43 94.10 94.01 93.81

Micro holes 96.01 96.01 95.98 95.96 95.95

Scale 97.06 96.89 96.28 95.62 94.94

Local scale 96.24 94.96 93.40 91.26 88.84

Sampling 95.31 93.62 92.08 89.13 80.42

Noise 93.09 92.58 91.59 90.33 88.79

Shot noise 96.03 95.66 95.00 93.83 92.79

Average 95.60 95.21 94.50 93.61 91.99

Table 4.4: Repeatability of our algorithm using combination of values with the best
effectiveness. Average number of detected points: 303.

number of interest points selected, at expense of slightly reducing the robustness of the

delivered points. The number of interest points will finally depend on the application

and the trade-off between robustness and efficiency.

As an additional test, we combine the parameter values with the best effectiveness,

obtaining a slight improvement. Table 4.4 shows the repeatability values for all trans-

formations in all levels. Compared to Table 4.3, on average results improve for all levels.

4.1.2.3 Comparison with other methods

In order to compare our method with the state of the art, we selected two recent methods

for detecting interest points on 3D meshes: Heat Kernel local maximum-based feature

detector [SOG09] (hereafter, we will refer this method as HKS due to its close relation
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to the Heat Kernal Signatures) and Salient Points [CCFM08]. Next, we specify the

configuration used for these methods:

Heat Kernel local maximum-based feature detector (HKS). As this method

relies on the eigendecomposition of the Laplace-Beltrami operator on the mesh, we

needed to simplify the meshes to approximately 10,000 vertices (we used Garland’s

method [GH97]). Interest points were computed on the simplified meshes and mapped

back to the original mesh by using the nearest neighbor vertex. We used the value

t = 0.1 from the total area of the surface to evaluate the Heat Kernel local maximum

and 2-ring neighborhood in order to detect interest points. We present three variations:

• HKS1: No pre-processing step was used. We implemented this variant based on

the original HKS implementation.2

• HKS2: The Geomagic sotfware was used for removing non-manifold edges and

faces were consistently oriented. Results for this variant were taken from the

original report [BBB+10].

• HKS3: Filtering using persistent homology was used to discard unstable feature

points. Results were also taken from [BBB+10].

Salient Points (SP). We chose the best performance of this method from the SHREC

feature detection benchmark.

Tables 4.5, 4.6 and 4.7 show the repeatability obtained by the variants of the HKS

method. Table 4.8 shows the results of the Salient Points method. All comparison were

done with respect to our best results shown in Table 4.4. Our method is represented by

H3D.

As can be seen, our method outperformed the HKS1 variant without pre-processing and

the Salient Points method. The benefit is consistent in each entry of the table, which is

an important result regarding the relevance of the techniques compared. With respect to

HKS2 and HKS3, these variants present significant improvements. However, they need

well-formed shapes in order to work properly, which affects their efficiency considerably.

Table 4.9 presents the best method for each entry in the repeatability table. It can be

seen that Harris 3D method outperforms the rest in stronger levels (4-5). The Heat

Kernel based method is predominant in isometry, scale and sampling transformations.

In the isometry transformation, the effectiveness of this method (HKS3 variant) is per-

fect with an average repeatability of 100%. A similar scenario takes place in the scale

2http://www.geomtop.org/sunjian/software/hks.html
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 83.20 87.39 88.44 87.29 87.21

Topology 79.73 81.27 81.49 81.08 80.94

Holes 80.15 77.57 75.86 73.35 71.16

Micro holes 81.02 80.76 80.68 80.43 80.50

Scale 79.99 79.78 79.90 80.18 80.36

Local scale 80.38 80.65 78.84 75.55 72.99

Sampling 82.70 82.23 82.66 82.04 78.99

Noise 75.80 74.55 72.37 69.34 68.23

Shot noise 79.96 81.14 81.15 80.07 78.77

Average 80.33 80.59 80.15 78.82 77.68

Table 4.5: Repeatability of HKS1 feature detection algorithm. Average number of
detected points: 35.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 98.08 98.72 98.01 97.88 98.04

Topology 97.44 96.10 92.26 91.22 88.64

Holes 91.48 90.60 86.78 83.73 81.86

Micro holes 98.08 96.69 96.00 95.52 94.87

Scale 99.36 99.36 98.50 97.90 97.68

Local scale 98.08 94.83 90.09 83.05 78.31

Sampling 97.05 97.88 97.39 96.27 92.35

Noise 95.30 92.78 91.67 89.24 87.62

Shot noise 98.08 96.22 93.39 90.45 87.32

Average 96.99 95.91 93.79 91.70 89.63

Table 4.6: Repeatability of HKS2 feature detection algorithm. Average number of
detected points: 23.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00

Topology 94.44 90.38 87.45 88.70 85.76

Holes 80.54 79.00 75.25 72.10 69.99

Micro holes 100.00 100.00 98.15 96.58 95.64

Scale 100.00 100.00 100.00 98.61 97.78

Local scale 97.44 96.79 93.02 87.25 82.90

Sampling 100.00 100.00 100.00 100.00 96.20

Noise 100.00 95.19 93.16 89.37 85.77

Shot noise 100.00 95.30 90.03 82.10 74.38

Average 96.94 95.19 93.01 90.52 87.60

Table 4.7: Repeatability of HKS3 feature detection algorithm. Average number of
detected points: 23.
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 86.17 87.42 87.24 87.76 88.15

Topology 86.18 85.63 85.58 85.56 85.56

Holes 85.72 85.10 84.34 83.56 82.58

Micro holes 68.52 62.27 57.96 54.75 51.99

Scale 89.80 88.28 86.82 85.14 83.70

Local scale 85.73 84.97 84.48 83.33 82.12

Sampling 85.02 83.15 82.21 79.94 77.61

Noise 87.31 85.43 83.28 81.36 79.40

Shot noise 85.95 84.42 82.77 81.76 81.23

Average 84.49 82.96 81.63 80.35 79.15

Table 4.8: Repeatability of SP algorithm. Average number of detected points: 409.

transformation, where for small scales (levels 1-2-3) the average repeatability is 100%.

For the sampling transformation, the average repeatability is near to perfect too.

The reason for the good performance of the Heat Kernel based method in the aforemen-

tioned transformations is its intrinsic definition. This property allows it to appropriately

define a characteristic shape based on the spectrum of the Laplace-Beltrami operator,

and therefore it is robust against isometry and rigid transformations such as scaling.

On the other hand, it is also robust to different samplings of the input mesh, as the

interest points are selected for being points with large values of Heat Kernel Signatures

in large times. That is to say, the interest points selection process is robust to different

tessellations.

Differently, in transformations that deform the local structure of shapes, Harris 3D

obtained the best results. Firstly, there is a total predominance of our method with

respect to the holes transformation. Secondly, our method outperforms the rest in

most levels (3-5) for topology, local scale and shot noise transformations. Finally, it is

interesting that our method is also the best in stronger levels for micro holes and noise

transformations. Averages in Table 4.9 represent the majority in each level, so we can

observe the predominance of Harris 3D in levels 4 and 5.

Figure 4.10 shows some examples of interest points over a class of shape of the SHREC

feature detection benchmark using Harris 3D.

4.2 Key-Components: Regions of Interest on Meshes

A basic and important task is to find interesting structures in representations such as 3D

point clouds or meshes. Many proposals have been presented to detect interest points

(also called keypoints) on 3D data. Regarding meshes, a keypoint is a point on the
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry HKS3 HKS3 HKS3 HKS3 HKS3

Topology HKS2 HKS2 H3D H3D H3D

Holes H3D H3D H3D H3D H3D

Micro holes HKS3 HKS3 HKS3 HKS3 H3D

Scale HKS3 HKS3 HKS3 HKS3 HKS3

Local scale HKS2 HKS3 H3D H3D H3D

Sampling HKS3 HKS3 HKS3 HKS3 HKS3

Noise HKS3 HKS3 HKS3 H3D H3D

Shot noise HKS3 HKS2 H3D H3D H3D

Average HKS3 HKS3 HKS3 H3D H3D

Table 4.9: Methods with the best performance by transformations and strengths.
HKS - Heat Kernel local maximum. H3D - Harris 3D.

mesh with a local outstanding structure. As such, the keypoints represent interesting

information at fine scales and thus, they could be sensitive to noise and other transfor-

mations. Therefore, it is required to find larger and interesting structures to overcome

the problems at fine scales.

In this section, we propose an algorithm to detect features at a coarse level on meshes.

Our motivation is that larger structures are more resilient to local changes, while al-

lowing us to reduce the amount of information to represent 3D meshes in retrieval and

Figure 4.10: Shapes with interest points. Interest points are represented with small
red balls.
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recognition tasks. The idea is to decompose a 3D mesh in a set of components, which

should be consistently found in meshes regardless the applied transformation. In addi-

tion, the number of components should be much less than the number of keypoints, so

using the components in subsequent tasks would be efficient.

We introduce the term key-component as a region on a 3D mesh where there are a lot

of discriminative local features (see Fig. 4.11). In such way, key-components correspond

to regions with high protrusion and they are therefore distinctive for the object. Ad-

ditionally, the size of the salient region is determined by a clustering algorithm used

to find agglomerations of keypoints in a sense of geodesic closeness. Moreover, key-

components will be useful to the extent that they are repeatable and robust against

several transformations.

Our method is inspired by the cognitive theory of saliency of visual parts [HS97]. This

theory studied the important role of object parts in high level vision tasks. In addition,

it exposed the characteristics of parts in order to be considered as salient. To this

respect, the theory formulated the existence of three key aspects for parts: the relative

size, the protrusion and the strength of the boundary. We present a procedure to

detect salient parts or regions on 3D meshes trying to cover the aforementioned aspects.

More specifically, our method selects regions with agglomerations of keypoints as key-

components, so they are expected to have a high protrusion. Additionally, our results

confirm the fact that the size is important to define robust salient regions.

Our method differs from mesh segmentation methods as it computes a non-complete

decomposition of a mesh while is aware of the local features present in the components.

Even more, if we would like to establish a comparison with image processing tasks, we

would say that mesh segmentation is related to image segmentation while our method is

more similar to image saliency detection [GZMT12]. In other words, we are interested in

(a) (b) (c)

Figure 4.11: Key-components detected on 3D meshes using our method.
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detecting portions of the mesh which are distinctive enough and robust and repeatable

against transformations rather than decomposing the whole mesh.

Our method consists of three steps: keypoint detection, clustering in the geodesic space,

and key-component extraction. Our proposal is based on the detection of interest points,

which can be effectively used for detecting stable components on meshes. Here, we use

the Harris 3D method presented in Sec. 4.1. Figure 4.12 depicts the pipeline of our

method to detect key-components.

4.2.1 Clustering in the Geodesic Space

Key-components are those regions on the mesh in which there is a high concentration

of local features. One way to measure the concentration is using the geodesic distances

between the keypoints, and therefore grouping them according to their closeness in terms

of this kind of distance. Let S = {s1, s2, . . . , sn} be the set of keypoints previously

detected, our goal is to find partitions Si ⊂ S, i = 1 . . .m over the set of keypoints S in

order to fulfill the following properties:

1. dgeod(x, y) ≤ R, ∀x, y ∈ Si.

2. dgeod(x, y) ≥ T , ∀x ∈ Si and ∀y ∈ Sj , i 6= j.

3. |Si| ≥ N, ∀i

Property 1 suggests that elements in a subset Si share approximately the same location

on the mesh (threshold R controls the proximity permitted). Property 2 states that two

subsets Si and Sj cannot be very close to each other (threshold T controls how far two

Figure 4.12: The process to detect key-components. First, Harris 3D keypoints are
detected on a shape. Second, a clustering in the geodesic space is performed to find

concentrations of keypoints. Finally, each geodesic cluster generates a region.
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(a) (b)

Figure 4.13: Left: Shape with keypoints. Right: Multi-dimensional scaling of the
keypoints.

subset should be). Property 3 establishes that each partition should contain a minimum

number of keypoints to be considered as a valid partition. In addition, we consider a

non-complete partitioning of the initial set S. Obviously, there may be keypoints which

meet the two first properties, but not the third. This is because some interest points

could be isolated, and therefore they would not belong to any partition. Moreover,

isolated keypoints could have been selected due to noise. It is clear that, in order to

detect consistent components on meshes, we need to discard isolated keypoints.

In practice, we need to consider a clustering process regarding the geodesic distances

between keypoints. In order to accomplish this goal, our method computes a set P ∈ R2,

in which euclidean distances between elements in P approximately preserve the geodesic

distances between elements in S. That is, we need to find the set P such that

P = argmin
p1,...,pn

∑
i<j

(‖pi − pj‖ − dgeod(si, sj)) (4.36)

where each pi ∈ R2 corresponds to the keypoint si ∈ S.

This problem is commonly called Multidimensional Scaling [BG05] and it is used to em-

bed points in one space into another (generally for better visualization). The optimiza-

tion problem in the Eq. 4.36 is a minimum-distortion problem and can be solved with

an iterative method which takes a random sampling in the destination space as starting

set P . The method used in this work was the SMACOF algorithm [BG05]. In addition,

for approximating the geodesic distances, we used the fast marching method [KS98].

Figure 4.13 shows the resulting set of 2D points applied on a set of keypoints. Note how

the resulting points represent the distribution of keypoints on the mesh.

Next, we apply a clustering algorithm over the set P in order to define the partition-

ing of S. We proposed a clustering algorithm derived from Leow and Li [LL04] (See

algorithm 4.2). The algorithm iterates over two steps: assignment and update. The

assignment step (lines 4-18) performs in point-wise manner. Firstly, the distance to the



Chapter 4. Local Structures on 3D Shapes 63

Algorithm 4.2 Adaptive Clustering

Require: Set of points P
Require: Inter-cluster distance T
Require: Intra-cluster distance R
Require: Minimum number of elements per cluster N
Require: Number of iterations Iter
Ensure: Set of clusters C = {C1, . . . , Cm}

1: Let C a set of clusters
2: C ← ∅
3: for j ← 1 to Iter do
4: for each p ∈ P do
5: if C = ∅ then
6: d = 2T
7: else
8: C∗ = arg min

Ci∈C
dist(p, Ci)

9: d = distance from p to C∗
10: end if
11: if d > T then
12: Cnew = {p}
13: C ← C ∪ Cnew
14: P ← P − {p}
15: else if d ≤ R then
16: C∗ ← C ∗ ∪{p}
17: P ← P − {p}
18: end if
19: end for
20: for i ← 1 to |C| do
21: if |C ∗ | ≥ N then
22: Update centroid for C∗
23: else
24: P ← P ∪ C∗
25: C ← C\{C∗}
26: end if
27: end for
28: end for
29: Return C
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(a) (b)

Figure 4.14: Left: Shape with cluster of keypoints. Right: multi-dimensional scaling
of the keypoints. Points represented as crosses do not belong to any cluster.

closest cluster is obtained. If the distance is greater than T (the inter-cluster threshold),

we create a new cluster (according to the property 2). Otherwise, if the distance is not

greater than R (the intra-cluster threshold), the point p is inserted in the corresponding

cluster (according to property 1). After the assignment step, each point belongs to a

cluster. Subsequently, the update step (lines 19-26) computes the new centroids for

clusters that meet the property 3. Otherwise, clusters with a few points are removed,

and their points are inserted back in P to be further processed. Note that the algorithm

could converge before the last iteration, however we opt for using a number of iterations

as stop criterion. In all experiments presented in Section 4.2.3, we set Iter = 10. This

value was set empirically from the observation that, on average, the clustering algorithm

converges in 6-8 iterations. Figure 4.14 shows the groups of keypoints found using our

algorithm.

4.2.2 Key-component Extraction

The starting point to extract mesh components is the set of clusters previously computed.

Each cluster will generate a component comprising the region of the mesh where the

keypoints are located. Now, we need a criterion to decide how large this region will be.

In addition, the selected region should be large enough to include all the keypoints in

the cluster.

We start by defining the geodesic center of each cluster. The idea is to determine the

point on the mesh which is the center of the distribution of a cluster. This point could be

used as the center of the region to be extracted as component. We can take advantage of

the transformed set of points P in order to accomplish this goal. The geodesic center of

a cluster is a point on the mesh whose mapped version in R2 is near to the centroid of the

cluster of the transformed points. To solve this, we choose the closer point to the centroid

in R2 as the geodesic center. Note that the selected point is only an approximation of

the real geodesic center, as our method is selecting a keypoint (finding the real geodesic
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center is a hard task as we would have had to map every point on the mesh into the 2D

space, which is impossible in practical terms). Formally, let Ci be the set of 2D points

corresponding to the set Si of keypoints. The geodesic center of Si is defined as follows:

ĉi = {sj ∈ Si|cj = argmin
c∈Ci

‖c− centroid(Ci)‖} (4.37)

where pj ∈ R2 corresponds to sj ∈ S.

Now, we need to define a size for the component. To do that, our method computes the

smallest sphere containing every keypoint in a cluster. This is a classic problem in com-

putational geometry and it can be efficiently solved using linear programming [MSW92].

The output of this tasks is a pair (oi, ri) representing the center and the radius of the

sphere enclosing the keypoint in the cluster Si.

Once the geodesic center ĉi and the sphere (oi, ri) have been computed, we propose

a region growing algorithm on the mesh. Our initial seed is the vertex ĉi and the

constraint for the growing step is imposed by the sphere. Algorithm 4.3 details this

procedure. Briefly, the region growing algorithm starts from the geodesic center ĉi and

inserts the neighbor vertices into the queue. Each time a vertex is extracted from the

queue, the algorithm verifies if the vertex is a keypoint. If so, the keypoint is deleted

from the remaining set. The algorithm finishes when the remaining set is empty, which

means that a component has been extracted and it contains the complete set of input

keypoints.

It is worth noting that we introduce a scaling factor σ > 1 for the radius ri (algorithm 4.3,

line 15). Thus, we ensure a connectivity between the keypoints in Si. A value greater

than 1 would guarantee to find a connected component lying inside the sphere with

radius σ × ri. That is, a suitable choice for σ should be in the interval (1, 2]. We avoid

a value of one in our choice because the patch containing the cluster of keypoints could

contain more than one connected component. Indeed, the larger the σ value, the higher

the probability that the extracted region is a connected component. On the other hand,

the σ value can not be extremely large because it could affect the characterization of

the cluster of keypoints. In all our experiments, we use σ = 1.5 which allow us to

always obtain one connected component in the extraction without compromising the

characterization of the keypoint clusters.

Figure 4.15 shows the components detected in several shapes.
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Algorithm 4.3 Key-component Extraction

Require: Vertex set V
Require: Geodesic center ci
Require: Cluster of keypoints Si
Require: Sphere (oi, ri)
Require: Scaling radius factor σ
Ensure: Vertex set VR
Ensure: Face set FR

1: Let VR be an empty vertex set
2: Let FR be an empty face set
3: Let waiting be the set of remaining keypoints
4: Let visited be a vertex queue
5: visited.enqueue(ci)
6: waiting ← Si
7: while waiting 6= ∅ and visited 6= ∅ do
8: v ← visited.dequeue()
9: if v is not marked then

10: VR ← VR ∪ {v}
11: Mark v
12: waiting ← waiting − {v}
13: for each w ∈ v.adjacentV ertices() do
14: if w is not marked then
15: if ‖w − oi‖ < σ × ri then
16: visited.enqueue(w)
17: end if
18: end if
19: end for
20: FR ← FR ∪ v.adjacentFaces()
21: end if
22: end while
23: Unmark vertices
24: Return FV and FR

Figure 4.15: Key-components detected on shapes with several transformations. From
left to right: null shape, isometry, microholes, local scale, noise, topology, holes, sam-

pling, and shot-noise. Color are arbitrary.
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4.2.3 Experimental Evaluation and Discussion

In this section, we describe the evaluation criterion used to assess our method, and the

experimental results. Our experiments were performed on the SHREC 2010 dataset

(Sec. 3.2.1). Also, the models were normalized so the surface area is 1. This facilitated

the configuration of the clustering parameters.

4.2.3.1 Evaluation Criterion

To evaluate our approach, we use the methodology previously used in Litman et al. [LBB11]

to determine the repeatability of a decomposition. Our goal is to determine if the mesh

components are consistent between a null shape and a transformed shape. Given a null

shape X and a transformed mesh Y , the components are represented as X1, . . . , Xn

and Y1, . . . , Ym, respectively. Using the ground-truth, we compute the corresponding

component to each component Yj in X, which is denoted as X ′j . Then, the component

repeatability between X and Y is defined as

R(X,Y ) =
m∑
j=1

max
1≤i≤n

O(Xi, X
′
j) (4.38)

where the overlap between two components is defined as an area ratio

O(Xi, X
′
j) =

A(Xi
⋂
X ′j)

A(Xi
⋃
X ′j)

. (4.39)

In addition, we define the repeatability in overlap o as the percentage of components

in the entire collection that have overlap greater than o with their corresponding null

shape. Clearly, totally coincident components give a repeatability of 1.

4.2.3.2 Effect of Key Ingredients

Our method relies on two aspects which are important in the final resulting key-components.

First, the number of keypoints could determine the protrusion of the regions and there-

fore their distinctiveness. Second, the clustering parameters could reveal the impor-

tance of the size in the repeatability of key-components. For these reasons, this section

is devoted to study the effect of these two aspects in order to find a good parameter

configuration.
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Figure 4.16: This plot shows the average repeatability at overlap 0.8 for different
parameter configurations. Columns represent region sizes: large (left), medium (mid-
dle), and small (right). Rows represent the minimum number of keypoints allowed in
a cluster: N = 10 (top), N = 20 (middle), and N = 30 (bottom). Each block contains
the repeatability for five different number of keypoints: three fixed configurations (100,
200, and 300 ) and two depending on the number of vertices (1% and 1.5%). Each

block has the same scale.

Regarding the number of keypoints, we test five configurations: three with a fixed num-

ber of keypoints (100, 200, and 300) and two with a number that depends of the number

of vertices (1% and 1.5%). Furthermore, we consider three configurations for the clus-

tering which correspond to small (R = 0.05, T = 0.1), medium (R = 0.1, T = 0.2),

and large regions (R = 0.15, T = 0.3). In addition, we evaluate the minimum number

of keypoints needed for a key-component (N = 10, 20, 30). It is worth mentioning that

values for clustering are empirical, mainly guided by the fact that meshes are normalized

to area one. Figure 4.16 shows a plot with the results using all possible configuration

as mentioned before. This plot shows the repeatability at overlap 0.8 as an average for

every shape in the dataset (including transformations).

There are two aspects which deserve attention. First, there is a notorious predominance

for the use of 1% of the number of vertices as keypoints. This responds to the need of

balancing the trade-off between quality and quantity of local features. In other words,

much more keypoints could contain noisy information, and therefore it could degrade

the quality of key-components. In counterpart, much less keypoints could not determine

robust regions. This follows from the fact that regions are determined by groups of

keypoints and obviously less keypoints could not tend to cluster. A particular case is

shown for small regions and many keypoints per region (R = 0.05, T = 0.1, N = 20
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Figure 4.17: Overlap vs. Repeatability plot for the KC-1 variant.

and R = 0.05, T = 0.1, N = 30). In these cases, the use of few keypoints (200 and

100, respectively) shows the best repeatability. We believe that these two configurations

exhibit a particular behavior because a few keypoints are grouped in few small regions.

As these small regions correspond to the presence of many keypoints, they are distinctive

and hence repeatable (although below the repeatability of large regions).

Second, the highest repeatability values correspond to large regions. That is, large

regions are more stable to transformations and the probability that large key-components

come from perturbed features is low. Moreover, among the different configurations for

large regions, there is a trend regarding the expected number of keypoints per region.

The greater the number of keypoints allowed to belong to a region, the greater the

repeatability of the key-components. This result encourages us to believe that key-

components can correspond to regions with high protrusion which are distinctive and

repeatable at the same time. This finding is consistent with the theory of saliency of

visual parts in terms that key-components are distinctive. Furthermore, there is a visible

relation between robustness and repeatability, and the relative size of regions.

To provide a closer look on the behavior of our algorithm against transformations, we

chose the three configurations with the highest average repeatability at overlap 0.8 (in

addition, we named each configuration to facilitate reading) :

• KC-1: # keypoints = 1% number of vertices, R = 0.15, T = 0.3, N = 30.

• KC-2: # keypoints = 1% number of vertices, R = 0.15, T = 0.3, N = 20.

• KC-3: # keypoints = 1% number of vertices, R = 0.1, T = 0.2, N = 30.
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.94 0.95 0.85 0.93 0.94

Topology 0.75 0.70 0.84 0.77 0.74

Micro holes 0.93 0.95 0.95 0.95 0.93

Scale 0.95 0.95 0.92 0.93 0.95

Local scale 0.95 0.87 0.93 0.88 0.93

Sampling 0.62 0.38 0.09 0.02 0.00

Noise 0.92 0.91 0.93 0.94 0.86

Shot noise 0.93 0.95 0.96 0.96 0.94

Holes 0.78 0.69 0.77 0.86 0.79

Average 0.86 0.82 0.80 0.80 0.79

Table 4.10: Average overlap values for variant KC-1.

Variant KC-1 determines large regions with a high number of keypoints. Figure 4.17

plots the repeatability of key-components at several overlap values. Most transfor-

mations (shotnoise, scale, microholes, isometry, localscale, and noise) obtained a high

repeatability (greater than 80%) at overlap 0.8. Even more, four transformations (shot-

noise, microholes, scale, and isometry) have a repeatability greater than 90%. This

indicates that this variant is very robust for these transformations regardless the trans-

formation strength. Differently, topology, holes and sampling transformations obtained

a repeatability below 80%. With respect to the topology transformation, we believe that

large key-components degrades the performance because they tend to include the intro-

duced topological noise while the region is extracted. The larger the region, the more

likely to merge two parts of the mesh that are not connected in the original mesh. In

addition, our approach heavily depends on the computation of geodesic distances which

are distorted with this transformation.

Also, a special case is the sampling transformation whose repeatability value drops to

zero. In effect, the down-sampling of meshes is not well handled by our approach due

to the dependency of the number of vertices in the keypoint detection stage. In this

case, the three variants use a number of keypoints which depends on the number of

vertices (specifically 1%). Obviously, when a shape is down-sampled, the number of

keypoints is also reduced. This fact could affect the entire process of key-components

extraction, which depends on the number of keypoints and the distribution of them over

the surface. Despite of this, we believe that the KC-1 variant of our technique is robust

and it provides distinctive and repeatable key-components.

As well, Table 4.10 presents the average overlap for each transformations and its strengths.

These results support those obtained in Fig. 4.17. The same four transformations with

repeatability greater than 90% in overlap 0.8 have high overlap values in most of the

strengths.
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Figure 4.18: Overlap vs. Repeatability plot for the KC-2 variant.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.85 0.95 0.78 0.87 0.87

Topology 0.74 0.64 0.78 0.71 0.67

Micro holes 0.93 0.95 0.95 0.95 0.93

Scale 0.95 0.95 0.92 0.93 0.95

Local scale 0.95 0.87 0.93 0.88 0.87

Sampling 0.58 0.41 0.24 0.02 0.00

Noise 0.92 0.91 0.93 0.94 0.91

Shot noise 0.85 0.87 0.95 0.95 0.93

Holes 0.68 0.75 0.70 0.81 0.74

Average 0.83 0.81 0.80 0.78 0.76

Table 4.11: Average overlap values for variant KC-2.

For the variant KC-2, Fig. 4.18 and Table 4.11 show the results. The difference between

KC-1 and KC-2 is minimal. Moreover, there are four transformations (microholes, scale,

localscale and noise) where repeatability values are very similar (see Table 4.10 and

Table 4.11).

With respect to the variant KC-3, almost all transformations present a drop in their

repeatability values at overlap 0.8 with respect to the previous variants (see Fig. 4.19).

Nevertheless, it is worth noting that the repeatability for the topology transformation

rose above 90%. It also can be seen in Table 4.12, where the overlap values for all the

topology strengths were improved with respect to KC-1 and KC-2. We believe that this

phenomenon correspond to the fact that medium-size regions are more stable to the

topological noise. Furthermore, the overlap values for the highest strengths in localscale

and shotnoise were also improved.
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Figure 4.19: Overlap vs. Repeatability plot for the KC-3 variant.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.91 0.94 0.88 0.94 0.94

Topology 0.87 0.84 0.86 0.79 0.78

Micro holes 0.86 0.92 0.93 0.92 0.86

Scale 0.92 0.93 0.86 0.86 0.92

Local scale 0.95 0.87 0.87 0.91 0.94

Sampling 0.56 0.23 0.07 0.02 0.00

Noise 0.90 0.90 0.92 0.92 0.86

Shot noise 0.86 0.89 0.90 0.89 0.95

Holes 0.72 0.65 0.77 0.83 0.77

Average 0.84 0.80 0.79 0.79 0.78

Table 4.12: Average overlap values for variant KC-3.

In order to compare the three variants KC-1, KC-2 and KC-3, Table 4.13 shows the

winner configuration for each transformation and their strengths in terms of overlap

values. There is a clear predominance of KC-1 in most of the transformations, although

KC-3 get the best results for topology and the highest level of localscale. Nevertheless,

we believe that KC-1 is the best variant which confirms the robustness and repeatability

of large key-components.

4.2.3.3 Comparison with other methods

So far, there are no methods that explicitly detect regions on 3D surfaces under the mo-

tivation of finding robust components. Nevertheless, one method that has more to do

with ours is that proposed by Litman et al. [LBB11, BBB+11]. This methods proposed

to detect stable components in deformable meshes using a diffusion geometry approach.
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry KC-1 KC-1 KC-3 KC-3 KC-1

Topology KC-3 KC-3 KC-3 KC-3 KC-3

Micro holes KC-1 KC-1 KC-1 KC-1 KC-1

Scale KC-1 KC-1 KC-1 KC-1 KC-1

Local scale KC-1 KC-1 KC-1 KC-3 KC-3

Sampling KC-1 KC-2 KC-2 KC-1 KC-1

Noise KC-1 KC-1 KC-1 KC-1 KC-2

Shot noise KC-1 KC-1 KC-1 KC-1 KC-3

Holes KC-1 KC-2 KC-1 KC-1 KC-1

Average KC-1 KC-1 KC-1 KC-1 KC-1

Table 4.13: Comparison of the three evaluated variants: KC-1, KC-2, and KC-3.

Unlike our method, the approach of Litman et al. decomposes a mesh into a set of

(possibly overlapping) components using a approach similar to the MSER detection in

computer vision. In addition, a component could be part of a larger component which

entirely contains the first one. Although there is no a clear connection between that

method and ours, we propose a variation to detect key-components based on the com-

ponents provided by the original method. We call this variant MSER key-components.

The algorithm we implement is simple and it is described as follows (Fig. 4.20 shows the

three stages of our implementation):

• Detecting MSER’s. We use the original implementation from Litman et al. [LBB11]

to detect a set of initial components.

• Detecting keypoints. For each mesh, we computed keypoint based on the

heat kernel of a vertex. Our implementation follows the method proposed by

Sun et al. [SOG09]. Briefly, we evaluated the heat kernel signature for a vertex

HKSt(x, x) in t = 0.1 × surface area. Next, we selected a vertex x as keypoint

if HKSt(x, x) > HKSt(y, y),∀y ∈ N2(x), where N2(.) is the 2-ring neighborhood

of a vertex.

• Selecting the MSER key-components. We could have chosen the set of com-

ponents which contains the detected keypoints. However, since components can

overlap, we need to apply one more constraint. In this case, we selected the com-

ponents with smaller area which cover the entire set of keypoints. Figure 4.21

shows the MSER key-components detected using the proposed variant.

Figure 4.22 and Table 4.14 show the obtained results for the MSER key-component

method. Three transformations (isometry, shotnoise and microholes) obtained repeata-

bility values greater than 0.8 at overlap 0.8. In addition, note the improvement in holes
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(a) (b) (c)

Figure 4.20: The three stages of the MSER key-components detection. At left,
components detected with the approach of Litman et al. At middle, HKS keypoints

detected. At right, final MSER key-components detected.

Figure 4.21: MSER key-components detected on shapes with several transformations.
From left to right: null shape, isometry, microholes, local scale, noise, topology, holes,

sampling, and shot-noise. Colors are arbitrary.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.83 0.88 0.90 0.87 0.86

Topology 0.77 0.72 0.67 0.52 0.55

Micro holes 0.82 0.81 0.80 0.79 0.78

Scale 0.76 0.84 0.80 0.67 0.58

Local scale 0.77 0.72 0.71 0.64 0.58

Sampling 0.83 0.83 0.80 0.62 0.12

Noise 0.79 0.79 0.83 0.83 0.79

Shot noise 0.83 0.83 0.80 0.80 0.80

Holes 0.79 0.77 0.66 0.63 0.62

Average 0.80 0.80 0.78 0.71 0.63

Table 4.14: Average overlap values for the MSER key-components approach.

and sampling transformation with respect to our method. That is, while our method

obtained null repeatability at overlap 0.8, MSER key-components obtained almost 0.6.

Despite of the results obtained for these two transformations, our method outperforms

MSER key-components in the rest of transformations. Moreover, this can also be seen if

we compare our best configuration and the MSER-key-components with respect to the

overlap values (see Tables 4.10 and 4.14).
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Figure 4.22: Overlap vs. Repeatability for the MSER key-component method.

An aspect that also deserves attention is the need of preprocessing in the MSER key-

components. The original method for detecting the initial components depends on the

definition of edge or vertex weights. These weights are computed using diffusion geom-

etry. This procedure requires to compute a similarity matrix in a vertex-wise manner,

and subsequently compute an eigen-decomposition for that matrix. The problem with

this approach is that if we have large models, the similarity matrix is very large and the

eigenproblem could be unmanageable. The method proposed by Litman et al. suggested

to simplify a model prior to the components detection step. In contrast, our method

does not need that requirement and yet it is efficient. In this respect, the main advan-

tage of our method is that once the keypoints have been detected, the subsequent tasks

only work over these reduced number of information. We believe that the fact of relying

on the initial keypoint detection step allows us to maintain the whole process efficient.

This ability to deal with large meshes can be useful in applications where simplification

is not an option since one could lose important details.

4.3 Concluding Remarks

In this chapter, we presented two methods to obtain local structures on 3D meshes. We

introduced the Harris 3D algorithm to detect interest points and the key-component

detection algorithm to obtain regions of interest. In both cases, we evaluated the ro-

bustness of our methods using the SHREC’2010 robust feature detection and description

benchmark. The goal of our experiments was to evaluate the repeatability of local struc-

tures in presence of transformations in different strength levels.
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In the case of keypoint detection, Harris 3D has proven to be effective to detect repeat-

able features. The keypoint detection task is important due to the ability of reducing

the amount of information needed in subsequent processes. Furthermore, our algorithm

effectively adapts the well known Harris corner detection for images in order to be used

for 3D meshes.

Our method is robust for several reasons. First, the use of a Gaussian function to smooth

the derivatives surface contributes to effectively mitigate the effect of local deformations

introduced by noise, holes, change of tessellations, and so on. Second, our proposal of

adaptive neighborhoods improves considerably the alternative of spatial neighborhoods.

In addition, from the results obtained by using ring neighborhoods, our experiments

confirm the fact that balanced neighborhoods favor the overall process. This is because,

with a balanced set of points, the approximation of derivatives in the analyzed point

is better. Finally, along with the task of final selection of interest points, Harris 3D

proposes several alternatives for its effective use, making an interesting alternative in

applications such as shape matching and registration, just to name a few.

Furthermore, our performed experiments suggest that our method could be used in

extreme conditions with good results. This is an important advantage with respect to

the state of the art, since it allow us to deal with several kind of shapes and expand the

spectrum of possible applications in the future.

In the case of regions of interest, our algorithm to detect key-components showed a

good performance in terms of repeatability and overlap. The key-components are suit-

able for matching and recognition tasks due to their high repeatability obtained in our

experiments using a standard benchmark. Interestingly, the proposed method detects

consistent components under several transformations such as noise, local scale, holes,

and non-rigid transformations. In our opinion, key-components represent an alternative

to fine scale features. On the one hand, we showed that key-components are stable to

local transformations. On the other hand, the number of key-components is obviously

much less than the number of keypoints, so matching algorithms using local features

could benefit from our approach.

Also, our experiments showed evidence of the connection between our method and

the theory of saliency of visual parts proposed in the cognitive science. First, key-

components correspond to regions with high protrusion since they are found from ag-

glomerations of robust and distinctive local features. Moreover, the proposed clustering

is responsible for ensuring that local features that belong to some perturbation (noise,

holes, etc.) are not considered in the detection of salient regions. Second, there is an

intimate relationship between the size of the key-components and the robustness against

mesh transformations. Experiments showed that large salient regions (each with a large
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agglomeration of keypoints) are more repeatable. These two aspects are consistent with

the aforementioned theory, so our method can be thought of as a method embodying

this theory.

The most important lesson learned in this chapter is that it is possible to obtain robust

local representations at different levels of granularity. We will show, in subsequent

chapters, that the high repeatability of these local structures indeed allows us to improve

the performance in tasks such as retrieval and matching.



Chapter 5

Data-aware Partitioning for

Generic Shape Retrieval

In this chapter, we consider the problem of generic shape retrieval. A common approach

to facing this problem is to compute an intermediate representation (feature vectors

or graphs, for instance) and subsequently defining the similarity of two objects as the

similarity of their representations. In this direction, there are methods that exploit the

visual similarity, the statistical properties of 3D measures, or the possibility of defining

transform functions on the data, just to name a few. However, one of the most critical

problems is the semantic gap. That is, the intermediate representation may not be

able to capture all the needed information of a shape and therefore the effectiveness of

searching may be seriously affected.

A previous study by Bustos et al. [BKS+06] showed that some features could well rep-

resent certain classes of objects and furthermore, some features could be complimentary

in representing a shape. This is because algorithms cover only a part of the possible

spectrum of characteristics such as shape, silhouette, or intrinsic properties. Thus, a

natural extension of classic approaches was the combination of features for improving

the effectiveness of retrieval. Approaches in this direction have been previously pre-

sented by Bustos et al. [BKS+04], Vranic [Vra05], and Papadakis et al. [PPT+08], all of

them with promising results. However, the semantic gap is still latent in this approach

as any possible combination of features could not represent important characteristics to

discriminate between objects.

A more recent approach is the combination of global and part-based information. The

idea is to combine features extracted from an entire object with features extracted from

parts of an object. Some techniques have been presented so far by Li and Johan [LJ10],

Bustos et al. [BSW+11], and Schreck et al. [SSW+12]. All of these techniques share a

78
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Figure 5.1: Two globally dissimilar chairs. Note that the chair at right is taller than
the left one. Nevertheless, it is possible to find similarities between their parts, which

can be exploited to improve the similarity measure between the two objects.

common aspect: the part-based features come from a fixed partitioning of the objects.

Although it was possible to improve the effectiveness with respect to using only global

features, the fixed partitioning limits the possibility of having truly distinctive parts.

This opens up a question on how to define a new kind of partitioning dependent on the

shape information.

We believe that the use of local features can enhance the use of global features in

shape retrieval. That is, we are trying to mitigate the effect of the semantic gap. For

instance, a common fact is having two objects with different appearance in the same

class. Obviously, a global feature could differ in those objects. However, in a local sense,

it is still possible to find correspondences between parts, so we can take advantage of this

fact to improve the similarity measure (see Fig. 5.1). Therefore, the discriminative power

of local features combined with global features could help to improve the effectiveness

in the similarity search.

In this chapter, we propose a shape retrieval method using a data-aware partitioning

algorithm. Our idea is to exploit the local characteristics of objects to determine dis-

criminative parts. Thus, each object is represented by its global feature and a set of

features extracted from parts. The partitioning method relies on finding robust local fea-

tures (namely keypoints) on the object’s surface and subsequently determining the parts

where there is a high concentration of keypoints (for instance, a human shape commonly

has many features located in hands, feet, and head). Beyond techniques which made use

of the bag of features approach to aggregate local descriptors for retrieval, our method

is the first attempt in combining global an local features found in a data-adaptive way

for generic shape retrieval.

Our approach is a generic, simple framework by which global and local descriptors

can be combined in a data-adaptive way. The approach is able to provide on average,

an improvement over the retrieval effectiveness of state of the art global descriptors. A

careful, systematic analysis of the results is performed to assess in detail the magnitude of

the improvement, relating it with global-only methods, and identifying classes of models
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for which the method is particularly effective. We test our approach using our Harris

3D interest point detector in combination with two robust view-based descriptors. Our

approach is flexible in that it can accommodate further (possibly application-specific)

object segmentation and description schemes, if needed.

The chapter is organized as follows. Section 5.1 describes our partitioning algorithm

based on local features. Section 7.2 is devoted to the matching methods and the defini-

tion of our similarity measure. Section 5.3 describes our experiments and presents the

discussion of our results. Finally, Section 5.4 presents the conclusions of the chapter.

5.1 Data-aware 3D Partitions

In this section, we present a partition algorithm based on finding groups of discriminative

local features. Our method does not guarantee disjoint or complete partitions. However,

as it uses interest points detected on the mesh for partitioning, we believe that the

resulting fragments are representative enough. Therefore, the partitions can be useful

for improving the matching between two 3D models.

Our method consists of three steps:

• Interest point detection. We aim at selecting a small set of points on the mesh

surface. We consider that a vertex is interesting if it has an outstanding geometric

structure in comparison with its neighborhood. We use our Harris 3D method to

perform the interest point detection. Section 4.1 presents Harris 3D in detail, so

we omit this step in this section.

• Clustering of interest points. We perform a clustering in order to find groups

of interest points under some constraints.

• Cluster-based partition. We use the resulting clusters for defining representa-

tive partitions for matching.

5.1.1 Control of mesh resolution

Note that the Harris 3D method depends on local neighborhoods around a vertex. Nev-

ertheless, generic 3D shapes could come from different sources where their primary goal

was not the analysis or processing. It is therefore common to find objects with bad

triangulations. Moreover, many meshes are optimized for rendering, so regular portions

of them are represented by large triangles. It poses a problem for 3D analysis, where
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meshes with regular triangulations are preferably needed. Therefore, it is necessary to

control the size of the neighborhoods prior to the interest point detection. In addition,

our goal is to ensure a consistent neighborhood computation along the entire mesh.

We implement the algorithm for control of mesh resolution proposed by Johnson [JH98].

This algorithm assumes the spacing between vertices as the resolution to be improved.

More specifically, the mesh resolution is the median of the edge length histogram. The

goal is to decrease the edge length spread (or variance) of the histogram around a desired

resolution. To accomplish this goal, the algorithm performs local operations over the

edges which are too large (split operation) or too small (collapse operation). Each edge

is associated with a weight which combines its length difference with the desired mesh

resolution and the geometric shape change if any operation is performed. Finally, a

greedy strategy performs local operations guided by a priority queue defined over the

weights. An example of our implementation is shown in Fig. 5.2

5.1.2 Clusters of Interest Points

Once we have computed the interest points for a mesh, our goal is to use them for

extracting representative partitions. The main idea is to find clusters of interest points in

the 3D space, so each cluster would define a portion of the mesh which is interesting and

distinctive. Basically, we use the adaptive clustering algorithm proposed in Section 4.2

(see Algorithm 4.2). In this case, the clustering algorithm is used to find clusters of

keypoints in 3D space.

The adaptive clustering algorithm uses two distance thresholds R, T , and the minimum

number of points in a cluster N as parameters. The algorithm scans Iter times the set

of points trying to find clusters which hold two criteria: the distance between each point

within a cluster to its centroid is not larger than R (intra-cluster constraint), and the

distance between cluster’s centroids is not smaller than T (inter-cluster constraint). In

addition, if after a scan, the number of points inside a cluster is less than N , the cluster

is discarded. Also, the points of the small cluster are pushed back in the point collection

for the next iteration. If a cluster has more than N points, its centroid is updated.

Note that there may exist points which never hold with the cluster constraints, and those

points are simply discarded. We are interested in groups of interest points, because these

could be in a representative part of the mesh. Hence the behavior of discarding isolated

points is important for our purposes, because those points could be noise and therefore

would not represent an important feature of the mesh.
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Figure 5.2: Effect of mesh resolution: Shape with bad triangulation (a) and its
poorly distributed edge length histogram (b). Shape processed with the mesh resolution

algorithm (c) and its improved edge length histogram.

Another important aspect is the flexibility of the adaptive clustering algorithm with

respect to the obtained number of clusters. The number of clusters depends on the

point distribution and the cluster parameters. This is an advantage because each object

would have a different number of clusters depending of their interest points. In this way,

each object would have a data-aware flexible representation.

The presented clustering algorithm determines a spatial partitioning of the keypoints

where clusters are always circle-shaped. Hence, we also tested the DBSCAN [EKSX96]

algorithm for clustering which has a different functionality. DBSCAN is a density-based

algorithm which is able to detect clusters of arbitrary shapes and it is based on proximity

and density concepts. However, after experimentation, we found that it was difficult

to correctly define the density thresholds for this algorithm. In addition, in many of

our experiments, DBSCAN computed very few clusters per shape, underestimating the

representational power of the interest points.
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Figure 5.3: Three examples of partitions obtained with our method using the param-
eter configuration used in Sec. 5.3.2.

5.1.3 Partitioning and Description

Our partitioning algorithm is quite simple. For each cluster of interest points, we proceed

as follows:

• The algorithm computes the smallest 3D sphere containing all points within the

cluster. We used a linear programming algorithm for this purpose [MSW92]. The

outputs of this step are the center of the sphere and the radius.

• Next, we extract the portion of the mesh lying inside of a 3D sphere formed by

the previously computed center and the radius scaled by a factor of δ (we study

the effect of δ in Section 5.3). It can be done by scanning the complete set of

vertices and verifying which vertex lies inside the sphere. However, this can be

computationally expensive for large meshes. Here we use an improved method. We

build a kd-tree with all vertices of the mesh, and thus a range search is performed

using as query the center of the sphere and the radius. Note that the kd-tree needs

to be built only once, and it can be used for each partition by changing the query.

Finally, the method builds a new mesh using the set of points inside the sphere

and their associated faces.

For description, we compute a global descriptor for the entire model and subsequently

compute a global descriptor for each partition. Formally, given an object O, its repre-

sentation is defined as

SO = {(sO, PO)|sO ∈ Rn and PO = {p1O, p2O, . . . , pmO}, piO ∈ Rn},

where sO is a n-dimensional descriptor representing the complete object, PO is a set of

m n-dimensional descriptors representing each partition. Figure 5.3 depicts an example

of some partitions obtained with our algorithm.
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5.2 Matching

At this point, we need to define a distance between two representations as shown previ-

ously. Given two 3D objects O and Q, each with their representations:

SO = {(sO, PO)|sO ∈ Rn and PO = {p1O, p2O, . . . , pmO}, piO ∈ Rn} and

SQ = {(sQ, PQ)|sQ ∈ Rn and PQ = {p1Q, p2Q, . . . , pkQ}, piQ ∈ Rn},

where O has m partitions, and Q has k partitions. Our goal in this section is to define an

appropriate distance d(SO, SQ), which measures the dissimilarity between two objects

using their representations. The main problem is how to define a dissimilarity between

two sets of descriptors with different lengths.

We consider a linear combination between the global-to-global distance and the partition-

based distance. That is

d(SO, SQ) = µ‖sO − sQ‖2 + (1− µ)d(PO, PQ), (5.1)

where 0 ≤ µ ≤ 1 weights the contribution of the involved terms.

5.2.1 Integer Linear Programming

The matching problem is how to find a correspondence set between two collections of

descriptors. Clearly, this problem is difficult because it is not possible (at least not

within a reasonable time) to evaluate all possible combinations of correspondences. We

will state the problem using a linear programming formulation for searching for a feasible

solution.

We define an indicator variable as follows

x(i, j) =

1, if piO matches pjQ

0 otherwise.
(5.2)

Note that |x| = m× k, that is each element in PO could be matched with each element

in PQ. Let’s think of x as a binary string of length m×k. The number of configurations

for x is 2m×k, which allows us to figure out the complexity of the problem. Obviously,



Chapter 5. Data-aware Partitioning for Generic Shape Retrieval 85

if m and k are large enough, the number of possible matches increases exponentially.

Nevertheless, we can add some constraints to the problem. For instance, if piO is already

matched to pjQ, then piO should not be matched to any other element in PQ. Formally,

if x(i, j) = 1, then
∑

j x(i, j) = 1, and therefore also
∑

i x(i, j) = 1.

We use the indicator variable x to formulate an objective function as follows

f(x) =
∑
i,j

‖piO − p
j
Q‖2.x(i, j), (5.3)

where the goal is to find the optimum x∗ which minimizes f(x). Formally,

x∗ = argminxf(x), (5.4)

subject to

∑
i

x(i, j′) = 1 and
∑
j

x(i′, j) = 1 ∀i, j

Moreover, we can consider the optimum f(x∗) as the dissimilarity function d(PO, PQ).

However, the optimum f(x∗) depends on the number of matches, reaching lower values

when PO and PQ have a few elements. In order to overcome this problem, we normalize

the value of the optimum, and we obtain the final dissimilarity measure:

d(PO, PQ) =
f(x∗)

min(|PO|, |PQ|)
. (5.5)

Note that the normalization in Eq. 5.5 also contributes to maintain the symmetry of

the distance. This is an important aspect if one considers indexing the distance for fast

searching.

5.2.1.1 Numerical Aspects

To numerically solve the Eq. 5.4, we define a matrix of distances

C(i, j) = ‖piO − p
j
Q‖2, (5.6)
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where each element of this matrix stores the L2 distance between descriptors from PO

and PQ. Thus, the problem of finding x∗ in Eq. 5.4 can be stated as a binary linear

programming problem

min
x
CTx such that


Ax ≤ b

Aeqx = beq

x is binary

(5.7)

where C and x are linearized versions of themselves, A and b represent linear inequality

constraints, and Aeq and beq represent linear equality constraints. In fact, the constraints∑
i x(i, j) = 1 and

∑
j x(i, j) = 1 need to be placed in the linear constraints.

The solution for the problem in Eq. 5.7 is given by a branch-and-bound algorithm which

tries to solve it using LP-relaxation approaches [Wol98].

5.2.2 Integer Quadratic Programming

The linear programming formulation finds the best set of correspondences only regarding

the dissimilarity between descriptors in PO and PQ. The problem with this formulation

is that it discards the spatial information of the partitions from which the descriptors

come. Obviously, our algorithm does not ensure consistency in the spatial sense. In

this section, we enrich our previous formulation by adding spatial consistency between

descriptors.

Recalling the indicator variable x. If we have two correspondences x(i, j) = 1 and

x(i′, j′) = 1, one can expect that the spatial relationship between fragments i and i′

from shape O is quite similar to the spatial relationship between fragments j and j′ from

shape Q. Of course, the idea is to minimize the difference between spatial distances of

partitions, while maintaining the dissimilarity between descriptors. Therefore our new

formulation for Eq. 5.3 is

f(x) =α
∑
i,j,i′,j′

|dOS (i, i′)− dQS (j, j′)|x(i, j)x(i′, j′)+

β
∑
i,j

‖piO − p
j
Q‖2.x(i, j)

(5.8)

where dOS (i, i′) is the spatial distance between fragments i and i′ from the object O, α

and β are weights to set the contribution of the spatial consistency and the descriptor
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dissimilarity, respectively. In addition, the new formulation is subject to the same

constraints as Eq. 5.4. Finally, we can use the new formulation to find an optimum

x∗ and therefore we will use the same distance as shown in Eq. 5.5.

Regarding the spatial distances, during the process of finding the partitions, we compute

distances between the centers of the spheres which generate the partitions. In this way,

the algorithm makes available the spatial information in the matching.

5.2.2.1 Numerical Aspects

To numerically solve Eq. 5.4 using the objective function in Eq. 5.8, we define a matrix

with the distance differences as follows

D({i, j}, {i′, j′}) = |dOS (i, i′)− dQS (j, j′)|, (5.9)

where {i, j} denotes the linear index of the pair (i, j). Clearly, we need to consider the

complete set of spatial relationships between pairs of partitions. The dimension of the

matrix D is mk ×mk. Thus, the problem of finding x∗ in Eq. 5.8 can be stated as a

binary quadratic programming problem

min
x

1

2
xTDx+ CTx such that


Ax ≤ b

Aeqx = beq

x is binary

(5.10)

where C and the constraints were defined in Eq. 5.7.

The solution for the problem in Eq. 5.10 is also given by a branch-and-bound algorithm

with LP -relaxation, but in this case using a quadratic objective function [BMM99].

5.3 Experimental Evaluation and Discussion

In this section, we present our experiments and results. The section is organized as

follows. Section 5.3.1 presents the experimental setup and evaluation measures. Sec-

tion 5.3.2 presents a study of the contribution of partition matching in the overall
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method. Section 5.3.3 presents a sensitivity analysis of parameters. Section 5.3.4 dis-

cusses the effectiveness of our method in a class-by-class analysis. Section 5.3.5 investi-

gates the correlation between effectiveness and important aspects such as number of ver-

tices and number of parts. Finally, Section 5.3.6 presents results using the PANORAMA

descriptor.

5.3.1 Experimental setup

For our experiments, we use the SHREC’2009 generic benchmark (Sec. 3.2.2). To eval-

uate the retrieval effectiveness of our method, we use common measures in the retrieval

community such as mean average precision (MAP), nearest neighbor (NN), first tier

(FT) and second tier (ST). Briefly, we describe each measure as follows:

• Mean Average Precision (MAP): Given a query, its average precision is the average

of all precision values computed in each relevant object in the retrieved list. Given

several queries, the mean average precision is the mean of average precision of each

query.

• Nearest Neighbor (NN): Given a query, it is the precision at the first object of the

retrieved list.

• First Tier (FT): Given a query, it is the precision when C objects have been

retrieved, where C is the number of relevant objects to the query.

• Second Tier (ST): Given a query, it is the precision when 2*C objects have been

retrieved, where C is the number of relevant objects to the query.

In the retrieval experiments, each object in the collection is used as query, and subse-

quently we average the measures for each object to obtain the effectiveness for the entire

dataset.

Regarding the descriptors, we tested the DESIRE and PANORAMA descriptors (both

described in Sec. 3.1.1 and 3.1.2, respectively). Each time we describe a mesh using these

descriptors, the input mesh is normalized in pose (rotation, translation and scale) prior

to the description. As DESIRE is faster to compute than PANORAMA, we preferred

to use DESIRE for presenting a detailed study of our approach. Subsequently, we use

PANORAMA to validate our results.
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Table 5.1: MAP values for different values of µ (values are in [0,100] scale)

µ LPM QPM

0 9.39 5.14
0.1 15.06 6.51
0.2 21.93 8.42
0.3 29.20 11.26
0.4 35.90 14.99
0.5 41.14 19.97
0.6 44.90 26.20
0.7 47.49 33.63
0.8 48.93 41.47
0.9 49.52 47.79
1.0 49.10 49.10

5.3.2 The role of partition matching

The goal of this section is to show the contribution of the partition matching in the

distance computation. Recall the definition of our distance in Eq. 5.1. Our distance is a

linear combination between global distance (using the DESIRE descriptor) and partition

distance. The contribution of the partition distance in the final distance depends on

the parameter µ. So we conducted an experiment to measure the effect of µ in the

effectiveness of the proposed distance.

We test different values for µ in the interval [0, 1] and investigate the best value according

to the obtained MAP. As our objective is to evaluate only the effect of µ, we fixed

the values for any other parameter (see Section 5.3.3 for a sensitivity analysis about

parameters). Next, we show a summarized description of the parameters used in this

experiment:

• For the Harris 3D algorithm, we select 200 keypoints for each object.

• For the clustering algorithm, we consider the length of the diagonal of the minimum

bounding box of an object (diag) to define the spatial parameters: R and T . Thus,

R = 0.1 × diag, T = 0.2 × diag, N = 10, and Iter = 10. Note that the R and T

parameters vary for each object. The N and Iter parameters were set empirically.

• The scale factor of the sphere radius in the patch extraction step was set to 1.

• In addition, α and β in Eq. 5.8 are 1.

We compare our two proposals, linear programming matching (LPM) and quadratic

programming matching (QPM) with a baseline algorithm (GM), which only uses the
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global descriptors for retrieval (note that GM is a special case of our proposed distance

when µ = 1).

Table 5.1 shows the MAP for several values of µ, using both techniques LPM and

QPM. The best result for LPM is obtained in µ = 0.9 with 49.52. This value shows an

improvement with respect to using only global descriptors. Note that µ = 1.0 represents

the GM baseline approach, as it considers a total contribution of the global descriptor

distance. It is worth noting that the best MAP value for LPM is obtained through a

large contribution of the global distance. In contrast, the incorporation of geometric

consistency in the QPM approach does not seem to contribute to the effectiveness.

Nevertheless, the shown MAP values are an average of the entire dataset. This can bring

up the fact that it is possible that certain classes exploit the geometric consistency. We

dedicate the Section 5.3.4 to study this situation.

We also show a recall-precision plot for the different configurations of µ (see Fig. 5.4).

Note the improvement of our method when µ = 0.9 in contrast to other values, even

when global matching is used (µ = 1). Moreover, the precision improvement is visible

in every recall value, so it confirms the results in Table 5.1.

5.3.3 Sensitivity Analysis

In this section, we evaluate several parameters of our method in order to find the best

configuration. We take the finding of the previous section as a starting point . That is,

all results presented in this section were computed for µ = 0.9. The parameters to be

evaluated are:
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• Keypoint selection: we evaluate six configurations taking into account a fixed

number of keypoints (200, 300, and 400) or a number of keypoints as a ratio of

the number of vertices on the mesh (at ratios 1%, 2% and 4%). In the presented

results, we use the labels IP-200, IP-300, IP-400, IP-0.01, IP-0.02, and IP-0.04,

respectively.

• Clustering parameters: we evaluate three configurations regarding the spatial

constraints of the clustering algorithm. In our experiments, we use the diagonal

of the bounding box of an object (diag) as reference to the clustering parameters.

Thus, it is possible to associate the clustering parameters with the size of an object.

We define three configurations corresponding to small, medium, and large clusters.

The configurations are defined as follows (in the presented results, the diag factor

is discarded to facilitate the reading):

– Small clusters: R = 0.1× diag, T = 0.2× diag.

– Medium clusters: R = 0.15× diag, T = 0.3× diag.

– Large clusters: R = 0.2× diag, T = 0.4× diag.

• Scaling factor for partition: we evaluate three different scaling factors for the

radius of the partitioning sphere. We use 1.0, 1.25, and 1.5.

As we are interested in studying the impact of the parameters in our approach, we

present results using all the aforementioned evaluation measures. In addition, we discuss

that effect in the Linear Programming Matching (LPM) and Quadratic Programming

Matching (QPM) separately.

Figure 5.5 shows the mean average precision for LPM using all possible combinations

of parameter configurations. Note that regardless of the used keypoint selection, LPM

gives better results when small clusters are used. In addition, the mean average precision

decreases when the size of clusters is increased. It means that large partitions are more

unstable compared to small partitions. It sounds logical, since small clusters are expected

to be compact agglomerations of keypoints, and therefore the region containing them

can be considered as a representative partition for an object. In contrast, large clusters

allow distant keypoints to belong to the same cluster. As a result, the probability of a

keypoint to belong to any cluster is high. Therefore, isolated keypoints (possibly due to

noise) could be influencing the generation of poor partitions.

Interestingly, the scaling factor for partition is very related to the previous finding. The

scaling factor is used to extract the partitions after the clustering algorithm. So if the

scaling factor is large, the partition will be large too. Again, by looking at Fig. 5.5,
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Figure 5.5: Mean average precision (MAP) and sensitivity analysis on our Linear
Programming Matching approach. (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were

scaled to best visualization.
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Figure 5.6: Nearest neighbor (NN) and sensitivity analysis on our Linear Program-
ming Matching approach (LPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were

scaled to best visualization.

small values of δ give the best results. Therefore, we can confirm that there is a inverse

relation between partition size and effectiveness.

Another important point is that, for each plot, the best mean average precision was

obtained when we selected a number of keypoints in accordance with the number of

vertices. In fact, the highest MAP was 0.4977, obtained with IP-0.02, R = 0.1, T =

0.2, and δ = 1.0. The reason to choose this in contrast to a fixed number of keypoints

is evident. With a fixed number of keypoints, it is not possible to guarantee a good

representation for a shape. This fact conditions the representativeness power of the

keypoints, because it is likely that when we took a fixed number of keypoints per model,

this amount can be large for some models and small for others. On the other hand, the

adaptive alternative seems to be a good choice taking into account that an object can

have an arbitrary number of vertices.

Also, we present results for nearest neighbor (NN), First Tier (FT), and Second Tier

(ST) in Fig. 5.6, 5.7 and 5.8, respectively. The NN measure evaluates the capacity

of an algorithm to retrieve a relevant object in the first position of the retrieved list.

The highest value 0.7958 was obtained using a fixed number of keypoints (400), small

clusters (R=0.1, T = 0.2) and the smallest scaling factor (1.0). On the other hand, our

results about FT and ST show a similar behavior as MAP. That is, higher values are

obtained when clusters are small, and the scaling factor for a partition is small. The
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Figure 5.7: First tier (FT) and sensitivity analysis on our Linear Programming Match-
ing approach (LPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were scaled to best

visualization.
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Figure 5.8: Second tier (ST) and sensitivity analysis on our Linear Programming
Matching approach (LPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were scaled to

best visualization.

highest value 0.4665 for FT was obtained with IP-0.04, R = 0.1, T = 0.2 and δ = 1.0.

Similarly, the highest values 0.320507 was obtained with IP-0.02, R = 0.1, T = 0.2, and

δ = 1.0.

Regarding QPM, Fig. 5.9, 5.10, 5.11 and 5.12 show our results for MAP, NN, FT and ST,

respectively. Surprisingly, the best MAP scores were obtained with medium size clusters.

Moreover, unlike the mean average precision of LPM, large clusters give better results

when the number of keypoints depends on the number of vertices. In this connection, the

configuration that delivers the largest partitions (R=0.2, T = 0.4 and δ = 1.0) has one

of the highest MAP score. Although this situation contrasts too much with the results

obtained for LPM, there is a reason for this behavior. The QPM approach depends not

only on the similarity between part descriptors, but also on their geometric disposition.

In fact, QPM gives the same importance to the similarity between descriptors and their

consistency. In our opinion, the geometric consistency is causing this phenomenon. Our

reasoning is that larger parts are more consistent in a geometrical sense than smaller

parts. For instance, consider two human shapes: one with arms close to body, and other

with open arms forming a T. Small partitions could characterize hands, legs, and head.

Differently, large partitions could characterize upper body and lower body. So obviously

the geometric consistency of upper body and lower body remains more similar than

hands, legs and head in this scenario. This situation is not uncommon in 3D datasets,

and the SHREC’2009 dataset is not an exception. Therefore, in our opinion, the results
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Figure 5.9: Mean average precision (MAP) and sensitivity analysis on our Quadratic
Programming Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot

were scaled to best visualization.
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Figure 5.10: Nearest neighbor (NN) and sensitivity analysis on our Quadratic Pro-
gramming Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were

scaled to best visualization.
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Figure 5.11: First tier (FT) and sensitivity analysis on our Quadratic Programming
Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were scaled to

best visualization.

we obtained exhibit the importance of considering the size of partitions as an key aspect

to accomplish good effectiveness.

Similarly to LPM, the First Tier (see Fig. 5.11) and Second Tier (see Fig. 5.12) in QPM

exhibit an analogous behavior to its mean average precision. For the First Tier, large

clusters give better results against their counterpart. Moreover, the highest FT score

0.4511 is obtained with the largest possible partition (IP-0.04, R = 0.2, T = 0.4, δ=1.5).

Likewise, using the Second Tier, the predominant scores are present either when using

large clusters or when using a scaling factor greater than 1.0.
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Figure 5.12: Second tier (ST) and sensitivity analysis on our Quadratic Programming
Matching approach (QPM). (a) δ = 1.0. (b) δ = 1.25. (c) δ = 1.5. Plot were scaled to

best visualization.

5.3.4 Class-by-class Analysis

In this section, we show a more detailed evaluation of our approaches from the point of

view of the effectiveness in each class of the dataset. The motivation to perform this

evaluation is two-fold. First, all the retrieval measures used in previous experiments are

a result of averaging. Average is a good way to condense a series of values. However,

it can also hide valuable information in finer levels of analysis. Second, after seeing

the results obtained in previous sections, our approach can be suitable depending on

shape classes. So it is necessary to study the effect of our approach in each class of

the dataset. Therefore, this can reveal useful information to decide when to effectively

use our proposal. The results of this section were computed using the best combination

found in the sensitivity analysis of Section 5.3.3, namely IP-0.02, R = 0.1, T = 0.2 and

δ=1.0.

Figure 5.13 shows the mean average precision for each class in the SHREC’09 dataset.

We divide the classes into two figures to best visualization. Each figure shows the

comparison of Global Matching, Linear Programming Matching and Quadratic Pro-

gramming Matching for each class as clustered bars. Our method was able to improve

the effectiveness in 30 out of 40 classes. Moreover, when the objects within the same

class have similar local structures and geometric consistency (such as in bookshelf, bird,

apartment and skyscrape), the QPM approach outperforms the global matching and

LPM.

Also, note the existence of 10 classes (single house, chair, round table, quadruped, mug,

floor lamp, desk lamp, sword, biplane and bicycle) where it was not possible to improve

the effectiveness with any of our approaches. However, it is also worth noting that

in general, all of these 10 classes share a characteristic: the high variability of objects

within the same class not only in a global sense, but also in a local sense. To illustrate

this point, let us take as example the class Chair, on which our approaches did not

improve. In our opinion, it is due to the high variability in the global sense. Moreover,
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Figure 5.13: Mean average precision for each class in the SHREC’09 dataset. Plots
were scaled for better visualization.

Figure 5.14: Samples of class Chair. Note the high variability of parts amongst
shapes.
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shape parts also have a high variability (see Fig. 5.14). As a result, the keypoints can be

concentrated in different parts of the models, as each object can contain distinctive local

features not repeatable in its class. Therefore, LPM and QPM can not take advantage

of the partitioning technique proposed here. Consequently, this can be the cause for the

moderate improvement of our method with respect to global matching. However, we

believe that similar situations could influence the effectiveness of any algorithm.

The found evidence allows us to state the strengths and limitations of our approach.

On the one hand, our method can improve the effectiveness in classes that share local

information. That is, when models from the same class have common and similar parts,

an improvement is expected. On the other hand, our approaches can not deal with

extreme variability of parts between objects within the same class.

5.3.5 Correlation Analysis

In this section, we investigate the possible relationships between several factors that

affect the effectiveness of our proposed methods. To do so, we use a correlation analysis

and a statistical significance study among eight variables defined in the following, also

introducing the abbreviations for each variable to be used in the analysis.

• Number of partitions (NP)

• Number of vertices (NV)

• MAP for global matching (GM)

• MAP for LPM (LPM)

• MAP for QPM (QPM)

• MAP gain of LPM over GM (G1)

• MAP gain of QPM over GM (G2)

• MAP gain of QPM over LPM (G3)

The three last variables were obtained by computing the difference of MAP scores of the

involved methods. To obtain the data in this experiment, we computed the eight values

using each model in the collection as a query. Therefore, we obtained eight values for each

model, and subsequently we used all that information to compute the correlation matrix

shown in Table 5.2. In addition, we computed the p-values for testing the hypothesis of

no correlation. So for each correlation value, we have a p-value indicating the statistical
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Table 5.2: Correlation matrix between eight variables: Number of partitions (NP),
number of vertices (NV), MAP for GM (GM), MAP for LPM (LPM), MAP for QPM
(QPM), MAP gain for LPM over GM (G1), MAP gain for QPM over GM (G2), and

MAP gain for QPM over LPM (G3).

Variables NP NV GM LPM QPM G1 G2 G3

NP 1.0000 0.0323 -0.0131 -0.0015 -0.0696 0.1318 -0.2658 -0.3145

NV 0.0323 1.0000 0.0361 0.0431 0.0361 0.0815 -0.0039 -0.0377

GM -0.0131 0.0361 1.0000 0.9962 0.9784 0.0149 -0.2119 -0.2132

LPM -0.0015 0.0431 0.9962 1.0000 0.9776 0.1022 -0.1972 -0.2351

QPM -0.0696 0.0361 0.9784 0.9776 1.0000 0.0484 -0.0055 -0.0254

G1 0.1318 0.0815 0.0149 0.1022 0.0484 1.0000 0.1566 -0.2625

G2 -0.2658 -0.0039 -0.2119 -0.1972 -0.0055 0.1566 1.0000 0.9119

G3 -0.3145 -0.0377 -0.2132 -0.2351 -0.0254 -0.2625 0.9119 1.0000

Table 5.3: Matrix of p-values for the correlation between eight variables: Number of
partitions (NP), number of vertices (NV), MAP for GM (GM), MAP for LPM (LPM),
MAP for QPM (QPM), MAP gain for LPM over GM (G1), MAP gain for QPM over

GM (G2), and MAP gain for QPM over LPM (G3).

Variables NP NV GM LPM QPM G1 G2 G3

NP 1.0000 0.3875 0.7262 0.9682 0.0621 0.0004 0.0000 0.0000

NV 0.3875 1.0000 0.3329 0.2484 0.3329 0.0287 0.9160 0.3121

GM 0.7262 0.3329 1.0000 0.0000 0.0000 0.6895 0.0000 0.0000

LPM 0.9682 0.2484 0.0000 1.0000 0.0000 0.0060 0.0000 0.0000

QPM 0.0621 0.3329 0.0000 0.0000 1.0000 0.1949 0.8836 0.4957

G1 0.0004 0.0287 0.6895 0.0060 0.1949 1.0000 0.0000 0.0000

G2 0.0000 0.9160 0.0000 0.0000 0.8836 0.0000 1.0000 0.0000

G3 0.0000 0.3121 0.0000 0.0000 0.4957 0.0000 0.0000 1.0000

significance of that correlation. We assume p-values < 0.05 as significant. The matrix

of p-values is shown in Table 5.3.

The information provided by the correlation matrix and the p-values allow us to verify

some aspects observed in previous experiments. For instance, there is a high correlation

between the number of partitions and the three gain measures, namely G1, G2 and G3.

First, the correlation between the number of partitions and G1 (MAP gain of LPM over

GM) is positive. So the greater the number of partitions, the higher the improvement of

LPM over GM. Second, the correlation between the number of partitions and G2 and G3

(MAP gain of QPM over GM and LPM, respectively) is negative. So it means that QPM

benefits from fewer partitions. These two situations are consistent with the findings of

Sec. 5.3.3 when we showed that QPM presents better results with large partitions.

So now we can conclude that QPM is suitable for matching few large partitions. In

contrast, LPM can perform a good matching regardless the geometric consistency, just

by considering more small partitions. It is expected that the small partitions belong to

distinctive features of the objects. In summary, we have shown the importance of the
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number of partitions and their size in the improvement of the retrieval effectiveness of

our technique.

Regarding the number of vertices of the meshes, there is a useful correlation which

deserves attention. The number of vertices is highly correlated with the MAP gain of

LPM over GM (G1). In other words, as the correlation is positive, we can say that LPM

benefits from meshes with a large number of vertices. It reveals a remarkable connection

with the previous analysis. With large number of vertices, one can expect meshes with

more detail, and hence they can contain rich features. Moreover, if we prefer to select

small clusters, the resulting partitions will be distinctive and small. In addition, we

can obtain many partitions since the number of keypoints could depend of the number

of vertices. Finally, following our previous analysis, LPM obtains better effectiveness

when the input is a set of many distinctive partitions as a product of meshes with many

vertices.

It is also worth noting the dependency of our approaches (LPM and QPM) on the global

matching. This can be evidenced in the high correlation between GM and both LPM and

QPM. Obviously, this fact is in accordance with the use of µ = 0.9 which is associated

to a large contribution of the global matching in the final distance computation.

5.3.6 Results with PANORAMA

In this section, we present the results of our method using the PANORAMA descrip-

tor [PPTP09]. For this experiment, we used the best parameter configuration as shown

in Section 5.3.3. Table 5.4 shows the results by varying the contribution of the part

matching (parameter µ) in the LPM technique. Similar to a previous experiment (see

Section 5.3.2), we obtained the best results when µ = 0.9. This result validates our ar-

gument about the contribution of the partition matching in the effectiveness of generic

shape retrieval.

5.4 Concluding Remarks

In this chapter, we presented a shape retrieval method that combines global descriptors

and part-based descriptors. We proposed a method for determining data-adaptive parti-

tion from meshes. Partitions were derived from agglomerations of distinctive keypoints

on shapes. Finally, matching between partitions was stated as a integer program in

order to compute correspondences.



Chapter 5. Data-aware Partitioning for Generic Shape Retrieval 100

From our experiments, it is possible to say that partition matching contributes to improv-

ing the retrieval effectiveness. Our method was able to achieve significant improvements

in classes with objects containing common distinctive parts. In contrast, there is a limi-

tation when objects within a class do not share common distinctive parts. Therefore, the

partition matching degrades the effectiveness of global descriptors instead of improving

it. Nevertheless, we believe that our approach partially attenuated this limitation with

its ability to determine characteristic partitions.

In our opinion, our method offers new representational capabilities for 3D shapes which

have proven to be effective in conjunction with global descriptors. In addition, we found

a high correlation between the achieved effectiveness and the partitions provided by our

method. Specifically, the number and size of the partitions play an important role for

defining an effective similarity measure. This is because these two factors are well related

to the quality of partitions (and their distinctiveness) and therefore, they influence the

overall performance.

Table 5.4: Results for different values of µ in LPM using PANORAMA (values are in
[0,100] scale)

µ NN FT ST MAP

0 42.0833 21.2337 15.3064 20.4128
0.1 60.6944 31.3889 21.8709 31.3174
0.2 74.5833 40.6536 28.6029 42.286
0.3 81.8056 48.268 33.7908 50.9521
0.4 85.4167 54.1912 38.701 57.3621
0.5 88.3333 57.8758 41.393 61.7762
0.6 88.8889 60.3513 43.1822 64.4322
0.7 88.4722 61.585 44.375 65.9167
0.8 88.8889 62.165 44.951 66.6028
0.9 89.0278 62.3366 45.3023 66.813
1.0 89.0278 61.9853 44.7917 66.7291



Chapter 6

Non-Rigid Shape Retrieval

A key aspect in multimedia collections is the content-based search. It aims at using the

multimedia information itself in order to determine the similarity between two objects.

Since associated meta-data is not always available, this searching approach is suitable.

Moreover, some effective methods have been presented in the context of image searching,

for instance. However, these methods are not directly adaptable to other media such as

3D data because it has its own characteristics and analysis tools.

There are several important issues involving content-based search. First, the goal is

to provide good effectiveness when a query is given. That is, one wants to retrieve a

ranked list of objects from the collection and expects to have similar objects on the first

rankings. Second, the search time should be the small enough to ensure a practical use

of the collection. Finally, the evolution of the retrieval system in time is also important.

A retrieval system should be scalable and dynamic. These two aspects imply that the

system should support a constant growth. This sounds logical, since the amount of

multimedia information is growing rapidly.

We are interested in content-based retrieval of 3D shape collections. Our work consists

in using local information from shapes in order to describe them. Thus, unlike a global

approach where a shape corresponds to a single feature descriptor, a 3D shape is repre-

sented by a set of local features. Local features extracted from shapes allow us to deal

with several problems such as deformable transformations, for instance. However, it also

brings up the problem on how to effectively compare two 3D models represented as a

set of local features. So far, many methods have been proposed in order to address the

matching of 3D shapes using local information. The most of them have been proposed

taking into account only the effectiveness, leaving out other key aspects such as efficiency

and scalability.

101
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In this chapter, we present a novel method to represent a 3D shape based on local

features. Our method finds clusters of keypoints which correspond to surface regions

with an outstanding local structure. Thus, it is possible to reduce the number of features

to represent a shape, and therefore the subsequent process can be efficient. In addition,

we apply the Signature Quadratic Form Distance (see Section 3.3.2) to compare two set

of features. This distance has proven effective in the image search domain [BUS09], and

we will show that it can enhance 3D model retrieval.

In our opinion, there are several reasons why the SQFD is suitable for our purposes.

First, it is a flexible way to compare two multimedia objects represented by feature

sets. Coupled with it, if we are able to reduce the size of the representations, we can

also get efficiency. Second, the distance is context-free as it involves just the feature

signatures of the models being compared, not the rest of the database. So, it is easy to

add new models into the collection because we just need to extract their representations

and store them. This behavior would allow us to build a scalable system for dynamic

collections. Third, as SQFD treats the object representations as a black-box feature

sets, it is easy to redesign or adjust the entire model without the need of reinventing the

mechanism of assessing similarity. Hence, SQFD is an universal distance for comparing

object representations based on local features.

The contribution of this chapter is three-fold. First, We propose the use of keypoints

on meshes in order to make the local features more discriminative. This step enables

the reduction of the amount of information used in the matching. In addition, we

present a novel method to detect clusters of keypoints on 3D meshes. Thus, each object

will be represented by a set of features extracted from regions. Second, We apply the

Signature Quadratic Form Distance to compare two models represented by a set of

features. Finally, we evaluate our approach and compare it with recent techniques from

the state of the art.

6.1 Finding Signatures for 3D Shapes

We present three simple approaches to use local features and the Signature Quadratic

Form Distance. The three approaches heavily rely on a clustering process to determine

the feature signatures. We use the Algorithm 4.2 for clustering.

6.1.1 Feature signatures on all vertices

In this approach we aim at partitioning the whole feature space of a 3D object to define

the feature signatures. Let S be a 3D model with n vertices. We represent S as a set
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Figure 6.1: Colors represent the clusters using the HKS descriptors of the entire
shape. The clusters are consistent despite the non-rigid transformations. Note: the
colors are arbitrary and they are only used to show the resulting clusters in a shape.

of heat kernel signatures computed for each vertex on the mesh. We call FS(S) to this

representation and it is formally defined as:

FS(S) =

{
hks(vi)

‖hks(vi)‖
|vi ∈ S, i = 1, . . . , n

}
(6.1)

The normalization of the heat kernel signatures help us to properly define the intra-

cluster and inter-cluster thresholds for the clustering.

Now, we can apply the clustering algorithm over FS(S) (in the experiments of Sec. 6.2,

the clustering parameters are R = 0.1, T = 0.2, N = 10). The clustering computes a

partitioning not necessarily complete, as there are points which do not belong to any

cluster. In this respect, each remaining heat kernel signature is assigned to the nearest

cluster. Thus, now we have a complete and disjoint partitioning of the feature space.

Finally, we represent S as suggested in Eq. 3.23.

Figure 6.1 is an example of local clustering using the HKS descriptors in shapes within

the same class. Note that clusters are consistent and therefore, signatures will be con-

sistent as well.

6.1.2 Feature signatures on keypoints

In this approach we aim at partitioning a sub-set of the feature space of a 3D object in

order to define the feature signatures. The idea behind the use of a sub-set is that the
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whole feature space is not necessarily discriminative. In our opinion, there is a sub-set

which is representative for each model. Therefore, our goal is to find that sub-set and

partition it, so the feature signatures represents a partitioning of the most discriminative

features.

However, the task of finding that sub-set directly from the feature space is difficult.

Therefore, at this stage, we apply an interest point detection on meshes using our Harris

3D algorithm (Section 4.1) to select the 1% of the number of vertices as keypoints. In

our opinion, detecting keypoints on meshes is a good choice to select the most rele-

vant vertices on the mesh. Subsequently, we can use the heat kernel signatures on the

keypoints as the sub-set needed.

The justification to use an keypoint detector is that it allows us to reduce the amount of

information for subsequent tasks. In our opinion, there are vertices which are not rep-

resentative and, in general, their local geometry is found in all models. Therefore, these

vertices are not suitable to discriminate between models from different categories. For

example, Harris 3D, as described above, can reduce the number of vertices considerably,

while maintaining the vertices which are highly discriminative in the shapes.

Once we have a set of keypoints, we need to compute the feature signatures for the 3D

models. Let P be a 3D model with n vertices. Let FS(P ) be the feature space of P as

defined in Eq. 6.1. After the detection step, we have a set of vertices IP (P ) = {v|v ∈ P}
with m keypoints. So the feature sub-set induced by the set of keypoints is defined as

FSIP (P ) =

{
hks(v)

‖hks(v)‖
|v ∈ IP (P )

}
(6.2)

The final step is to apply the clustering algorithm over the set FSIP (P ) (in the experi-

ments of Sec. 6.2, the clustering parameters are R = 0.1, T = 0.2, N = 10). Then, we

proceed in a similar way as described in the previous section.

In addition to represent a 3D model with the most discriminative features, the use of

keypoints allows us to reduce the computations in two ways. First, we need to compute

less heat kernel signatures. Second, the clustering algorithm obviously takes less time.

This issue is important because it is possible to improve the effectiveness while improving

the efficiency.

Figure 6.2(b) shows an example of clusters of keypoints. Note that keypoints in both

hands belong to the same cluster. This happens because the symmetry of the shape.

Additionally, this phenomenon reduces the number of signatures considerably (in the

figure, there would be only three signatures).



Chapter 6. Shape Retrieval 105

Figure 6.2: Local features in our approach: (a) Harris 3D keypoints, (b) clusters of
keypoints based on their HKS, (c) keypoints within region of interest.

6.1.3 Feature signatures on clusters of keypoints

This method is related to the key-components presented in Section 4.2. In this case,

we do not perform the clustering in the feature space, but a geodesic clustering of

keypoints. This step is performed using the algorithm proposed in Section 4.2.1 to

group the keypoints. Our idea is to represent a shape with signatures obtained from

the geodesic clusters of a shape. It is important to mention that we use the same

parameters as the best configuration found for extracting the key-components (KC-1

variant in Sec. 4.2.3), except by the parameter N which in this case was set to 10.

With the clusters previously detected, now we proceed to describe them. Let R be the

set of clusters of length n = |R| from a shape P . Each cluster contains a set of keypoint

for which we compute the heat kernel signatures. Therefore, at this stage we have a set

of clusters represented by the normalized descriptors of their corresponding keypoints.

We compute a feature signature for a 3D object, where each cluster corresponds with a

unique descriptor and a weight as in Eq. 3.23, where the element cPi is the average of

the normalized heat kernel signatures in the cluster, and the weight wPi is proportional

to the number of elements in Ri with respect to the total number of keypoints after

clustering.

In this approach, the keypoints which were used to find the key-components (Section 4.2)

are used to compute a signature. Interestingly, the clusters of keypoints are discrimina-

tive and representatives as can be shown in Fig. 6.3.
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Figure 6.3: Clusters of keypoints detected on several 3D shapes.

6.2 Experimental Evaluation and Discussion

In this section, we present our experiments and results. Section 6.2.1 explores the

importance of the parameters in the Signature Quadratic Form Distance. Section 6.2.2

evaluates the indexability of the SQFD in our approach. Section 6.2.3 presents the

results concerning to efficiency of our retrieval system. Finally, Section 6.2.4 compares

our technique with state-of-the-art methods.

6.2.1 Effectiveness Evaluation

The SQFD is defined taking into account a similarity matrix AfS . The similarity matrix

needs a ground dissimilarity function which needs to be metric. Common examples of

dissimilarity functions are the Lp distances. In this section, we evaluate the distance

functions L1, L2, L∞. In addition, the transformation of distance values into similarity

values depends on a α parameter when the Gaussian or the heuristic similarity function

are used. We also evaluate the effect of α in our three proposed approaches. We name our

variants as Total (Section 6.1.1), Keypoint (Section 6.1.2), and Cluster (Section 6.1.3)

respectively. This will help us to present the results in a more concise way. We use the

same measures for effectiveness evaluation as described in Sec. 5.3.1.

Here we use the mean average precision (MAP) to evaluate the effectiveness of our

proposals. Figure 6.4 shows the effect of α in the Mean Average Precision using the
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Figure 6.4: Mean average precision for our variant Total. (A) Gaussian similarity
function. (B) Heuristic similarity function.

Gaussian and the heuristic similarity function applied to the variant Total. For the

Gaussian function, the best MAP values are obtained using the L2 distance and small

values of α. On the other hand, for the heuristic function, the best MAP values are

also obtained using the L2 distance, but using large values of α. It is important to note

that the discriminative power of the SQFD depends on the transformation of descriptor

distances into similarity values. More important, the parameter α plays an important

role in the distinctiveness between signatures. For example, using the Gaussian function,

MAP values drop considerably after α = 10. The explanation of this fact is that the

slope of the similarity functions flatten in large values of α for the Gaussian function

and small values for the heuristic function. Note that a near-to-flat similarity function

is not useful because it would not assign very similar values to different ground distance

values.

Figures 6.5 and 6.6 show the mean average precision obtained for the variant Keypoint

and Cluster, respectively. The behavior is similar to that obtained with the variant

Total: small values of α get the best MAP in the Gaussian function, as opposite to the

heuristic function which requires large values of α.

Table 6.1 shows a comparison of our variants with the best MAP’s obtained. In each

variant, the best MAP is obtained using the L2 distance and the heuristic function with

α = 1000. In addition, the Total variant obtains the best overall MAP of 0.8497. The

effectiveness decreases in variants Keypoint and Cluster, with a slight difference between

them.

In our opinion, the predominance of the Total variant with respect to the others can

be explained by the amount of information used in the process of description. Since

the Total variant uses the complete set of features, it allows to include all this infor-

mation in the description. As the clusters in the feature space seems to be consistent
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Figure 6.5: Mean average precision for our variant Keypoint. (A) Gaussian similarity
function. (B) Heuristic similarity function.
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Figure 6.6: Mean average precision for our variant Cluster. (A) Gaussian similarity
function. (B) Heuristic similarity function.

in the presence of non-rigid transformations, the SQFD takes advantage of the intrin-

sic information of the signatures to perform an effective assessment of the similarity

between shapes. In contrast, the selection of local features (keypoints and clusters of

keypoints) could decrease the representational power of the signatures. We believe that,

although keypoints and clusters of keypoints are robust, some information is missing

in order to describe an entire shape. Probably a few keypoints with a bad localization

(not repeatable in the class) affect the whole process of description using the signatures.

Nevertheless, it is worth noting that the MAP remains above 80% in all our variants,

which is an indication of the effectiveness of out three proposals.

6.2.2 Indexability Evaluation

Another important aspect of our evaluation is the indexability of the collection using

the SQFD. We computed the intrinsic dimensionality, which will be an indicator of how

indexable is the SQFD in our approaches. A low intrinsic dimensionality corresponds
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Variant Function α Distance MAP

Total

Gaussian
0.01 L1 0.8403
0.01 L2 0.8482
9.0 L∞ 0.8275

heuristic
1000 L1 0.8407
1000 L2 0.8497
0.2 L∞ 0.8291

Keypoint

Gaussian
0.02 L1 0.8116
0.02 L2 0.8177
9.0 L∞ 0.7765

heuristic
1000 L1 0.8120
1000 L2 0.8196
0.2 L∞ 0.7769

Cluster

Gaussian
0.09 L1 0.8034
0.8 L2 0.8136
10 L∞ 0.8060

heuristic
30 L1 0.8034

1000 L2 0.8137
0.2 L∞ 0.8040

Table 6.1: Best MAP’s for each variant along with their parameter choices.

to metric spaces where many objects can be discarded from the use of the triangle

inequality. Therefore, a low intrinsic dimensionality would imply an efficient algorithm

for searching.

To compute the intrinsic dimensionality, we use the proposal of Chavez et al. [CNBYM01]

ρ =
µ2

2σ2
(6.3)

where µ and σ2 are respectively the mean and the variance of the distance histogram

of a metric space. In practice, given an object collection, we compute 1× 106 distances

between random objects, and subsequently we compute the mean and the variance.

Figures 6.7, 6.8 and 6.9 show the effect of α in the intrinsic dimensionality using the

Gaussian and the heuristic function applied to our three variants.

Interestingly, the lowest values of the intrinsic dimensionality are obtained in values of

α where we obtained the best MAP’s (that is, small α values for the Gaussian function,

and large α values for the heuristic function). This evidence is important because we

can choose a good parameter in order to obtain both effectiveness and efficiency at the

same time.
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Figure 6.7: Intrinsic dimensionality for our variant Total. (A) Gaussian similarity
function. (B) Heuristic similarity function.
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Figure 6.8: Intrinsic dimensionality for our variant Keypoint. (A) Gaussian similarity
function. (B) Heuristic similarity function.

In this experiment, it is clear that the Cluster variant obtained the lowest values of

intrinsic dimensionality (Fig. 6.9). This can be explained by the specificity of the signa-

tures. Since the Cluster variant is based on a process of geometric selection, the resulting

signatures are more specific than in the other variants. This specificity contributes in

the distribution of the signatures in the space, allowing a large variance. For instance,

the specificity would help to guarantee that signatures of shapes in the same class are

similar. In contrast, signatures in different classes should be dissimilar enough. There-

fore, the distance variance would increase due to the specificity. On the other hand, let

us look at the case of the Total variant. In this case, each signature contains a average

descriptor which represents the entire cluster. In our opinion, the averaging decreases

the specificity of the signatures. Clearly, this fact affects the distance variance because

less specificity increase the possibility of having similar signatures in the entire collec-

tion. To illustrate this point, we computed the variance of the histogram of distances for

the Total variant (with heuristic function, L2 distance and α = 1000) and the Cluster
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Figure 6.9: Intrinsic dimensionality for our variant Cluster. (A) Gaussian similarity
function. (B) Heuristic similarity function.

variant (with heuristic function, L2 distance and α = 10000). The parameter configura-

tions were chosen according to the intrinsic dimensionality obtained in Figures 6.7 and

6.9, where the intrinsic dimensionality of the Cluster variant reached the lowest value.

The variance for the Total variant was 8.2258 × 10−8 and the variance of the Cluster

variant was 2.1871 × 10−6. This experiment shows our argument about the intrinsic

dimensionality and its relation to the specificity of the signatures.

6.2.3 Efficiency Evaluation

The SQFD is an expensive distance, and therefore it is important to provide mechanisms

to accelerate the search. When an object is queried, the most naive approach to measure

the distance to all object in the collection is linear scan. In this section, we show that we

can accelerate the search process considerably by organizing the collection in an index.

Given a collection, the procedure to obtain the index is as follows: (1) Choose a set

of pivot objects using the SSS algorithm (see Sec. 3.3.1), (2) Compute and store the

distances between pivots and object collection (this will be our index, a pivot table).

Then, pivot tables can be used for searching using the algorithm shown in Sec. 3.3.1.

To test the efficiency of our approaches, we used k-NN queries to make the comparisons.

For each result in this section, we executed 100 k-NN queries (using the algorithm 3.2

with k = 10, and randomly chosen queries) and then we average the searching time.

In comparison, the same set of queries are used to perform linear scans and times are

measured accordingly. In order to compare the metric approach to the linear scan, we

use the speedup, or the ratio between the linear scan time and the pivot-based time.

Figures 6.10, 6.11 and 6.12 show the speedup for our three variants respectively. A

first observation is the direct relationship that exist between intrinsic dimensionality
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and speedup. The highest values of speedup are obtained for small values of α in the

Gaussian function and large values for the heuristic function. In the case of the Total

and Cluster variants, the speedup is almost 20x with the Gaussian similarity function.

Also, the maximum speedup is obtained with the L1 distance, which is expected because

this distance is cheaper than the others.

The most important result of this experiment is obtained with the variant Keypoint(Fig. 6.11).

The maximum speedup we obtained is above 22x using the Gaussian similarity function

and it represents the best improvement in term of efficiency. Particularly, this variant

is efficient because the signatures are smaller than in other variants. Therefore, the

evaluation of the SQFD takes less time in average.
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Figure 6.10: Speedup for our variant Total with respect to linear scan. (A) Gaussian
similarity function. (B) Heuristic similarity function.
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Figure 6.11: Speedup for our variant Keypoint with respect to linear scan. (A)
Gaussian similarity function. (B) Heuristic similarity function.

Next, we present results regarding the query time. Table 6.2 shows the average required

time for extracting the feature signatures from a query, and subsequently searching

the 10 nearest neighbors. In addition, we report the average number of features per

signature for each variant. In this experiment, we use the heuristic function with the

L2 distance and α = 1000. This parameter combination obtained the best MAP values
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Figure 6.12: Speedup for our variant Cluster with respect to linear scan. (A) Gaussian
similarity function. (B) Heuristic similarity function.

Method Num. Feat. Sig.(sec) 10-NN search with index (sec)

Total 14 0.8738 0.0741

Keypoint 5 0.0055 0.0197

Cluster 9 1.1263 0.0579

Table 6.2: Average number of feature signature and required times for computing the
feature signatures and querying.

in Section 6.2.1, and now we want to test how efficient can be our variants in the same

scenario.

The scenario of query time is favorable to the Keypoint variant. Obviously, this method

considers a reduced number of descriptors in the clustering, so the computation of the

feature signatures is fast. In addition, as it contains the least average number of sig-

natures, the SQFD is applied rapidly. In contrast, the Total variant took more time

due to the large number of descriptors (one per vertex) used in the clustering. On the

other hand, the Cluster variant took a considerable time to compute the signatures.

This is because this variant considers additional tasks such as calculation of geodesic

distances and multi-dimensional scaling. Therefore, the use of some variant depends on

the application and the required efficiency or effectiveness.

6.2.4 Comparison with the State of the Art

Our method was also compared to methods from the state of the art. We chose two

representative techniques: Shape Google which uses a Bag-of-Features approach using

heat kernel-based descriptors, and ShapeDNA which is an effective global technique

for deformable shapes. Following, we briefly describe each technique and present the

parameter configuration.
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• Shape Google. Bronstein et al. [BBGO11] proposed to use a Bag-of-Features

approach with heat kernel-based descriptors extracted from a shape. The idea is

to represent a shape as a distribution of the occurrence of a visual vocabulary

computed by clustering the whole set of descriptors from a collection. Bronstein

et al. suggested to use a scale-invariant version of the heat kernel signatures

(SI-HKS [BK10]). In this experiment, we use the same configuration proposed

originally by the authors with the exception of the values for τ which were from

-25 to 1 with increments of 1/16. For the dictionary, we used a vocabulary of size

48 calculated via k-means clustering.

• ShapeDNA. Reuter et al. [RWP06] proposed a descriptor invariant to deformable

shapes. The method computes the Laplace-Beltrami operator for a shape, and sub-

sequently, it performs a eigen-decomposition. A few largest eigenvalues are con-

sidered as descriptor for the whole shape. In this work, we consider 10 eigenvalues

for each shape.

First, we compare the methods in terms of effectiveness using the best configuration

presented in Table 6.1. Our method obtains the best results regarding MAP, NN, FT,

and ST. In addition, Figure 6.13 shows the precision-recall plot, where we can observe

the predominance of our technique over ShapeDNA and ShapeGoogle.

Methods MAP NN FT ST

ShapeDNA 0.7199 0.9039 0.6707 0.4155

ShapeGoogle 0.7676 0.9301 0.6963 0.6530

Total variant 0.8497 0.9476 0.7990 0.7340

Table 6.3: Comparison of our method with the state of the art.

The comparison of effectiveness encourages us to think that the use of a local clustering

is useful for describing shapes. While Shape Google aggregates the local descriptors

through a quantization using a global dictionary, our method entirely considers the in-

formation of a shape for describing it. It is possible that the global dictionary attenuates

the discriminative power of local descriptors, hence reducing the effectiveness. On the

other hand, ShapeDNA only considers the spectrum of a shape for description. Although

the final descriptors are simple to compare, it is possible that the ShapeDNA do not

convey the needed information to effectively discriminate shapes.

With respect to the query time, Table 6.4 shows the average query time for computing

a 10-NN search. For our approaches, we added up the average time of computing the

signature with the average time of performing a 10-NN search using a pivot index. As

can be seen, ShapeDNA is the fastest method, as it considers only to apply a distance

function(for instance, L2) between descriptors. In the case of Shape Google, most of
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Figure 6.13: Comparison of precision-recall curves for our method and methods from
the state of the art.

Method Query time

ShapeDNA 0.01

Shape Google 0.1330

Total 0.9479

Keypoint 0.0252

Cluster 1.1842

Table 6.4: Query time for each compared method.

the time is used to compute the bag of features, and subsequently to perform the dis-

tance computations. However, the most important result about query times is that

obtained by our Keypoint variant. It is almost as fast as ShapeDNA, but much more

effective. Therefore, the Keypoint variant is a good alternative for a retrieval system

where efficiency is a matter.

Finally, we claim that our methods can be potentially used for large collections due to

the high effectiveness, and their efficiency is good in memory and comparable in time.

In addition, our methods allow us to have a dynamic system, where new models can be

easily added into the system.

6.3 Concluding remarks

In this chapter, we propose a novel approach for non-rigid shape retrieval using local

features. The representation using a local partitioning of the feature space has shown

to have a positive impact in retrieval performances. This fact can be noted in the

high effectiveness achieved by the Total variant and the good efficiency achieved by the
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Keypoint variant. Likewise, the Signature Quadratic Form Distance has proven to be

effective for assessing the similarity of shapes. In addition, the indexability of the SQFD

allows us to improve considerably the efficiency of a retrieval system. Also, the SQFD

has enabled the possibility of implementing our method in dynamic collections. The

advantage of our approach is that the process of description of a shape is independent

of the rest of shapes. This is important if we consider a retrieval system as a dynamic

system which is constantly updated.

An important aspect of our results is that, depending of the requirements for a retrieval

system, our method offers several characteristics. On the one hand, if we are interested

in the retrieval results, the Total variant can be used because its high effectiveness. On

the other hand, if we are interested in the query time, the Keypoint variant performed

better in this case. Anyway, our approach (in its different variants) performed better

than state-of-the-art methods.



Chapter 7

Shape Matching

The problem of finding correspondences in 3D shapes is an important problem in com-

puter vision and computer graphics. In particular, the reliable detection of correspon-

dences in non-rigid shapes has received notable attention in recent years. This problem

is inherently difficult due to the complexity of formally characterizing a non-rigid trans-

formation. Additionally, in real-world applications, one would expect shapes containing

perturbations such as noise, topological changes, scale, and so on. Therefore, it is im-

perative to devise robust and efficient techniques to finding reliable correspondences in

non-rigid shapes (possibly with perturbations).

The most used approach to tackle this problem implies to find a mapping between

sparse sets of surface points (keypoints). This problem commonly is formulated as an

optimization problem that involves the matching of local descriptors and some criterion

for geometric consistency. Generally, the optimization is carried out through an integer

quadratic program.

Due to the combinatorial nature of the correspondence problem, we need to search

strategies to efficiently solve the problem. Additionally, we need to take into account

the robustness against mesh perturbations. In this chapter, we propose an algorithm

to find correspondences in non-rigid shapes based on a hierarchical decomposition. In

Chapter 4, we have shown that it is possible to obtain robust decompositions on 3D

meshes. Our motivation is the fact that if two shapes are near-isometric, they should

have regions which are near-isometric as well. If a shape S is decomposed in a set of

regions S1, S2, . . . , Sn, then a shape T (near-isometric to S) should also have a partition

set T1, T2, . . . , Tn, where Si is near-isometric to Tj . This idea can be applied again on

regions recursively.

117



Chapter 7. Shape Matching 118

In light of this observation, we propose an algorithm to build a decomposition tree of a

given shape. Internal nodes represent regions and leaf nodes represent keypoints. As one

traverses the tree in depth, the shape structures are smaller. In addition, we propose

a hierarchical matching algorithm which takes two decomposition trees as input and

performs in a bread-first manner. This algorithm first matches regions in high levels

of the trees and propagates the process until reaching the leaf nodes, where finally the

keypoints are matched. The decomposition tree is similar in spirit to the component

tree proposed by Litman et al. [LBB11]. The main difference is that our representa-

tion is designed to support the subsequent matching process. In addition, in contrast

to the component tree (which makes use of diffusion geometry), our method uses the

distribution of keypoints on the surface to guide the decomposition process.

In our method, we address two important aspects: efficiency and robustness. Regarding

efficiency, our matching algorithm has the ability of reducing the searching space of

correspondences by making use of the hierarchical decomposition. Once two regions

correspond (because their internal nodes matched), we only look for correspondences in

the associated sub-trees. This allows us to discard an important amount of matches early

in the process. With respect to the robustness, we take advantage of the provably good

properties of diffusion-based descriptors in the context of non-rigid matching to obtain

discriminative descriptions for regions and keypoints. In addition, the decomposition

process is guided by the distribution of robust keypoints on the shape’s surface.

In summary, the contributions of this chapter are two-fold. First, we present a novel

representation for non-rigid shapes: the decomposition tree. This structure characterizes

the hierarchical decomposition process, where the root node contains the original shape

and leaf nodes contain keypoints. Second, we develop a matching algorithm that takes

advantage of the decomposition trees to find correspondences. Our algorithm is efficient

as it allows us to discard matches in early stages of the process.

7.1 The Decomposition Tree

In this section, we present the decomposition algorithm. It has two stages: the pre-

processing step and the generation of the decomposition tree. Our approach to decom-

pose a mesh is inspired in the key-components proposed in Chapter 4.

7.1.1 Pre-processing

Given a 3D shape X, we compute a set of keypoints KX using the Harris 3D algorithm.

Subsequently, we calculate the geodesic distances between each pair of keypoints using
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the fast marching method [KS98]. These distances will be used to control the geometric

consistency of the correspondence set in the matching algorithm.

Since the decomposition method is based on the distribution of keypoints on the shape’s

surface, we propose a heuristic to discard isolated keypoints. The heuristic consists of

analyzing the distribution of geodesic distances of a keypoint. Let Dv
p be the geodesic

distances from a keypoint v to its p nearest keypoints. We define the density of a

keypoint v as

density(v) =
mean(Dv

n)

mean(Dv
3)
, (7.1)

where n = |KX |.

Grouped keypoints are expected to have a small mean(Dv
3) compared to mean(Dv

n),

giving a high density value. In contrast, isolated keypoints will have more similar values

for these two quantities, with the density approaching to one. Therefore, keypoints with

a low density value should be discarded. We remove keypoints with density(v) < 30

from KX . The cut-off value was found empirically.

In addition, for each remaining keypoint in KX , our method computes two descriptors

which are based on diffusion geometry: HKS (heat kernel signatures [SOG09]) and

WKS (wave kernel signatures [ASC11a]). Descriptions for these descriptors were given

in Chapter 3.

The use of these two descriptors is related to their ability for feature localization [Bro11].

The heat kernel signature is a collection of low-pass filters which inhibit high frequencies.

For this reason, its nature is more global and it may affect the exact localization of

correspondences. In contrast, the wave kernel signature is a collection of band-pass

filters which reduces the impact of low frequencies, allowing a better feature localization.

Therefore, we take advantage of these facts and use the HKS and WKS in different levels

of our representation. The former is used for describing regions in the internal nodes of

our decomposition tree and the latter is used for describing keypoints in the leaf nodes.

In summary, after the pre-processing step, we have the following information: a set of

keypoints KX , the complete set of geodesic distances between keypoints, and descriptors

(HKS and WKS) for each keypoint.
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Figure 7.1: A decomposition tree of a human shape. The root node contains the
original mesh and its related data. The first decomposition generates five regions. The

last level contains smaller regions from the head.

7.1.2 Decomposition

Our decomposition algorithm relies on the distribution of keypoints on the shape’s sur-

face. Our algorithm performs a hierarchical clustering in the geodesic space of keypoints.

More specifically, the algorithm first looks for large groups of keypoints, and recursively

decomposes the groups into smaller groups. Each group of keypoints determines a mesh

region. The decomposition ends when we cannot divide a group into smaller groups

or when the area of the region that covers a group is very small relative to the area

of the original shape. The outcome is a tree which represents the decomposition pro-

cess. Fig. 7.1 shows a decomposition tree obtained with our algorithm. Furthermore,

Algorithm 7.1 presents the pseudo-code of the decomposition algorithm in detail.

The input of the decomposition algorithm is a node T , which contains the original shape

and all information computed in the pre-processing step (see Sec. 7.1.1). Technically,

the output of this method is a tree with T as root node. The first part of the algorithm

checks whether it is possible to continue decomposing a node (lines 3-13). The first check

is through the comparison of areas between the shape at the input node and the original

shape. If the mesh at node T is too small, then T is marked as leaf node. Subsequently,

we propose to apply a medoid-based adaptive clustering to find groups of keypoints.
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Algorithm 7.1 GenerateTree(T )

Require: Node T
Ensure: Node T and its associated tree

1: areaOriginal ← mesh.getArea()
2: areaNode ← T .mesh.getArea()
3: if areaNode < 0.1× areaOriginal then
4: isLeaf ← true
5: end if
6: if not isLeaf then
7: Let R be the intra-cluster threshold.
8: Let S be the inter-cluster threshold.
9: C ← clustering(T .distancesKeypoints(), R, S)

10: if |C| < 2 then
11: isLeaf ← true
12: end if
13: end if
14: if isLeaf then
15: T .leaf ← true
16: return T
17: end if
18: for each cluster c in C do
19: Create a new node Tc
20: (oc, rc) ← GetMin3DSphere(c.getKeypoints())
21: kc ← c.getMedoid()
22: Tc.mesh ← T .mesh.getPatch(oc, rc, kc)
23: Tc.descriptor ← T .getPatchDescriptor(c.getKeypoints())
24: Propagate keypoints from T to Tc
25: Propagate keypoint distances from T to Tc
26: Propagate keypoint descriptors from T to Tc
27: T .children[c] ← Tc
28: end for
29: for each cluster c in C do
30: for each cluster g in C do
31: T .childrenDistance[c,g] ← dg(kc, kg)
32: end for
33: end for
34: for each cluster c in C do
35: T .children[c] ← GenerateTree(T .children[c],δ)
36: end for
37: return T

These groups will generate regions with their associated new nodes. If it is not possible

to obtain more than two clusters, the input node is marked as leaf.

There are two points of our algorithm that deserve carefully attention: the clustering

algorithm (line 9) and the creation of new nodes (lines 18-28). We dedicate the following

sections to describe these two points.
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Adaptive Clustering with Medoids

Our algorithm is a variant of the adaptive clustering used to compute key-components.

The main differences lie in two aspects. First, we use a medoid-based approach which

prevents the computation of the multi-dimensional scaling. Second, we take an adaptive

approach for determining the clustering thresholds depending on the hierarchical nature

of our process.

Our method takes advantage of the distance matrix already computed in the pre-

processing step and therefore, it is not necessary performing a multi-dimensional scaling

to the keypoints. The clustering algorithm iterates over the set of keypoints assigning

them to near clusters or creating new clusters otherwise. The decision of assigning a

keypoint to a cluster or creating a new one depends on two parameters: R (intra-cluster

threshold) and S (inter-cluster threshold). These parameters depends on the area of the

mesh in the input node, and are obtained using an empiric Gaussian function as follows:

R = 0.4× e−
(areaRatio−1)2

0.5 , (7.2)

where areaRatio is the quotient between areaNode and areaOriginal. This formulation

was designed to control the clustering thresholds according to the size of the region.

Eq. 7.2 distributes the values for R in the interval [0.1, 0.4]1 depending on the area of

the node region. This is consistent with the restriction in line 3. Additionally, the inter-

cluster threshold S is always set to 2×R. Therefore, the threshold values vary between

R = 0.4, S = 0.8 and R = 0.1, S = 0.2.

Once the keypoints have been clustered, we need to compute the medoids of each result-

ing cluster. Let C = {c1, . . . , cn} be a cluster where each ci is a keypoint, the medoid

of C is defined as the keypoint that is approximately in the center of the distribution of

the cluster. More formally,

medoid(C) = arg min
c∈C

n∑
k=1

dg(c, ck). (7.3)

In addition, if a cluster has a few elements (less than ten in our experiments), the cluster

is removed. The algorithm repeats the assignment and update steps until reaching a

number of iterations (for all our experiments, we use ten iterations). After the clustering,

each cluster will generate a new node in the decomposition tree.

1The threshold values represent a fraction of the original area, so R = 0.1 really means R = 0.1 ×
areaOriginal. We omitted this to facilitate the explanation.
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Node Creation

Several steps are performed to create a new node in the tree from a cluster c. First, we

compute the key-component for the cluster c. Second, we compute a descriptor for the

new region. Let C = {c1, . . . , cn} be the set of keypoints of a cluster, each associated to

a HKS descriptor. The descriptor of the region determined by the cluster C is

fregion(C) =

∑n
i=1HKS(ci)

n
, (7.4)

i.e. the average descriptor of the keypoint collection in the cluster. Third, all information

about keypoints and geodesic distances are propagated from the parent node T to the

new created node. Finally, the new node is stored as a child of the parent node T .

Subsequently, our decomposition algorithm computes the geodesic distances between

regions (lines 29-33). We use the medoid keypoint as a reference to accomplish this

goal. Let Tc1 and Tc2 two nodes resulting from the decomposition of the mesh at node

T . The distance between the regions associated to Tc1 and Tc2 is

dreg(Tc1 , Tc2) = dg(kc1 , kc2), (7.5)

where kc1 and kc2 stand for the medoids of clusters in nodes Tc1 and Tc2 , respectively.

As a last step, our algorithm proceeds recursively for each child node (lines 34-36).

7.2 Hierarchical Matching

This section describes the algorithm to find the correspondences between two shapes.

The algorithm 7.2 presents the pseudo-code of our method. This algorithm requires two

trees T and P that represent the decomposition of two shapes as described in Sec. 7.1.2.

The overall algorithm is based on the ability of matching regions in the internal nodes

and keypoints in the leaf nodes.

The method is performed by depth levels (see Fig. 7.2). First, the matching of root

nodes (level 0) implies to find correspondences between their children (level 1). Each

correspondence generates a recursive call to the matching algorithm. The method pro-

ceeds until reaching the leaf nodes. In that case, we look for the best correspondence

set between the keypoints in the leaf nodes. If at any time during the process, it is

required to match an internal node of a tree with a leaf node of the other, the internal

node is treated as a leaf node. This is possible because every internal node contains the
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Algorithm 7.2 Matching(T ,P )

Require: Node T
Require: Node P
Ensure: A set of correspondences S

1: if not T .leaf and not P .leaf then
2: Corr ← MatchingInternalNodes(T , P )
3: S ← {}
4: for each match (t, p) ∈ Corr do
5: L ← Matching(T .children[t], P .children[p])
6: S ← S

⋃
L

7: end for
8: else
9: S ← MatchingLeafNodes(T , P )

10: end if
11: return S

Figure 7.2: Representation of the matching process. The initial call to
Matching(T, S) (level 0) tries to find correspondences between nodes the internal in
level 1. In the figure, the correspondences {(T1, S3), (T2, S2), (T3, S1)} were found. Each
pair generates a recursive call to the matching algorithm. The correspondence (T1, S3)
causes a matching between internal nodes. In contrast, correspondences (T2, S2) and
(T3, S1) drive to a matching of internal nodes. Note that T3 is not a leaf node. However
it contains the enough information to be considered as a leaf node, and therefore it can

be matched to S1.

information to behave as a leaf node. Next, we describe how to perform the matching

in the aforementioned cases.

7.2.1 Matching of Internal Nodes

Let T and S two internal nodes from different trees. Each node has children represented

as children(T ) = {t1, . . . , tn} and children(S) = {s1, . . . , sm}, where T has n children

and S has m children. We define a boolean indicator variable as follows

x(i, j) =

1, if ti matches sj

0 otherwise.
(7.6)
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Figure 7.3: Correspondences found with our approach. Left: # correspondences =
66, geodesic error = 2.83, matching time = 0.12 sec. Middle: # correspondences =
58, geodesic error = 2.62, matching time = 0.08 sec. Right: # correspondences = 75,

geodesic error = 3.51, matching time = 0.12 sec.

Then, we formulate a quadratic optimization function as follows:

F (x) =α
∑
i,j,i′,j′

|dreg(ti, ti′)− dreg(sj , sj′)|x(i, j)x(i′, j′)+

β
∑
i,j

‖fregion(ti)− fregion(sj)‖2x(i, j)+

γ
∑
i,j

|area(ti)− area(sj)|x(i, j) (7.7)

where α, β and γ weight the contribution of each term in the function. The optimization

function has two linear terms and a quadratic term. On the one hand, the linear terms

evaluate the similarity between region descriptors and the consistency of areas. It is

expected that two matched regions have similar descriptors and similar areas, indeed

minimizing the linear terms. On the other hand, the quadratic term imposes a geometric

consistency constraint. If there are two correspondences x(i, j) and x(i′, j′), it is expected

that the geodesic distance between regions i and i′ in one shape is quite similar to the

geodesic distance between regions j and j′ in the other shape. Finally, the goal is to

obtain the minimizer of F

x∗ = arg min
x

F (x), (7.8)

subject to ∑
i

x(i, j) = 1 ∀j and
∑
j

x(i, j) = 1 ∀i. (7.9)

The constraint in Eq. 7.9 controls the multiplicity of an element in the correspondence

set. That is to say, every ti only can correspond to a unique sj , and vice versa.
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7.2.2 Matching of Leaf Nodes

Unlike the matching of internal nodes, in the leaf nodes we need to find correspon-

dences between keypoints. Let T and S two leaf nodes from different trees. Each node

has a set of keypoints represented as keypoints(T ) = {t1, . . . , tn} and keypoints(S) =

{s1, . . . , sm}, where T has n keypoints and S has m keypoints. Using Eq. 7.6 to define

a boolean indicator variable, we formulate the optimization function for a leaf node as

L(x) =α
∑
i,j,i′,j′

|dg(ti, ti′)− dg(sj , sj′)|x(i, j)x(i′, j′)+

β
∑
i,j

‖WKS(ti)−WKS(sj)‖2x(i, j). (7.10)

Note that the distances between regions in Eq. 7.7 have been replaced by geodesic

distances between keypoints in Eq. 7.10. In addition, wave kernel signatures are used

as descriptors for matching keypoints. Similarly to the matching of internal nodes, our

goal is to find a minimizer of L in the same way as Eq. 7.8 and the same constraints as

Eq. 7.9.

7.3 Experimental Evaluation and Discussion

We used two datasets to evaluate our method: the SHREC’2010 correspondence dataset [BBB+10]

and the Shape Matching Benchmark proposed by Kim et al. [KLF11]. In this section,

we first detail the experimental setup for the experiments and then we show and discuss

the results obtained with each dataset.

7.3.1 Experimental Setting

We detail our configuration as follows. First, we simplified the models to 10,000 ver-

tices. The final correspondences were mapped back to the original shapes for evaluation.

Second, we computed 100 Harris keypoints for each shape. Remember that this number

can change after the filtering. Third, for Eq. 7.7 we use the weights: α = 5 × 10−4,

β = 1, and γ = 5 × 10−2. Fourth, for Eq. 7.10 we use the weights: α = 5 × 10−4, and

β = 1. Finally, we used a branch-and-bound algorithm with LP-relaxation [BMM99] to

solve the integer quadratic programs.
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7.3.2 SHREC’2010 Dataset

7.3.2.1 Evaluation Criterion

For the quantitative results, we follow the methodology and notation proposed in [BBB+10].

We define our correspondence set as C = {(yk, xk)}Mk=1, where M is the number of cor-

respondences, and yk and xk are keypoints in the transformed and null shape, respec-

tively. The ground-truth is composed by two correspondence set C0 and Ĉ0, containing

the point-to-point correspondences for each vertex in a transformed shape and their

symmetric counterpart, respectively.

The measure to quantify the quality of the correspondence set C is

D(C) =
1

M
min

{
M∑
k=1

dg(xk, x
′
k),

M∑
k=1

dg(xk, x
′′
k)

}
(7.11)

where (yk, xk) ∈ C, (yk, x
′
k) ∈ C0 and (yk, x

′′
k) ∈ Ĉ0.

Note that we also use the symmetric ground-truth to measure the localization error.

Thus the final measure is the minimum between the exact correspondences and the

symmetric counterpart.

7.3.2.2 Qualitative Results

We present results of our method in Fig. 7.3. The figures show examples with near-to-

perfect localization of correspondences. An advantage of our method is the generation of

very similar decomposition trees for near-isometric shapes. This enables the matching to

be effective, yet fully exploiting the proposed hierarchical approach in favor of efficiency.

On the other hand, the addition of perturbations in meshes may affect the overall perfor-

mance of finding correspondences. Figure 7.4 illustrates the correspondences found with

our algorithm in presence of strong transformations. Even in the presence of shotnoise

(on the left) and Gaussian noise (on the right), our algorithm performs acceptably. Note

that there are parts where correspondences were not found (for instance, the hands in

the right figure). This is because perturbations affect the decomposition process, and

particularly in this case, noise prevented the detection of robust regions of interest in

hands. Nevertheless, other regions were well detected and interestingly those regions

were well matched to the null shape. Therefore, the decomposition method delivers

robust regions (and their associated keypoints) which arrive to reliable correspondences.
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Figure 7.4: Correspondences found in presence of perturbations. Left: shotnoise,
strength level 4 (# correspondences = 59, geodesic error = 5.23, matching time = 0.08
sec.). Right: noise, strength level 5 (# correspondences = 49, geodesic error = 5.42,

matching time = 0.03 sec.).

Strength

Method. 1 ≤2 ≤3 ≤4 ≤5

GMDS [BBK06b] 39.92 36.77 35.24 37.40 39.10

Game-theoretic [RBA+12] 10.28 12.51 11.73 14.35 18.26

Elastic Net [RTH+13] 7.36 8.62 10.49 21.72 6.51

Our method 7.99 8.07 8.23 8.77 9.38

Table 7.1: Average geodesic error of correspondences with respect to the strength
level.

7.3.2.3 Quantitative Results

In this section, we present the performance of our method using the geodesic error de-

scribed in Eq. 7.11 and compare it with state-of-the-art methods. We compare our

method with the elastic net approach [RTH+13], the game-theoretic approach (the vari-

ant which merges correspondences gathered from 25 games, as reported in [RBA+12])

and the GMDS method as reported in the SHREC 2010 contest [BBB+10]. These three

methods deliver in average 50 correspondences. Similarly, our method computes 45

correspondences in average.

Table 7.1 presents the average geodesic error of our method and the compared approaches

with respect to the strength level of transformation. It is worth noting that our method

significantly obtains low localization errors for correspondences, specially in the stronger

levels.

Table 7.2 reports the average error per transformation and per strength level. Numbers

in bold represent an improvement with respect to the state of the art. Our algorithm

presents low error values in almost all transformations in strength level 4. In our opinion,

the effectiveness of the correspondences is associated to the decomposition tree. That is,

we believe that the decompositions are highly repeatable and consistent which agree with
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Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 9.37 7.28 6.47 6.11 6.34

Topology 9.02 8.23 8.97 9.88 10.17

Holes 7.13 6.46 6.45 7.55 8.50

Micro holes 5.86 5.60 5.92 6.05 6.18

Scale 6.45 6.57 7.30 7.60 7.79

Local scale 9.45 10.20 9.64 9.84 9.74

Sampling 10.18 11.62 12.96 15.78 19.20

Noise 5.65 8.15 7.79 8.02 8.58

Shot noise 8.80 8.50 8.56 8.04 7.88

Average 7.99 8.07 8.23 8.77 9.38

Table 7.2: Average geodesic error per transformation and per level. Average number
of correspondences: 45.

the results obtained for the key-components in Sec. 4.2. For this reason, the matching

in high levels of the tree is very robust and therefore the region correspondences are well

found. This leads to the propagation of good hypotheses for the correspondences, and

hence the localization error is decreased.

Asa a result, the decomposition tree represents a mesh in an effective way, even in

presence of severe perturbations. Hence this fact encourages us to think that our method

is suitable for realistic applications. However, note that our method did not improve

with respect to the topology transformation. The reason relies on the use of geodesic

distances for the geometric consistency, which are sensitive to topological changes. A

solution would be the use of a more robust manner for measuring intrinsic distances

(for instance diffusion distances). Also keep in mind that we have used the original

versions of the heat and wave kernel signatures. Applying scale-invariant versions of

these descriptors could further improve our results.

7.3.3 Shape Matching Benchmark

In this section, we evaluate our algorithm using the benchmark described in Sec. 3.2.4.

7.3.3.1 Evaluation Criterion

Given two meshes M1 and M2, a dense correspondence set C = {(x, y)|x ∈M1 and y ∈
M2}, and the ground-truth Ĉ = {(x̂, ŷ)|x̂ ∈ M1 and ŷ ∈ M2}, the error measure is

defined as
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Err(C, Ĉ) =

|C|∑
i=1

dg(y, ŷ) (7.12)

where dg is the geodesic distance in M2 normalized by
√
Area(M2). This error measures

how far a predicted correspondence is with respect to the real correspondence.

A convenient way to evaluate a correspondence set is by plotting the distribution of

localization error in different distance thresholds. In addition, the benchmark provides

information about symmetries, so it is possible to evaluate the possible symmetric flips

in the predicted correspondences. Therefore, we present we show two plots depending

on the use or not of the symmetry correspondences.

It is also worth noting that the benchmark aims to evaluate dense correspondences. In

our case, our algorithm provides sparse correspondences. When this case, the evaluation

scripts (provided with the benchmark) produces a full correspondence set by interpolat-

ing the sparse set using a method based on GMDS.

7.3.3.2 Results

In this section, we show the obtained results and compare them with state-of-the-art

methods. We compare our approach with the following methods:

• Blended Intrinsic Maps [KLF11].

• Best Conformal Map [KLF11].

• Heat Kernel Matching with 1 correspondence [OMMG10].

• Heat Kernel Matching with 2 correspondences [OMMG10].

• Generalized Multi-Dimensional Scaling (GMDS) [BBK06b].

First, we show the distribution of localization errors in Figure 7.5. In the case of the

unique ground-truth (Figure 7.5 (A)), our method is slightly better than GMDS and

worst than the other methods. This result is expected since our method does not take

into account any information about orientation. Therefore, the low performance is due

to mistakes with symmetric correspondences. On the other hand, when the symmetric

flips are used (Figure 7.5 (B)), our method gets a higher percentage of correspondences

(almost a 20% consistently for each geodesic error). Most importantly, our method

is comparable in performance to GMDS, and the Heat Kernel Matching methods. All
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Figure 7.5: Performance of our method and state-of-the-art methods. This plot shows
the percentage of correspondences within the prescribed distance to the ground-truth

correspondence. (A) Using the unique ground-truth. (B) Using symmetric flips.

these observations suggest us that our method finds a good set of correspondences which

could be useful to find a further dense correspondence map.

In addition, we show and compare some interesting statistics in Table 7.3. The first

column shows the averaged maximal per map geodesic error for each method. Our

method obtains a lower maximal than the Heat Kernel Matching algorithms. Note that

this statistic is computed on the unique ground-truth, so it allows us to compare the

methods considering the exact matches. The second column shows the percentage of

perfect matches on the entire collection of correspondences. It is important to remark

the improvement in the number of perfect matches in our method. By perfect match

we mean that a given algorithm found the exact correspondence in the unique ground-

truth. From the two previous statistics, we however note that our method finds a very

good set of correspondences but also it delivers a set of bad correspondences with high

localization error. We believe that the perfect matches are due to the matching between

robust keypoints. As we showed in Chapter 4, the Harris keypoints are very robust and

repeatable in presence of isometric transformations. Therefore, it is expected that our

method match keypoints which represent exact matches in the shapes. On the other

hand, we believe that the high localization error is due to a bad propagation of matches

in our hierarchical approach. That is, the matching in lower levels of the hierarchy rely

on the matching in higher levels. If our algorithm gets a bad matching of regions, this

error is propagated to the next level. As consequence, some keypoints are matched to

keypoints which are far away from the exact correspondences.
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Method Averaged Maximal % Perfect Matches

Blended 0.31 0.002

Best Conformal 0.54 0.042

GMDS 0.97 1.392

HKM 1 corr 1.27 0.769

HKM 2 corrs 1.21 0.852

Our method 1.16 2.505

Table 7.3: Averaged maximal per map geodesic errors and percentage of perfect
matches for each method in our comparison.

A note about execution time

Our matching algorithm takes in average 0.1 seconds to find the correspondences between

two shapes. All our experiments were run on a 64-bits Linux system with Intel Core-i7

(3.40GHz) processors and 32GB of RAM. Our algorithms were implemented in C/C++

with interfaces MEX/MATLAB.

The low matching time can be explained by the fast matching in each level of the

hierarchy. First, the matching of region is very fast since there are few regions to be

matched. After that, the algorithm performs in the same manner for each corresponding

region. Again, we only need to find correspondences between a small set of nodes. When

a leaf node is reached, the number of keypoints to be matched is small with respect to

the entire set of keypoints. In our opinion, the efficiency of our method is obtained

thanks to the ability of solving small correspondences problems.

7.4 Concluding Remarks

We proposed a novel hierarchical approach to address the problem of finding reliable

correspondences in non-rigid shapes. In our experiments, we showed that our method

is robust to severe perturbations, making it suitable for realistic applications. Also,

our approach outperformed the state of the art with respect to the localization error of

correspondences. In addition, our matching algorithm is efficient thanks to the use of

the hierarchical structure of decomposition, which allows to reduce the search space. In

the future, we plan to use more robust descriptors and intrinsic distances to improve

our results.
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Conclusions

In this thesis, we proposed algorithms to take advantage of local features for shape

matching and retrieval. Our main conclusion lies in the effective use of local features

to represent shapes in several contexts. To achieve this, the detection of robust local

features was the most important aspect to achieve. To this respect, the Harris 3D

algorithm has proven to be a robust and efficient algorithm to detect interest points on

meshes. Most importantly, the high repeatability of the keypoints and their distinctive

distribution on the shape’s surface led us to develop robust representations to face the

shape matching and retrieval.

To the light of the previous observation, we proposed two new forms of representation

for 3D shapes based on robust local features. The first strategy was to group keypoints.

We noted that by grouping keypoints in a geodesic sense, the regions denoted by the

groups were distinctive in objects in the same class. For this reason, we proposed

an efficient method to find repeatable salient regions on meshes, which we called key-

components. Interestingly, the repeatability of key-components was high in presence

of transformations. Likewise, the spatial grouping of keypoints allowed us to define

a effective representation for generic shapes. In this case, we proposed a data-aware

partitioning algorithm which was important to improve the performance of generic shape

retrieval. Finally, the grouping strategy was useful to construct robust signatures for

non-rigid shapes. In addition, the use of the Signature Quadratic Form Distance allowed

us to apply these signatures in a large-scale non-rigid shape retrieval scenario. This

combination resulted in a very efficient approach to retrieve non-rigid shapes. In our

opinion, the grouping strategy is successful to enhance the representational power of

local features for shapes. In addition, this approach reduces the amount of information

we need to represent a shape. That is, the number of key-components, partitions, or

133
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signatures is considerably less than the number of keypoints. This fact led us to define

efficient algorithms for generic and non-rigid shape retrieval.

The second strategy was to represent a shape as a hierarchy. This representation

arose from observing the robustness of the key-components. We proposed to find key-

components in a recursive way and capture the decomposition process in a tree structure.

Internal nodes contain regions and leaf nodes contain keypoints. We also proposed an

algorithm to perform the search of correspondences between two shapes under these

hierarchical representations. In our experiments, we showed that our approach reduced

the localization error and improved considerably the search time. We believe that our

hierarchical representation and matching algorithm have a great potential to improve

both the localization of correspondences and the searching time.

Based on our results, we believe that all our ideas presented in this thesis have done a

valuable contribution to the state of the art in local features, shape matching and shape

retrieval.

8.1 Future Work

Many research questions and new ideas have emerged from the results and the lessons

learned in this thesis work. Next, we present the future research directions related to

our work.

8.1.1 Representations

In this thesis, we assumed that 3D shapes contain detectable features. Nevertheless,

in certain shapes, it could not be possible to find distinctive features. For example, in

CAD domain, shapes are commonly represented by planes and regular surfaces which

lack of features. Another example is an sphere, whose main feature is its curvature

regularity. In this sense, we plan to investigate new representations that are able to

determine the best characterization for a shape. For this purpose, we need high-level

representations with the sufficient awareness to represent a mesh with its salient char-

acteristics, whether keypoints, regular regions, or a combination of both. In addition, it

would be interesting to provide high-level algorithms to evaluate the similarity of shapes

with these representations.

On the other hand, the use of meshes to represent 3D models is extensive in the retrieval

literature. However, we believe that with the massive use of cheap 3D scanning devices,

new tools for processing and analyzing point clouds will be necessary. In this sense, we
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plan to investigate the use of local features in point clouds. As point clouds commonly

have a high resolution, it will be necessary efficient algorithm for detecting local struc-

tures. Also, local descriptors for point cloud need to be evaluated, and subsequently

new approaches for matching will also deserve attention.

8.1.2 Scalability and Efficiency

In the 3D shape retrieval community, it is common to have datasets with a few thousands

of models for evaluation. However, this situation could radically change in the short

term. Therefore, we need to start thinking the problem in a large-scale sense. Our

results with the applications of the SQFD and metric indexing encourage us to believe

that better improvements can be done in order to achieve better performances. In the

future, we plan to research more approaches for indexing which, to our knowledge, is a

promising way to go even more faster in content-based searches. New approaches such

as the Ptolemaic tables [HSLB13] could be useful for shape retrieval.

Regarding the searching of correspondences, we believe that our matching approach

can be improved if we use new approaches to solve the quadratic assignment problem.

Specifically we plan to investigate graph-based methods to improve the efficiency of our

method.

8.1.3 Robustness

In this work, state of the art descriptors such as DESIRE, PANORAMA, HKS and

WKS have been useful to show the utility of our proposed representations in shape

retrieval and matching. However, there is much to be done regarding the robustness.

For instance, in the context of missing data, it would not be possible to guarantee

a robust behavior of the aforementioned descriptors. The solution to the problem of

missing data is crucial to facilitate effective tools for matching data coming from real

acquisition devices. Moreover, we recently proposed a SHREC track [SMB+13] intended

to evaluate algorithms for large-scale shape retrieval. The results were important to

realize that the problem is very challenging and that so much work need to be done in

that direction. In the future, we plan to investigate robust descriptors with the ability

of dealing with missing data. We also plan to look for representations derived from local

features which can tackle the lack of information. We want to provide algorithms for

the efficient matching through these new representations.



Appendix A

Auxiliary Integrals for Harris 3D

This appendix contains the evaluation of integrals which are useful to obtain the final

evaluations for our Harris 3D operator.

A.0.4 Evaluation of integral
∫∞
0

e−x
2/2σ2

dx

Let us consider the following integral of a Gaussian in R2

∫
R2

e−(x
2+y2)/2σ2

dA =

∫ ∞
−∞

∫ ∞
−∞

e−(x
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dxdy
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(A.1)

In addition, since the Gaussian is symmetric in x = 0, the following holds∫ ∞
0

e−x
2/2σ2

dx =
1

2

∫ ∞
−∞

e−x
2/2σ2

dx (A.2)

Therefore, if we assume that the integral in A.1 is positive (as we will show later), then

∫ ∞
0

e−x
2/2σ2

dx =
1

2

√∫
R2

e−(x2+y2)/2σ2dA (A.3)
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To evaluate the integral in A.1, we transform the integral to polar coordinates where

r2 = x2 + y2 and dA = rdrdθ. Thus, we have∫
R2

e−(x
2+y2)/2σ2

dA =

∫ 2π

0

∫ ∞
0

e−r
2/2σ2 · r · drdθ

= 2π

∫ ∞
0

r · e−r2/2σ2
dr

(A.4)

Now, we make a change of variable s = r2 and therefore ds = 2rdr. Hence, we obtain∫
R2

e−(x
2+y2)/2σ2

dA = π

∫ ∞
0
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2
ds
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Hence, according to A.3, the final evaluation of our integral is

∫ ∞
0

e−x
2/2σ2

dx =
σ
√

2π

2
(A.6)

We make use of integration by parts for evaluating this integral. The theorem of inte-

gration by parts states that ∫ b

a
udv = uv|ba −

∫ b

a
vdu (A.7)

For the evaluation of the integral in this section, we will make the following replacements:

u = x dv = e−x/2σ
2
dx, dv = xdx. In addition, du = dx and v = −2σ2e−x/2σ

2
. Applying

the theorem of integration by parts, we have
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Finally, the integral evaluates to∫ ∞
0

e−x/2σ
2 · x · dx = 4σ4 (A.9)

A.0.5 Evaluation of integral
∫∞
0

e−x
2/2σ2 · x2 · dx

To evaluate the integral, we use the integration by parts. Here, we make the following

replacements: u = x, v = e−x
2/2σ2

, du = dx, and dv = −x
σ2 e
−x2/σ2

. Thus, we proceed as

follows
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Using the result obtained in A.0.4, the final result is

∫ ∞
0

e−s
2/2σ2 · x2 · dx =

σ3

2

√
2π (A.11)

A.0.6 Evaluation of integral
∫∞
0

e−x
2/2σ2 · x3 · dx

We use a change of variables to easily evaluate this integral. We make s = x2 and

ds = 2xdx. Hence, the integral evaluates to

∫ ∞
0

e−x
2/2σ2 · x3 · dx =

1

2
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0

e−s/2σ
2 · sds (A.12)

Finally, using the result obtained in A.0.4, we obtain
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