
Computers & Graphics 37 (2013) 460–472
Contents lists available at SciVerse ScienceDirect
Computers & Graphics
0097-84
http://d

☆To c
Environ
environ

n Corr
E-m

bebusto
journal homepage: www.elsevier.com/locate/cag
Special Section on 3D Object Retrieval
Data-aware 3D partitioning for generic shape retrieval$

Ivan Sipiran a,n, Benjamin Bustos a, Tobias Schreck b

a KDW+PRISMA Research Group, Department of Computer Science, University of Chile, Chile
b Visual Analytics Group, Department of Computer and Information Science, University of Konstanz, Germany
a r t i c l e i n f o

Article history:
Received 24 October 2012
Received in revised form
4 April 2013
Accepted 5 April 2013
Available online 1 May 2013

Keywords:
Mesh partitioning
Optimization matching
Shape retrieval
93/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.cag.2013.04.002

omment on this article, please join the discuss
ment Google Group https://groups.google.c
ment.
esponding author. Tel.: +56 2 29784972.
ail addresses: iasipiranm@gmail.com, isipiran@
s@dcc.uchile.cl (B. Bustos), tobias.schreck@un
a b s t r a c t

In this paper, we present a new approach for generic 3D shape retrieval based on a mesh partitioning
scheme. Our method combines a mesh global description and mesh partition descriptions to represent a
3D shape. The partitioning is useful because it helps us to extract additional information in a more local
sense. Thus, part descriptions can mitigate the semantic gap imposed by global description methods.
We propose to find spatial agglomerations of local features to generate mesh partitions. Hence, the
definition of a distance function is stated as an optimization problem to find the best match between two
shape representations. We show that mesh partitions are representative and therefore it helps to
improve the effectiveness in retrieval tasks. We present exhaustive experimentation using the SHREC'09
Generic Shape Retrieval Benchmark.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Three-dimensional objects are a valuable resource in many fields
such as engineering and medicine. They can represent the shape of a
real object in a suitable way in order to be used by computers. The
versatility of this representation has resulted in an increasing interest
of the scientific community in several related topics. For instance:
shape analysis, shape processing, modeling applications, and so on. In
addition, it is currently possible to find massive and publicly available
3D data. For example the Google Sketchup collection, for which its use
is becoming a common practice. For these reasons, the search for
efficient and effective tools for this kind of data is imperative in order
to support future applications.

In particular, the content-based similarity search of 3D objects has
receivedmuch attention in recent years. This can be performedwithout
relying on additional information for searching, only using the provided
shapes. Additionally, many fields (for example medicine [1,2], CAD/
CAM [3], etc.) have benefited from the large amount of approaches
proposed to overcome the problem of 3D matching. Nevertheless, the
problem remains challenging and it is far from being completely
solved. Moreover, part of the problem resides in the possibility of
defining a suitable similarity measure between 3D models.

In this paper, we consider the problem of generic shape
retrieval. A common approach to facing this problem is to compute
ll rights reserved.

ion on the Collage Authoring
om/group/collage-authoring-

dcc.uchile.cl (I. Sipiran),
i-konstanz.de (T. Schreck).
an intermediate representation (feature vectors or graphs, for
instance) and subsequently defining the similarity of two objects
as the similarity of their representations. In this direction, there
are methods that exploit the visual similarity, the statistical
properties of 3D measures, or the possibility of defining transform
functions on the data, just to name a few. However, one of the
most critical problems is the semantic gap. That is, the intermedi-
ate representation may not be able to capture all the needed
information of a shape and therefore the effectiveness of searching
may be seriously affected.

A previous study by Bustos et al. [4] showed that some features
could well represent certain classes of objects and furthermore,
some features could be complimentary in representing a shape.
This is because algorithms cover only a part of the possible
spectrum of characteristics such as shape, silhouette, or intrinsic
properties. Thus, a natural extension of classic approaches was the
combination of features for improving the effectiveness of retrie-
val. Approaches in this direction have been previously presented
by Bustos et al. [5], Vranic [6], and Papadakis et al. [7], all of them
with promising results. However, the semantic gap is still latent in
this approach as any possible combination of features could not
represent important characteristics to discriminate between
objects.

A more recent approach is the combination of global and part-
based information. The idea is to combine features extracted from
an entire object with features extracted from parts of an object.
Some techniques have been presented so far by Li and Johan [8],
Bustos et al. [9], and Schreck et al. [10]. All these techniques share
a common aspect: the part-based features come from a fixed
partitioning of the objects. Although it was possible to improve the
effectiveness with respect to using only global features, the fixed

www.elsevier.com/locate/cag
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2013.04.002
http://dx.doi.org/10.1016/j.cag.2013.04.002
http://dx.doi.org/10.1016/j.cag.2013.04.002
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.04.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.04.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cag.2013.04.002&domain=pdf
mailto:iasipiranm@gmail.com
mailto:isipiran@dcc.uchile.cl
mailto:bebustos@dcc.uchile.cl
mailto:tobias.schreck@uni-konstanz.de
http://dx.doi.org/10.1016/j.cag.2013.04.002


Fig. 1. Two globally dissimilar chairs. Note that the chair at right is taller than the
left one. Nevertheless, it is possible to find similarities between their parts, which
can be exploited to improve the similarity measure between the two objects.

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472 461
partitioning limits the possibility of having truly distinctive parts.
This opens up a question on how to define a new kind of
partitioning dependent on the shape information.

We believe that the use of local features can enhance the use of
global features in shape retrieval. That is, we are trying to mitigate
the effect of the semantic gap. For instance, a common fact is
having two objects with different appearance in the same class.
Obviously, a global feature could differ in those objects. However,
in a local sense, it is still possible to find correspondences between
parts, so we can take advantage of this fact to improve the
similarity measure (see Fig. 1). Therefore, the discriminative power
of local features combined with global features could help to
improve the effectiveness in the similarity search.

In this paper, we propose a shape retrieval method using a
data-aware partitioning algorithm. Our idea is to exploit the local
characteristics of objects to determine discriminative parts. Thus,
each object is represented by its global feature and a set of features
extracted from parts. The partitioning method relies on finding
robust local features (namely keypoints) on the object's surface
and subsequently determining the parts where there is a high
concentration of keypoints (for instance, a human shape com-
monly has many features located in hands, feet, and head). Beyond
techniques which made use of the bag of features approach to
aggregate local descriptors for retrieval, our method is the first
attempt in combining global and local features found in a data-
adaptive way for generic shape retrieval.

Our main contribution is three-fold:
�
 We propose a model partitioning algorithm based on local
features. Regions on the surface with high concentration of
local features will be selected as parts.
�
 We combine the global feature with features obtained from
parts and define a combined distance to assess the similarity.
The distance between global features is performed as usual.
The distance between sets of parts is stated as an optimization
problem. In addition, we propose a geometrical consistency
criterion which can be formulated within the same optimiza-
tion problem.
�
 We evaluate our approach using a well-known, established
benchmark dataset and appropriate performance measures.

Our approach is a generic, simple framework by which global
and local descriptors can be combined in a data-adaptive way. The
approach is able to provide on average, an improvement over the
retrieval effectiveness of state of the art global descriptors.
A careful, systematic analysis of the results is performed to assess
in detail the magnitude of the improvement, relating it with
global-only methods, and identifying classes of models for which
the method is particularly effective. We test our approach using a
state-of-the-art local interest point detector with desirable proper-
ties in combination with two robust view-based descriptors. Our
approach is flexible in that it can accommodate further, possibly
application-specific, object segmentation and description schemes, if
needed.
Our paper is organized as follows. Section 2 briefly presents the
state of the art in generic shape retrieval. Section 3 describes our
partitioning algorithm based on local features. Section 4 is devoted
to the matching methods and the definition of our similarity
measure. Section 5 describes our experiments and presents the
discussion of our results. Finally, Section 6 draws the conclusions.
2. Related work

The interest in 3D model retrieval has resulted in a large
amount of proposed techniques to overcome the problem. One
of the most studied approaches is to convert a 3D model into a
more convenient representation for comparison, for example
feature vectors. Then, the comparison can be done by defining a
distance between those representations. For generic shape retrie-
val, this approach has received attention due to the efficiency of
computing distances between vectors. In this section, we provide a
brief description of the state of the art related to descriptors for
generic shape retrieval and possible combinations to improve the
performance. For a comprehensive study, surveys by Bustos et al.
[11] and Tangelder and Veltkamp [12] are an excellent resource.

Classic methods for 3D shape retrieval can be classified into
three groups: view-based, histogram-based, and transform-based.
This classification is based on how a feature is extracted from the
shape. View-based methods transform a 3D shape into a set of 2D
views and subsequently we can apply image techniques to
describe the obtained views. For example, the Depth Buffer
method [13] computes six views corresponding to the six faces
of the bounding cube of an object. Each view stores the projected
distances from the object to the projection plane. Then, each view
is represented by Fourier coefficients and the final vector is the
concatenation of the six obtained views. Another example is the
PANORAMA descriptor [14], which computes three views taken
from the lateral faces of cylinders oriented according to the
coordinate axes. Similar to the Depth Buffer, each lateral face
encodes the distance from the object to the face. Then, Fourier and
Wavelets coefficients are extracted from each view, which form
the final descriptor.

Histogram-based methods summarize shape properties in
order to use them as features. For instance, Shape Distribution
[15] is a method that computes several geometric properties
(distances between pairs of surface points, angles between three
random surface points, etc). The method consists of sampling a
large amount of points on the shape surface and subsequently
measuring some property. Each value obtained for the chosen
property is accumulated in a histogram. Thus, the histogram
represents an approximation of the distribution of the property
and it is expected to be distinctive for each object.

Transform-based methods consist of converting the geometric
information by using some mathematical transformation prior to
the feature extraction. The goal of applying a transformation is to
enhance some information which is not evident in the Euclidean
space. In particular, in 3D model retrieval, there is an interest for
spherical harmonics to extract features from shapes. Vranic
proposed the ray-based descriptor [13] by using a spherical
function which is able to capture the behavior of the rays starting
in the origin and the intersections with the shape. Similarly,
Kazhdan et al. [16] used spherical harmonics frequencies along
with the Gaussian Euclidean Distance Transform in a volume
representation of a shape.

An interesting and new approach is the combination of
different descriptors to improve the performance of individual
descriptors. The basic idea is that different descriptors could
extract complementary features and their combination could lead
to improvements. Bustos et al. [5] proposed to dynamically



I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472462
combine several descriptors using a weighting scheme dependent
on the query. Similarly, Vranic [6] proposed to combine three
descriptors: Silhouette, Ray-based and Depth-Buffer. This combi-
nation (which was called DESIRE) improved the performance of
the individual descriptors. On the other hand, Papadakis et al. [7]
suggested combining 2D and 3D features to improve the perfor-
mance of retrieval. As a 2D feature, the authors proposed to use
the Depth Buffer method and as 3D feature, they proposed to use
spherical harmonics transform for spherical functions obtained
from the shape.

The aforementioned combination methods consist of somehow
combining two or more description methods. However, these
techniques still rely on the global shape for the calculation of each
descriptor. Recent approaches have considered the combination of
global information and part-based information. Li and Johan [8]
used global and local radial distances to describe a shape. First, the
method computes a radial distance descriptor by uniformly
dividing the surface of a sphere containing the object. The
division considers bins at different angle intervals and the average
distance of each bin to the object is stored on it. Second, the
local component of the method consists of uniformly dividing
the bounding cube of the object into N�N�N cells. For each
vertex on the shape, the method computes the minimum distance
to the cell centers and the distance is assigned to the vertex.
Finally, thirteen views are extracted using the assigned distances
as RGB values. The distance between two shapes with this
representation is measured pair-wise between global and local
descriptions.

Also, Bustos et al. [9] proposed a simple partitioning scheme in
order to combine it with global descriptors. Given a shape, the
method computes a global descriptor for it. Next, the shape is
divided into eight parts according to the eight octants obtained
with the coordinate axes in the 3D Euclidean space. Finally, the
method computes a descriptor for each part. To measure the
distance of global-partial representations, the authors evaluated
several weighting schemata where adaptive weighting showed the
best performances. Similarly, Schreck et al. [10] also took the
octant partition as a basis. Nevertheless, this new technique
considered the matching of the parts as a bipartite graph matching
problem. In addition, the authors tested the use of different
numbers of parts. Interestingly, it was shown that not using all
parts (6 or 7 depending on the dataset) outperformed the retrieval
performance.

Regarding the use of local features to decompose a 3D shape,
several approaches have been proposed for non-rigid and partial
shape retrieval. Toldo et al. [17] proposed to apply a spectral
clustering to decompose a mesh into regions. Each region was
further described with information such as the shape index, radial
geodesic distances and normal directions. The final representation
was obtained using a multi-level bag-of-features approach. On the
other hand, Shapira et al. [18] presented a technique for describing
mesh segments. The segmentation is hierarchically performed
using SDF histograms [19]. Next, contextual information is used
in order to improve the matching between parts. A bipartite graph
is used to measure the context-aware distance between two
objects. In addition, mesh decomposition is recently being used
as an alternative to 3D shape matching and retrieval. Litman et al.
[20] defined maximally stable components on meshes using
geometry diffusion. Similarly, Sipiran and Bustos [21] used a
clustering in the geodesic space to define key-components on
meshes.

Our method can be considered as a combination of local and
global approaches for the problem of generic shape retrieval.
Specifically, we aim at evaluating if the performance of global
descriptors can be improved by using a mesh decomposition
approach.
3. Data-aware 3D partitions

Previous approaches have tried to use 3D mesh partitions as
input in retrieval tasks. In this section, we present a partition
algorithm based on finding groups of discriminative local features.
Our method does not guarantee disjoint or complete partitions.
However, as it uses interest points detected on the mesh for
partitioning, we believe that the resulting fragments are repre-
sentative enough. Therefore, the partitions can be useful for
improving the matching between two 3D models.

Our method consists of three steps:
�
 Interest point detection: We aim at selecting a small set of points
on the mesh surface. We consider that a vertex is interesting if
it has an outstanding geometric structure in comparison with
its neighborhood.
�
 Clustering of interest points: We perform a clustering in order to
find groups of interest points under some constraints.
�
 Cluster-based partition: We use the resulting clusters for defining
representative partitions for matching.

3.1. Interest point detection

There is no agreement about what an interest point is and how
it can be formally defined. We will define an interest point as a
mesh's vertex whose geometric structure is different from its
neighborhood. Note that the robustness of the method will
depend on how the geometric structure is measured and how it
can support variations such as noise or missing data. In particular,
for a general-purpose 3D object retrieval system, we require a
robust and fast method. This is because shapes can come from
several sources, so there are no guarantees with respect to
manifoldness, noise, resolution, and so on.

We use the Harris 3D method [22] to select the set of interest
points in a mesh. This technique has proven to be effective and robust
against several transformations. In particular, it has been shown to
deliver good repeatability (localization) in light of different scales,
noise, and other model transformations [23]. This is a desirable
property in that the Harris detector can be expected to find compar-
able interest points for inclusion in the similarity function. Also, in [24]
it was shown that the Harris detector provides points on the surface
which are comparable to keypoints annotated by humans. Further-
more, in the same report, it was noted that the Harris 3D method
offers a good number of features compared to other algorithms. For
example, it delivers less interest points than Mesh saliency and SD-
corners; and it delivers more features than Heat Kernel Signatures
[24]. Therefore, we consider the Harris detectors to not only provide
repeatable, but also meaningful interest points which are expected
useful for the similarity function. In addition, the detector is fast
enough, and it can be easily used without detriment to the retrieval
time. Briefly, the Harris 3D method can be summarized with the
following steps:
�
 It determines a neighborhood around each vertex. The neigh-
borhood can be spatial (all points lying inside a 3D sphere
centered in a vertex), adaptive (all points forming rings around
a vertex and a certain geodesic distance from the vertex), and
rings (all points around a vertex regarding the number of
rings).
�
 Then the method finds a canonical local system by applying
PCA to the neighborhood.
�
 After that, the algorithm fits a quadratic surface on the normal-
ized neighborhood.
�
 Subsequently, it computes derivatives on the fitted surface.
Gaussian functions are used for smoothing derivatives. By using



Fig.
(c)

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472 463
integration between the derivatives and the Gaussians, the
method is robust to local geometric changes.
�
 Then the method constructs (using the derivatives) the auto-
correlation function needed to evaluate the Harris operator.
Subsequently, a response is computed for each vertex.
�
 Finally, it selects a set of vertices as interest points by applying
some criteria on the vertex's response. The original method
proposed two criteria: a number of vertices with the highest
response and an spatial criterion for well distributed interest
points.

In this paper, we use the Harris 3D method for computing the
vertex's response, and subsequently we select the vertices with the
highest response. In Section 5, we evaluate the effect of the
selection of keypoints in the performance of our retrieval method.

3.1.1. Control of mesh resolution
Note that the Harris 3D method depends on local neighbor-

hoods around a vertex. Nevertheless, generic 3D shapes could
come from different sources where their primary goal was not the
analysis or processing. It is therefore common to find objects with
bad triangulations. Moreover, many meshes are optimized for
rendering, so regular portions of them are represented by large
triangles. It poses a problem for 3D analysis, where meshes with
regular triangulations are preferably needed. Therefore, it is
necessary to control the size of the neighborhoods prior to the
interest point detection. In addition, our goal is to ensure a
consistent neighborhood computation along the entire mesh.

We implement the algorithm for control of mesh resolution
proposed by Johnson [25]. This algorithm assumes the spacing
between vertices as the resolution to be improved. More specifi-
cally, the mesh resolution is the median of the edge length
histogram. The goal is to decrease the edge length spread (or
variance) of the histogram around a desired resolution. To accom-
plish this goal, the algorithm performs local operations over the
edges which are too large (split operation) or too small (collapse
operation). Each edge is associated with a weight which combines
its length difference with the desired mesh resolution and the
geometric shape change if any operation is performed. Finally, a
greedy strategy performs local operations guided by a priority
queue defined over the weights. An example of our implementa-
tion is shown in Fig. 2.

3.2. Clusters of interest points

Once we have computed the interest points for a mesh, our goal
is to use them for extracting representative partitions. The main
idea is to find clusters of interest points in the 3D space, so each
cluster would define a portion of the mesh which is interesting
and distinctive. We propose an adaptive clustering algorithm
0.25 0.5 0.75 1 1.25 1.5
Edge length

0

2500

5000

7500

10000

12500

15000

A
m

ou
nt

2. Effect of mesh resolution: shape with bad triangulation (a) and its poorly distribu
and its improved edge length histogram.
taking into account the intra-cluster and the inter-cluster structure
of the clusters which generate the mesh partitions. In addition, we
add a constraint regarding the number of elements per cluster. It
allows us to discard interest points which do not belong to any
cluster, and therefore they should not be part of the partition
representation. Our algorithm is derived from Leow and Li [26],
and is presented in Algorithm 1.

Algorithm 1. Adaptive clustering.
ted edge len
Require: Set of points P
Require: Inter-cluster distance R
Require: Intra-cluster distance S
Require: Minimum number of elements per cluster Nm
Require: Number of iterations Iter
Ensure: Set of clusters C ¼ fC1;…;Cmg
1:
 Let C a set of clusters

2:
 C←∅

3
 for j←1 to Iter do

4
 for each p∈P do

5:
 Let Ci be the closest cluster to p with distance d.

6:
 If C ¼∅ then d¼ 2R.

7:
 if d4R then

8:
 Create a new cluster Cnew with p as element.

9:
 Insert Cnew into C.

10:
 else if d≤S then

11:
 Insert point p into Ci.

12:
 end if

13:
 Remove point p from P.

14:
 end for

15:
 for each cluster Ci in C do

16:
 if jCij≥Nm then

17:
 Update centroid for Ci

18:
 else

19:
 Insert each point in Ci into P.

20:
 Remove Ci from C.

21:
 end if

22:
 end for

23:
 end for

24:
 Return C
The adaptive clustering algorithm uses two distance thresholds
R, S, and the minimum number of points in a cluster Nm as
parameters. The algorithm scans Iter times the set of points trying
to find clusters which hold two criteria: the distance between each
point within a cluster to its centroid is not larger than S (intra-
cluster constraint), and the distance between cluster's centroids is
not smaller than R (inter-cluster constraint). In addition, if after a
scan, the number of points inside a cluster is less than Nm, the
0.015 0.03 0.045 0.06 0.075 0.09 0.105
Edge length

0

600

1200

1800

2400

3000

3600

4200

A
m

ou
nt

gth histogram (b). Shape processed with the mesh resolution algorithm



Fig. 3. Three examples of partitions obtained with our method using the parameter
configuration used in Section 5.2.

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472464
cluster is discarded. Also, the points of the small cluster are pushed
back in the point collection for the next iteration. If a cluster has
more than Nm points, its centroid is updated.

Note that there may exist points which never hold with the
cluster constraints, and those points are simply discarded. We are
interested in groups of interest points, because these could be in a
representative part of the mesh. Hence the behavior of discarding
isolated points is important for our purposes, because those points
could be noise and therefore would not represent an important
feature of the mesh.

Another important aspect is the flexibility of the adaptive
clustering algorithm with respect to the obtained number of
clusters. The number of clusters depends on the point distribution
and the cluster parameters. This is an advantage because each
object would have a different number of clusters depending on
their interest points. In this way, each object would have a data-
aware flexible representation.

The presented clustering algorithm determines a spatial parti-
tioning of the keypoints where clusters are always circle-shaped.
Hence, we also tested the DBSCAN [27] algorithm for clustering
which has a different functionality. DBSCAN is a density-based
algorithmwhich is able to detect clusters of arbitrary shapes and it
is based on proximity and density concepts. However, after
experimentation, we found that it was difficult to correctly define
the density thresholds for this algorithm. In addition, in many of
our experiments, DBSCAN computed very few clusters per shape,
underestimating the representational power of the interest points.
3.3. Partitioning and description

Our partitioning algorithm is quite simple. For each cluster of
interest points, we proceed as follows:
�
 The algorithm computes the smallest 3D sphere containing all
points within the cluster. We used a linear programming
algorithm for this purpose [28]. The outputs of this step are
the center of the sphere and the radius.
�
 Next, we extract the portion of the mesh lying inside of a 3D
sphere formed by the previously computed center and the
radius scaled by a factor of δ (we study the effect of δ in Section
5). It can be done by scanning the complete set of vertices and
verifying which vertex lies inside the sphere. However, this can
be computationally expensive for large meshes. Here we use an
improved method. We build a kd-tree with all vertices of the
mesh, and thus a range search is performed using as query the
center of the sphere and the radius. Note that the kd-tree needs
to be built only once, and it can be used for each partition by
changing the query. Finally, the method builds a new mesh
using the set of points inside the sphere and their associated
faces.

For description, we compute a global descriptor for the entire
model and subsequently compute a global descriptor for each
partition. Formally, given an object O, its representation is defined
as

SO ¼ fðsO; POÞjsO∈Rn and PO ¼ fp1O; p2O;…; pmO g; piO∈Rng;

where sO is an n-dimensional descriptor representing the com-
plete object, PO is a set of m n-dimensional descriptors represent-
ing each partition. Fig. 3 depicts an example of some partitions
obtained with our algorithm.
4. Matching

At this point, we need to define a distance between two
representations as shown previously. Given two 3D objects O
and Q, each with their representations:

SO ¼ fðsO; POÞjsO∈Rn and PO ¼ fp1O; p2O;…; pmO g;piO∈Rng

and

SQ ¼ fðsQ ; PQ ÞjsQ∈Rn and PQ ¼ fp1Q ; p2Q ;…; pkQ g;piQ∈Rng;

where O has m partitions, and Q has k partitions. Our goal in this
section is to define an appropriate distance dðSO; SQ Þ, which
measures the dissimilarity between two objects using their
representations. The main problem is how to define a dissimilarity
between two sets of descriptors with different lengths.

In this paper, we only consider a linear combination between
the global-to-global distance and the partition-based distance.
That is

dðSO; SQ Þ ¼ μ∥sO−sQ∥2 þ ð1−μÞdðPO; PQ Þ; ð1Þ

where 0≤μ≤1 weights the contribution of the involved terms.
4.1. Integer linear programming

The matching problem is how to find a correspondence set
between two collections of descriptors. Clearly, this problem is
difficult because it is not possible (at least not within a reasonable
time) to evaluate all possible combinations of correspondences.
We will state the problem using a linear programming formulation
for searching a feasible solution.

We define an indicator variable as follows:

xði; jÞ ¼ 1 if piO matches pjQ
0 otherwise:

(
ð2Þ

Note that jxj ¼m� k, that is each element in PO could be
matched with each element in PQ. Let us think of x as a binary
string of length m� k. The number of configurations for x is 2m�k,
which allows us to figure out the complexity of the problem.
Obviously, if m and k are large enough, the number of possible
matches increases exponentially. Nevertheless, we can add some
constraints to the problem. For instance, if pOi is already matched
to pQ

j, then pO
i should not be matched to any other element in PQ.

Formally, if xði; jÞ ¼ 1, then ∑jxði; jÞ ¼ 1, and therefore also
∑ixði; jÞ ¼ 1.

We use the indicator variable x to formulate an objective
function as follows:

f ðxÞ ¼∑
i;j
∥piO−p

j
Q∥2 � xði; jÞ; ð3Þ

where the goal is to find the optimum xn which minimizes f(x).
Formally,

xn ¼ argmin
x

f ðxÞ; ð4Þ



I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472 465
subject to

∑
i
xði; j′Þ ¼ 1 and ∑

j
xði′; jÞ ¼ 1 ∀i; j

Moreover, we can consider the optimum f ðxnÞ as the dissim-
ilarity function dðPO; PQ Þ. However, the optimum f ðxnÞ depends on
the number of matches, reaching lower values when PO and PQ
have a few elements. In order to overcome this problem, we
normalize the value of the optimum, and we obtain the final
dissimilarity measure:

dðPO; PQ Þ ¼
f ðxnÞ

minðjPOj; jPQ jÞ
: ð5Þ

Note that the normalization in Eq. (5) also contributes to
maintain the symmetry of the distance. This is an important
aspect if one considers indexing the distance for fast searching.

4.1.1. Numerical aspects
To numerically solve Eq. (4), we define a matrix of distances

Cði; jÞ ¼ ∥piO−p
j
Q∥2; ð6Þ

where each element of this matrix stores the L2 distance between
descriptors from PO and PQ. Thus, the problem of finding xn in Eq.
(4) can be stated as a binary linear programming problem

min
x

CTx such that

Ax≤b

Aeqx¼ beq
x is binary

8><
>: ð7Þ

where C and x are linearized versions of themselves, A and b
represent linear inequality constraints, and Aeq and beq represent
linear equality constraints. In fact, the constraints ∑ixði; jÞ ¼ 1 and
∑jxði; jÞ ¼ 1 need to be placed in the linear constraints.

The solution for the problem in Eq. (7) is given by a branch-
and-bound algorithm which tries to solve it using LP-relaxation
approaches [29].

4.2. Integer quadratic programming

The linear programming formulation finds the best set of
correspondences only regarding the dissimilarity between
descriptors in PO and PQ. The problem with this formulation is
that it discards the spatial information of the partitions from
which the descriptors come. Obviously, our algorithm does not
ensure consistency in the spatial sense. In this section, we enrich
our previous formulation by adding spatial consistency between
descriptors.

Recalling the indicator variable x. If we have two correspon-
dences xði; jÞ ¼ 1 and xði′; j′Þ ¼ 1, one can expect that the spatial
relationship between fragments i and i′ from shape O is quite
similar to the spatial relationship between fragments j and j′ from
shape Q. Of course, the idea is to minimize the difference between
spatial distances of partitions, while maintaining the dissimilarity
between descriptors. Therefore our new formulation for Eq. (3) is

f ðxÞ ¼ α ∑
i;j;i′;j′

jdOS ði; i′Þ−dQS ðj; j′Þjxði; jÞxði′; j′Þ þ β∑
i;j
∥piO−p

j
Q∥2 � xði; jÞ ð8Þ

where dOS ði; i′Þ is the spatial distance between fragments i and i′
from the object O, α and β are weights to set the contribution of
the spatial consistency and the descriptor dissimilarity, respec-
tively. In addition, the new formulation is subject to the same
constraints as Eq. (4). Finally, we can use the new formulation to
find an optimum xn and therefore we will use the same distance as
shown in Eq. (5).

Regarding the spatial distances, during the process of finding
the partitions, we compute distances between the centers of the
spheres which generate the partitions. In this way, the algorithm
makes available the spatial information in the matching.

4.2.1. Numerical aspects
To numerically solve Eq. (4) using the objective function in Eq.

(8), we define a matrix with the distance differences as follows:

Dðfi; jg; fi′; j′gÞ ¼ jdOS ði; i′Þ−dQS ðj; j′Þj; ð9Þ
where fi; jg denotes the linear index of the pair ði; jÞ. Clearly, we
need to consider the complete set of spatial relationships between
pairs of partitions. The dimension of the matrix D ismk�mk. Thus,
the problem of finding xn in Eq. (8) can be stated as a binary
quadratic programming problem

min
x

1
2
xTDxþ CTx such that

Ax≤b

Aeqx¼ beq
x is binary

8><
>: ð10Þ

where C and the constraints were defined in Eq. (7).
The solution for the problem in Eq. (10) is also given by a

branch-and-bound algorithm with LP-relaxation, but in this case
using a quadratic objective function [30].
5. Experiments

In this section, we present our experiments and results. The
section is organized as follows. Section 5.1 presents the experi-
mental setup, in addition to the dataset and evaluation measures.
Section 5.2 presents a study of the contribution of partition
matching in the overall method. Section 5.3 presents a sensitivity
analysis of parameters. Section 5.4 discusses the effectiveness of
our method in a class-by-class analysis. Section 5.4.1 investigates
the correlation between effectiveness and important aspects such
as number of vertices and number of parts. Finally, Section 5.4.2
presents results using the PANORAMA descriptor.

5.1. Experimental setup

For our experiments, we use the SHREC’2009 generic bench-
mark [31]. This benchmark contains 720 shapes organized in 40
classes with 18 shapes per class. To evaluate the retrieval effec-
tiveness of our method, we use common measures in the retrieval
community such as mean average precision (MAP), nearest neigh-
bor (NN), First Tier (FT) and Second Tier (ST). Briefly, we describe
each measure as follows:
�
 Mean average precision (MAP): Given a query, its average
precision is the average of all precision values computed in
each relevant object in the retrieved list. Given several queries,
the mean average precision is the mean of average precision of
each query.
�
 Nearest neighbor (NN): Given a query, it is the precision at the
first object of the retrieved list.
�
 First Tier (FT): Given a query, it is the precision when C objects
have been retrieved, where C is the number of relevant objects
to the query.
�
 Second Tier (ST): Given a query, it is the precision when 2nC
objects have been retrieved, where C is the number of relevant
objects to the query.

In the retrieval experiments, each object in the collection is
used as query, and subsequently we average the measures for each
object to obtain the effectiveness for the entire dataset.

Regarding the descriptors, in this paper, we tested the DSR and
PANORAMA descriptors. Each time we describe a mesh using these



Fig. 4. Recall–precision.

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472466
descriptors, the input mesh is normalized in pose (rotation,
translation and scale) prior to the description. As DSR is faster to
compute than PANORAMA, we preferred to use DSR for presenting
a detailed study of our approach. Subsequently, we use PANOR-
AMA to validate our results.

5.2. The role of partition matching

The goal of this section is to show the contribution of the
partition matching in the distance computation. Recall the defini-
tion of our distance in Eq. (1). Our distance is a linear combination
between global distance (using the DSR descriptor) and partition
distance. The contribution of the partition distance in the final
distance depends on the parameter μ. So we conducted an
experiment to measure the effect of μ in the effectiveness of the
proposed distance.

We test different values for μ in the interval [0, 1] and
investigate the best value according to the obtained MAP. As our
objective is to evaluate only the effect of μ, we fixed the values for
any other parameter (see Section 5.3 for a sensitivity analysis
about parameters). Next, we show a summarized description of
the parameters used in this experiment:
�
 For the Harris 3D algorithm, we select 200 keypoints for each
object.
�
 For the clustering algorithm, we consider the length of the
diagonal of the minimum bounding box of an object (diag) to
define the spatial parameters: R and S. Thus, R¼ 0:1� diag,
S¼ 0:2� diag, Nm¼10, and Iter¼10. Note that the R and S
parameters vary for each object. The Nm and Iter parameters
were set empirically.
�
 The scale factor of the sphere radius in the patch extraction
step was set to 1.
�
 In addition, α and β in Eq. (8) are 1.

We compare our two proposals, linear programming matching
(LPM) and quadratic programming matching (QPM) with a base-
line algorithm (GM), which only uses the global descriptors for
retrieval (note that GM is a special case of our proposed distance
when μ¼ 1).

Table 1 shows the MAP for several values of μ, using both
techniques LPM and QPM. The best result for LPM is obtained in
μ¼ 0:9 with 49.52. This value shows an improvement with respect
to using only global descriptors. Note that μ¼ 1:0 represents the
GM baseline approach, as it considers a total contribution of the
global descriptor distance. It is worth noting that the best MAP
value for LPM is obtained through a large contribution of the
global distance. In contrast, the incorporation of geometric con-
sistency in the QPM approach does not seem to contribute to the
effectiveness. Nevertheless, the shown MAP values are an average
Table 1
MAP values for different values of μ (values are in
[0,100] scale).

μ LPM QPM

0 9.39 5.14
0.1 15.06 6.51
0.2 21.93 8.42
0.3 29.20 11.26
0.4 35.90 14.99
0.5 41.14 19.97
0.6 44.90 26.20
0.7 47.49 33.63
0.8 48.93 41.47
0.9 49.52 47.79
1.0 49.10 49.10
of the entire dataset. This can bring up the fact that it is possible
that certain classes exploit the geometric consistency. We dedicate
Section 5.4 to study this situation.

We also show a recall–precision plot for the different config-
urations of μ (see Fig. 4). Note the improvement of our method
when μ¼ 0:9 in contrast to other values, even when global
matching is used (μ¼ 1). Moreover, the precision improvement
is visible in every recall value, so it confirms the results in Table 1.

5.3. Sensitivity analysis

In this section, we evaluate several parameters of our method
in order to find the best configuration. We take the finding of the
previous section as a starting point. That is, all results presented in
this section were computed for μ¼ 0:9. The parameters to be
evaluated are:
�
 Keypoint selection: We evaluate six configurations taken into
account a fixed number of keypoints (200, 300, and 400) or a
number of keypoints as a ratio of the number of vertices on the
mesh (at ratios 1%, 2% and 4%). In the presented results, we use
the labels IP-200, IP-300, IP-400, IP-0.01, IP-0.02, and IP-0.04,
respectively.
�
 Clustering parameters: We evaluate three configurations regard-
ing the spatial constraints of the clustering algorithm. In our
experiments, we use the diagonal of the bounding box of an
object (diag) as reference to the clustering parameters. Thus, it
is possible to associate the clustering parameters with the size
of an object. We define three configurations corresponding to
small, medium, and large clusters. The configurations are
defined as follows (in the presented results, the diag factor is
discarded to facilitate the reading):
○ Small clusters: R¼ 0:1� diag, S¼ 0:2� diag.
○ Medium clusters: R¼ 0:15� diag, S¼ 0:3� diag.
○ Large clusters: R¼ 0:2� diag, S¼ 0:4� diag.
�
 Scaling factor for partition: We evaluate three different scaling
factors for the radius of the partitioning sphere. We use 1.0,
1.25, and 1.5.

As we are interested in studying the impact of the parameters
in our approach, we present results using all the aforementioned
evaluation measures. In addition, we discuss that effect in the
Linear Programming Matching (LPM) and Quadratic Programming
Matching (QPM) separately.

Fig. 5 shows the mean average precision for LPM using all
possible combinations of parameter configurations. Note that



Fig. 5. Mean average precision (MAP) and sensitivity analysis on our Linear Programming Matching approach. (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best
visualization.

Fig. 6. Nearest neighbor (NN) and sensitivity analysis on our Linear Programming Matching (LPM) approach. (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best
visualization.

Fig. 7. First tier (FT) and sensitivity analysis on our Linear Programming Matching (LPM) approach. (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best visualization.

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472 467
regardless of the used keypoint selection, LPM gives better results
when small clusters are used. In addition, the mean average
precision decreases when the size of clusters is increased. It means
that large partitions are more unstable compared to small parti-
tions. It sounds logical, since small clusters are expected to be
compact agglomerations of keypoints, and therefore the region
containing them can be considered as a representative partition
for an object. In contrast, large clusters allow distant keypoints to
belong to the same cluster. As a result, the probability of a
keypoint to belong to any cluster is high. Therefore, isolated
keypoints (possibly due to noise) could be influencing the gen-
eration of poor partitions.

Interestingly, the scaling factor for partition is very related to
the previous finding. The scaling factor is used to extract the
partitions after the clustering algorithm. So if the scaling factor is
large, the partition will be large too. Again, by looking at Fig. 5,
small values of δ give the best results. Therefore, we can confirm
that there is an inverse relation between partition size and
effectiveness.

Another important point is that, for each plot, the best mean
average precision was obtained when we selected a number of
keypoints in accordance with the number of vertices. In fact, the
highest MAP was 0.4977, obtained with IP-0.02, R¼0.1, S¼0.2, and
δ¼ 1:0. The reason to choose this in contrast to a fixed number of
keypoints is evident. With a fixed number of keypoints, it is not
possible to guarantee a good representation for a shape. This fact
conditions the representativeness power of the keypoints, because
it is likely that when we took a fixed number of keypoints per
model, this amount can be large for some models and small for
others. On the other hand, the adaptive alternative seems to be a
good choice taking into account that an object can have an
arbitrary number of vertices.

Also, we present results for nearest neighbor (NN), First Tier
(FT), and Second Tier (ST) in Figs. 6, 7, and 8, respectively. The NN
measure evaluates the capacity of an algorithm to retrieve a
relevant object in the first position of the retrieved list. The
highest value 0.7958 was obtained using a fixed number of
keypoints (400), small clusters (R¼0.1, S¼0.2) and the smallest
scaling factor (1.0). On the other hand, our results about FT and ST
show a similar behavior as MAP. That is, higher values are obtained
when clusters are small, and the scaling factor for a partition is
small. The highest value 0.4665 for FT was obtained with IP-0.04,
R¼0.1, S¼0.2 and δ¼ 1:0. Similarly, the highest value 0.320507
was obtained with IP-0.02, R¼0.1, S¼0.2, and δ¼ 1:0.

Regarding QPM, Figs. 9, 10, 11 and 12 show our results for MAP,
NN, FT and ST, respectively. Surprisingly, the best MAP scores were
obtained with medium size clusters. Moreover, unlike the mean
average precision of LPM, large clusters give better results when



Fig. 8. Second tier (ST) and sensitivity analysis on our Linear Programming Matching (LPM) approach. (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best
visualization.

Fig. 9. Mean average precision (MAP) and sensitivity analysis on our Quadratic Programming Matching approach (QPM). (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled
to best visualization.

Fig. 10. Nearest neighbor (NN) and sensitivity analysis on our Quadratic Programming Matching approach (QPM). (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best
visualization.

Fig. 11. First tier (FT) and sensitivity analysis on our Quadratic Programming Matching (QPM) approach. (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best
visualization.

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472468
the number of keypoints depends on the number of vertices.
In this connection, the configuration that delivers the largest
partitions (R¼0.2, S¼0.4 and δ¼ 1:0) has one of the highest
MAP score. Although this situation contrasts too much with the
results obtained for LPM, there is a reason for this behavior. The
QPM approach depends not only on the similarity between part
descriptors, but also on their geometric disposition. In fact, QPM
gives the same importance to the similarity between descriptors
and their consistency. In our opinion, the geometric consistency is
causing this phenomenon. Our reasoning is that larger parts are
more consistent in a geometrical sense than smaller parts. For
instance, consider two human shapes: one with arms close to
body, and other with open arms forming a T. Small partitions could
characterize hands, legs, and head. Differently, large partitions
could characterize upper body and lower body. So obviously the
geometric consistency of upper body and lower body remains



I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472 469
more similar than hands, legs and head in this scenario.
This situation is not uncommon in 3D datasets, and the
SHREC'2009 dataset is not an exception. Therefore, in our opinion,
the results we obtained exhibit the importance of considering the
size of partitions as a key aspect to accomplish good effectiveness.

Similar to LPM, the First Tier (see Fig. 11) and Second Tier (see
Fig. 12) in QPM exhibit an analogous behavior to its mean average
precision. For the First Tier, large clusters give better results
against their counterpart. Moreover, the highest FT score 0.4511
is obtained with the largest possible partition (IP-0.04, R¼0.2,
S¼0.4, δ¼ 1:5). Likewise, using the Second Tier, the predominant
scores are present either when using large clusters or when using
a scaling factor greater than 1.0.

5.4. Class-by-class analysis

In this section, we show a more detailed evaluation of our
approaches from the point of view of the effectiveness in each
class of the dataset. The motivation to perform this evaluation is
two-fold. First, all the retrieval measures used in previous experi-
ments are a result of averaging. Average is a good way to condense
a series of values. However, it can also hide valuable information in
finer levels of analysis. Second, after seeing the results obtained in
previous sections, our approach can be suitable depending on
shape classes. So it is necessary to study the effect of our approach
in each class of the dataset. Therefore, this can reveal useful
information to decide when to effectively use our proposal. The
results of this section were computed using the best combination
found in the sensitivity analysis of Section 5.3, namely IP-0.02,
R¼0.1, S¼0.2 and δ¼ 1:0.

Fig. 13 shows the mean average precision for each class in the
SHREC'09 dataset. We divide the classes into two figures to best
visualization. Each figure shows the comparison of Global Match-
ing, Linear Programming Matching and Quadratic Programming
Matching for each class as clustered bars. Our method was able to
improve the effectiveness in 30 out of 40 classes. Moreover, when
the objects within the same class have similar local structures and
geometric consistency (such as in bookshelf, bird, apartment and
skyscrape), the QPM approach outperforms the global matching
and LPM.

Also, note the existence of 10 classes (single house, chair, round
table, quadruped, mug, floor lamp, desk lamp, sword, biplane and
bicycle) where it was not possible to improve the effectiveness
with any of our approaches. However, it is also worth noting that
in general, all of these 10 classes share a characteristic: the high
variability of objects within the same class not only in a global
sense, but also in a local sense. To illustrate this point, let us take
as example the class Chair, on which our approaches did not
improve. In our opinion, it is due to the high variability in the
global sense. Moreover, shape parts also have a high variability
(see Fig. 14). As a result, the keypoints can be concentrated in
different parts of the models, as each object can contain distinctive
Fig. 12. Second tier (ST) and sensitivity analysis on our Quadratic Programming Match
visualization.
local features not repeatable in its class. Therefore, LPM and QPM
cannot take advantage of the partitioning technique proposed in
this paper. Consequently, this can be cause for the moderate
improvement of our method with respect to global matching.
However, we believe that similar situations could influence the
effectiveness of any algorithm.

The found evidence allows us to state the strengths and
limitations of our approach. On one hand, our method can
improve the effectiveness in classes that share local information.
That is, when models from the same class have common and
similar parts, an improvement is expected. On the other hand, our
approaches cannot deal with extreme variability of parts between
objects within the same class.
5.4.1. Correlation analysis
In this section, we investigate the possible relationships

between several factors that affect the effectiveness of our pro-
posed methods. To do so, we use a correlation analysis and a
statistical significance study among eight variables defined in the
following, also introducing the abbreviations for each variable to
be used in the analysis:
�

ing
Number of partitions (NP).

�
 Number of vertices (NV).

�
 MAP for global matching (GM).

�
 MAP for LPM (LPM).

�
 MAP for QPM (QPM).

�
 MAP gain of LPM over GM (G1).

�
 MAP gain of QPM over GM (G2).

�
 MAP gain of QPM over LPM (G3).
The last three variables were obtained by computing the
difference of MAP scores of the involved methods. To obtain the
data in this experiment, we computed the eight values using each
model in the collection as a query. Therefore, we obtained eight
values for each model, and subsequently we used all that informa-
tion to compute the correlation matrix shown in Table 2.
In addition, we computed the p-values for testing the hypothesis
of no correlation. So for each correlation value, we have a p-value
indicating the statistical significance of that correlation. We
assume p-values o0:05 as significant. The matrix of p-values is
shown in Table 3.

The information provided by the correlation matrix and the
p-values allow us to verify some aspects observed in the previous
experiments. For instance, there is a high correlation between the
number of partitions and the three gain measures, namely G1, G2
and G3. First, the correlation between the number of partitions and
G1 (MAP gain of LPM over GM) is positive. So the greater the number
of partitions, the higher the improvement of LPM over GM. Second,
the correlation between the number of partitions and G2 and G3
(MAP gain of QPM over GM and LPM, respectively) is negative. So it
(QPM) approach. (a) δ¼ 1:0. (b) δ¼ 1:25. (c) δ¼ 1:5. Plot were scaled to best



Fig. 13. Mean average precision for each class in the SHREC'09 dataset. Plots were scaled for better visualization.

Fig. 14. Samples of class Chair. Note the high variability of parts amongst shapes.

Table 2
Correlation matrix between eight variables: Number of partitions (NP), number of vertices (NV), MAP for GM (GM), MAP for LPM (LPM), MAP for QPM (QPM), MAP gain for
LPM over GM (G1), MAP gain for QPM over GM (G2), and MAP gain for QPM over LPM (G3).

Variables NP NV GM LPM QPM G1 G2 G3

NP 1.0000 0.0323 −0.0131 −0.0015 −0.0696 0.1318 −0.2658 −0.3145
NV 0.0323 1.0000 0.0361 0.0431 0.0361 0.0815 −0.0039 −0.0377
GM −0.0131 0.0361 1.0000 0.9962 0.9784 0.0149 −0.2119 −0.2132
LPM −0.0015 0.0431 0.9962 1.0000 0.9776 0.1022 −0.1972 −0.2351
QPM −0.0696 0.0361 0.9784 0.9776 1.0000 0.0484 −0.0055 −0.0254
G1 0.1318 0.0815 0.0149 0.1022 0.0484 1.0000 0.1566 −0.2625
G2 −0.2658 −0.0039 −0.2119 −0.1972 −0.0055 0.1566 1.0000 0.9119
G3 −0.3145 −0.0377 −0.2132 −0.2351 −0.0254 −0.2625 0.9119 1.0000

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472470
means that QPM benefits from fewer partitions. These two situations
are consistent with the findings of Section 5.3 when we showed that
QPM presents better results with large partitions. So now we can
conclude that QPM is suitable for matching few large partitions. In
contrast, LPM can perform a good matching regardless of the
geometric consistency, just by considering more small partitions. It
is expected that the small partitions belong to distinctive features of
the objects. In summary, we have shown the importance of the
number of partitions and their size in the improvement of the
retrieval effectiveness of our technique.

Regarding the number of vertices of the meshes, there is a
useful correlation which deserves attention. The number of



Table 3
Matrix of p-values for the correlation between eight variables: number of partitions
(NP), number of vertices (NV), MAP for GM (GM), MAP for LPM (LPM), MAP for
QPM (QPM), MAP gain for LPM over GM (G1), MAP gain for QPM over GM (G2), and
MAP gain for QPM over LPM (G3).

Variables NP NV GM LPM QPM G1 G2 G3

NP 1.0000 0.3875 0.7262 0.9682 0.0621 0.0004 0.0000 0.0000
NV 0.3875 1.0000 0.3329 0.2484 0.3329 0.0287 0.9160 0.3121
GM 0.7262 0.3329 1.0000 0.0000 0.0000 0.6895 0.0000 0.0000
LPM 0.9682 0.2484 0.0000 1.0000 0.0000 0.0060 0.0000 0.0000
QPM 0.0621 0.3329 0.0000 0.0000 1.0000 0.1949 0.8836 0.4957
G1 0.0004 0.0287 0.6895 0.0060 0.1949 1.0000 0.0000 0.0000
G2 0.0000 0.9160 0.0000 0.0000 0.8836 0.0000 1.0000 0.0000
G3 0.0000 0.3121 0.0000 0.0000 0.4957 0.0000 0.0000 1.0000

Table 4
Results for different values of μ in LPM using PANORAMA (values are in [0,100]
scale).

μ NN FT ST MAP

0 42.0833 21.2337 15.3064 20.4128
0.1 60.6944 31.3889 21.8709 31.3174
0.2 74.5833 40.6536 28.6029 42.286
0.3 81.8056 48.268 33.7908 50.9521
0.4 85.4167 54.1912 38.701 57.3621
0.5 88.3333 57.8758 41.393 61.7762
0.6 88.8889 60.3513 43.1822 64.4322
0.7 88.4722 61.585 44.375 65.9167
0.8 88.8889 62.165 44.951 66.6028
0.9 89.0278 62.3366 45.3023 66.813
1.0 89.0278 61.9853 44.7917 66.7291

I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472 471
vertices is highly correlated with the MAP gain of LPM over GM
(G1). In other words, as the correlation is positive, we can say that
LPM benefits from meshes with a large number of vertices. It
reveals a remarkable connection with the previous analysis. With
large number of vertices, one can expect meshes with more detail,
and hence they can contain rich features. Moreover, if we prefer to
select small clusters, the resulting partitions will be distinctive and
small. In addition, we can obtain many partitions since the number
of keypoints could depend on the number of vertices. Finally,
following our previous analysis, LPM obtains better effectiveness
when the input is a set of many distinctive partitions as a product
of meshes with many vertices.

It is also worth noting the dependency of our approaches (LPM
and QPM) on the global matching. This can be evidenced in the
high correlation between GM and both LPM and QPM. Obviously,
this fact is in accordance with the use of μ¼ 0:9 which is
associated to a large contribution of the global matching in the
final distance computation.

5.4.2. Results with PANORAMA
In this section, we present the results of our method using the

PANORAMA descriptor [14]. For this experiment, we used the best
parameter configuration as shown in Section 5.3. Table 4 shows
the results by varying the contribution of the part matching
(parameter μ) in the LPM technique. Similar to a previous experi-
ment (see Section 5.2), we obtained the best results when μ¼ 0:9.
This result validates our argument about the contribution of the
partition matching in the effectiveness of generic shape retrieval.
6. Conclusions

In this paper, we presented a shape retrieval method that
combines global descriptors and part-based descriptors. We pro-
posed a method for determining data-adaptive partition
from meshes. Partitions were derived from agglomerations of
distinctive keypoints on shapes. Finally, matching between parti-
tions was stated as an integer program in order to compute
correspondences.

From our experiments, it is possible to say that partition
matching contributes to improving the retrieval effectiveness.
Our method was able to achieve significant improvements in
classes with objects containing common distinctive parts. In
contrast, there is a limitation when objects within a class do not
share common distinctive parts. Therefore, the partition matching
degrades the effectiveness of global descriptors instead of improv-
ing it. Nevertheless, we believe that our approach partially
attenuated this limitation with its ability to determine character-
istic partitions. In our opinion, our method offers new representa-
tional capabilities for 3D shapes which have proven to be effective
in conjunction with global descriptors. In addition, we found a
high correlation between the achieved effectiveness and the
partitions provided by our method. Specifically, the number and
size of the partitions play an important role for defining an
effective similarity measure. This is because these two factors
are well related to the quality of partitions (and their distinctive-
ness) and therefore, they influence the overall performance.

In our opinion, the use of high-level local structures in 3D
shape retrieval is a promising research direction. Moreover, the
use of information in higher levels of abstraction (for instance,
functionality) should benefit the definition of more effective
similarity models.
Acknowledgments

This research has been partially funded by CONICYT (Chile)
through the Doctoral Scholarship, and FONDECYT (Chile) Project
1110111. The work of Tobias Schreck was supported by EC FP7
STREP Project PRESIOUS, Grant no. 600533.

References

[1] Keim DA. Efficient geometry-based similarity search of 3D spatial databases.
In: Delis A, Faloutsos C, Ghandeharizadeh S, editors. Proceedings of the ACM
international conference on management of data (SIGMOD). ACM Press; 1999.
p. 419–30 ISBN 1-58113-084-8.

[2] Atmosukarto I, Wilamowska K, Heike C, Shapiro LG. 3D object classification
using salient point patterns with application to craniofacial research. Pattern
Recognition 2010;43(4):1502–17.

[3] You CF, Tsai YL. 3D solid model retrieval for engineering reuse based on local
feature correspondence. Int J Adv Manuf Technol 2009;46(5–8):649–61.

[4] Bustos B, Keim D, Saupe D, Schreck T, Vranić D. An experimental effectiveness
comparison of methods for 3D similarity search. Int J Digital Libr 2006;6
(1):39–54 (Special issue on Multimedia Contents and Management in Digital
Libraries).

[5] Bustos B, Keim DA, Saupe D, Schreck T, Vranic D. Automatic selection and
combination of descriptors for effective 3D similarity search. In: Proceedings
of the international symposium on multimedia software engineering, 2004.

[6] Vranic DV. DESIRE: a composite 3D-shape descriptor. In: Proceedings of the
IEEE international conference on multimedia and expo, 2005.

[7] Papadakis P, Pratikakis I, Theoharis T, Passalis G, Perantonis SJ. 3D object
retrieval using an efficient and compact hybrid shape descriptor. In: Peranto-
nis SJ, Sapidis N, Spagnuolo M, Thalmann D, editors. Proceedings of the
workshop on 3D object retrieval (3DOR),. Eurographics Association; 2008.
p. 9–16 ISBN 978-3-905674-05-7.

[8] Li B, Johan H. 3D model retrieval using global and local radial distances.
In: Proceedings of the international workshop on advanced image technology,
2010.

[9] Bustos B, Schreck T, Walter M, Barrios JM, Schaefer M, Keim DA. Improving 3D
similarity search by enhancing and combining 3D descriptors. Multimedia
Tools Appl 2011;58(1):81–108.

[10] Schreck T, Scherer M, Walter M, Bustos B, Yoon SM, Kuijper A. Graph-based
combinations of fragment descriptors for improved 3D object retrieval. In:
Proceedings of the ACM multimedia systems, 2012.

[11] Bustos B, Keim DA, Saupe D, Schreck T, Vranic DV. Feature-based similarity
search in 3D object databases. ACM Comput Surv 2005;37(4):345–87.

[12] Tangelder JWH, Veltkamp RC. A survey of content based 3D shape retrieval
methods. Multimedia Tools Appl 2008;39(3):441–71.

http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref1
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref1
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref1
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref1
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref2
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref2
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref2
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref3
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref3
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref4
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref4
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref4
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref4
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref7
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref7
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref7
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref7
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref7
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref9
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref9
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref9
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref11
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref11
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref12
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref12


I. Sipiran et al. / Computers & Graphics 37 (2013) 460–472472
[13] Vranic D. 3D model retrieval. PhD thesis. University of Leipzig; 2004.
[14] Papadakis P, Pratikakis I, Theoharis T, Perantonis S. PANORAMA: a 3D shape

descriptor based on panoramic views for unsupervised 3D object retrieval. Int
J Comput Vision 2009;89(2–3):177–92.

[15] Osada R, Funkhouser TA, Chazelle B, Dobkin DP. Shape distributions. ACM
Trans Graph 2002;21(4):807–32.

[16] Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant spherical harmonic
representation of 3D shape descriptors. Proceedings of the Eurographics Sympo-
sium on Geometry Processing (SGP'03). Eurographics Association. 2003.

[17] Toldo R, Castellani U, Fusiello A. Visual vocabulary signature for 3D object
retrieval and partial matching. In: Spagnuolo M, Pratikakis I, Veltkamp RC,
Theoharis T, editors. 3DOR. Eurographics Association; 2009. p. 21–8, ISBN 978-
3-905674-16-3.

[18] Shapira L, Shalom S, Shamir A, Cohen-Or D, Zhang H. Contextual part analogies
in 3D objects. Int J Comput Vision 2010;89(2–3):309–26, http://dx.doi.org/
10.1007/s11263-009-0279-0.

[19] Shapira L, Shamir A, Cohen-Or D. Consistent mesh partitioning and skeleto-
nisation using the shape diameter function. Vis Comput 2008;24(4):249–59,
http://dx.doi.org/10.1007/s00371-007-0197-5.

[20] Litman R, Bronstein AM, Bronstein MM. Diffusion-geometric maximally stable
component detection in deformable shapes. Comput Graph 2011;35
(3):549–60.

[21] Sipiran I, Bustos B. Key-component detection on 3D meshes using local
features. In: Spagnuolo M, Bronstein MM, Bronstein AM, Ferreira A, editors.
3DOR. Eurographics Association; 2012. p. 25–32 ISBN 978-3-905674-36-1.

[22] Sipiran I, Bustos B. Harris 3D: a robust extension of the Harris operator for
interest point detection on 3D meshes. Vis Comput 2011;27:963–76.

[23] Bronstein AM, Bronstein MM, Bustos B, Castellani U, Crisani M, Falcidieno B,
et al., SHREC 2010: Robust feature detection and description benchmark.
In: Proceedings of the workshop on 3D object retrieval (3DOR'10). Euro-
graphics Association; 2010.

[24] Dutagaci H, Cheung C, Godil A. Evaluation of 3D interest point detection
techniques via human-generated ground truth. Visual Comput
2012;28:901–17, http://dx.doi.org/10.1007/s00371-012-0746-4.

[25] Johnson AE, Hebert M. Control of polygonal mesh resolution for 3-d computer
vision. Graphical Models Image Process 1998;60(4):261–85, http://dx.doi.org/
10.1006/gmip.1998.0474.

[26] Leow WK, Li R. The analysis and applications of adaptive-binning color
histograms. Comput Vis Image Underst 2004;94:67–91, http://dx.doi.org/
10.1016/j.cviu.2003.10.010.

[27] Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering
clusters in large spatial databases with noise. In: International conference on
knowledge discovery and data mining, 1996. p. 226–31.

[28] Matoušek J, Sharir M, Welzl E. A subexponential bound for linear program-
ming. In: Proceedings of the eighth annual symposium on computational
geometry. SCG '92. New York, NY, USA: ACM; 1992. p. 1–8. http://dx.doi.org/10.
1145/142675.142678, ISBN 0-89791-517-8.

[29] Wolsey L. Integer programming. Wiley-interscience series in discrete mathe-
matics and optimization. Wiley; 1998 ISBN 9780471283669.

[30] Bemporad A, Mignone D, Morari M. An efficient branch and bound algorithm
for state estimation and control of hybrid systems. In: European control
conference, Karlsruhe, Germany, 1999.

[31] Godil A, Dutagaci H, Akgül CB, Axenopoulos A, Bustos B, Chaouch M, et al.
SHREC'09 track: generic shape retrieval. In: Spagnuolo M, Pratikakis I,
Veltkamp RC, Theoharis T, editors. Proceedings of the workshop on
3D object retrieval (3DOR). Eurographics Association; 2009. p. 61–8
ISBN 978-3-905674-16-3.

http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref14
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref14
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref14
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref15
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref15
http://dx.doi.org/10.1007/s11263-009-0279-0
http://dx.doi.org/10.1007/s11263-009-0279-0
http://dx.doi.org/10.1007/s11263-009-0279-0
http://dx.doi.org/10.1007/s11263-009-0279-0
http://dx.doi.org/10.1007/s00371-007-0197-5
http://dx.doi.org/10.1007/s00371-007-0197-5
http://dx.doi.org/10.1007/s00371-007-0197-5
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref20
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref20
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref20
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref21
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref21
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref21
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref22
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref22
http://dx.doi.org/10.1007/s00371-012-0746-4
http://dx.doi.org/10.1007/s00371-012-0746-4
http://dx.doi.org/10.1007/s00371-012-0746-4
http://dx.doi.org/10.1006/gmip.1998.0474
http://dx.doi.org/10.1006/gmip.1998.0474
http://dx.doi.org/10.1006/gmip.1998.0474
http://dx.doi.org/10.1006/gmip.1998.0474
http://dx.doi.org/10.1016/j.cviu.2003.10.010
http://dx.doi.org/10.1016/j.cviu.2003.10.010
http://dx.doi.org/10.1016/j.cviu.2003.10.010
http://dx.doi.org/10.1016/j.cviu.2003.10.010
dx.doi.org/http://dx.doi.org/10.1145/142675.142678
dx.doi.org/http://dx.doi.org/10.1145/142675.142678
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref29
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref29
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref31
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref31
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref31
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref31
http://refhub.elsevier.com/S0097-8493(13)00048-4/sbref31

	Data-aware 3D partitioning for generic shape retrieval
	Introduction
	Related work
	Data-aware 3D partitions
	Interest point detection
	Control of mesh resolution

	Clusters of interest points
	Partitioning and description

	Matching
	Integer linear programming
	Numerical aspects

	Integer quadratic programming
	Numerical aspects


	Experiments
	Experimental setup
	The role of partition matching
	Sensitivity analysis
	Class-by-class analysis
	Correlation analysis
	Results with PANORAMA


	Conclusions
	Acknowledgments
	References




