
Eurographics Workshop on 3D Object Retrieval (2012)
M. Spagnuolo, M. Bronstein, A. Bronstein, and A. Ferreira (Editors)

Key-component Detection on 3D Meshes using Local Features

Ivan Sipiran1 and Benjamin Bustos1

1KDW-PRISMA Research Group
Department of Computer Science, University of Chile

Abstract

In this paper, we present a method to detect stable components on 3D meshes. A component is a region on the

mesh which contains discriminative local features. Our goal is to represent a 3D mesh with a set of regions,

which we called key-components, that characterize the represented object and therefore, they could be used for

effective matching and recognition. As key-components are features in coarse scales, they are less sensitive to

mesh deformations such as noise. In addition, the number of key-components is low compared to other local

representations such as keypoints, allowing us to use them in efficient subsequent tasks. An desirable characteristic

of a decomposition is that the components should be repeatable regardless shape transformations. We show in the

experiments that the key-components are repeatable under several transformations using the SHREC’2010 feature

detection benchmark.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Geometric algorithms , languages, and systems

1. Introduction

Three-dimensional information is becoming a useful re-
source in computer vision applications. An important aspect
of this kind of information is that it can represent an ob-
ject in a more approximated way than using other media. In
addition, with the recent introduction of low-cost 3D sensors
such as Kinect, we can now have access to three-dimensional
information in real-world applications. Thus, the integration
of 3D data with visual information could be used in order to
improve the effectiveness of high-level tasks.

Figure 1: Key-components detected on 3D meshes under a

deformable transformation.

It is clear that 3D data requires its own processing and
analysis methods. Similarly to images, there is a need for
basic tasks that provide a background for high-level tasks.
Obviously, many problems arise due to the lack of a reg-
ular topology in 3D representations. In addition, the possi-
ble transformations that may occur differ from those present
in images (for instance non-rigid transformation, topol-
ogy changes, tessellations, among others). Therefore, three-
dimensional data requires special attention as its related
problems are not trivial.

A basic and important task is to find interesting structures
in representations such as 3D point clouds or meshes. Many
proposals have been presented to detect interest points (also
called keypoints) on 3D data. Regarding meshes, an interest
point is a point on the mesh with a local outstanding struc-
ture. As such, the keypoints represent interesting informa-
tion at fine scales and thus, they could be sensitive to noise
and other transformations. Therefore, it is required to find
larger and interesting structures to overcome the problems at
fine scales.

In this paper, we propose an algorithm to detect features
at a coarse level on meshes. Our motivation is that larger
structures are more resilient to local changes, while allow-
ing us to reduce the amount of information to represent 3D
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meshes in retrieval and recognition tasks. The idea is to de-
compose a 3D mesh in a set of components, which should be
consistently found in meshes regardless the transformation
applied. In addition, the number of components should be
much less than the number of keypoints, so using the com-
ponents in subsequent tasks would be efficient.

We introduce the term key-component as a region on a 3D
mesh where there are a lot of discriminative local features
(see Fig. 1). Key-components will be useful to the extent
that they are repeatable and robust against several transfor-
mations. Our method differs from mesh segmentation meth-
ods as it computes a non-complete decomposition of a mesh
while is aware of the local features present in the compo-
nents.

The main contribution of this paper is three-fold. First,
we use a clustering algorithm in the mesh geodesic space in
order to determine clusters of keypoints. These clusters are
the starting point to compute the key-components. Second,
we introduce a region growing algorithm which computes a
key-component from a cluster and extracts the correspond-
ing region on the mesh. Finally, we show a comprehensive
evaluation of our approach in different scenarios. For the
evaluation, we use a standard feature detection benchmark
which contains shapes with several transformations.

The rest of the paper is organized as follows. Section 2
presents the related works regarding mesh decomposition
and local features. Section 3 describes the local features de-
tection and our algorithm for detecting the key-components.
Section 4 shows the evaluation and discussion of the ob-
tained results using the SHREC’10 feature detection and de-
scription benchmark. Finally, Section 5 concludes the paper.

2. Related Work

Mesh decomposition is a important analysis tool with appli-
cations in computer vision and graphics. The idea is to par-
tition a given mesh in components or regions which can be
used in applications. Although there are a lot of approaches
for mesh segmentation, we are interested in those methods
driven by local features. For a comprehensive study about
mesh segmentation techniques, we recommend the survey
by Shamir [Sha08].

One of the earliest techniques for feature-driven mesh de-
composition was presented byMortara et al. [MPS∗03]. This
method decomposes a triangular mesh based on a charac-
terization of a vertex using its local curvature. It analyzes
the evolution of the curve formed by the intersection of the
mesh with a set of spheres with increasing radii. The number
of connected components of the curve and the local proper-
ties (curvature and length ratio) define a classification for
each vertex, which is used to group vertices with similar
features. Differently, Huang et al. [HWAG09] proposed to
decompose a shape based on a modal analysis. Taking the

eigen-decomposition of the Hessian of a energy function de-
fined on the mesh, it is possible to define the set of typical
deformations of a mesh. Therefore, this method is able to
estimate the part that tend to be rigid and subsequently seg-
ment them.

Local features have also been used for mesh segmenta-
tion. Agathos et al. [APPS09] propose a mesh segmentation
method based on interest points. Given a mesh, the algo-
rithm computes a protrusion function for each vertex, which
is defined as the sum of geodesic distances to all vertex on
the mesh. Thus, a vertex is selected as interest point if the
value of its protrusion function is greater than the mean of
geodesic distances between each pair of vertices. The inter-
est points are grouped in order to avoid regions with many
interest points. Each interest point is used as seed for com-
puting the mesh segments. Similarly, Katz et al. [KLT05]
computed a 3D embedding for a shape and subsequently, the
convex hull of the embedding was calculated. The vertices
of the convex hull were considered as keypoints, over which
the method computed a set of core components.

On the other hand, Hu and Hua [HH09] proposed to find
keypoints using the eigen-decomposition of the Laplace-
Beltrami operator of a shape. Each keypoint has a scale
which is used to define a local patch, so mesh is repre-
sented as a set of local patches product of the keypoint-based
decomposition. After describing each local patch with its
Laplace-Beltrami spectrum, they are used in a matching al-
gorithm. On the other hand, Toldo et al. [TCF09] applied a
segmentation based on local properties of the mesh, specif-
ically a shape index computed from the principal curvature
values. Each segment is described with a histogram of lo-
cal properties. Finally, a bag of features approach is used
for describe the entire shape in order to be used in shape
retrieval. Differently, Shapira et al. [SSS∗10] performed a
hierarchical segmentation using a shape diameter function
(SDF). Subsequently, each segment is described using sev-
eral local features such as a normalized histogram of SDF,
shape distribution signatures and conformal geometry sig-
natures. The signatures were used in matching and retrieval.

Recently, a common approach in the shape analysis com-
munity is to extend methods from image processing and
computer vision. For instance, Digne et al. [DMAMS10] ex-
tend the maximally stable extremal regions (MSER) to shape
decomposition. The method used the concept of vertex-
weighted component trees applied to meshes. To accomplish
this goal, it was necessary to use the mean curvature as func-
tion defined over the mesh. Similarly, Litman et al. [LBB11]
also used the MSER framework to detect stable components
on meshes. The authors proposed an approach based on dif-
fusion geometry. The algorithm considers the shape as a
graph and associates weights to vertices and edges accord-
ing to the evaluation of a local property (the heat kernel)
between vertices and edges.

More recently, Fang et al. [FSKR11] introduced the per-
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ceptually consistent mesh segmentation. The authors pro-
posed a vertex signature (the heat-mapping) as the average
of the heat kernel evaluated on each point of the mesh. Then,
a segmentation process is driven from the points with highest
value of heat-mapping.

3. Key-component Detection

Our method consists of three steps: keypoint detection, clus-
tering in the geodesic space, and key-component extraction.
Our proposal is based on the detection of interest points,
which can be effectively used for detecting stable compo-
nents on meshes. In the literature, there are many techniques
to detect keypoints, with different approaches and advan-
tages. In this work, we use the Harris 3D method [SB11],
which has proven to be effective and efficient in various sce-
narios.

In order to maintain the paper self-contained, we begin
our description with a brief introduction to the Harris 3D
method, and then we will describe how the keypoints are
used to detect the mesh components.

3.1. Keypoints detection

Given a 3D mesh, we need to find interest points on it. In
general terms, an interest point is a point on the mesh surface
with a neighborhood geometrically unusual. For instance,
many approaches link this definition with the curvature mea-
sured on the vertices of the mesh. So, points on nearly planar
regions would not be considered as interesting. A keypoint
detection method is robust if it works according with the pre-
vious criterion. However, it also needs to be insensitive to
noise, tessellations, and missing data ( holes or range data).
The Harris 3D method is an extension of the well-known
operator in computer vision.

There are several reasons to choose the Harris 3D method:

• It is effective. Recent reports have shown high repeata-
bility values against several transformations [BBB∗10,
DCG11].

• It is efficient. An adequate implementation of this method
can process meshes with 50,000 vertices in a fraction of a
second.

• It is easy to implement. The method only requires simple
operations over local mesh patches.

3.2. Clustering in the Geodesic Space

Key-components are those regions on the mesh in which
there is a high concentration of local features. One way to
measure the concentration is using the geodesic distances
between the keypoints, and therefore grouping them accord-
ing to their closeness in terms of this kind of distance. Let
S = {s1,s2, . . . ,sn} be the set of keypoints previously de-
tected, our goal is to find partitions Si⊂ S, i= 1 . . .m in order
to fulfill the following properties:

1. dgeod(x,y)≤ To, ∀x,y ∈ Si.
2. dgeod(x,y)≥ Tp, ∀x ∈ Si and ∀y ∈ S j , i 6= j.
3.

⋃m
i=1 Si ⊆ S.

4. Si
⋂
S j = ∅, i 6= j.

Property 1 suggests that elements in a subset Si share ap-
proximately the same location on the mesh (threshold To
controls the proximity permitted). Property 2 states that two
subsets Si and S j cannot be very close to each other (thresh-
old Tp controls how far two subset should be). Property 3
considers a non-complete partitioning of the initial set S. Ob-
viously, there can be keypoints which do not fulfill the two
first properties. This is because some interest points could be
isolated, and therefore they would not belong to any compo-
nent. Moreover, isolated keypoints could have been selected
due to noise. It is clear that, in order to detect consistent com-
ponents on meshes, we need to discard isolated keypoints.
Finally, property 4 defines a disjoint partition of the set S.

In practice, we need to consider a clustering process re-
garding the geodesic distances between keypoints. In order
to accomplish this goal, our method computes a set P ∈ R

2,
in which euclidean distances between elements in P preserve
the geodesic distances between elements in S. That is, we
need to find the set P such that

P= argmin
p1,...,pn

∑
i< j

(‖pi− p j‖−dgeod(si,s j)) (1)

where each pi ∈ R
2 corresponds to the keypoint si ∈ S.

This problem is commonly called Multidimensional Scal-
ing [BG05] and it is used to embed points in one space into
another (generally for better visualization). The optimiza-
tion problem in the Eq. 1 can be solved with an iterative
method which takes a random sampling in the destination
space as starting set P. The method used in this work was
the SMACOF algorithm. In addition, for approximating the
geodesic distances, we used the Dijkstra algorithm consid-
ering the mesh as a graph. Figure 2 shows the resulting set
of 2D points applied on a set of keypoints. Note how the re-
sulting points represent the distribution of keypoints on the
mesh.

Next, we apply a clustering algorithm over the set P in or-
der to define the partitioning of S. We proposed a clustering
algorithm derived from Leow and Li [LL04] (See algorithm
1). In the algorithm 1, in addition to the properties 1 and 2,
we also introduce a constraint regarding the number of el-
ements that a cluster may have. So our algorithm ensures
partitions with a minimum number of elements. Partitions
with a few elements are discarded because they could gener-
ate components with low significance in the mesh. Figure 3
shows the groups of keypoints found using our algorithm.
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Figure 2: Left: Shape with keypoints. Right: Multi-

dimensional scaling of the keypoints.

Figure 3: Left: Shape with cluster of keypoints. Right: multi-

dimensional scaling of the keypoints. Points represented as

crosses do not belong to any cluster.

3.3. Key-component Extraction

The starting point to extract mesh components is the set of
clusters previously computed. Each cluster will generate a
component comprising the region of the mesh where the
keypoints are located. Now, we need a criterion to decide
how large this region will be. In addition, the selected region
should be large enough to include all the keypoints in the
cluster.

We start by defining the geodesic center of each cluster.
The idea is to determine the point on the mesh which is the
center of the distribution of a cluster. This point could be
used as the center of the region to be extracted as component.
We can take advantage of the transformed set of points P

in order to accomplish this goal. The geodesic center of a
cluster is a point on the mesh whose mapped version inR2 is
near to the centroid of the cluster of the transformed points.
To solve this, we choose the closer point to the centroid in
R
2 as the geodesic center. Note that the selected point is only

an approximation of the real geodesic center, as our method
is selecting a keypoint (finding the real geodesic center is
a hard task as we would have had to map every point on
the mesh into the 2D space, which is impossible in practical
terms). Formally, let Pi be the set of 2D points corresponding

Algorithm 1 Adaptive Clustering

Require: Set of points P
Require: Inter-cluster distance Tp
Require: Intra-cluster distance To
Require: Minimum number of elements per cluster Nm
Require: Number of iterations Iter
Ensure: Set of clustersC = {C1, . . . ,Cm}

1: LetC a set of clusters
2: C←∅
3: for j← 1 to Iter do
4: for each p ∈ P do

5: mindist← mini∈[1,|C|]‖p− centroid(Ci)‖
6: if mindist > Tp then

7: Cnew = {p}
8: C←C∪Cnew

9: K← K−{p}
10: else if mindist ≤ To then

11: Ci←Ci∪{p}
12: P← P−{p}
13: end if

14: end for

15: for i← 1 to |C| do
16: if |Ci| ≥ Nm then

17: Update centroid forCi

18: else

19: P← P∪Ci

20: end if

21: end for

22: end for

23: ReturnC

to the set Si of keypoints. The geodesic center of Si is defined
as follows:

ci = {s j ∈ Si|p j = argmin
p∈Pi

‖p− centroid(Pi)‖} (2)

where p j ∈ R
2 corresponds to s j ∈ S.

Now, we need to define a size for the component. To do
that, our method computes the smallest sphere containing
every keypoint in a cluster. This is a classic problem in com-
putational geometry and it can be efficiently solved using
linear programming. The output of this tasks is a pair (oi,ri)
representing the center and the radius of the sphere enclosing
the keypoint in the cluster Si.

Once the geodesic center ci and the sphere (oi,ri) have
been computed, we propose a region growing algorithm on
the mesh. Our initial seed is the vertex ci and the constraint
for the growing step is imposed by the sphere. The algorithm
2 details this procedure. It is worth noting that we introduce a
scaling factor σ > 1 for the radius ri. Thus, we ensure a con-
nectivity between the keypoints in Si. A value greater than 1
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would guarantee to find a connected component lying inside
the sphere with radius σ× ri.

Algorithm 2 Key-component Extraction

Require: Vertex set V
Require: Geodesic center ci
Require: Cluster of keypoints Si
Require: Sphere (oi,ri)
Require: Scaling radius factor σ

Ensure: Vertex set VR
Ensure: Face set FR

1: Let VR be an empty vertex set
2: Let FR be an empty face set
3: Let waiting be the set of remaining keypoints
4: Let visited be a vertex queue
5: visited.enqueue(ci)
6: waiting← Si
7: while waiting 6= ∅ and visited 6= ∅ do
8: v← visited.dequeue()
9: if v is not marked then

10: VR←VR∪{v}
11: Mark v
12: waiting← waiting−{v}
13: for each w ∈ v.ad jacentVertices() do

14: if w is not marked then

15: if ‖w−oi‖< σ× ri then

16: visited.enqueue(w)
17: end if

18: end if

19: end for

20: FR← FR∪ v.ad jacentFaces()
21: end if

22: end while

23: Unmark vertices
24: Return FV and FR

Briefly, the region growing algorithm starts from the
geodesic center ci and inserts the neighbor vertices into the
queue. Each time a vertex is extracted from the queue, the
algorithm verifies if the vertices is a keypoint. If so, the key-
point is deleted from the remaining set. The algorithm fin-
ishes when the remaining set is empty, which means that a
component has been extracted and it contains the complete
set of input keypoints.

Figure 4 shows the components detected in several
shapes.

4. Experiments and Results

In this section, we describe the dataset, the evaluation crite-
rion used to assess our method, and the experimental results.

4.1. Dataset

In order to evaluate the proposed method, we used
the SHREC’10 feature detection and description bench-
mark [BBB∗10]. This dataset is composed by three shapes
(null shapes) and a set of shapes obtained by applying a
set of transformations on the null shapes. Shapes have ap-
proximately 10,000 to 50,000 vertices and they were repre-
sented as triangular meshes. The set of transformations ap-
plied on the null shapes are isometry, micro-holes and big
holes, topology, noise and shot noise, global and local scale,
and downsampling. Each transformation was applied in five
levels, so the total number of shapes in the dataset is 138.

In addition to the shapes, the dataset contains a ground-
truth specifying the vertex-to-vertex correspondences be-
tween the transformed and the null shapes. Our method was
not evaluated on meshes with big holes because it was not
possible to compute the geodesic distances in that models.
Also, the remaining models were normalized so the surface
area is 1. This facilitated the configuration of the parameters
of clustering.

4.2. Evaluation Criterion

Our goal is to determine if the mesh components are consis-
tent between a null shape and a transformed shape. Given a
null shape X and a transformed mesh Y , the components are
represented as X1, . . . ,Xn and Y1, . . . ,Ym, respectively. Using
the ground-truth, we compute the corresponding component
to each component Y j in X , which is denoted as X ′

j . Then,
the component repeatability between X and Y is defined as

R(X ,Y ) =
m

∑
j=1

max
1≤i≤n

O(Xi,X
′
j) (3)

where the overlap between two components is defined as an
area ratio

O(Xi,X
′
j) =

A(Xi
⋂
X ′
j)

A(Xi
⋃
X ′
j)
. (4)

In addition, we define the repeatability in overlap o as the
percentage of components in the entire collection that have
overlap greater than o with their corresponding null shape.
Clearly, totally coincident components give a repeatability
of 1.

4.3. Results

In this section, we present the results obtained with our ap-
proach. For the keypoint detection, we select the 500 key-
points with the higher Harris response in each shape. In all
our experiments, the scaling factor σ was set to 1.75. Fur-
thermore, the parameter Iter in the clustering algorithm was
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Figure 4: Key-components detected on shapes with several transformations. From left to right: null shape, isometry, microholes,

local scale, noise, topology, holes, sampling, and shot-noise.

Variant To Tp Nm

KC-1 0.1 0.2 30
KC-2 0.05 0.1 30
KC-3 0.1 0.2 10
KC-4 0.05 0.1 10

Table 1: Clustering parameters for each experiment config-

uration.

Variant

Transform. KC-1 KC-2 KC-3 KC-4

Isometry 0.84 0.81 0.62 0.55
Topology 0.48 0.62 0.56 0.40
Micro holes 0.73 0.80 0.55 0.50
Scale 0.81 0.79 0.69 0.50
Local scale 0.82 0.73 0.62 0.43
Sampling 0.00 0.00 0.04 0.03
Noise 0.80 0.71 0.74 0.49
Shot noise 0.75 0.75 0.71 0.45
Holes 0.39 0.26 0.42 0.29

Average 0.62 0.61 0.55 0.40

Table 2: Repeatability values at overlap 0.8 for each vari-

ant.

set to 10. Furthermore, we used four different settings for the
clustering algorithm. Table 1 shows the parameters used in
each configuration. In addition, we use the repeatability at
overlap 0.8 to compare the variants (see Table 2).

For the variant KC-1, Fig. 5 and Table 3 show the results.
Interestingly, almost all transformations maintain a high re-
peatability (greater than 80%) at overlap values < 0.8. It
is not the case for sampling, holes, and topology transfor-
mation. In the sampling transformation, the problem is that
we always select 500 keypoints. In addition, as the number
of vertices is decreased, the keypoints are distributed over
the entire shape and they do not tend to cluster. Differently,
in the topology transformation, its repeatability systemat-
ically decreases because the clustering relies on geodesic
distances. Therefore, as the topological changes alter the
geodesic distances on the mesh, the clustering and the subse-
quent key-component extraction is affected. It is worth not-

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.58 0.92 0.92 0.79 0.82
Topology 0.83 0.71 0.78 0.53 0.63
Micro holes 0.76 0.88 0.85 0.84 0.85
Scale 0.87 0.88 0.85 0.92 0.76
Local scale 0.94 0.91 0.92 0.79 0.79
Sampling 0.56 0.33 0.20 0.14 0.00
Noise 0.89 0.82 0.77 0.79 0.79
Shot noise 0.80 0.77 0.78 0.78 0.85
Holes 0.56 0.60 0.60 0.50 0.49

Average 0.76 0.76 0.74 0.68 0.67

Table 3: Repeatability values for variant KC-1.

Figure 5: Overlap vs. Repeatability plot for the KC-1 vari-

ant.

ing that our method detects repeatable components in pres-
ence of difficult transformations such as noise, shot-noise
and micro-holes.

Table 3 shows the repeatability values regarding the five
levels of transformations. Note that our method is resilient
to high levels of transformations. The only transformation
which is very sensitive to the level of transformation is sam-
pling due to the aforementioned reasons. This behavior can
be seen in all the variants.

For the variant KC-2, Fig. 6 and Table 4 shows the results.
Note that almost all transformations have a perfect repeata-
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Figure 6: Overlap vs. Repeatability plot for the KC-2 vari-

ant.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.58 0.83 0.86 0.95 0.85
Topology 0.74 0.76 0.75 0.79 0.86
Micro holes 0.89 0.85 0.90 0.89 0.90
Scale 0.91 0.92 0.93 0.81 0.83
Local scale 0.84 0.87 0.82 0.93 0.75
Sampling 0.53 0.31 0.21 0.03 0.00
Noise 0.87 0.83 0.71 0.73 0.72
Shot noise 0.84 0.93 0.85 0.89 0.73
Holes 0.50 0.58 0.48 0.44 0.41

Average 0.75 0.76 0.72 0.72 0.67

Table 4: Repeatability values for variant KC-2.

bility at overlap < 0.2. It means that every component in the
dataset overlaps a component in the null shapes. However,
the repeatability decreases at higher overlap values, falling
below 80% at overlap 0.8 in every transformation.

Variants KC-1 and KC-2 compute components with a high
number of keypoints. They differ in the size of the detected
components. The clustering parameters To and Tp define the
extent in which the keypoints are grouped, so KC-1 detects
larger components than KC-2. It is interesting to note that
larger components are more repeatable and therefore, they
could be more robust to mesh transformations.

For KC-3, Fig 7 and Table 5 show the results. In this case,
the repeatability values at overlap 0.8 are below 80% in ev-
ery transformation. In addition, there are some transforma-
tions (topology, micro-holes, local scale, and isometry) with
repeatability below 60% at overlap 0.8.

For the variant KC-4, Fig. 8 and Table 6 show the results.
Differently to the other variants, KC-4 shows low repeata-
bility values at overlap 0.8. In every transformation, the re-
peatability is below 60% at overlap 0.8. Compared to KC-1
and KC-2, KC-3 and KC-4 compute components with a low
number of keypoints, so it seems to harm the performance of

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.66 0.84 0.85 0.86 0.90
Topology 0.77 0.76 0.74 0.71 0.74
Micro holes 0.77 0.77 0.74 0.76 0.76
Scale 0.87 0.82 0.84 0.78 0.79
Local scale 0.82 0.81 0.77 0.74 0.76
Sampling 0.60 0.49 0.24 0.13 0.02
Noise 0.86 0.79 0.84 0.85 0.84
Shot noise 0.85 0.85 0.83 0.86 0.74
Holes 0.68 0.71 0.71 0.66 0.65

Average 0.76 0.76 0.73 0.71 0.69

Table 5: Repeatability values for variant KC-3.

Figure 7: Overlap vs. Repeatability plot for the KC-3 vari-

ant.

these variants. In fact, many components could be detected
with a few keypoints, and there is no guarantee that these
keypoints are stable. Therefore, the components could also
be unstable.

Note that KC-1 presents the best results. The parameters
used for KC-1 allow us to detect large components with high
number of keypoints compared to the other three variants.
Obviously, larger components are more stable to transfor-
mations. In addition, the higher the number of keypoints, the
higher the probability of having an interesting component.
Clearly, variants KC-3 and KC-4 show a poor performance
due to the low number of keypoints in each component.

5. Conclusions

We have presented a method to detect components on 3D
meshes, which contain a high concentration of local features.
The key-components are suitable for matching and recog-
nition tasks due to their high repeatability obtained in our
experiments using a standard benchmark. Interestingly, the
proposed method detects consistent components under sev-
eral transformations such as noise, local scale, holes, and
non-rigid transformations. In our opinion, key-components
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Figure 8: Overlap vs. Repeatability plot for the KC-4 vari-

ant.

Strength

Transform. 1 ≤2 ≤3 ≤4 ≤5

Isometry 0.53 0.78 0.80 0.81 0.73
Topology 0.67 0.66 0.69 0.71 0.73
Micro holes 0.74 0.72 0.75 0.73 0.74
Scale 0.72 0.72 0.73 0.73 0.75
Local scale 0.73 0.74 0.70 0.80 0.69
Sampling 0.50 0.37 0.19 0.10 0.00
Noise 0.75 0.74 0.74 0.79 0.75
Shot noise 0.72 0.74 0.70 0.73 0.73
Holes 0.60 0.62 0.64 0.57 0.58

Average 0.66 0.68 0.66 0.66 0.63

Table 6: Repeatability values for variant KC-4.

represent an alternative to fine scale features. On the one
hand, we showed that key-components are stable to local
transformations. On the other hand, the number of key-
components is obviously much less than the number of key-
points, so matching algorithms using local features could
benefit from our approach.

In the future, we plan to improve the key-component ex-
traction step into a completely automatic process. In addi-
tion, description algorithms are needed in order to effectively
use the components in subsequent tasks.
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