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Abstract

With the increasing amount of 3D data and the ability of capture devices to produce low-cost multimedia data, the

capability to select relevant information has become an interesting research field. In 3D objects, the aim is to detect

a few salient structures which can be used, instead of the whole object, for applications like object registration,

retrieval, and mesh simplification. In this paper, we present an interest points detector for 3D objects based on

Harris operator, which has been used with good results in computer vision applications. We propose an adaptive

technique to determine the neighborhood of a vertex, over which the Harris response on that vertex is calculated.

Our method is robust to affine transformations(partially for object rotation) and distortion transformation such

as noise addition. Moreover, the distribution of interest points on the surface of an object remains similar in

transformed objects, which is a desirable behavior in applications such as shape matching and object registration.

1. Introduction

Many applications have benefited with the wide diffusion of

3D models. Areas such as medicine, engineering, entertain-

ment, and so on are increasingly relying in processes that

involve this kind of information. Coupled with this, an im-

proved ability of capture devices has been observed, allow-

ing to generate low-cost three-dimensional objects and make

extensive use of them. In addition, such is the impact it has

caused that almost all processes involving 3D models are ac-

tive research areas.

For the same reasons, many models have considerably

large sizes. As with images, the better is the resolution of

a 3D object, the better the representation of some entity

and therefore, it is necessary to be able to select distinctive

points on a 3D model in order to keep efficiency in the pro-

cesses applied on them. Some tasks that benefit from this

capability are object registration [GMGP05], object retrieval

and matching [HH09], mesh simplification, viewpoint selec-

tion [LVJ05], and mesh segmentation [TVD08,KLT05], just

to name a few.

An interest points detection method for 3D objects must

have some desirable properties. For example:

• It must be invariant to affine transformations.

• It must be robust to noise, which can be introduced during

the capture process.

• It must be robust to different tessellations.

In this paper, we present an efficient interest points detec-

tor based on Harris operator defined for images (Figure 1).

Our method holds the requirements previously described.

The contributions of this paper are summarized as follows:

• We improve the process for calculating the Harris operator

for 3D meshes, making it robust to noise and tessellations.

• We propose a novel method to define the neighborhood

size of a vertex, depending of its surrounding structure.

• We give several options to select a few interest points us-

ing the information that the Harris operator provides.

The organization of this paper is as follows. Section 2

presents the related works. Section 3 presents a detailed de-

scription of our method. Section 4 presents and discusses the

experimental results. Finally, Section 5 concludes the paper.

2. Related Work

The interest point detection topic emerged in the computer

vision community with the aim of reducing the amount of

information used in high-level vision tasks. A pioneering

work was presented by Harris and Stephens [HS88], which
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Figure 1: Examples of interest points detected with our

method.

was the basis for many later works. For readers interested

on interest points detectors on images, we recommend the

evaluation paper presented by Schmid et al. [SMB00], which

contains detailed descriptions and performance evaluation of

several proposed methods.

For 3D meshes, several approaches have been proposed,

most of which have tried to extend the detectors proposed for

images. After the SIFT method proposed by Lowe [Low04],

a number of extensions have been presented which use

Difference-of-Gaussians(DoG) as interest point detector.

Castellani et al. [CCFM08] applied the DoG detector over

vertices in scale-space obtained with successive decimations

of the original shape. Vertices with high response in its DoG

operator are selected as interest points. In the same way,

Zou et al. [ZHDQ08] proposed to build a geodesic scale-

space, and subsequently to apply DoG detector on that space

for detecting interest points on a surface. Also, Zaharescu

et al. [ZBVH09] assumed that the vertices of an 3D object

have associated information such as curvature or photomet-

ric properties. Defining a discrete Difference-of-Gaussians

operator, the authors applied this operator on the function

defined by the associated information over a manifold. This

approach showed good results in matching of 3D models se-

quences.

As a 3D surface property, the Laplace-Beltrami opera-

tor has been also used to detect interest points. Hu and

Hua [HH09] defined the geometric energy of a vertex as

function of the eigenvalues and eigenvectors of the Laplace-

Beltrami spectrum of a given object. Vertices where the en-

ergy is a maximum are considered as interest points. In ad-

dition, the energy provides the scale where the selected ver-

tices are interesting. The selected interest points were used

in a matching task with promising results. On the other hand,

Sun et al. [SOG09] defined the Heat Kernel Signature as a

temporal domain restriction of the Heat Kernel on a mani-

fold, which is related to the Laplace-Beltrami spectrum. In

3D meshes, each vertex has an associated signature. A ver-

tex is selected as interest point, when for large time values,

its signature has a maximum with respect to the neighbor

vertices.

Differently, Liu et al. [LZQ06] proposed a Monte-Carlo

strategy to select a random set of points on a surface with

each point having the same probability to be chosen. These

points were used in partial shape retrieval. The assumption

behind this proposal is that the vertices of a shape are sam-

ples of the original surface and the tasks that use them can

be affected by shape tessellations. Similarly, Shilane and

Funkhouser [SF06] considered random points on a 3D sur-

face, selecting only those points that contribute to improve

the retrieval performance. With a training phase, it was pos-

sible to assign a predicted distinction value to each selected

point in the 3D collection and thus, using that values to as-

sign new ones to points of a new shape.

As another approach, the mesh saliency defined by

Lee [LVJ05] has proven to be a robust feature to many 3D

applications. The process to compute the mesh saliency of

a 3D object begins calculating a Gaussian-weighted average

of the mean curvature on a surface. Each vertex in an object

is thus associated to the difference of such average in differ-

ent scales, which is the saliency of that vertex. Vertex with

the highest saliency can be considered as interest points.

On the other hand, Mian et al. [MBO09] related the re-

peatability of keypoints (extracted from partial views of an

object) with a quality measure based upon principal curva-

tures.

3. Interest Points Detection

Harris and Stephens [HS88] proposed an interest points de-

tector for images. Their method is a popular technique due to

its strong invariance to rotation, scale, illumination variation,

and image noise [SMB00]. The Harris detector is based on

the local auto-correlation function of a signal, which mea-

sures the local changes of the signal with patches shifted

by a small amount in different directions. The local auto-

correlation is defined as:

e(x,y) = ∑
xi,yi

W (xi,yi)[I(xi +△x,yi +△y)− I(xi,yi)]
2

(1)

where I(., .) denotes the image function and (xi,yi) are the

points in the Gaussian functionW centered on (x,y), which
defines the neighborhood area in analysis.
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Using a Taylor expansion truncated to the first order terms

to approximate the shifted image, we obtain:

e(x,y) = [△x△y]

[

∑xi,yiW.I2x ∑xi,yiW.Ix.Iy

∑xi,yiW.Ix.Iy ∑xi,yiW.I2y

]

[△x△y]T

= [△x△y]E(x,y)[△x△y]T

(2)

where Ix and Iy denotes the partial derivatives in x and y, and

along withW are evaluated in (xi,yi) points.

Harris and Stephens proposed to analyze the eigenvalues

of matrix E, which contains enough local information re-

lated to the neighborhood structure. In addition, to avoid the

expensive eigenvalue calculation, they proposed to assign to

each pixel in the image the following value:

h(x,y) = det(E)− k.(tr(E))2 (3)

with k constant.

The Harris operator has been used in many applications in

image processing and computer vision by its simplicity and

efficiency. However, the problem with 3D data is that the

topology is arbitrary and it is not clear how to calculate the

derivatives. To cope this problem, Glomb [Glo09] suggested

some approaches. We take this work as a basis for proposing

a robust interest points detector on 3D meshes.

3.1. Robust Harris Operator on 3D Meshes

Given a vertex of a 3D object, we are interested in calcu-

lating the Harris operator value associated to that point. A

3D object is represented as a set of vertices V and a set of

faces F with adjacency information between these entities.

In addition, our method is not restricted to manifold meshes.

Let v be the analyzed vertex and Vk(v) the neighborhood
considering k rings around v. Figure 2 shows vertex v (black

circle), the first ring around v (green circles), the second ring

(blue circles), and k-th ring (yellow circles). All these points

correspond to the neighborhoodVk(v). The method to calcu-

late k will be explained later in this section.

We calculate the centroid of Vk(v) and translate the set

of points so the centroid is in the origin of the 3D coordi-

nate system. Then, we compute the best fitting plane to the

translated points. To do so, we apply Principal Component

Analysis to the set of points and we choose the eigenvector

with the lowest associated eigenvalue as the normal of the

fitting plane. We think that applying PCA is a better choice

than least square fitting because the assumption z = f (x,y)
does not have a good behavior when the data do not exhibit

such functional characteristic.

The set of points is rotated so that the normal of the fitting

v

Figure 2: Point v and its neighbor rings. Firstly, V1(v) is

composed by green vertices. Secondly, V2(v) is composed by
blue and green vertices. Finally, Vk(v) is composed by all

vertices until the yellow vertices.

plane is the z-axis. As we choose the less principal com-

ponent as normal, the points exhibit a good spread in the

XY-plane after rotation and therefore, we can only work in

XY-plane to calculate the derivatives. As final step before

calculating derivatives, we translate the set of points so that

the point v is in the origin of the XY-plane. This step will

facilitate the further analysis.

To calculate derivatives, we fit a quadratic surface to the

set of transformed points. Using least square method, we find

a paraboloid of the form:

z = f (x,y) =
p1

2
x
2 + p2xy+

p3

2
y
2 + p4x+ p5y+ p6 (4)

As we are interested in derivatives in the point v, one could

directly evaluate the derivatives of f (x,y) in the point (0,0),
i.e.:

fx =
∂ f (x,y)

∂x

∣

∣

∣

∣

x=0

(5)

fy =
∂ f (x,y)

∂y

∣

∣

∣

∣

y=0

(6)

The above expressions should be a good estimate of

derivatives. However, these can be influenced by noise. In-

stead, we propose to apply a Gaussian function as proposed

originally by Harris and Stephens [HS88]. However, a dif-

ficulty arises because in the original expression the deriva-

tives are discrete functions and our derivatives are continu-

ous functions. To address this problem, we propose to apply

the integration of the derivatives with a continuous Gaussian

function as follows:

A =
1√
2πσ

Z

R2
e
−(x2+y2)

2σ2 . fx(x,y)
2
dxdy (7)
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B =
1√
2πσ

Z

R2
e
−(x2+y2)

2σ2 . fy(x,y)
2
dxdy (8)

C =
1√
2πσ

Z

R2
e
−(x2+y2)

2σ2 . fx(x,y). fy(x,y)dxdy (9)

where σ is a parameter, which defines the support of the

gaussian function. The setting of σ will be considered later

in this section.

Finally, we can formulate the matrix E associated to the

point v using the previously calculated values:

E =

(

A C

C B

)

(10)

The Harris operator value in the point v is calculated as in

Equation 3.

3.2. Adaptive Neighborhood Size

Several approaches can be considered to select the number

of rings around a point as neighborhood. If the object tes-

sellation is uniform, i.e., almost all triangles in the object

have the same size, we can use a constant number of rings

to all points or, the points contained in a ball of radius r

and centered in point v. However, in irregular and complex

meshes, these methods do not approximate a neighborhood

adequately.

To tackle this problem, we propose an adaptive technique.

Our method selects a different neighborhood size depending

of the tessellation around a point. Let us consider an object

as a graphG(V ′
,E′), whereV ′ =V and E′ is the set of edges

obtained from the adjacency information of the object.

Given a point v ∈V ′, a k-ring around v is the set of points

where the length of the shortest path to v is k:

ringk(v) = {w ∈V ′||shortest_path(v,w)|= k} (11)

The distance from a point v to the ringk(v) is defined as:

dring(v,ringk(v)) = maxw∈ringk(v)‖v−w‖2 (12)

Finally, we define the neighborhood size of a point v as:

radiusv = {k ∈ N,dring(v,ringk(v))≥ δ and

dring(v,ringk−1(v)) < δ}
(13)

where δ is a fraction of the diagonal of the object bounding

rectangle.

It is important to note that the proposed method always

find a neighborhood to a point, even with complex and irreg-

ular tessellations around that point.

In addition, as we provide an approximate extent to each

neighborhood, we can use this information to consistently

apply the Gaussian function when calculating the Harris op-

erator value. The extent of the Gaussian is controlled by the

parameter σ, which we define as:

σv =
δ

radiusv
(14)

Therefore, each point have a different support for the ap-

plied Gaussian window when calculating its operator value

and it is consistent with the neighborhood size as well.

3.3. Selecting Interest Points

With each vertex associated to its Harris operator value, we

propose two ways to select the interest points of a given ob-

ject. Firstly, we preserve the vertices which are local maxi-

mum. To do so, we select a vertex v which holds the follow-

ing condition:

h(v) > h(w),∀w ∈ ring1(v) (15)

Secondly, we propose two approaches to select the final

set of interest points.

• Select the points with the highest Harris response. We

can pick a constant fraction of interest points depending

of the application. In this proposal, we obtain the points

with higher saliency and therefore, some portions of the

object does not have interest points.

• Representatives of Interest Points Clusters. This ap-

proach can be used when we want a good distribution of

interest points in the object surface. This proposal consists

of two step. First, we sort the pre-selected interest points

according to its Harris operator value in decreasing order.

Second, we apply the following algorithm to cluster the

sorted points and select the final set of interest points.

Algorithm 1 Interest Points Clustering

Require: Set P of pre-selected interest points in decreasing

order of Harris operator value

Ensure: Final set of interest points

1: Let Q be a set of points

2: Q←∅
3: for i← 1 to |P| do
4: if min j∈[1,|Q|]‖Pi−Q j‖2 > ρ then

5: Q← Q∪{Pi}
6: end if

7: end for

8: Return Q

The value of ρ can be considered as a fraction of the diag-

onal of the object bounding rectangle and it has effects in

the number of returned interest points.

Figure 3 shows the result of the two options to select in-

terest points.
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Figure 3: Selection options. (a) Object from the collection. (b) Selected points with highest Harris response. (c) Selected points

by clustering.

4. Experimental Evaluation and Discussion

To test the affine transformation invariance and the robust-

ness to noise, we made several experiments. The criterion to

evaluate the experiments was the repeatability of the interest

points. Given an object O and a transformation function T ,

which can be a translation, scaling, rotation, or noise addi-

tion, T (O) is a transformed object. In addition, PO represents

the set of interest points extracted from O. Thus, the repeata-

bility is defined as:

RO,T (O) =
|PO∩PT (O)|
|PO|

(16)

For all described experiments, we used the values k= 0.04

and δ = 0.025 in our method. In addition, we used the high-

est Harris response points as interest points, where we select

the 1% from the size of set V in each object. With respect to

the used data, we pick 20 models from different collections

available on the Web. Figure 4 shows some used models.

Table 1 shows the detailed list of objects used in our experi-

ments.

Figure 4: Some objects used in our experiments.

To evaluate the affine transformation invariance, each ob-

ject was rotated with 10 randomly chosen angles, arbitrar-

ily in the three coordinate axes. Thus, we calculated the re-

Collection Object / File

SHREC 09 - Partial Shape Retrieval

D00018.off

D00048.off

D00096.off

D00245.off

D00290.off

D00341.off

D00364.off

D00405.off

D00482.off

D00597.off

D00621.off

D00644.off

D00708.off

D00724.off

D00745.off

D00772.off

Mesh Segmentation Benchmark [CGF09]

281.off

284.off

285.off

Stanford 3D Scanning Repository asian dragon

Table 1: Objects used in our experiments.

peatability between the original model and each transformed

object, obtaining an average for each object in our collec-

tion. Finally, we calculate the mean of average repeatabili-

ties of each object. For rotation, we obtained a repeatability

of 0.8745.

We did not get a total rotation invariance because the

process to calculate the Harris operator relies on a good

quadratic surface fitting. In addition, the surface fitting re-

lies on the distribution of points in the XY-plane and the

problem is that PCA allows us to approximate the normal

of a best fitting plane to the points, however the direction
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of the normal of that plane is arbitrary. Therefore, different

quadratic surfaces could be fitted to the same point in differ-

ent orientations, affecting the Harris response computation.

In the same fashion, to test scale invariance, we proceeded

to select random scales in the interval [0.5,2.0] and follow-

ing the same described process above, we obtain a repeata-

bility of 1.0. This good result is obtained because the neigh-

borhood sizes are relatives to the object size, without affect-

ing the subsequent processes.

In the case of noise addition, we added up a random offset

to each vertex of an object in arbitrary directions. We con-

sidered different offset values to evaluate the effect of the

noise amount in the interest points detection, with values in

the interval [10−4
,10−3]. As in affine transformation exper-

iments, we following the same methodology to calculate the

repeatability in each offset. Figure 5 shows an example of

interest points detection in noisy objects and Figure 6 shows

the effect of offset amount in the repeatability.

This experiment also allowed us to test the proposed adap-

tive neighborhood estimation. As we selected arbitrary di-

rections when noise was added up, the local tessellations

around a vertex changed considerably. In this case, our pro-

posal estimated good neighborhoods to mitigate the noise.

As we expected, the noise affects the Harris operator

calculation. However, although the repeatability decreases

when more noise is added up, the distribution of detected

interest points on the surface remains, as shown in Figure 5.

This is a important issue because, even in presence of noise,

the interest points can be used trustly in tasks such as object

registration and shape matching.

Figure 6: Effect of noise in repeatability.

In addition, we present some results applied to models

with different level of detail in Figure 7. To simplify the

models, we use the method proposed by Garland [GH97].

Obviously, the fewer are the vertices in a model, fewer inter-

est points are detected. However, the distribution of interest

points on the model surface is surprisingly similar.

5. Conclusions and Future Work

We have developed a robust interest points detector for

three-dimensional objects based on Harris operator. We have

shown how incorporating a Gaussian function when calcu-

lating the derivatives involved in Harris response, in addition

to adaptive neighborhood determination, can enhance the re-

sults of detection and make the process robust against noise

and tessellation variations in the neighborhood of a vertex.

Also, we have shown in this paper that the proposed method

can keep the distribution of interest points as visually simi-

lar in presence of distortions such as noise addition. This is

an important issue in applications such as object registration

and shape matching. In addition, we proposed two options to

select interest points from the Harris response in each vertex,

which can used depending of applications requirements.

In the future, we would like to extend the method to sup-

port levels of detail in the objects representations. Clearly,

we do not claim robustness against the resolution of an ob-

ject. It should be an important direction for further research

due to its applicability in shape matching. Also, we plan to

research the potential applications of our method in tasks

such as partial shape matching, global and partial object reg-

istration, mesh simplification, and mesh segmentation.
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