This paper describes a submission to the Word-in-Context competition for the IJCAI 2019 SemDeep-5 workshop. The task is to determine whether a given focus word is used in the same or different senses in two contexts. We took an ELMo-inspired approach similar to the baseline model in the task description paper, where contextualized representations are obtained for the focus words and a classification is made according to the degree of similarity between these representations. Our model had a few simple differences, notably joint training of the forward and backward LSTMs, a different choice of states for the contextualized representations and a new similarity measure for them. These changes yielded a 3.5\% improvement on the ELMo baseline.