Tensors are one of the most widely used data structures in modern Machine Learning applications. Although they provide a flexible way of storing and accessing data, they often expose too many low-level details that may result in error prone code that is difficult to maintain and extend. Abstracting low-level functionalities into high-level operators in the form of a query language is a task in which the Data Management community has extensive experience. It is thus important to understand how such an experience can be applied in the design of useful languages for tensor manipulation. In this short paper we study a matrix and a tensor query language that have been recently proposed in the database literature. We show, by using examples, how these proposals are in line with the practical interest in rethinking tensor abstractions. On the technical side, we compare the two languages in terms of operators that naturally arise in Machine Learning pipelines, such as convolution, matrix-inverse, and Einstein summation. We hope our results to provide a theoretical kick-o for the discussion on the design of core declarative query languages for tensors.