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ABSTRACT
Spatial data play an important role in many applications built over

knowledge graphs, and are frequently referenced in queries posed

to public query services, such as that of Wikidata. Querying for

spatial data presents a significant challenge, as topological relations

such as adjacent or contains imply inferred information, such as

through the transitivity of the containment relation. However, de-

spite all the recent advances in querying knowledge graphs, we

still lack techniques specifically tailored for topological informa-

tion. Applications looking to incorporate topological relations must

either materialize the inferred relations, incurring high space and

maintenance overheads, or query them with less efficient recursive

algorithms, incurring high runtime overheads.

In this paper we address the problem of leveraging topological

information in knowledge graphs by designing efficient algorithms

to process these queries. Our solution involves building a specific in-

dex that stores the topological information in a convenient compact

form, and includes specialized algorithms that infer every possible

relation from the basic topological facts in the graph. We show that,

while using essentially the same space required to solve standard

graph pattern queries, we can incorporate topological predicates,

accounting for all the inferred information, all within worst-case-

optimal time. We implement our scheme and show experimentally

that it outperforms baseline solutions by a notable margin.

∗
Also with Millennium Institute for Foundational Research on Data.

†
Also with Millennium Institute for Foundational Research on Data.

‡
Also with Centro de Investigación TIC.

§
Also with Millennium Institute for Foundational Research on Data.

¶
Also with Millennium Institute for Foundational Research on Data.

∥
Also with Millennium Institute for Foundational Research on Data.

∗∗
Contact author.

††
Also with Millennium Institute for Foundational Research on Data.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1274-6/25/04

https://doi.org/10.1145/3696410.3714695

CCS CONCEPTS
• Theory of computation→ Data structures and algorithms
for data management; Database query processing and opti-
mization (theory).

KEYWORDS
Geospatial graphs; topological graphs; graph query processing;

worst-case optimal joins

ACM Reference Format:
José Fuentes-Sepúlveda, Adrián Gómez-Brandón, Aidan Hogan, Ayleen

Irribarra-Cortés, Gonzalo Navarro, and Juan Reutter. 2025. Worst-Case-

Optimal Joins on Graphs with Topological Relations. In Proceedings of the
ACM Web Conference 2025 (WWW ’25), April 28-May 2, 2025, Sydney, NSW,
Australia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3696410.3714695

1 INTRODUCTION
Knowledge graphs are composed of diverse types of binary relations

as distinguished by edge labels [27]. An individual relation may

have specific semantic conditions, for example, transitivity, symme-

try, asymmetry, antisymmetry, reflexivity, irreflexivity, etc. Though

a wide variety of graph database engines [3, 38] have been proposed

that can manage and query knowledge graphs, they typically do

not take into account the diverse semantics of different relations.

For example, a recent breakthrough for evaluating database queries

more efficiently has been the development of worst-case-optimal
(wco) join algorithms [43], which can help improve the performance

of graph databases [1, 5, 10, 28, 37, 44, 53, 56]. However, such tech-

niques are agnostic to the semantics of relations.

In the geospatial domain, the semantics of topological relations

play a crucial role. For example, if region𝐴 borders region 𝐵, region

𝐴′ contains 𝐴, region 𝐵′ contains 𝐵, and regions 𝐴′ and 𝐵′ do not

overlap, this gives the implicit relation region 𝐴′ borders region 𝐵′.
We focus on querying such topological relations, which incorporate

spatial data by means of containment, disjointness, and adjacency

relations, and which form a key part of a variety of open knowledge

graphs on the Web, including DBpedia [33], LinkedGeoData [51],

Wikidata [55], among various others. Other kinds of hierarchical

information – such as the taxonomies present in DBpedia [33],

Wikidata [55], etc. – exhibit topological semantics as well.
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Though topological databases have been used in geographic

information systems for decades [50], querying topology in knowl-

edge graphs is not well-supported: topological databases based on

the relational paradigm are not well-suited for querying knowledge

graphs, while, to the best of our knowledge, no graph database en-

gine supports topological relations directly. Though the semantics

of such relations can be captured via regular path queries (RPQs)
and relational algebra, the translation is cumbersome, and the per-

formance of such rewritings in existing engines leaves (as we show

later) much room for improvement. This highlights the need for effi-

cient support for querying topological relations in graph databases.

In this paper, we study how to evaluate basic graph patterns

(BGPs), as form the core of modern graph query languages [2],

with topological relations. To illustrate, consider the topological

relations contains(𝑥,𝑦), disjoint(𝑥,𝑦), and touches(𝑥,𝑦) between
regions. One may consider fully materializing these relations prior

to querying. There are two problems with this approach, however.

Firstly, there is much inferred information that must either be

explicitly encoded in the table, or obtained at query time with

other mechanisms. But materializing fully inferred topological rela-

tions requires a prohibitive amount of space (an obvious case is the

contains relation, which would require storing all transitive con-

tainment relations). On the other hand, using existing mechanisms

such as RPQs results in complex queries involving combinations of

RPQs and linear algebra that are hard to evaluate (see Section 7),

and for which wco guarantees are not believed to exist [12, 15].

Secondly, querying negated version of the relations – like asking

for non-contained or non-adjacent regions – requires either encod-

ing (typically huge) tables for not-contains(𝑥,𝑦), not-disjoint(𝑥,𝑦),
and not-touches(𝑥,𝑦), or handling negations of complex queries in

the language, and paying the corresponding price in performance.

We show how to efficiently handle such topological relations

in both space and time. Concretely, take a graph database with 𝑛

nodes, 𝑁 labeled edges (or triples) and𝑀 base adjacency relations

between nodes (from which others can be derived). We can then in-

dex the graph using𝑂 (𝑛+𝑁 +𝑀) space so that BGPs extended with
containment and adjacency constraints, plus their negations, can be

answered in wco time, exactly as if we had stored the explicit tables

contains(𝑥,𝑦), disjoint(𝑥,𝑦), touches(𝑥,𝑦), not-touches(𝑥,𝑦), etc.
including all information inferred from the base relations.

To achieve this result we extend the Leapfrog Triejoin (LTJ)

algorithm [54], which solves BGPs in wco time [28], to handle topo-

logical semantics. Our experimental results show that our solution

outperforms a baseline that treats topological semantics at the end

by an average factor of 6.5. It also outperforms, by an order of mag-

nitude, a solution based on translating the topological semantics

into RPQs evaluated over off-the-shelf SPARQL engines.

Motivating Example. Figure 1 provides a snippet of a knowl-

edge graph describing regions, their topological relations (touches,
disjoint and contains) and their official languages. Over this knowl-

edge graph, we could consider posing the following query (BGP):

𝑄1 = {(Africa, contains, 𝑥), (Africa, contains, 𝑦),
(𝑥, touches, 𝑦), (𝑥, language, 𝑧), (𝑦, language, 𝑧)}

This query asks for pairs of regions in Africa that touch and share

a language. We may expect this query to return:

Africa

Central Africa

contains

Northern Africa

contains

disjoint

Chad

contains

Libya

containstouches

Arabiclanguage language

Figure 1: Graph with two states in Northern and Central
Africa, their topological relations and their languages

𝑥 𝑦 𝑧

Chad Libya Arabic
Libya Chad Arabic

However, if we run the query over the knowledge graph in amanner

agnostic to the semantics of contains, we will receive empty results

since the fact that Africa contains Chad and Libya (only) implicitly

holds via the transitivity of this topological relation.

As another example, consider the simpler BGP:

𝑄2 = {(Africa, contains, 𝑥), (Africa, contains, 𝑦), (𝑥, touches, 𝑦)}

We may after some consideration expect the results to be:

𝑥 𝑦

Chad Libya
Libya Chad
Central Africa Northern Africa
Northern Africa Central Africa
Central Africa Libya
Libya Central Africa
Northern Africa Chad
Chad Northern Africa

Here, the fact that Central Africa andNorthern Africa touch can be

inferred from the observations that they are disjoint and contain two

regions that touch. Likewise we can infer from the semantics of the

indicated topological relations, and this graph, that Central Africa
touches Libya, and Northern Africa touches Chad, with further

results given by the symmetry of the touch relation.

The goal of this paper is to explore techniques for efficiently (in

both space and time) evaluating BGPs with topological relations.

Novelty. We address the efficient evaluation of basic graph pat-

terns over graphs that feature topological (and non-topological)

relations. To the best of our knowledge, this problem has not been

well-studied, where the related works described in Appendix A

would benefit from such techniques. We provide the first worst-

case-optimal algorithm for evaluating BGPs with key topological

relations, while also carefully addressing efficiency in terms of space

and time. While some related works focus on leveraging quantita-

tive positional information to infer topological relations, our work

focuses on efficiently representing, querying, and inferring derived

topological relations from a base set of explicit topology predicates.

2 CORE CONCEPTS
We introduce key concepts and notation that will be used through-

out relating to graph databases, worst-case optimality, Leapfrog

Triejoin, compact data structures, and topological relations.



Worst-Case-Optimal Joins on Graphs with Topological Relations WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

2.1 Graph Databases
A graph database is defined herein as a labeled directed graph𝐺 , i.e.,

a set of edges of the form 𝑠
𝑝
−→ 𝑜 , from node 𝑠 to node 𝑜 with label 𝑝 .

Such edges are denoted by triples (𝑠, 𝑝, 𝑜) ∈ U3
, whereU is a totally

ordered universe of constants. We call𝑁 = |𝐺 | the number of triples

in𝐺 , and dom(𝐺) the domain of𝐺 , that is, the subset ofU used as

constants in 𝐺 . For simplicity we assume dom(𝐺) = {1, . . . , 𝑛}.
We query graph databases by means of basic graph patterns

(BGPs). LetV be a universe of variables. A BGP 𝑄 is a set of triple
patterns, each of which is a tuple of the form (𝑠, 𝑝, 𝑜) ∈ (U ∪V)3,
that is, it combines constants from U and variables from V . Let

vars(𝑄) denote the set of variables used in𝑄 . A binding is a mapping

from variables in vars(𝑄) to constants in U. Given 𝑄 and 𝐺 , we

call a binding a solution if and only if binding the variables of 𝑄

accordingly results in a subgraph of 𝐺 . The problem is to output

the set of all the solutions, denoted 𝑄 (𝐺).

2.2 Topological Relations
Our topological model consists of a set of objects, and the following

binary relations between some pairs of objects:

• 𝑥 ⊑𝑦: 𝑥 is contained in 𝑦.

• 𝑥 ⊓̸ 𝑦: 𝑥 and 𝑦 are disjoint.

• 𝑥 |𝑦: 𝑥 and 𝑦 are adjacent, or “touch”.

We further consider the negated relations 𝑥 @ 𝑦, 𝑥 ⊓ 𝑦, 𝑥 |𝑦: not
contained in, not disjoint and not adjacent, respectively.

The relation ⊑ forms a hierarchy. A hierarchy is an order (i.e.,

it is reflexive, antisymmetric, and transitive) such that if 𝑥 ⊑𝑦 and

𝑥 ⊑ 𝑧, then 𝑦 ⊑ 𝑧 or 𝑧 ⊑ 𝑦. In other words, the Hasse diagram of

⊑ is a forest. We do not allow partial overlaps between objects:

two regions are either disjoint or one contains the other. Formally,

𝑥 ⊓ 𝑦 ⇔ 𝑥 ⊑𝑦 ∨ 𝑦⊑𝑥 (so 𝑥 ⊓ 𝑦 is symmetric). The relation | is also
symmetric. Two adjacent nodes are considered to be disjoint (i.e.,

nodes containing each other are not adjacent), per rule a1 next. Rule

a2 implies that, if two nodes are adjacent, then all their ancestors

are also pairwise adjacent unless one contains the other.

a1. If 𝑥 ⊑𝑦 then 𝑥 ̸ | 𝑦; if 𝑥 |𝑦 then 𝑥 ⊓̸ 𝑦.
a2. If 𝑥 |𝑦, 𝑥 ⊑𝑥 ′, and 𝑦⊑𝑦′, then 𝑥 ′ |𝑦′, or 𝑥 ′⊑𝑦′, or 𝑦′⊑𝑥 ′.
Our setup is a specialization of Region Connection Calculus

(RCC) [48, 49], which further allows objects to overlap. Figure 2

shows the 8 RCC relations, which are jointly exhaustive and pair-

wise disjoint, that is, every pair of objects has exactly one relation.

Our relation 𝑥 ⊑𝑦 corresponds to ‘𝑥 EQ 𝑦’ or ‘𝑥 TPP 𝑦’ or ‘𝑥 NTPP

𝑦’ (or ‘𝑦 TPPi 𝑥 ’ or ‘𝑦 NTPPi 𝑥 ’), without distinction. Relation 𝑥 |𝑦
corresponds to ‘𝑥 EC 𝑦’, and 𝑥 ⊓̸ 𝑦 to ‘𝑥 EC 𝑦’ or ‘𝑥 DC 𝑦’. Relation

‘𝑥 EQ 𝑦’ corresponds to 𝑥 = 𝑦, and our model forbids ‘𝑥 PO 𝑦’.

2.3 Worst-Case Optimality
The AGM bound [7] defines a limit on the number of solutions

for natural join queries in a relational setting. Given a natural join

query 𝑄 and a relational instance 𝐷 , the AGM bound of 𝑄 over 𝐷

is the maximum number of tuples (results) generated by evaluating

𝑄 over any instance 𝐷′ of size not greater than 𝐷 . If we simply

assume that the size of all relations is in𝑂 (𝑁 ), we can speak of the

AGM bound of 𝑄 , denoted herein by 𝑄∗, as a function of 𝑁 . The

AGM bound can also be extended to BGPs on graph databases [28],

𝐴 𝐵 𝐴 𝐵
𝐵

𝐴

𝐵

𝐴

𝐴 DC 𝐵 𝐴 EC 𝐵 𝐴 TPP 𝐵 𝐴 NTPP 𝐵

𝐴 𝐵
𝐴

𝐵

𝐴

𝐵

𝐴

𝐵

𝐴 PO 𝐵 𝐴 EQ 𝐵 𝐴 TPPi 𝐵 𝐴 NTPPi 𝐵

Figure 2: The 8 relations of the Region Connection Calculus

where 𝑄∗ is the maximum number of solutions that BGP 𝑄 may

have on any graph database with 𝑂 (𝑁 ) triples.
An algorithm finding all the solutions of a BGP 𝑄 is said to be

worst-case optimal (wco) if it runs in time 𝑂 (𝑄∗) in data complexity
(i.e., assuming that the number of terms |𝑄 | in 𝑄 is a constant).

This is because, in the worst case, the algorithm has to enumerate

𝑄∗ solutions, which requires Ω(𝑄∗) time. A logarithmic overhead

factor (i.e., 𝑂 (𝑄∗ log𝑁 )) is often permitted in wco algorithms to

allow more flexibility in the underlying implementations. This is

the case for Leapfrog Triejoin (LTJ), one of the most popular wco

algorithms for BGPs on graph databases [28, 54].

2.4 Leapfrog Triejoin (LTJ)
The variant of the LTJ algorithm that solves BGPs in graphs pro-

ceeds by “eliminating” one variable at a time [28, 54], i.e. finding

all candidate bindings for the variable that may lead to a solution.

LTJ first defines an initial ordering (𝑥1, . . . , 𝑥𝑣) of vars(𝑄). Start-
ing with 𝑥1, LTJ finds each binding 𝑐 ∈ dom(𝐺) for 𝑥1 such that,

for every triple pattern 𝑡 where 𝑥1 appears, if 𝑥1 is replaced by 𝑐

in 𝑡 , then the evaluation of the modified 𝑡 over 𝐺 is non-empty.

This is equivalent to intersecting the binding of 𝑥1 over all the

individual triple patterns 𝑡 where 𝑥1 appears. LTJ uses a procedure

called ‘seek’ to find each consecutive value 𝑐 in that intersection.

Procedure seek uses in turn the primitive leap(𝑥1, 𝑐) to iteratively

find, in each triple pattern 𝑡 where 𝑥1 appears, the next possible

candidate for the intersection, which corresponds to the smallest

binding for 𝑥1 in 𝑡 that is over some threshold 𝑐 . When procedure

seek finally finds a value 𝑐 that appears in all triple patterns 𝑡 where

𝑥1 appears, LTJ binds 𝑥1 to 𝑐 and recursively continues eliminating

the other variables. In each recursion branch where all 𝑣 variables

have been eliminated, LTJ reports a solution with the bindings of

(𝑥1, . . . , 𝑥𝑣). When the recursion returns to 𝑥1, LTJ keeps finding

new bindings for it from 𝑐 + 1 onwards, and returns to the caller

when all the bindings have been explored.

For LTJ to run in 𝑂 (𝑄∗ log𝑁 ) time (i.e., for the algorithm to be

wco), it suffices that primitive leap is supported in 𝑂 (log𝑁 ) time.

The Ring [4, 5] is a recent implementation of LTJ that retains its

time complexity while requiring only 3𝑁 + 𝑜 (𝑁 ) words of space;
note that 3𝑁 words is the space needed to just list the triples of 𝐺

in plain form. We build on this compact representation because we

aim to extend LTJ while keeping the total space usage low.
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2.5 Compact Data Structures
We make use of various compact data structures [41] in order to

keep the space usage low. We present them in the depth that is

needed to follow the paper.

Bitvectors. A bitvector is a sequence 𝐵 [1 . . 𝑛] that supports the
following operations:

• Accessing the bit at position 𝑖 , that is, 𝐵 [𝑖].
• Computing the number rank𝑏 (𝐵, 𝑖) of times bit 𝑏 ∈ {0, 1}
occurs in the prefix 𝐵 [1 . . 𝑖].
• Finding the position select𝑏 (𝐵, 𝑗) of the 𝑗th occurrence of

the bit 𝑏 ∈ {0, 1} in 𝐵.

• Finding the position succ𝑏 (𝐵, 𝑖) of the first occurrence of bit
𝑏 ∈ {0, 1} in 𝐵 [𝑖 . . 𝑛]. This is indeed select𝑏 (rank𝑏 (𝐵, 𝑖 − 1) +
1), but it can be implemented more efficiently in practice.

All of these operations can be computed in 𝑂 (1) time by spending

just 𝑜 (𝑛) additional bits on top of 𝐵 [13, 39].

Permutations. Apermutation𝜋 on [𝑛] can be stored using𝑛 log𝑛+
𝑂 (𝜖 𝑛) bits of space (our logarithms are in base 2) so that one can

compute any 𝜋 (𝑖) in time𝑂 (1), and any 𝜋−1 ( 𝑗) in time𝑂 (1/𝜖) [40].
In this paper we use the setting 𝜖 = 1/log𝑛, to use 𝑛 log𝑛 +𝑂 (𝑛)
bits and accessing the inverse permutation in time 𝑂 (log𝑛).

Ordinal trees. An ordinal tree of 𝑛 nodes can be represented

using a sequence of 2𝑛 parentheses: traverse the tree in DFS order,

appending an opening parenthesis when arriving at a new node

and a closing one after having visited all of its descendants. Those

parentheses can then be represented as a bitvector 𝑃 [1 . . 2𝑛] (say,
encoding the opening parenthesis as a 1 and the closing one as a

0). By using 𝑜 (𝑛) additional bits, one can carry out the following

operations in 𝑂 (1) time, among many others [42]:

• The position close(𝑥) of the parenthesis that closes the one
that opens at 𝑃 [𝑥] = 1.

• The position open(𝑥) of the parenthesis that opens the one
that closes at 𝑃 [𝑥] = 0.

• The position enclose(𝑥) of the opening parenthesis that most

tightly encloses that one at 𝑃 [𝑥] = 1.

• The position rmq(𝑥,𝑦) where the minimum excess occurs
between positions 𝑥 and 𝑦. The excess at position 𝑧 is the

number of opening and not yet closed parentheses up to

position 𝑧, that is, rank1 (𝑃, 𝑧) − rank0 (𝑃, 𝑧).

Wavelet matrices. A wavelet matrix [14] represents an 𝑛 × 𝑛

grid with 𝑀 points using 𝑀 log𝑛 + 𝑜 (𝑀 log𝑛) + 𝑂 (𝑛) bits, while
supporting various orthogonal range queries [8]. The queries we

are interested in are finding the leftmost/rightmost/highest/low-

est point in an orthogonal range of the grid. Those correspond

to the operations called rel_min_lab_maj and rel_min_obj_maj,
and analogous versions to find maxima instead of minima, on the

structure BinRel-WT [8], which solves them in time 𝑂 (log𝑛).

3 QUERYING GRAPHS WITH TOPOLOGICAL
RELATIONS

3.1 Model
We assume that (some) nodes of 𝐺 feature topological relations

between them, per Section 2.2. These relations are encoded in the

graph itself via triples of the form (𝑥, contains, 𝑦), (𝑥, contained, 𝑦),
and (𝑥, touches, 𝑦). From those triples, which we call axioms, we
derive the relations of Section 2.2 as follows.

• 𝑥 ⊑𝑦 iff axioms (𝑥, contained, 𝑦) or (𝑦, contains, 𝑥) occur in
the graph, or it can be derived from axioms by reflexivity

and transitivity. We use a closed-world assumption, so 𝑥 @𝑦
iff we cannot derive 𝑥 ⊑𝑦.
• 𝑥 |𝑦 iff there is an axiom (𝑥, touches, 𝑦) or (𝑦, touches, 𝑥) in
the graph, or it can be derived from rule a2 of Section 2.2.

Again, 𝑥 ̸ | 𝑦 holds iff we cannot derive 𝑥 |𝑦.
• 𝑥 ⊓ 𝑦 iff we can derive 𝑥 ⊑𝑦 or 𝑦⊑𝑥 , otherwise 𝑥 ⊓̸ 𝑦 holds.

Note that rules like a1 or the antisymmetry of ⊑ are not used to

derive relations; the axioms must hold them for consistency.

We then extend our BGPs with additional constraints of the form
𝑥 ⊑ 𝑦, 𝑥 ⊓ 𝑦, 𝑥 |𝑦, and their negations, where 𝑥 and 𝑦 are either

constants or variables. The solutions to these extended BGPs are the
bindings such that, once the variables are substituted, all the triples

appear in the graph and all topological constraints (per the above

itemization) are satisfied.

3.2 Algorithms
To achieve the promised optimality, we extend LTJ so that it can

handle the constraints while maintaining the leap(𝑥, 𝑐) operation
working in time at most 𝑂 (log𝑛). The treatment of the constraints

differs depending whether 𝑥 or 𝑦 is bound first.

• For 𝑥 ⊑𝑦, if 𝑥 is bound, leap(𝑥, 𝑐) is implemented with func-

tion contained(𝑥, 𝑐), which returns the smallest 𝑦 ≥ 𝑐 such

that 𝑥 ⊑𝑦. If 𝑦 is bound, then leap(𝑦, 𝑐) is implemented with

function contains(𝑦, 𝑐), which returns the smallest 𝑥 ≥ 𝑐

such that 𝑥 ⊑𝑦. The negated versions, for 𝑥 @𝑦, are imple-

mented respectively with functions not-contained(𝑥, 𝑐) and
not-contains(𝑦, 𝑐).
• For 𝑥 ⊓̸ 𝑦, if 𝑥 is bound, leap(𝑥, 𝑐) is implemented with func-

tion disjoint(𝑥, 𝑐), which returns the smallest𝑦 ≥ 𝑐 such that

𝑥 ⊓̸ 𝑦. If 𝑦 is bound, leap(𝑦, 𝑐) is similarly implemented with

disjoint(𝑦, 𝑐). The negated version, for 𝑥 ⊓𝑦, is implemented

with function not-disjoint(𝑥, 𝑐) (or not-disjoint(𝑦, 𝑐)).
• For 𝑥 |𝑦, if 𝑥 is bound, leap(𝑥, 𝑐) is implemented with func-

tion touches(𝑥, 𝑐), which returns the smallest 𝑦 ≥ 𝑐 such

that 𝑥 |𝑦; the case of bound𝑦 uses touches(𝑦, 𝑐). The negated
version, for 𝑥 ̸ | 𝑦, is implemented with function not-touches
(𝑥, 𝑐) (or not-touches(𝑦, 𝑐)).

If both 𝑥 and 𝑦 are constants, we just check if the fact holds

and, if it does, we remove it from the extended BGP; otherwise

the query has no results. The remaining case is that both 𝑥 and

𝑦 are variables; to handle it within LTJ we also create functions

contained(𝑐), contains(𝑐), etc., which return the smallest 𝑧 ≥ 𝑐

that contains some node, is contained in some node, and so on.

In Sections 4 and 5 we describe how we handle those functions

efficiently. Some of them are implemented in constant time and

others in time 𝑂 (log𝑛); the only exception is not-touches, which
takes time𝑂 ((ℎ/𝜖) log𝑛) whereℎ is the height of the hierarchy and

𝜖 is a space-time tradeoff parameter. This yields our main result;

see the details in Appendix B.1.
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Theorem 1. Let 𝐺 be a graph with 𝑛 nodes and 𝑁 triples. We can
build an index of size 𝑂 (𝑛 + 𝑁 ) that solves any extended BGP 𝑄 not
involving constraints of the form 𝑥 ̸ | 𝑦 with exactly one variable, in
time 𝑂 (𝑄∗ · |𝑄 | log𝑛), where 𝑄∗ is the maximum size of the output
of 𝑄 on any graph with at most |𝑄 |𝑛 nodes and |𝑄 |𝑁 triples. Given a
query without such constraints, we can choose a parameter 1 ≤ 𝜖 ≤ ℎ

at index construction time so that the index uses 𝑂 (𝜖 𝑁 ) additional
space and time becomes 𝑂 (𝑄∗ · |𝑄 | (ℎ/𝜖) log𝑛), for ℎ the maximum
length of a chain of containment relations between nodes of 𝐺 .

4 CONTAINMENT AND DISJOINTNESS
The main idea of our data structure handling containment and

disjointness relations is to store the Hasse diagram of the relation

⊑ (which is a forest) using balanced parenthesis as shown in Sec-

tion 2.5. However, we also renumber the node identifiers, which

form an interval [1 . . 𝑛], so as to assign their postorder number in

this forest (see, e.g., [34, 57]). Recall that a postorder visits first the

children of a node, left to right, and then visits the node. The pos-

torder numbers will be the identifiers used internally for indexing

and querying. The mapping with the external identifiers, if neces-

sary, will be provided with a permutation 𝜋 : [1 . . 𝑛] → [1 . . 𝑛], so
that 𝜋 (𝑖) will be the external identifier of the node with postorder

number 𝑖 . Function 𝜋 will be stored as described in Section 2.5, so

that the translation of query results takes constant time, while the

external identifiers appearing in BGPs𝑄 can be translated into their

corresponding internal identifiers (i.e., postorder numbers) in time

𝑂 ( |𝑄 | log𝑛) using the operation 𝜋−1 ( 𝑗).
As we explain in Section 2.5, we can represent the Hasse dia-

gram of ⊑ in 2𝑛 + 𝑜 (𝑛) bits using balanced parentheses. If there

are several trees in the forest, we concatenate their parenthetical

representations. Since we use the postorder numbering of nodes,

in this paper the identifier of a tree node will be the position of

its closing parenthesis. Our representation supports the following

primitives (among others) in constant time:

• node(𝑖) = select0 (𝑖) gives the forest node with postorder 𝑖 ,

• postorder (𝑥) = rank0 (𝑥) yields the postorder of node 𝑥 ,
• first (𝑥) = 1+ rank0 (open(𝑥)) gives the least postorder in the

subtree rooted at 𝑥 ,

• lca(𝑥,𝑦) = close(enclose(rmq(𝑥,𝑦) + 1)) gives the lowest

common ancestor of nodes 𝑥 and 𝑦.

Our postorder numbering has convenient properties:

(1) All the nodes contained in 𝑥 form a range of postorders, that

is 𝑥 ⊑𝑦 iff first (𝑦) ≤ postorder (𝑥) ≤ postorder (𝑦);
(2) Let us call ancestor (𝑥, 𝑗) the 𝑗th ancestor of node 𝑥 (where

𝑗 = 0 yields 𝑥 itself and 𝑗 = 1 gives its parent). Then the

sequence postorder (ancestor (𝑥, 𝑗)) is increasing with 𝑗 .

We can then implement the containment operations as follows,

all in constant time. Figure 3 illustrates the operations.

contains(𝑥, 𝑐): Return 𝑐 if node(𝑐) ⊑ 𝑥 , as node(𝑐) is already in

the subtree of 𝑥 . Otherwise, if 𝑐 < postorder (𝑥) return first (𝑥),
the first postorder following 𝑐 that is below 𝑥 . Else return ⊥, as
𝑐 > postorder (𝑥) and no postorder following 𝑐 can be inside 𝑥 .

not-contains(𝑥, 𝑐): Return postorder (𝑥) + 1 if node(𝑐) ⊑ 𝑥 , as

that is the least postorder following 𝑐 of a node not contained in 𝑥 .

Otherwise return 𝑐 , as node(𝑐) is already out of the subtree of 𝑥 .

contained(𝑥, 𝑐): Return 𝑥 if 𝑐 ≤ postorder (𝑥), because 𝑥 has the

least postorder among its ancestors. Otherwise, 𝑐 is on, or departs

from, the root-to-𝑥 path at a node 𝑦 = lca(𝑥, node(𝑐)). The answer
is then postorder (𝑦), as we prove next (see Appendix B.2).

Lemma 1. Let 𝑥 and 𝑧 be such that postorder (𝑥) < postorder (𝑧).
Then 𝑦 = lca(𝑥, 𝑧) is the node with the minimum postorder (𝑦) ≥
postorder (𝑧) that is an ancestor of 𝑥 .

not-contained(𝑥, 𝑐): Return 𝑐 if 𝑥 @ node(𝑐), as 𝑐 is already not

an ancestor of 𝑥 . Otherwise, we should climb the path formed by

ancestor (node(𝑐), 𝑗), 𝑗 = 1, 2, . . . until finding an ancestor 𝑦 having

another child to the right, and the answer is the first postorder

under 𝑦. This is easily detected in the parentheses representation

𝑃 [1 . . 2𝑛] of the tree: we want to find the first opening parenthesis

to the right of 𝑃 [node(𝑐)], which is done in constant time with

𝑗 = succ1 (𝑃, node(𝑐)) − node(𝑐) (cf. Section 2.5); the answer is 𝑐 + 𝑗 .

Disjointness. Based on the containment algorithms, we answer

disjoint(𝑥, 𝑐) by returning 𝑐 if 𝑐 < first (𝑥). Otherwise, if 𝑐 ≤
postorder (𝑥), then node(𝑐) ⊑ 𝑥 , so we reset 𝑐 ← postorder (𝑥) + 1
to get out of the area below 𝑥 . Finally, once we have ensured that

𝑐 > postorder (𝑥), we simply return not-contained(𝑥, 𝑐). To answer

not-disjoint(𝑥, 𝑐), we return first (𝑥) if 𝑐 < first (𝑥). Otherwise, we
return 𝑐 if node(𝑐) ⊑ 𝑥 . Otherwise, 𝑐 > postorder (𝑐) and we just

return contained(𝑥, 𝑐). In all cases the process takes constant time.

Zero or two bound variables. See Appendix B.3.

5 ADJACENCY CONSTRAINTS
We assume 𝑀 adjacency axioms of the form (𝑥, touches, 𝑦) in 𝐺 ,

from which the whole set of adjacency relations are derived.

We use a data structure that takes𝑀 log𝑛(1+𝑜 (1)) bits of space
and infers all the derived relations, answering the queries in time

𝑂 (log𝑛). The data structure uses an 𝑛 × 𝑛 binary matrix 𝐴 con-

taining 2𝑀 1s, where the rest are 0s: for each axiom (𝑥, touches, 𝑦)
or (𝑦, touches, 𝑥), we set 1s at 𝐴[postorder (𝑥), postorder (𝑦)] and
𝐴[postorder (𝑦), postorder (𝑥)] (we later tighten this space).

Recall that the set of postorders of all the descendants of𝑥 forms a

range [first (𝑥) . . postorder (𝑥)]. By rule a2, every 𝐴[𝑖, 𝑗] = 1 where

first (𝑥) ≤ 𝑖 ≤ postorder (𝑥) implies that 𝑥 | node( 𝑗), because some

descendant of 𝑥 is adjacent to node( 𝑗)—unless 𝑥 contains node( 𝑗).
Furthermore, every ancestor of node( 𝑗) is also adjacent to 𝑥 , again

by rule a2—unless that ancestor of node( 𝑗) contains 𝑥 .
To compute touches(𝑥, 𝑐), we want the least postorder ≥ 𝑐 of a

node that is adjacent to 𝑥 . We consider two ranges of columns in 𝐴.

Columns 𝑗 ≥ 𝑐 . Each𝐴[𝑖, 𝑗] = 1with first (𝑥) ≤ 𝑖 ≤ postorder (𝑥)
and 𝑗 ≥ 𝑐 implies 𝑥 | node( 𝑗), and thus 𝑗 can be the answer, unless

𝑥 and node( 𝑗) contain one another. By rule a1, 𝑥 @ node( 𝑗), as
otherwise node(𝑖) ⊑node( 𝑗) holds. Yet, it may be that node( 𝑗) ⊑𝑥 .

We handle the case 𝑗 ≥ 𝑐 as follows. Let 𝑗 be minimal such

that 𝐴[𝑖, 𝑗] = 1 for some first (𝑥) ≤ 𝑖 ≤ postorder (𝑥) and 𝑗 ≥ 𝑐 . If

node( 𝑗) @ 𝑥 , then 𝑗 is the best answer from the matrix columns

[𝑐 . . 𝑛]: the ancestors of node( 𝑗) have larger postorders, and other

1s in this area of 𝐴 have larger postorders, too. If node( 𝑗) ⊑ 𝑥 ,

then the least 𝑗 ≥ 𝑐 is below 𝑥 , and therefore we must find the

leftmost answer in the columns [postorder (𝑥) + 1 . . 𝑛], that is, we



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia José Fuentes-Sepúlveda et al.

T

x

first(x) 1+postorder(x)
(a) contains(𝑥, 𝑐 ) and not-contains(𝑥, 𝑐 )

not−contained

contained

x

first(x) 1+postorder(x)

(b) disjoint(𝑥, 𝑐 ) and not-disjoint(𝑥, 𝑐 )

x

lca(x,c)

(c) contained(𝑥, 𝑐 )

)))))((( )

x c open(y)

j=3

first(y)

x

first(y)

y

(d) not-contained(𝑥, 𝑐 )

Figure 3: Illustration of operations (solid curves) and their negations (dashed curves), for all cases of 𝑐 (grayed node). The
parentheses on the top left of Figure 3(d) illustrate how the distance 𝑗 between 𝑐 and the answer postorder is found.

set 𝑐 ← postorder (𝑥) + 1 and find again the minimal 𝑗 . This second

time, if there is a new answer 𝑗 , it cannot be contained in 𝑥 .

Columns 𝑗 < 𝑐 . For each𝐴[𝑖, 𝑗] with first (𝑥) ≤ 𝑖 ≤ postorder (𝑥)
and 𝑗 < 𝑐 , an ancestor of node( 𝑗) can be the answer, unless 𝑥 ⊑
node( 𝑗) or node( 𝑗) ⊑𝑥 . The first case cannot occur by rule a1. If the
second case occurs, then the ancestors of node( 𝑗) are not suitable
either, as they contain or are contained in 𝑥 .

We handle the case 𝑗 < 𝑐 as follows. Let 𝑗 be maximal such

that 𝐴[𝑖, 𝑗] = 1 for some first (𝑥) ≤ 𝑖 ≤ postorder (𝑥) and 𝑗 < 𝑐 . If

node( 𝑗) @ 𝑥 , we use Lemma 1 to find in 𝑦 = lca(node( 𝑗), node(𝑐))
the ancestor of node( 𝑗) with minimum postorder (𝑦) ≥ 𝑐 ; note that

no ancestor of 𝑗 can be contained in 𝑥 . If instead node( 𝑗) ⊑𝑥 , then
the rightmost 𝑗 < 𝑐 is below 𝑥 and we must find the maximum 𝑗 in

columns [1 . . first (𝑥) − 1] of 𝐴, that is, we set 𝑐 ← first (𝑥) − 1 and
find the maximal 𝑗 and compute 𝑦 again. This second time 𝑗 will

not be contained in 𝑥 ; still we must discard 𝑦 if it contains 𝑥 .

The reason why we can just take Lemma 1 on the rightmost

suitable 𝑗 is given next (see Appendix B.4). It shows that using

Lemma 1 on 𝑦 yields a smaller answer than using 𝑥 .

Lemma 2. Let 𝑥 ,𝑦, and 𝑧 be such that postorder (𝑥) < postorder (𝑦)
< postorder (𝑧). Then postorder (lca(𝑥, 𝑧)) ≥ postorder (lca(𝑦, 𝑧)).

The actual algorithm. We have shown that, if we store each

adjacency axiom twice, then we need to find the leftmost/rightmost

1 in a 3-sided area of 𝐴 𝑂 (1) times to get the best candidate in

columns [𝑐 . . 𝑛] and [1 . . 𝑐 − 1], and then we can pick the smallest

of two answers. To store each axiom (𝑥, touches, 𝑦)/(𝑦, touches, 𝑥)
only once, we arbitrarily store 𝐴[postorder (𝑥), postorder (𝑦)] = 1 or
𝐴[postorder (𝑦), postorder (𝑥)] = 1. The answer to touches(𝑥, 𝑗) is
then found as the minimum of four candidates: two obtained as

described, and other two with the analogous query in the other

direction (i.e., on 3-sided areas𝐴[1 . . 𝑐−1] [first (𝑥) . . postorder (𝑥)]
and 𝐴[𝑐 . . 𝑛] [first (𝑥) . . postorder (𝑥)]).

To solve those orthogonal range queries within the promised

space, we resort to the wavelet matrices described in Section 2.5,

which use 𝑀 log𝑛 + 𝑜 (𝑀 log𝑛) + 𝑂 (𝑛) bits and carry out those

queries in time𝑂 (log𝑛). This is also the complexity of touches(𝑥, 𝑐).

Negated adjacency. A basic solution for not-touches(𝑥, 𝑐) is to
invoke touches(𝑥, 𝑐+ 𝑗) for 𝑗 = 0, 1, . . . until touches(𝑥, 𝑐+ 𝑗) > 𝑐+ 𝑗 ,
so we can answer not-touches(𝑥, 𝑐) = 𝑐+ 𝑗 . By using𝑂 (𝜖 𝑀) further
words of space, for any 𝜖 ≤ ℎ, we can guarantee a time bound of the

form𝑂 ((ℎ/𝜖) log𝑛), whereℎ is the maximum height of a tree in the

Hasse diagram of the relation ⊑. For every node 𝑥 , we consider all

the nodes𝑦 such that 𝑥 |𝑦 (not only as an axiom, but as a derived fact

as well). We then store a list, associated with 𝑥 , of all the maximal

long runs of ⌈ℎ/𝜖⌉ or more consecutive values in this set.

Since there are at most ℎ𝑀 derived adjacency relations, there

can be at most 𝜖 𝑀 runs to store, which yields the promised space.

On the other hand, we can try the basic method for 𝑗 = 0, 1, . . . , ℎ/𝜖 ,
and if we fail for them all, then we are inside a long run, which can

be searched in the list in logarithmic time so as to return the first

value following the run. We can choose, for example, a constant 𝜖

to have𝑂 (𝑀) space and𝑂 (ℎ log𝑛) time, or some 𝜖 = Θ(ℎ) to have

𝑂 (ℎ𝑀) space and 𝑂 (log𝑛) time.

Zero or two bound variables. See Appendix B.5.

6 WORST-CASE OPTIMALITY
In this section we show that the extended LTJ is worst-case optimal:

its running time, for an extended BGP 𝑄 and a graph 𝐺 is always

bounded by the maximum number of answers of 𝑄 over any graph

𝐺 ′ with (about) the same number of nodes and edges.

To prove worst-case optimality, we first bound the number of

answers of an extended BGP, and then show the extended LTJ

algorithm runs in time given by this bound. We only focus on

extended BGPs 𝑄 that are consistent, that is, if there is at least

one graph 𝐺 for which 𝑄 (𝐺) is nonempty. This condition can be

checked in polynomial time [24].

Bounding the number of answers. For an extended BGP 𝑄 , con-

sider the conjunctive query flat(𝑄) that has an atom𝑇𝑦,𝑧,𝑤 (𝑦, 𝑧,𝑤)



Worst-Case-Optimal Joins on Graphs with Topological Relations WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

for each pattern (𝑦, 𝑧,𝑤) ∈ 𝑄 , and atoms 𝐷𝐶 (𝑢), 𝐷𝐶 (𝑣) for each
constraint 𝐶 in 𝑄 that mentions variables 𝑢 and 𝑣 . Using the tech-

niques introduced by Cucumides et al. [15], it is not difficult to show

that the size of 𝑄 (𝐺), for a graph 𝐺 with 𝑁 triples and 𝑛 nodes, is

upper bounded, in data complexity, by the size of the evaluation of

flat(𝑄) over the database instance 𝐼 (𝐺) in which each 𝑇𝑥,𝑦,𝑧 con-

tains every triple in 𝐺 , and 𝐷𝐶 contains every node
1
. Hence, 𝑄 (𝐺)

is always bounded by 2
𝜌∗ (flat(𝑄 ),(𝑁,𝑛) )

, where 𝜌∗ (flat(𝑄), (𝑁,𝑛))
is the AGM bound of flat(𝑄) over instances with 𝑁 triples and 𝑛

nodes [7]. Next we show a matching lower bound. Unlike the upper

bound, this result does not follow from the techniques of Cucumides

et al.[15], as it is deeply related to the topological constraints in

graphs (see Appendix B.6). Furthermore, notice the result is slightly

weaker than the original AGM bound. This is due to the presence

of self joins in extended BGPs (see e.g. [23]).

Proposition 2. Given an extended BGP 𝑄 with ℓ triple patterns,
there are arbitrarily large graphs 𝐺 with ℓ𝑁 triples and ℓ𝑛 nodes for
which 𝑄 (𝐺) ≥ 𝜌∗ (flat(𝑄), (𝑁,𝑛)).

Analyzing the algorithm. Next, we show our algorithm does

indeed run in worst-case-optimal time. In the following we use 𝑄∗

to refer to 2
𝜌∗ (flat(𝑄 ),(𝑁,𝑛) )

; in view of Proposition 2, we can assert

that 𝑄∗ is the maximum size of the output of 𝑄 over any graph

with at most |𝑄 |𝑁 triples and |𝑄 |𝑛 nodes.

Proposition 3. The extended LTJ algorithm runs on an extended
BGP 𝑄 over a graph 𝐺 in time 𝑂 (𝑄∗ · |𝑄 | log𝑛) if 𝑄 does not use
the not-touches constraint, and in𝑂 (𝑄∗ · |𝑄 | (ℎ/𝜖) log𝑛) for queries
involving the not-touches constraint, where ℎ is the maximum length
of a chain of containment relations between nodes of𝐺 and 1 ≤ 𝜖 ≤ ℎ.

Proof. Recall that standard LTJ runs in time𝑂 (𝑄∗ · |𝑄 |𝑓 (𝑁,𝑛))
when leap operations are implemented in time 𝑂 (𝑓 (𝑁,𝑛)) [54].

Consider any ordering of variables. We show that the running

time of our algorithm is bounded by the running time taken by the

Ring [4] to process flat(𝑄) over 𝐺 . Budget allocation is as follows.

As long as we do not bind any variable participating in a topo-

logical constraint, budget is allocated directly as Ring operations

are identical. Now whenever we bind a variable 𝑥 that participates

in a constraint, the number of leap operations for 𝑥 we do when

processing 𝑄 is at most the number of leaps for processing flat(𝑄):
any constraint 𝐶 (𝑥,𝑦) is replaced in flat(𝑄) with 𝐷 (𝑥), 𝐷 (𝑦), so
constraints can only reduce the number of leap operations.

The Ring implements the leap operations in time 𝑂 (log𝑛) [4].
In the preceding sections we have shown that leap operations

on topological constraints can be performed in time 𝑂 (log𝑛), or
𝑂 ((ℎ/𝜖) log𝑛) if the constraint is of type not-touches. This gives
our desired running time bound. □

7 IMPLEMENTATION AND EXPERIMENTS
We implemented our index in C++ as an extension of the Ring [4, 5],

which solves basic BGPs using LTJ in little space. Like the Ring,

our implementation is single-threaded and it is built on top of the

Succinct Data Structures Library (SDSL) [22]. Our implementation

is available at https://github.com/toporing/Toporing.

1
Note that this upper bound does involve a constant that depends on the query, the

reason is that the original AGM bound is given for join queries, which do not repeat

relations, while our queries do repeat relations. See [15] for further discussion.

To process extended BGPs, we implemented the leap procedures

exactly as described in Sections 4 and 5. The LTJ algorithm is then

applied without changes, other than detecting the topological triple

patterns so as to treat them in special form. Our index is called

TopoRing in the experiments. More details are given in Appendix C.

Dataset. To test our solution we queried the truthy Wikidata

graph [55] with 1,907 real-world graph patterns extracted from the

Wikidata query logs [36]. Further details are given in Appendix C.

A baseline. For comparison, we developed a non-trivial (but not

worst-case optimal) baseline based on the Ring and the data struc-

tures presented in Sections 4 and 5. Unlike our solution, where both

standard and topological triple patterns in a BGP are processed

together following the LTJ process, the baseline works in two steps:

i) First, process all the standard triple patterns of the BGP using the

Ring in order to obtain a partial binding of values to variables, and

then ii) filter or extend each partial binding with the topological

triple patterns, using the ideas in Sections 4 and 5. In part ii), the
triples with two bound variables are processed first, as they serve to

filter the solutions. We then continue with triples with one bound

variable, which are used to extend the binding. Finally, we end with

triples with both unbound variables. Notice that when a variable is

bound during evaluation, other triples having that variable reach a

higher priority to be processed next.

Virtuoso, Blazegraph and Jena. Our topological queries can be

expressed in SPARQL, albeit resorting to more complex queries

that combine BGPs, RPQs and negation. Along these lines we also

include the Virtuoso [19], Blazegraph [52] and Apache Jena [11]

SPARQL engines, translating queries into their equivalent SPARQL

syntax; Appendix C gives the details. To provide a fairer comparison

with our in-memory solution, we tested the engines on a RAM disk.

7.1 Experimental results
Topological primitives. We measured the standalone time of our

primitives contains(𝑥, 𝑐), contained(𝑥, 𝑐), touches(𝑥, 𝑐), and their

negations not-contains(𝑥, 𝑐), not-contained(𝑥, 𝑐) and not-touches
(𝑥, 𝑐) (with 𝜖 = 8)

2
, obtaining 9.5, 14.1, 27.3, 9.4, 9.0, and 29.6

nanoseconds, respectively. Those times are the average of 20 mil-

lion queries over random subjects 𝑥 and random valid objects 𝑐 . A

standard leap(𝑥, 𝑐) on the Ring was much slower, 340 nanoseconds.

Extended BGPs. Figure 4 shows how the running times distrib-

ute on the tested queries. The overall results in Figure 4(a) show

that TopoRing is significantly faster than the other alternatives,

with an average query time of 10.22 seconds, 3.5 times less than

that of our Baseline and at least 5 times less than the average of

Virtuoso, Blazegraph and Jena. While many queries are solved fast,

as witnessed by the low medians, a significant part of them are

indeed difficult. In particular, TopoRing times out on 19 queries,

the Baseline on 73 queries, Virtuoso on 44, Blazegraph on 170, and

Jena on 262 queries. However, we found that Virtuoso, Blazegraph

and Jena also exhibit 198, 3 and 1 non-timeout errors, resp., due

to an apparent bug processing zero-or-many (*) paths between
two variables, where it throws an error or returns no results when

results are expected. Adding up timeouts and errors, Virtuoso is

2
We also tested with 𝜖 = 2 and 𝜖 = 4, but 𝜖 = 8 provided the best space-time trade-off.

https://github.com/toporing/Toporing
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Figure 4: Runtimes grouped by number and kind of topological constraints. For each system the number of queries with timeout
is shown in parentheses, as (TopoRing/Baseline/Virtuoso timeouts+errors/Blazegraph timeouts+errors/Jena timeouts+errors).

unable to properly handle 242 queries (12%), Blazegraph 173 queries

(1%) and Jena 263 queries (1.4%).

Figures 4(b)-4(d) separate the queries by the number of topologi-

cal constraints. It shows that those constraints affect query times

by a significant margin, driving the average times of TopoRing

from 5.78 seconds with one constraint to 153.18 with three. The

impact on the Baseline is even higher, and Virtuoso, Blazegraph

and Jena solve very few queries with three constraints in less than

600 seconds.

Figures 4(e)-4(h) classify the queries according to the number of

containment and adjacency constraints, respectively. It can be seen

that the latter pose a heavier load to the TopoRing than the former,

but again, the effect on the Baseline, Virtuoso, Blazegraph and Jena

is much higher, up to the point that the median times out in both.

Space usage. Our TopoRing uses 15.5GB, that is, 17.38 bytes per

triple (bpt). From this space, 12.30 bpt are used by the underlying

Ring and 5.08 bpt by our structures handling topological constraints.

Virtuoso, Blazegraph and Jena, on the other hand, use 60.07,

90.79 and 95.83 bpt, respectively. This space includes the dictionary

mapping between nodes and their strings. This mapping can be

added to the Ring at a space cost of 3.68 bpt [4] with no impact on

query time. With this mapping, our TopoRing would use 21.06 bpt.

8 CONCLUSIONS AND FUTUREWORK
Many knowledge graphs contain topological relations, often – but

not exclusively – to represent geospatial relations, such as contains

and touches. Hereinwe have proposed techniques that are efficient –

in both time and space – for querying knowledge graphs, returning

results entailed via the semantics of topological relations. We have

formally characterized the efficiency of our approach, showing,

for example, that it constitutes a worst-case-optimal algorithm. In

practice, our approach provides notable speed-ups when compared

with internal and external (SPARQL) baselines for evaluating a

real-world workload of queries extracted from Wikidata logs.

In terms of limitations, our index structure does not currently

permit updates; these could be supported via dynamic compact data

structures for ordinal trees and wavelet matrices [35, 42]. Further-

more, the index structures we use work in RAM, where adapting

them to work efficiently on the disk is non-trivial due to the ran-

dom access patterns that they generate. Finally, our representation

permits having hierarchies other than contains, as long as each

element belongs to only one hierarchy. However, our model can be

extended to allow for overlaps in hierarchies (see Appendix D).

The semantic properties of topological relations – in particular,

symmetry and transitivity – may also apply to a broader class of

relations. Indeed, through our SPARQL baseline, we showed that

such semantics can be supported via (2)RPQs. However, for RPQs,

it is unlikely that useful worst-case-optimal guarantees exist [12].

This raises the question of where, precisely, is the barrier for wco

guarantees, and for what kinds of RPQs – or semantic properties –

can algorithms boasting such guarantees be provided.
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A RELATEDWORKS
We now discuss works relating to spatial databases and topology

in graph databases before highlighting novelty.

Spatial databases. Topological relations have long been studied

in the context of geographical information systems (GIS). Egenhofer

& Franzosa [18] present a seminal, set-based framework for defining

sixteen topological spatial relations, nine of which are applicable

for polygonal areas on a plane. The Region Connection Calculus

(RCC) [48, 49], which was proposed around the same time, features

eight binary topological relations for spatial regions.

Later works looked to integrate topological relations into spa-

tial query languages and databases. Papadimitriou et al. [46] pro-

pose a query language based on eight of Egenhofer & Franzosa’s

topological properties: overlaps, disjoint, equal, meets (what we
call touches), contains, covers (contains and shares a boundary),

contained by, and covered by. They prove that the closure of these

relations, in combination with typical logical operators, gives rise

to a query language that is complete for topological queries.

Such relations are implemented in many of the spatial database

systems used for GIS applications [50]. Modern predecessors of such

systems include PostGIS [45], and spatial extensions of relational

databases such as Oracle [29], Microsoft SQL Server [20], etc.

Topology in graph databases. Avariety of open knowledge graphs

on theWeb contain topological relations, often from the geographic

domain. Examples of knowledge graphs dedicated to geographic in-

formation include GeoNames
3
, LinkedGeoData [51], WorldKG [17],

etc. Other cross-domain open knowledge graphs, such as DBpe-

dia [33], Wikidata [55], YAGO [26], etc., further contain topological

relations capturing geographical and taxonomic information.

Query languages have emerged for querying graphs with spatial

information, including GeoSPARQL [9], which, alongside support

for geometry and distance, features three families of topological

relations, including that of Egenhofer et al., and RCC. Implementa-

tions of GeoSPARQL include Parliament [9], with extensions also

available in well-known engines, such as Jena
4
. A similar language,

called stSPARQL [31], supports spatial and time features, including

topological relations, as implemented by Strabon [32]. Other popu-

lar commercial graph database engines implement custom spatial

features, including Neo4j
5
, TigerGraph

6
, etc.

Key applications involve a combination of networks/graphs in a

spatial context, including topological analyses of power grids [30,

3
See https://www.geonames.org/

4
See https://jena.apache.org/documentation/geosparql/

5
See https://neo4j-contrib.github.io/spatial/

6
See https://www.tigergraph.com/solutions/geospatial-analysis/

47], road networks [21], genomes [16], as well as querying the

geographic knowledge graphs previously mentioned [25].

B PROOFS AND ADDITIONAL DETAILS
B.1 Details of Theorem 1
The total space incurred by our data structures is 3𝑁 +𝑛+(1+𝜖)𝑀 =

𝑂 (𝑁 + 𝑛) words of space (each of log𝑛 bits), plus sublinear terms,

where 𝑀 ≤ 𝑁 is the number of triples of the form (𝑥, touches, 𝑦).
Precisely, we use:

• 3𝑁 log𝑛+𝑜 (𝑁 log𝑛) bits for a Ring built on the graph edges.

• 𝑛 log𝑛 + 𝑂 (𝑛) bits to store a permutation between actual

node identifiers and convenient internal identifiers.

• 𝑀 log𝑛 + 𝑜 (𝑀 log𝑛) +𝑂 (𝑛) bits to store the adjacencies.

• 5𝑛+𝑜 (𝑛) bits to represent the hierarches and cases with zero

bound variables.

• (𝜖 𝑀) log𝑛 bits to support not-touches.
Combined with the worst-case optimality we prove in Section 6,

we obtain the theorem.

B.2 Proof of Lemma 1
Proof. By definition𝑦 is an ancestor of𝑥 and of 𝑧, so postorder (𝑦)

≥ postorder (𝑧) > postorder (𝑥), thus 𝑦 ≠ 𝑥 . We now prove that 𝑦 is

the lowest node in the path to 𝑥 with large enough postorder, that

is, its child𝑤 towards 𝑥 has postorder (𝑤) < postorder (𝑧).
Note that 𝑧 cannot descend from 𝑤 by definition of 𝑙𝑐𝑎, so 𝑧

descends from a child 𝑤 ′ ≠ 𝑤 of 𝑦. Then 𝑤 must precede 𝑤 ′:
otherwise, since 𝑥 descends from𝑤 , we would have postorder (𝑧) <
postorder (𝑥). Therefore, it holds that postorder (𝑤) < postorder (𝑧),
a contradiction. □

B.3 Containment and disjointness with zero or
two bound variables

Checking any of the relations of Section 4 between two constants 𝑥

and 𝑦 is trivially carried out by computing 𝑥 ⊑𝑦 and 𝑦⊑𝑥 . For two
variables, the simplest implementation for the general functions

contains(𝑐) and contained(𝑐) is to store a bitvector of length 𝑛 for

each, using succ1 (𝑐) to find the next postorder that contains some

node or is contained in some node. This yields constant time with

just 2𝑛+𝑜 (𝑛) extra bits; recall Section 2.5. Functions not-contains(𝑐)
and not-contained(𝑐) are implemented with succ0 (𝑐) on the same

bitvectors. The corresponding functions for disjointness are triv-

ial: disjoint(𝑐) is always ⊥ if ⊑ forms a single tree consisting of a

single path, otherwise it is always 𝑐 . For not-disjoint(𝑐), we enu-
merate first the 𝑡 trees of ⊑ formed by isolated nodes, and thus

not-disjoint(𝑐) is 𝑡 + 1 if 𝑐 ≤ 𝑡 , or else 𝑐 .

B.4 Proof of Lemma 2
Proof. Since𝑤 = lca(𝑥, 𝑧) is an ancestor of both 𝑥 and 𝑧, it holds

that first (𝑤) ≤ postorder (𝑥) < postorder (𝑦) < postorder (𝑧) ≤
postorder (𝑤), and thus 𝑦 descends from𝑤 . Since both 𝑦 and 𝑧 de-

scend from 𝑤 , 𝑤 ′ = lca(𝑦, 𝑧) descends from 𝑤 as well, and thus

postorder (𝑤) ≥ postorder (𝑤 ′). □

https://www.geonames.org/
https://jena.apache.org/documentation/geosparql/
https://neo4j-contrib.github.io/spatial/
https://www.tigergraph.com/solutions/geospatial-analysis/
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Figure 5: Partition of polygon 𝜋𝑥 . Each node 𝑎𝑥
𝑖
in the graph

is then associated with polygon 𝑝 (𝑎𝑥
𝑖
) = ⋃

𝑗≤𝑖 𝜋
𝑥
𝑗
.

B.5 Adjacency with zero or two bound variables
The case of bound𝑥 and𝑦 can be checked as touches(𝑥, postorder (𝑦)) =
postorder (𝑦), in 𝑂 (log𝑛) time. For two bound variables, we again

implement touches(𝑐) with a bitvector telling which postorders

touch some other node, and answer it with succ1 on the bitvector,

in constant time. The negated adjacency, not-touches with zero or

two bound variables, is handled analogously with no further space.

B.6 Proof of Proposition 2
Proof. Let us begin with some terminology. We say that 𝑄 is

irreducible if there exists no set of variables or constants that form

a cycle of containment constraints 𝑥 ⊑ 𝑦. Queries that are not

irreducible can be made so by identifying cycles in containment

constraints and replacing them with identities, as 𝑥 ⊑ 𝑦,𝑦 ⊑ 𝑥 is

equivalent to 𝑥 = 𝑦. This is why we shall only focus on irreducible

queries.

Further, let us first assume our query only uses constraints 𝑢⊑
𝑣 , 𝑢 | 𝑣 , or 𝑢 ̸ ⊓ 𝑣 . This proof is of independent interest since it

provides bounds even under the assumption that regions must

always be connected. We later explain how to extend this proof for

the remaining operators.

Assume 𝑄 involves ℓ triples and 𝑘 − ℓ constraints, so that it has

the form

∧ℓ
𝑖=1𝑇 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 )∧

∧𝑘
𝑖=ℓ+1𝐶𝑖 (𝑢𝑖 , 𝑣𝑖 ), where each𝐶𝑖 (𝑢𝑖 , 𝑣𝑖 )

is one of 𝑢𝑖 ⊑ 𝑣𝑖 , 𝑢𝑖 | 𝑣𝑖 or 𝑢𝑖 ̸ ⊓ 𝑣𝑖 . Then flat(𝑄) has the form∧ℓ
𝑖=1𝑇𝑖 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 ) ∧

∧𝑘
𝑖=ℓ+1 𝐷𝑖 (𝑢𝑖 ) ∧ 𝐷𝑖 (𝑣𝑖 ).

Let 𝑥 = vars(𝑄). We use the dual program of the AGM bound of

flat(𝑄), considering arbitrary integers 𝑁 and 𝑛 for the number of

triples and nodes of a graph:

maximize:

∑︁
𝑥∈𝑥

𝑣𝑥

subject to: 𝑣𝑦𝑖 + 𝑣𝑧𝑖 + 𝑣𝑤𝑖
≤ log𝑁, 𝑖 = 1, . . . , ℓ

𝑣𝑝𝑖 ≤ log𝑛, 𝑖 = ℓ + 1, . . . , 𝑘
𝑣𝑞𝑖 ≤ log𝑛, 𝑖 = ℓ + 1, . . . , 𝑘
𝑣𝑥 ≥ 0, 𝑥 ∈ 𝑥

By duality, any solution

∑
𝑥∈𝑥 𝑣𝑥 for the dual is always smaller than

the corresponding primal solution, with equality when the solutions

are optimal. Let us assume that 𝑁 and 𝑛 are of the form 2
𝐿𝑁

and

2
𝐿𝑛

for some 𝐿𝑁 , 𝐿𝑛 ∈ N, so the optimal solution of both the primal

and dual are rational. Let (𝑣𝑥 )𝑥∈𝑥 be the dual solution and write

each 𝑣𝑥 as 𝑝𝑥/𝑏. Then (𝑝𝑥 )𝑥∈𝑥 is an optimal solution to the linear

program with cardinalities 𝑁𝑏 , 𝑛𝑏 . Now we present a graph𝐺 with

ℓ𝑁𝑏
triples and ℓ𝑛𝑏 nodes such that |𝑄 (𝐺) | ≥ 2

𝜌∗ (flat(𝑄 ),(𝑁𝑏 ,𝑛𝑏 ) )
.

Vertices and triples of 𝐺 are as follows:

• The vertices of 𝐺 are the union of sets 𝑉𝑥 = {𝑎𝑥
1
, . . . , 𝑎𝑥

2
𝑝𝑥 }

for each 𝑥 ∈ 𝑥 .
• For every triple 𝑇𝑖 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 ) in 𝑄 , add to 𝐺 all tuples in

𝑉𝑦𝑖 ×𝑉𝑧𝑖 ×𝑉𝑤𝑖
.

From the construction we verify that every triple 𝑇𝑖 (𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖 )
contributes with at most 2

𝑝𝑦𝑖 +𝑝𝑧𝑖 +𝑝𝑤𝑖 ≤ 2
𝑏 log𝑁 = 𝑁𝑏

triples and

every constraint𝐶 (𝑢𝑖 , 𝑣𝑖 ) contributes 2𝑝𝑢𝑖 + 2𝑝𝑣𝑖 ≤ 2 · 2𝑏 log𝑛 = 2𝑛𝑏

additional nodes. All of this guarantees that the graph contains at

most ℓ𝑇𝑏
triples and ℓ𝑛𝑏 nodes.

We next show how to construct the topology of the graph, for

which we need a few more definitions. For a consistent, irreducible

query 𝑄 , its constraint graph has an undirected edge from node 𝑥

to node 𝑦 for each constraint between 𝑥 and 𝑦 in 𝑄 . The subset-
constraint graph has a directed edge from node 𝑥 to node 𝑦 for each

constraint 𝑥 ⊑𝑦 in 𝑄 .

Lemma 3. If 𝑄 is consistent and irreducible, then: (1) Its subset-
constraint graph is acyclic. (2) If 𝑦 is reachable from 𝑥 in the subset-
constraint graph of 𝑄 , then 𝑄 cannot mention 𝑥 and 𝑦 together in
any other constraint.

Proof. First item follows because cycles in the subset-constraint

graph can be reduced, as these imply equality between all variables

in the cycle. Second item follows because our hierarchy assump-

tion implies that 𝑥 ⊑𝑦 is mandated by 𝑄 , and then if 𝑥 and 𝑦 are

mentioned in any other constraint 𝑄 would not be consistent. □

To construct the topology of𝐺 , consider the constraint-graph of

𝑄 . We make us of a result by Arseneva et al. [6], which states that

for the constraint graph of𝑄 we can build a set of (interior) disjoint

polygons in 3D, one for each node of the constraint graph, so that

two polygons share a side if and only if the corresponding vertices

are adjacent in the constraint graph. Note that this construction

results in a set of polygons, one per each variable of𝑄 , that share a

side if and only if the query 𝑄 contains a constraint (be it subset,

adjacency or disjointedness) that mentions both variables.

Denote this set of polygons as Π. From Π we construct the topol-

ogy of 𝐺 via a series of refinements.

First, for each variable 𝑥 in the constraint graph of 𝑄 , recall

we defined 𝑉𝑥 = {𝑎𝑥
1
, . . . , 𝑎𝑥

2
𝑝𝑥 }, and let 𝑛𝑥 = |𝑉𝑥 |. Let 𝜋𝑥 be the

polygon associated with variable 𝑥 in Π. Partition the polygon

into 𝑛𝑥 subpolygons 𝜋𝑥
1
, . . . , 𝜋𝑥𝑛𝑥 in such a way that 𝜋𝑥

1
shares all

the facets of 𝜋𝑥 , such as in Figure 5. Then, associate each element

𝑎𝑥
𝑖
∈ 𝑉𝑥 with the polygon given by

⋃
𝑗≤𝑖 𝜋

𝑥
𝑗
. Denote this polygon

as 𝑝 (𝑎𝑥
𝑖
), and notice in particular that 𝑝 (𝑎𝑥𝑛𝑥 ) = 𝜋𝑥 .

This construction ensures the following:

• For each variable 𝑥 , all polygons associated with elements

in 𝑉𝑥 satisfy all adjacency axioms previously satisfied by

𝜋𝑥 . As a consequence, for every constraint 𝑥 | 𝑥 ′ in 𝑄 , every

element in 𝑉𝑥 is adjacent to every element in 𝑉𝑥 ′ .
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Figure 6: Redefinition of 𝑝 (𝑎𝑥
𝑖
) when facing constraints 𝑦1⊑𝑥

and 𝑦2 ⊑ 𝑥 from the initial construction (left) to the final
result (right).

• Since adjacent polygons are considered disjoint, for each

constraint 𝑥 ⊓̸ 𝑥 ′ in 𝑄 we have that every element in 𝑉𝑥 is

disjoint to every element in 𝑉𝑥 ′ .

We will further refine this topology to account for subset con-

straints in 𝑄 . We deal separately with each connected compo-

nent of the subset-constraint graph of 𝑄 . For each such compo-

nent 𝐶 , which by Lemma 3 is a DAG, we first ensure that every

node in 𝐶 has at most one outgoing edge, by iteratively replac-

ing edges (𝑥,𝑦) and (𝑥, 𝑧), corresponding to constraints 𝑥 ⊑ 𝑦

and 𝑥 ⊑ 𝑧, with (𝑥,𝑦), (𝑦, 𝑧).7 Importantly, this modification en-

sures that for every pair 𝑥 , 𝑧 of nodes in the component 𝐶 of the

constraint graph, if 𝑥 is an ancestor of 𝑧 in 𝐶 , then 𝑥 is also an

ancestor of 𝑧 in the modified graph. Pick one node traversal of

this graph. In this order, we do the following. If a variable 𝑥 has

no ancestor, that is, if there is no 𝑦 such that (𝑦, 𝑥) is in 𝐶 , we

leave all 𝑛𝑥 polygons for 𝑥 as constructed before. Otherwise let

𝑦1, . . . , 𝑦𝑘 be the nodes such that edges (𝑦1, 𝑥), . . . , (𝑦𝑘 , 𝑥) belong
to the subset-constraint graph. Then, for each element 𝑎𝑥

𝑖
in 𝑉𝑥 ,

redefine 𝑝 (𝑎𝑥
𝑖
) = 𝑝 (𝑎𝑥

𝑖
) ∪ 𝜋𝑦1 · · · ∪ 𝜋𝑦𝑘

. Figure 6 depicts this con-

struction for a specific polygon 𝑝 (𝑎𝑥
𝑖
) that shares a side with two

other polygons 𝜋𝑦1
and 𝜋𝑦2

.

Notice, then, that each of the polygons associated with elements

in 𝑉𝑦1 , . . . ,𝑉𝑦𝑘 are contained in all the polygons associated with

any element in 𝑉𝑥 . Hence, the topology so far satisfies the sub-

set constraints in the modified graph, and since the modification

preserves ancestry, it also satisfies the subset constraints in𝐶 . More-

over, for each constraint 𝑦 𝑗 ⊑𝑥 we have that every element in𝑉𝑦 𝑗
is

contained in any element in 𝑉𝑥 Furthermore, all other constraints

in 𝑄 mentioning variable 𝑥 continue to be satisfied, as the only

disjoint/adjacent constraints that are falsified in this construction

involve two variables in 𝐶 where one is an ancestor of the other,

which we assume not to exist by Lemma 3.

Concerning the evaluation, since the graph contains all com-

binations of the corresponding nodes participating in one of the

triples in 𝑄 , and since constraints 𝐶 (𝑥,𝑦) in 𝑄 are realized in all

elements in 𝑉𝑥 ×𝑉𝑦 , we immediately obtain that that evaluation

𝑄 (𝐺) contains all tuples 𝑡 ∈ 𝑉𝑥1 × · · · ×𝑉𝑥𝑛 . We now have a graph

𝐺 with the desired cardinality profile for which

𝑄 (𝐺) ≥ 2

∑
𝑥 ∈𝑥 𝑝𝑥

;

the right item corresponds to 2
𝜌∗ (flat(𝑄 ),(𝑁𝑏 ,𝑛𝑏 ) )

by duality. □
7
Since we assume topologies are hierarchies, whenever 𝑎 ⊑ 𝑏, 𝑎 ⊑ 𝑐 hold we have

either 𝑎 ⊑𝑏,𝑏 ⊑𝑐 or 𝑎 ⊑𝑐, 𝑐 ⊑𝑏. Hence, with this refining we are forcing one of these

two cases for every element realizing the original constraints.

Extending the proof for negated operators. To deal with the re-

maining operators, we need to modify the construction above so

that polygons for constraints 𝑥 ⊓̸ 𝑦 in the constructed graph are not

adjacent but disconnected. We can further show that this modified

construction continues to serve as a lower bound for queries even

if we add an additional constraint that enforces that two regions

are disconnected. Finally, to show the bound for our full query lan-

guage, all we need to do is to use our axioms to rewrite queries so

that they only use adjacency, subset, disjoint and disconnected con-

straints, for which we can apply the result outlined in the previous

paragraph. Details are omitted due to space limitations.

Our proof provides lower bounds even in a restricted topological

space like polygons in R3
. We can even build a worst-case instance

in R2
if topological regions may correspond to a set of disconnected

areas in the plane: for every 𝐶 (𝑥, 𝑥 ′) we create two touching areas

disconnected from all the others, one belonging to the region of 𝑥

and the other of 𝑥 ′. We can further enforce that regions are simple

connected areas if the constraints graph of the query is planar. In

such a case, a planar embedding of its dual produces a set of regions,

one per variable, that touch each other iff they are connected by a

constraint. Those regions play the role of the polygons of Arseneva

et al. [6].

C DETAILS ON THE EXPERIMENTAL RESULTS
Variable elimination order in TopoRing. It is well known that the

order in which variables are eliminated may have a huge impact

in practice on the running times of LTJ [54]. The Ring chooses

the order based on estimating the number of solutions to triple

patterns. We extend such estimations to topological relations using

our data structures. We estimate the cardinality 𝑐 (𝑡) of a topological
constraint 𝑡 as follows: If no variable is bound, 𝑐 (𝑡) is estimated as

the total number of nodes with that topological relation. If 𝑡 is of

the form 𝑥 ⊑𝑦 and 𝑥 is bound, then 𝑐 (𝑡) is estimated as the depth

of the node to which 𝑥 is bound. If instead 𝑦 is bound, then 𝑐 (𝑡) is
estimated to be the number of descendants of the node to which

𝑦 is bound. Those values are computed in constant time with the

data structure for ordinal trees described in Section 2.5. If 𝑡 is of

the form 𝑥 |𝑦 and one of 𝑥 and 𝑦 is bound, then we (under)estimate

𝑐 (𝑡) as the number of adjacency axioms of the descendants of the

bound variable 𝑥 .

Dataset and queries. We extracted all queries containing a single

BGP, filtering those not mentioning topological properties, any

disconnected BGPs that would invoke a Cartesian product, and

BGPs that are duplicate with respect to isomorphism of variables.

We selected two predicates from Wikidata to represent the con-

tainment relation: P150 (contains the administrative territorial entity)
and P131 (located in the administrative territorial entity), and the

predicate P47 (shares boundary with) to represent the adjacency

relation. The data structures presented in Section 4 need to have

a forest on the relation ⊑, but this dataset is, in fact, a directed

acyclic graph. To overcome this problem, we retained only a span-

ning tree of the directed acyclic graph by deleting 1,393,677 triples.

We further include edges for all other predicates in the graph, but

without any special interpretation. The complete resulting dataset

has 𝑁 = 957,450,487 triples (107,836,911 subjects, 242,124,917 ob-

jects, 5,419 predicates, and 𝑛 = 296, 008, 192 unique nodes). From

those triples, 6,881,975 correspond to containment and 499,741 to
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adjacency. The selected query log contains 2,782 queries, each of

which mentions at least one of the predicates P150, P131, or P47.
After preliminary experiments, to enable better comparability, we

filtered queries that resulted in different numbers of results ±1%
across engines; for example, Virtuoso has a hard-coded limit of 2

20

results, while Blazegraph gave a slightly different number of results

in some cases. The final query set contains 1,907 queries.

Translating queries to SPARQL. A topological constraint 𝑥 ⊑𝑦 is

translated into the following:

SELECT DISTINCT ?x ?y {
?x (P150|^P131)* ?y .
?x (P150|^P150|P131|^P131|P47|^P47) ?x_e . }

With the auxiliary variable 𝑥_𝑒 , we make sure that the query only

binds 𝑥 to a node that participates in topological relations. A con-

straint of the form 𝑥 |𝑦 is translated into the following syntax:

SELECT DISTINCT ?x ?y {
?x (P150|^P131)* ?x_s .
?y (P150|^P131)* ?y_s .
?x_s (P47|^P47) ?y_s .
FILTER NOT EXISTS {

?x ((P150|^P131)*|(^P150|P131)*) ?y } }

This extended query captures the fact that 𝑥 or a sub-region of 𝑥

touches 𝑦 or a sub-region of 𝑦, and the filter excludes the cases

where 𝑥 contains 𝑦 or vice-versa.

Experimental setup. Experiments were run on a machine with

two Intel Xeon Silver (4316) processors, clocked at 2.30GHz; 251GB

RAM memory clocked at 3,200 MT/s; 40 physical cores each one

with L1i, L1d and L2 caches of size 32KB, 48KB and 1,280KB, respec-

tively; and a L3 cache of size 30MB. The machine runs Linux 5.14.0-

162.22.2.el9_1, in 64-bit mode. The code was compiled with GCC

11.3.1 using flags -msse4.2 -O3 -ffast-math -funroll-loops
-fno-omit-frame-pointer. TopoRing times are averaged over 4

executions. Because they were much slower, Baseline times were

averaged over 2 executions and Virtuoso, Blazegraph and Jena over

1 execution. A timeout of 10 minutes was set per query.

D RELATING MULTIPLE HIERARCHIES
Our representation permits having the elements distributed across

more than one hierarchy, though each element must belong to only

one. This is represented by a set of Hasse diagrams, or as explained,

as a forest of hierarchy trees, and concretely as a concatenation

of their parenthesis sequences. By definition, there cannot be con-

tainment relations between different hierarchies (in particular, an

object cannot be contained in two objects that are not one contained

in the other). We do support having adjacency relations between

different hierarchies, which may fit some applications.

Allowing overlaps. In other cases, there may be overlap between
elements from different hierarchies (e.g., two hierarchies of admin-

istrative subdivisions). This information will be considered when

answering whether two regions are disjoint: we said until now that

𝑥 ⊓ 𝑦 ⇔ 𝑥 ⊑𝑦 ∨ 𝑦 ⊑ 𝑥 . We now add another possibility for 𝑥 ⊓ 𝑦
to hold: 𝑥 and 𝑦 are declared to overlap in an axiom (i.e., graph

triple) (𝑥, overlaps, 𝑦). Not-disjointness will then be determined by,

in addition to containment, the overlapping axioms stored in a

binary matrix 𝑂 [𝑖, 𝑗], and enforcing a rule analogous to a2:

o1. If 𝑥 ⊓ 𝑦, 𝑥 ⊑𝑥 ′, and 𝑦⊑𝑦′, then 𝑥 ′ ⊓ 𝑦′.
Our extended algorithm to answer not-disjoint(𝑥, 𝑐) takes the

smallest between two candidates. The first is obtained exactly

as before (we return first (𝑥) if 𝑐 < first (𝑥); else we return 𝑐 if

node(𝑐) ⊑ 𝑥 ; else we return contained(𝑥, 𝑐)). The second is ob-

tained from the matrix 𝑂 much as with touches, yet in simpli-

fied form because rule o1 is simpler than a2 (i.e., it allows re-

turning nodes containing 𝑥): among the cells 𝑂 [𝑖] [ 𝑗] = 1 for

first (𝑥) ≤ 𝑖 ≤ postorder (𝑥), we choose the minimum among the

smallest 𝑗 ≥ 𝑐 , and lca(node( 𝑗), node(𝑐)) for the largest 𝑗 < 𝑐 .

Recall that, in the actual algorithm, we perform four searches on

matrix𝑂 instead of two, to avoid storing each axiom twice. Overall,

this takes time 𝑂 (log𝑛) and stores the overlap axioms only once.

The case for disjoint(𝑥, 𝑐) is analogous: we take the smallest

between two candidates. The first is obtained exactly as before

(we return 𝑐 if 𝑐 < first (𝑥); else, if 𝑐 ≤ postorder (𝑥), we reset

𝑐 ← postorder (𝑥) +1; and in either case return not-contained(𝑥, 𝑐)).
The second candidate is obtained from the matrix 𝑂 much as with

not-touches, for which we showed how to answer queries in time

𝑂 ((ℎ/𝜖) log𝑛) using an 𝑂 (𝜖) fraction of extra space.

Independent hierarchies. If we do need objects to belong to dif-

ferent hierarchies (as in our original Wikidata graph), we can cre-

ate one distinct identifier 𝑖𝑑ℎ per hierarchy ℎ, and add a triple

(𝑖𝑑ℎ, corresponds_to, 𝑖𝑑), where 𝑖𝑑 is the global identifier of the

object. Those triples must be considered in queries, as we should

relate only the global identifier to other nodes. All of these exten-

sions continue to support LTJ’s leap operation in the required time.

More precisely, since there is only one hierarchy per object, the

triples (𝑖𝑑ℎ, corresponds_to, 𝑖𝑑) involve a key constraint. To obtain

the AGM bound for these types of queries one needs to chase these
key constraints, as done by Gottlob et al. [23], but LTJ is still optimal

in this case with respect to the chased query. Hence, our algorithm

maintains worst-case optimality, as stated in Theorem 1.
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